Ozone Trend Analysis in Natal (5.4°S, 35.4°W, Brazil) Using Multi-Linear Regression and Empirical Decomposition Methods over 22 Years of Observations
"> Figure 1
<p>Geographical position of the study site of Natal in the north of Brazil (the red star symbol), an equatorial location (5.4°S, 35.4°W) operated by the INPE (National Institute for Space Research), Brazil. Cachoeira (22.68°S, 45.00°W), Irene (25.90°S, 28.22°E), and Reunion (20.89°S, 55.53°E) sites are indicated by red dots.</p> "> Figure 2
<p>Monthly time-series of total, stratospheric (<b>upper panel</b>) and tropospheric (<b>lower panel</b>) columns of ozone at Natal (5.40°S, 35.40°W), Rio Grande do Norte state, Brazil, obtained by combining and merging ground-based measurements (balloon-sonde profiles and Dobson total columns) and satellite observations from TOMS (until 2005), OMI, and OMI–MLS (see the legend). The merged ozone time series are shown with continuous lines.</p> "> Figure 3
<p>(<b>a</b>) IMF1, (<b>b</b>) IMF2, (<b>c</b>) IMF3, (<b>d</b>) IMF4, and (<b>e</b>) IMF5, as detected by the EMD (blue line) and EAWD (red line) algorithms applied the TCO at Natal over the 1998–2019 period of observation. Plot (<b>f</b>) superimposes their spectral densities.</p> "> Figure 3 Cont.
<p>(<b>a</b>) IMF1, (<b>b</b>) IMF2, (<b>c</b>) IMF3, (<b>d</b>) IMF4, and (<b>e</b>) IMF5, as detected by the EMD (blue line) and EAWD (red line) algorithms applied the TCO at Natal over the 1998–2019 period of observation. Plot (<b>f</b>) superimposes their spectral densities.</p> "> Figure 4
<p>Zonal wind at the 20 hPa pressure level over Singapore (1°N, 104°E), corresponding to the QBO index (blue line), superimposed on the sum of IMF3 and IMF4 standing respectively for QBO1 and QBO2, and periods of 26 and 33 months (red line) over the study period from 1998 to 2019.</p> "> Figure 5
<p>Ozone time series and trend curves as derived from the MLR and EAWD methods for (<b>a</b>) TCO, (<b>b</b>) Strat–CO, and (<b>c</b>) Trop–CO, respectively, in blue and red lines, from 1998 to 2019.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natal Ozone Time Series
2.1.1. Satellite Observations: TOMS, OMI, MLS-OMI
2.1.2. Radiosonde Data
2.1.3. Dobson Spectrometer Observations
2.2. The Multi-Regression Method: Trend-Run Model
2.3. EMD and EWT Decomposition Methods
2.4. EAWD Decomposition
3. Results
Ozone Variability Modes by EMD and EAWD Methods
4. Discussion
Trend Estimates by MLR and EAWD
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fountoulakis, I.; Diémoz, H.; Siani, A.-M.; Laschewski, G.; Filippa, G.; Arola, A.; Bais, A.F.; De Backer, H.; Lakkala, K.; Webb, A.R.; et al. Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy. Environments 2019, 7, 1. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Bertschi, I.T.; Jaffe, D.A.; Jaeglé, L.; Price, H.U.; Dennison, J.B. PHOBEA/ITCT 2002 airborne observations of transpacific transport of ozone, CO, volatile organic compounds, and aerosols to the northeast Pacific: Impacts of Asian anthropogenic and Siberian boreal fire emissions. J. Geophys. Res. 2004, 109, D23S12. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef]
