Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa
<p>Geographical location of the Irene site (red symbol), a subtropical site in the southern hemisphere.</p> "> Figure 2
<p>(<b>a</b>) Monthly average values of total columns of ozone (TCO) measured by Dobson (red), Total Ozone Mapping Spectrometer (TOMS) (dotted red line), and Ozone Monitoring Instrument (OMI) (dotted blue line) instruments over Irene station. (<b>b</b>) Time-evolution of TCO constructed combining Dobson and satellite data.</p> "> Figure 3
<p>Vertical distribution of ozone concentration recorded on 15 February 2017 by balloon-sondes (blue line) and Microwave Limb Sounder (MLS) (black line) satellite over Irene.</p> "> Figure 4
<p>Monthly mean climatological temperature (<b>a</b>) and ozone-concentration (<b>b</b>) time-height cross-sections as derived from ozonesonde observations at Irene from 1998 to 2017. Cold-point tropopause (CPT) and lapse-rate tropopause (LRT) monthly variations are superimposed on <a href="#atmosphere-11-01216-f004" class="html-fig">Figure 4</a>a with white dashed and continuous red lines, respectively.</p> "> Figure 5
<p>(<b>a</b>) The time-evolution of monthly average values of tropospheric partial column of ozone (TPC) recorded from ozonesonde (1998–2007, 2012–2017) (see blue line). OMI/MLS TPC values are shown with a black line (2004–2017) and (<b>b</b>) relative difference obtained during the period where radiosonde and satellite measurements are achieved.</p> "> Figure 6
<p>(<b>a</b>) The time-evolution of total ozone adjusted using satellite data on ozonesonde observation (in blue line) and (<b>b</b>) time-evolution of TPC as obtained from a combination between radiosonde and adjusted satellite data.</p> "> Figure 7
<p>Time-evolution of stratospheric partial column of ozone obtained by subtracting the tropospheric column of ozone from the total column of ozone.</p> "> Figure 8
<p>Wavelet and global power spectra obtained by applying the Morlet wavelet to (<b>a</b>) total column ozone (TCO), (<b>b</b>) stratospheric partial column (SPC), and (<b>c</b>) tropospheric partial column (TPC) time series. The black contour encloses regions of greater than the 95% confidence level and the U-shaped curve indicates the cone of influence.</p> "> Figure 9
<p>Time evolution of monthly ozone values: panel (<b>a</b>) and panel (<b>b</b>) represent stratospheric and tropospheric partial columns, respectively. Observational data are represented by blue line and simulated data are presented in black. The straight red lines illustrate the linear trend obtained by the Trend-Run model.</p> "> Figure 10
<p>The inter-annual variation of (left panel) sequential statistics values of forward/progressive (Prog) <span class="html-italic">u</span>(<span class="html-italic">t</span>) (solid red line) and backwards/retrograde <span class="html-italic">u</span>’(<span class="html-italic">t</span>) (black solid line) obtained by the sequential Mann–Kendall (SQ-MK) test for TCO (<b>a</b>), SPC (<b>c</b>), and TPC (<b>e</b>). The right-hand side panel is the Theil–Sen plot for the TCO (<b>b</b>), SPC (<b>d</b>), and TPC (<b>f</b>) time series.</p> ">
Abstract
:1. Introduction
2. Instruments and Data
2.1. Ozone from Satellite Instruments
2.2. Ozone Data from Ground-Based Instrument
3. Ozone Time Series Construction
3.1. Construction of TCO Time Series
3.2. Construction of Tropospheric Column Ozone Time Series
3.3. Construction of Stratospheric Column Ozone Time Series
4. Methods Used for Data analysis