- Duflot, V.; Dils, B.; Baray, J.L.; de Maziere, M.; Attié, J.-L.; Vanhaelewyn, G.; Senten, C.; Vigouroux, C.; Clain, G.; Robert, D. Analysis of the origin of the distribution of CO in the subtropical southern Indian Ocean in 2007. J. Geophys. Res. 2010, 115, D22106. [Google Scholar] [CrossRef]
- Thompson, A.M.; Balashov, N.V.; Witte, J.C.; Coetzee, J.G.R.; Thouret, V.; Posny, F. Tropospheric ozone increases over the southern Africa region: Bellwether for rapid growth in Southern Hemisphere pollution? Atmos. Chem. Phys. 2014, 14, 9855–9869. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P.P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Bencherif, H.; Bègue, N.; Kirsch Pinheiro, D.; du Preez, D.J.; Cadet, J.-M.; da Silva Lopes, F.J.; Shikwambana, L.; Landulfo, E.; Vescovini, T.; Labuschagne, C.; et al. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sens. 2020, 12, 3846. [Google Scholar] [CrossRef]
- du Preez, D.J.; Bencherif, H.; Portafaix, T.; Lamy, K.; Wright, C.Y. Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season. Atmosphere 2021, 12, 132. [Google Scholar] [CrossRef]
- Bègue, N.; Bencherif, H.; Jégou, F.; Vérèmes, H.; Khaykin, S.; Krysztofiak, G.; Portafaix, T.; Duflot, V.; Baron, A.; Berthet, G.; et al. Transport and Variability of Tropospheric Ozone over Oceania and Southern Pacific during the 2019–20 Australian Bushfires. Remote Sens. 2021, 13, 3092. [Google Scholar] [CrossRef]
- Khaykin, S.; Legras, B.; Bucci, S.; Sellitto, P.; Isaksen, L.; Tencé, F.; Bekki, S.; Bourassa, A.; Rieger, L.; Zawada, D.; et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 2020, 1, 22. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, J.C.; McPeters, R.D.; Oltmans, S.J.; Schmidlin, F.J.; Logan, J.A.; Fujiwara, M.; Kirchhoff, V.W.; Posny, F.; Coetzee, G.J.; et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res. Atmos. 2003, 108, 8238. [Google Scholar] [CrossRef]
- Witte, J.C.; Thompson, A.M.; Smit, H.G.; Fujiwara, M.; Posny, F.; Coetzee, G.J.; Northam, E.T.; Johnson, B.J.; Sterling, C.W.; Mohamad, M.; et al. First reprocessing of Southern Hemisphere ADditional OZonesondes (SHADOZ) profile records (1998–2015): 1. Methodology and evaluation. J. Geophys. Res. 2017, 122, 6611–6636. [Google Scholar] [CrossRef]
- Randel, W.J.; Thompson, A.M. Interannual variability and trends in tropical ozone derived from SAGE II satellite data and SHADOZ ozonesondes. J. Geophys. Res. 2011, 116, D07303. [Google Scholar] [CrossRef]
- Toihir, A.M.; Portafaix, T.; Sivakumar, V.; Bencherif, H.; Pazmiño, A.; Bègue, N. Variability and trend in ozone over the southern tropics and subtropics. Ann. Geophys. 2018, 36, 381–404. [Google Scholar] [CrossRef]
- Bencherif, H.; Diab, R.D.; Portafaix, T.; Morel, B.; Keckhut, P.; Moorgawa, A. Temperature climatology and trend estimates in the UTLS region as observed over a southern subtropical site, Durban, South Africa. Atmos. Chem. Phys. 2006, 6, 5121–5128. [Google Scholar] [CrossRef]
- Thompson, A.M.; Stauffer, R.M.; Wargan, K.; Witte, J.C.; Kollonige, D.E.; Ziemke, J.R. Regional and seasonal trends in tropical ozone from SHADOZ profiles: Reference for models and satellite products. J. Geophys. Res. 2021, 126, e2021JD034691. [Google Scholar] [CrossRef]
- Sousa, C.T.; Leme, N.M.P.; Martins, M.P.P.; Silva, F.R.; Penha, T.L.B.; Rodrigues, N.L.; Silva, E.L.; Hoelzemann, J.J. Ozone trends on equatorial and tropical regions of South America using Dobson spectrophotometer, TOMS and OMI satellites instruments. J. Atmos. Sol. Terr. Phys. 2020, 203, 105272. [Google Scholar] [CrossRef]
- Bencherif, H.; Toihir, A.M.; Mbatha, N.; Sivakumar, V.; du Preez, D.J.; Bègue, N.; Coetzee, G. Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa. Atmosphere 2020, 11, 1216. Available online: https://www.mdpi.com/2073-4433/11/11/1216 (accessed on 2 January 2024). [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903995. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Delage, O.; Portafaix, T.; Bencherif, H.; Bourdier, A.; Lagracie, E. Empirical adaptive wavelet decomposition (EAWD): An adaptive decomposition for the variability analysis of observation time series in atmospheric science. Nonlin. Process. Geophys. 2022, 29, 265–277. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, J.C.; Oltmans, S.J.; Schmidlin, F.J. SHADOZ—A tropical ozonesonde–radiosonde network for the atmospheric community. Bull. Am. Meteorol. Soc. 2004, 85, 1549–1564. [Google Scholar] [CrossRef]
- Kim, J.H.; Newchurch, M.J. Biomass-burning influence on tropospheric ozone over New Guinea and South America. J. Geophys. Res. 1998, 103, 1455–1461. [Google Scholar] [CrossRef]
- McPeters, R.D.; Bhartia, P.K.; Krueger, A.J.; Herman, J.R.; Wellemeyer, C.G.; Seftor, C.J.; Jaross, G.; Torres, O.; Moy, L.; Labow, G.; et al. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide; NASA, Goddard Space Flight Center: Greenbelt, MD, USA, 1998. [Google Scholar]
- Livesey, N.J.; Filipiak, M.J.; Froidevaux, L.; Read, W.G.; Lambert, A.; Santee, M.L.; Jiang, J.H.; Pumphrey, H.C.; Waters, J.W.; Cofield, R.E.; et al. Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere. J. Geophys. Res. 2008, 113, D15S02. [Google Scholar] [CrossRef]
- Ziemke, J.R.; Chandra, S.; Duncan, B.N.; Froidevaux, L.; Bhartia, P.K.; Levelt, P.F.; Waters, J.W. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. 2006, 111, D19303. [Google Scholar] [CrossRef]
- Witte, J.C.; Thompson, A.M.; Smit, H.G.J.; Vömel, H.; Posny, F.; Stübi, R. First reprocessing of Southern Hemisphere ADditional OZonesondes profile records: 3. Uncertainty in ozone profile and total column. J. Geophys. Res. 2018, 123, 3243–3268. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, J.C.; Sterling, C.; Jordan, A.; Johnson, B.J.; Oltmans, S.J.; Fujiwara, M.; Vömel, H.; Allaart, M.; Piters, A.; et al. First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone profiles (1998–2016): 2. Comparisons with satellites and ground-based instruments. J. Geophys. Res. 2017, 122, 13000–13025. [Google Scholar] [CrossRef]
- Thompson, A.M.; Smit, H.G.; Witte, J.C.; Stauffer, R.M.; Johnson, B.J.; Morris, G.; von Der Gathen, P.; Van Malderen, R.; Davies, J.; Piters, A.; et al. Ozonesonde Quality Assurance: The JOSIE–SHADOZ (2017) Experience. Bull. Am. Meteorol. Soc. 2019, 100, 155–171. [Google Scholar] [CrossRef]
- Komhyr, W.D. Operations Handbook—Ozone Observations with a Dobson Spectrophotometer. In WMO Global Ozone Research and Monitoring Project; Report No. 6; World Meteorological Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Stanek, M. Total Ozone and UV Radiation Monitoring Software. 2007. Available online: http://www.o3soft.eu/ (accessed on 22 December 2023).