4.1. Wavelet Method
4.2. Trend-Run Model
4.3. The Mann–Kendall Method
4.3.1. The Mann–Kendall Test
4.3.2. The Sequential Mann–Kendall Test
5. Results and Discussion
5.1. Dominant Forcing Modes
5.2. Variability Analysis
5.3. Trend Analysis
5.3.1. Obtained Results from Trend-Run
5.3.2. Mann–Kendall Trend Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Weber, M.; Dikty, S.; Burrows, J.P.; Garny, H.; Dameris, M.; Kubin, A.; Abalichin, J.; Langematz, U. The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmos. Chem. Phys. 2011, 11, 11221–11235. [Google Scholar] [CrossRef] [Green Version]
- Laban, T.L.; van Zyl, P.G.; Beukes, J.P.; Vakkari, V.; Jaars, K.; Borduas-Dedekind, N.; Josipovic, M.; Thompson, A.M.; Kulmala, M.; Laakso, L. Seasonal influences on surface ozone variability in continental South Africa and implications for air quality. Atmos. Chem. Phys. 2018, 18, 15491–15514. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, V.; Ogunniyi, J. Ozone climatology and variability over Irene, South Africa determined by ground based and satellite observations. Part 1: Vertical variations in the troposphere and stratosphere. Atmósfera 2017, 30, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Diab, R.D.; Thompson, A.M.; Mari, K.; Ramsay, L.; Coetzee, G.J.R. Tropospheric ozone climatology over Irene, South Africa, from 1990 to 1994 and 1998 to 2002. J. Geophys. Res. 2004, 109, D20301. [Google Scholar] [CrossRef]
- Semane, N.; Bencherif, H.; Morel, B.; Hauchecorne, A.; Diab, R.D. An unusual stratospheric ozone decrease in the southern hemisphere subtropics linked to isentropic air-mass transport as observed over Irene (25.5° S, 28.1° E) in mid-May 2002. Atmos. Chem. Phys. 2006, 6, 1927–1936. [Google Scholar] [CrossRef] [Green Version]
- Mzé, N.; Hauchecorne, A.; Bencherif, H.; Dalaudier, F.; Bertaux, J.-L. Climatology and comparison of ozone from ENVISAT/GOMOS and SHADOZ/balloon-sonde observations in the southern tropics. Atmos. Chem. Phys. 2010, 10, 8025–8035. [Google Scholar] [CrossRef] [Green Version]
- Toihir, A.M.; Portafaix, T.; Sivakumar, V.; Bencherif, H.; Pazmiño, A.; Bègue, N. Variability and trend in ozone over the southern tropics and subtropics. Ann. Geophys. 2018, 36, 381–404. [Google Scholar] [CrossRef] [Green Version]
- Toihir, A.M.; Sivakumar, V.; Bencherif, H.; Portafaix, T. Study on variability and trend of Total Column Ozone (TCO) obtained from combined satellite (TOMS and OMI) measurements over the southern subtropic. In Proceedings of the 30th Annual Conference of South African Society for Atmosphere Science, Potchefstroom, South Africa, 1–2 October 2014; pp. 109–112. [Google Scholar]
- Thompson, A.M.; Balashov, N.V.; Witte, J.C.; Thouret, V.; Posny, F. Tropospheric ozone increases over the southern Africa region: Bellwether for rapid growth in Southern Hemisphere pollution? Atmos. Chem. Phys. 2014, 14, 9855–9869. [Google Scholar] [CrossRef] [Green Version]
- Petropavlovskikh, I.; Godin-Beekmann, S.; Hubert, D.; Damadeo, R.; Hassler, B.; Sofieva, V. SPARC/IO3C/GAW Report on Long-Term Ozone Trends and Uncertainties in the Stratosphere. SPARC Report No. 9, GAW Report No. 241, WCRP Report 17/2018. Available online: http://doi.org/10.17874/f899e57a20b (accessed on 10 November 2020).
- McPeters, R.D.; Bhartia, P.K.; Krueger, A.J.; Herman, J.R.; Wellemeyer, C.G.; Seftor, C.J.; Jaross, G.; Torres, O.; Moy, L.; Labow, G.; et al. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide; Technical Publication; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1998.
- Bhartia, P.K.; Wellemeyer, C.W. OMI Algorithm Theoretical Basis Document; Barthia, P.K., Ed.; Volume II—Chapter 2, TOMS-V8 Total O3 Algorithm, ATBD-OMI-02, Version 2.0; OMI Ozone: Defra, UK, 2002.
- Livesey, N.J.; Read, W.G.; Froidevaux, L.; Lambert, A.; Manney, G.L.; Pumphrey, H.C.; Santee, M.S.; Schwartz, M.J.; Wang, S.; Cofeld, R.E.; et al. Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 3.3 Level 2 Data Quality and Description Document; Jet Propulsion Laboratory: Pasadena, CA, USA, 2011. Available online: https://mls.jpl.nasa.gov/data/v3-3_data_quality_document.pdf (accessed on 10 November 2020).
- Toihir, A.M.; Bencherif, H.; Sivakumar, V.; El Amraoui, L.; Portafaix, T.; Mbatha, N. Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics. Ann. Geophys. 2015, 33, 1135–1146. [Google Scholar] [CrossRef] [Green Version]
- Gunniyi, J.; Sivakumar, V. Ozone climatology and its variability from ground based and satellite observations over Irene, South Africa (25.5° S; 28.1° E)—Part 2: Total column ozone variations. Atmósfera 2018, 31, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Bramstedt, K.; Gleason, J.; Loyola, D.; Thomas, W.; Bracher, A.; Weber, M.; Burrows, J.P. Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996–2000. Atmos. Chem. Phys. 2003, 3, 1409–1419. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.M.; Witte, C.J.; McPeters, R.D.; Oltmans, S.J.; Schmidlin, F.J.; Logan, J.A.; Fujiwara, M.; Kirchhoff, W.J.H.; Posny, F.; Coetzee, J.R.; et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground -based measurements. J. Geophys. Res. 2003, 108, 8238. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Thompson, A.M. Interannual variability and trends in tropical ozone derived from SAGE II satellite data and SHADOZ ozonesondes. J. Geophys. Res. 2011, 116, D07303. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, V.; Tefera, D.; Mengistu, G.; Botai, O.G. Mean ozone and water vapour height profiles for Southern hemisphere region using radiosonde or ozonesonde and haloe satelite data. Adv. Geosci. 2010, 16, 263–271. [Google Scholar]
- Sivakumar, V.; Bencherif, H.; Bègue, N.; Thompson, A.M. Tropopause characteristics and variability from 11 years of SHADOZ observations in the Southern Tropics and Subtropics. J. Appl. Meteorol. Clim. 2011, 50, 1403–1416. [Google Scholar] [CrossRef]
- Bencherif, H.; Diab, R.D.; Portafaix, T.; Morel, B.; Keckhut, P.; Moorgawa, A. Temperature climatology and trend estimates in the UTLS region as observed over a southern subtropical site, Durban, South Africa. Atmos. Chem. Phys. 2006, 6, 5121–5128. [Google Scholar] [CrossRef] [Green Version]
- Bègue, N.; Bencherif, H.; Sivakumar, V.; Kirgis, G.; Mze, N.; Leclair de Bellevue, J. Temperature variability and trends in the UT-LS over a subtropical site: Reunion (20.8 S, 55.5 E). Atmos. Chem. Phys. 2010, 10, 8563–8574. [Google Scholar] [CrossRef] [Green Version]