- Kirchhoff, V.W.J.H.; Barnes, R.A.; Torres, A.L. Ozone climatology at Natal, Brazil, from in situ ozonesonde data. J. Geophys. Res. 1991, 96, 10899–10909. [Google Scholar] [CrossRef]
- Fosso, O.B.; Molinas, M. Method for mode mixing separation in Empirical Mode decomposition. arXiv 2017, arXiv:1709.05547. [Google Scholar]
- Madden, R.A.; Julian, P.R. Observations of the 40–50 day tropical oscillation: A review. Mon. Weather Rev. 1994, 122, 814–837. [Google Scholar] [CrossRef]
- Ziemke, J.R.; Chandra, S. A Madden-Julian Oscillation in tropospheric ozone. Geophys. Res. Lett. 2003, 30, 2182. [Google Scholar] [CrossRef]
- Weare, B.C. Madden-Julian Oscillation in the tropical stratosphere. J. Geophys. Res. 2010, 115, D17113. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T.; et al. The quasi-biennial oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Clain, G.; Baray, J.L.; Delmas, R.; Diab, R.; Leclair de Bellevue, J.; Keckhut, P.; Posny, F.; Metzger, J.M.; Cammas, J.P. Tropospheric ozone climatology at two Southern Hemisphere tropical/subtropical sites, (Reunion Island and Irene, South Africa) from ozonesondes, LIDAR, and in situ aircraft measurements. Atmos. Chem. Phys. 2009, 9, 1723–1734. [Google Scholar] [CrossRef]
- Butchart, N. The Brewer–Dobson circulation. Rev. Geophys. 2014, 52, 157–184. [Google Scholar] [CrossRef]
- Hegglin, M.I.; Shepherd, T.G. Large Climate-Induced Changes in Ultraviolet Index and Stratosphere-to-Troposphere Ozone Flux. Nat. Geosci. 2009, 2, 687–691. [Google Scholar] [CrossRef]
- Fu, Q.; Solomon, S.; Pahlavan, H.A.; Lin, P. Observed changes in Brewer–Dobson circulation for 1980–2018. Environ. Res. Lett. 2019, 14, 114026. [Google Scholar] [CrossRef]
Detected Mode Periods | |||||
---|---|---|---|---|---|
(Months) | (Years) | Tropospheric O3 | Stratospheric O3 | Total O3 | Associated Forcing |
3 | 0.25 | 15.2% | 11.5% | X | Madden–Julian |
6 | 0.5 | 10.5% | 21.0% | 20.6% | Semi-Annual |
12 | 1.0 | 69.0% | X | 40.9% | Annual mode |
26 | 2.2 | X | 30.7% | 12.6% | QBO1 |
33 | 2.8 | X | 8.3% | 8.6% | QBO2 |
133 | 11.0 | X | 18.0% | 9.7% | Solar Cycle |
94.7% | 89.5% | 92.4% | Total % of contributions | ||
+4.9 ± 1.3% | −1.3 ± 0.8% | −0.60 ± 0.30% breakpoint by 2011 | Trend Estimate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencherif, H.; Pinheiro, D.K.; Delage, O.; Millet, T.; Peres, L.V.; Bègue, N.; Bittencourt, G.; Martins, M.P.P.; Raimundo da Silva, F.; Steffenel, L.A.; et al. Ozone Trend Analysis in Natal (5.4°S, 35.4°W, Brazil) Using Multi-Linear Regression and Empirical Decomposition Methods over 22 Years of Observations. Remote Sens. 2024, 16, 208. https://doi.org/10.3390/rs16010208
Bencherif H, Pinheiro DK, Delage O, Millet T, Peres LV, Bègue N, Bittencourt G, Martins MPP, Raimundo da Silva F, Steffenel LA, et al. Ozone Trend Analysis in Natal (5.4°S, 35.4°W, Brazil) Using Multi-Linear Regression and Empirical Decomposition Methods over 22 Years of Observations. Remote Sensing. 2024; 16(1):208. https://doi.org/10.3390/rs16010208
Chicago/Turabian StyleBencherif, Hassan, Damaris Kirsch Pinheiro, Olivier Delage, Tristan Millet, Lucas Vaz Peres, Nelson Bègue, Gabriela Bittencourt, Maria Paulete Pereira Martins, Francisco Raimundo da Silva, Luiz Angelo Steffenel, and et al. 2024. "Ozone Trend Analysis in Natal (5.4°S, 35.4°W, Brazil) Using Multi-Linear Regression and Empirical Decomposition Methods over 22 Years of Observations" Remote Sensing 16, no. 1: 208. https://doi.org/10.3390/rs16010208