- Kyrölä, E.; Laine, M.; Sofieva, V.; Tamminen, J.; Päivärinta, S.-M.; Tukiainen, S.; Zawodny, J.; Thomason, L. Combined SAGE II–GOMOS ozone profile data set for 1984–2011 and trend analysis of the vertical distribution of ozone. Atmos. Chem. Phys. 2013, 13, 10645–10658. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.J.; Godin-Beekmann, S.; Kuttippurath, J.; Ancellet, G.; Goutail, F.; Pazmiño, A.; Froidevaux, L.; Zawodny, J.M.; Evans, R.D.; Wang, H.J.; et al. Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station. Atmos. Chem. Phys. 2013, 13, 10373–10384. [Google Scholar] [CrossRef] [Green Version]
- Bourassa, A.E.; Degenstein, D.A.; Randel, W.J.; Zawodny, J.M.; Kyrölä, E.; McLinden, C.A.; Sioris, C.E.; Roth, C.Z. Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations. Atmos. Chem. Phys. 2014, 6983–6994. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, C.; Rozanov, A.; Hommel, R.; Weber, M.; Bovensmann, H.; Burrows, J.P.; Degenstein, D.; Froidevaux, L.; Thompson, A.M. Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002 to 2012. Atmos. Chem. Phys. 2014, 14, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Akhil Raj, S.T.; Ratnam, M.V.; Rao, D.N.; Murthy, B.K. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region. Ann. Geophys. 2018, 36, 149–165. [Google Scholar] [CrossRef] [Green Version]
- Eckert, E.; von Clarmann, T.; Kiefer, M.; Stiller, G.P.; Lossow, S.; Glatthor, N.; Degenstein, D.A.; Froidevaux, L.; Godin-Beekmann, S.; Leblanc, T.; et al. Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements. Atmos. Chem. Phys. 2014, 14, 2571–2589. [Google Scholar] [CrossRef] [Green Version]
- Balis, D.; Kroon, M.; Koukouli, M.E.; Brinksma, E.J.; Labow, G.; Veefkind, J.P.; McPeters, R.D. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations. J. Geophys. Res. 2007, 112, D24S46. [Google Scholar] [CrossRef] [Green Version]
- Ziemke, J.R.; Chandra, S.; Duncan, B.N.; Froidev aux, L.; Bhartia, P.K.; Levelt, P.F.; Waters, J.W. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. 2006, 111, D19303. [Google Scholar] [CrossRef]
- Smit, H.G.J.; Straeter, W.; Johnson, B.J.; Oltmans, S.J.; Davies, J.; Tarasick, D.W.; Hoegger, B.; Stubi, R.; Schmidlin, F.J.; Northam, T.; et al. Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insig hts from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). J. Geophys. Res. 2007, 112, D19306. [Google Scholar] [CrossRef]
- Thompson, A.M.; Witte, C.J.; Smit, G.J.; Oltmans, S.J.; Johnson, B.J.; Kirchhoff, V.W.; Schmidlin, F.J. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology: 3. Instrumentation, station-to-station variability, and evaluation with simulated flight profiles. J. Geophys. Res. 2007, 112, D03304. [Google Scholar] [CrossRef] [Green Version]
- Komhyr, W.D. Operations Handbook—Ozone Observations with a Dobson Spectrophotometer. In WMO Global Ozone Research and Monitoring Project; Report No. 6; World Meteorological Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Stanek, M. Total Ozone and UV Radiation Monitoring Software. 2007. Available online: http://www.o3soft.eu/ (accessed on 10 November 2020).
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Vaz Peres, L.; Bencherif, H.; Mbatha, N.; Passaglia Schuch, A.; Toihir, A.M.; Bègue, N.; Portafaix, T.; Anabor, V.; Kirsch Pin-heiro, D.; Paes Leme, N.M.; et al. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil. Ann. Geophys. 2017, 35, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Rigozo, N.R.; Rosa, M.B.; Rampelotto, P.H.; Echer, M.P.; Echer, E.; Jean, D.; Nordemann, R.; Pinheiro, D.K.; Schuch, N.J. Reconstruction and searching ozone data periodicities in southern Brazil (29° S 53° W). Rev. Bras. Meteorol. 2012, 27, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Fadnavis, S.; Beig, G. Spatiotemporal variation of the ozone QBO in MLS data by wavelet analysis. Ann. Geophys. 2008, 26, 3719–3730. [Google Scholar] [CrossRef]
- Yadav, R.; Tripathi, S.K.; Pranuthi, G.; Dubey, S.K. Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. J. Agrometeorol. 2014, 16, 164–171. [Google Scholar]
- Gedefaw, M.; Yan, D.; Wang, H.; Qin, T.; Girma, A.; Abiyu, A.; Batsuren, D. Innovative Trend Analysis of Annual and Seasonal Rainfall Variability in Amhara Regional State, Ethiopia. Atmosphere 2018, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Xia, G.; Wilson, L.T.; Chen, W.; Chi, D. Trend and Cycle Analysis of Annual and Seasonal Precipitation in Liaoning, China. Adv. Meteorol. 2016, 5170563. [Google Scholar] [CrossRef]
- Hussain, F.; Nabi, G.; Boota, M.W. Rainfall trend analysis by using the mann-kendall test & sen’s slope estimates: A case study of district chakwal rain gauge, barani area, northern punjab province, Pakistan. Sci. Int. 2015, 27, 3159–3165. [Google Scholar]
- Zarenistanak, M.; Dhorde, A.G.; Kripalani, R.H. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. J. Earth Syst. Sci. 2014, 123, 281–295. [Google Scholar] [CrossRef]
- Barnett, T.P.; Latif, M.; Kirk, E.; Roeckner, E. On ENSO Physics. Am. Meteorol. Soc. 1991, 4, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Butchart, N.; Scaife, A.A.; Austin, J. Quasi-biennial oscillation in ozone in a coupled chemistry-climate model. J. Geophys. Res. 2003, 108, 4486. [Google Scholar] [CrossRef]
- Chehade, W.; Weber, M.; Burrows, J.P. Total ozone trends and variability during 979–2012 from merged data sets of various satellites. Atmos. Chem. Phys. 2014, 14, 7059–7074. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Ziemke, J.R.; Stewart, R.W. An 11-year solar cycle in tropospheric ozone from TOMS measurement. Geophys. Res. Lett. 1999, 26, 185–188. [Google Scholar] [CrossRef]
- Fadnavis, S.; Beig, G.; Polade, S.D. Features of ozone quasi-biennial oscillation in the vertical structure of tropics and subtropics. Meteorol. Atmos. Phys. 2008, 99, 221–231. [Google Scholar] [CrossRef]
- Hirota, I. Equatorial Waves in the upper stratosphere and mesosphere in relation to semi-annual oscillation of the zonal wind. J. Atmos. Sci. 1978, 35, 714–722. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Dunkerton, T.J. Theory of the mesopause semiannual oscillation. J. Atmos. Sci. 1982, 39, 2681–2690. [Google Scholar] [CrossRef] [Green Version]
- Soukharev, B.E.; Hood, L.L. Solar cycle variation of stratospheric ozone: Multiple regression analysis of long –term satellite data sets and comparisons with models. J. Geophys. Res. 2006, 111, D20314. [Google Scholar] [CrossRef] [Green Version]
- Austin, J.; Tourpali, K.; Rozanov, E.; Akiyoshi, H.; Bekki, S.; Bodeker, G.; Brühl, C.; Butchart, N.; Chipperfield, M.; Deushi, M.; et al. Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res. 2008, 113, D11306. [Google Scholar] [CrossRef] [Green Version]
- Ziemke, J.R.; Oman, L.D.; Strode, S.A.; Douglass, A.R.; Olsen, M.A.; McPeters, R.D.; Bhartia, P.K.; Froidevaux, L.; Labow, G.J.; Witte, J.C.; et al. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmos. Chem. Phys. 2019, 19, 3257–3269. [Google Scholar] [CrossRef] [Green Version]
- Ball, W.T.; Alsing, J.; Staehelin, J.; Davis, S.M.; Froidevaux, L.; Peter, T. Stratospheric ozone trends for 1985-2018: Sensitivity to recent large variability. Atmos. Chem. Phys. 2019, 19, 12731–12748. [Google Scholar] [CrossRef] [Green Version]
- Mulumba, J.-P.; Venkataraman, S.; Thomas, J.O. Modeling Tropospheric Ozone Climatology over Irene (South Africa) Using Retrieved Remote Sensing and Ground-Based Measurement Data. J. Remote Sens. GIS 2015, 4, 151. [Google Scholar] [CrossRef]
- Ball, W.T.; Alsing, J.; Mortlock, D.J.; Staehelin, J.; Haigh, J.D.; Peter, T.; Tummon, F.; Stübi, R.; Stenke, A.; Anderson, J.; et al. Evidence for a continuous decline inlower stratospheric ozone offsetting ozone layer recovery. Atmos. Chem. Phys. 2018, 18, 1379–1394. [Google Scholar] [CrossRef] [Green Version]
- Stone, K.A.; Solomon, S.; Kinnison, D.E. On the Identification of Ozone Recovery. Geophys. Res. Lett. 2018, 45, 5158–5165. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, 3; confidence regions for the parameters of polynomial regression equations. Inproceding 1950, 53, 386–392. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Carslaw, D.C. The Openair Manual-Open-Source Tools for Analysing Air Pollution Data; Manual for Version 1.4; King’s College London: London, UK, 2015. [Google Scholar]
JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LRT (km) | 15.97 | 16.19 | 15.98 | 15.72 | 14.70 | 14.84 | 14.82 | 14.64 | 14.36 | 15.28 | 15.31 | 15.54 |
N. profiles | 25 | 20 | 30 | 30 | 28 | 28 | 27 | 26 | 24 | 32 | 26 | 26 |
Forcing | Stratospheric Column of Ozone (SPC) | Tropospheric Column of Ozone (TPC) | ||
---|---|---|---|---|
Reg. Coeff. | % Contribution ± 1σ | Reg. Coeff. | % Contribution ± 1σ | |
Annual (AO) | 7.20 | 35.38 ± 1.29 | 32.12 | 72.82 ± 22.82 |
Semi-annual (SAO) | 1.84 | 3.94 ± 0.33 | 5.54 | 2.79 ± 1.09 |
QBO | −2.28 | 8.23 ± 0.62 | −0.31 | 0.27 ± 0.04 |
ENSO | 1.66 | 0.42 ± 0.14 | 1.40 | 2.22 ± 0.34 |
11-years Solar | 7.69 | 18.43 ± 0.63 | −1.07 | 1.01 ± 0.80 |
Total contributions | 69.37 | 79.11 | ||
Residual term | 30.63 | 20.89 |
Ozone Trend Estimates ± 1σ | O3 Stratospheric Column | O3 Tropospheric Column |
---|---|---|
DU/decade | −1.27 ± 0.21 | 0.76 ± 0.05 |
%/decade | −0.56 ± 0.01 | 2.37 ± 0.17 |
Data | z-Score | p-Value | Trend Estimate |
---|---|---|---|
Total Column of Ozone | 2.28 | 0.002 | −0.11% per year |
Stratospheric Column of Ozone | −2.75 | 0.005 | −0.17% per year |
Tropospheric Column of Ozone | −1.22 | 0.222 | +0.36% per year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencherif, H.; Toihir, A.M.; Mbatha, N.; Sivakumar, V.; du Preez, D.J.; Bègue, N.; Coetzee, G. Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa. Atmosphere 2020, 11, 1216. https://doi.org/10.3390/atmos11111216
Bencherif H, Toihir AM, Mbatha N, Sivakumar V, du Preez DJ, Bègue N, Coetzee G. Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa. Atmosphere. 2020; 11(11):1216. https://doi.org/10.3390/atmos11111216
Chicago/Turabian StyleBencherif, Hassan, Abdoulwahab M. Toihir, Nkanyiso Mbatha, Venkataraman Sivakumar, David Jean du Preez, Nelson Bègue, and Gerrie Coetzee. 2020. "Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa" Atmosphere 11, no. 11: 1216. https://doi.org/10.3390/atmos11111216