Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets
<p>Location of the Horqin Sandy Land, China and the two study areas.</p> "> Figure 2
<p>Framework of the study.</p> "> Figure 3
<p>Three steps used to find the reference pixel to simulate ideal climate–vegetation relationships.</p> "> Figure 4
<p>Vegetation change (<b>a</b>) and driving forces (<b>b</b>) in the Ar Horqin region.</p> "> Figure 5
<p>Vegetation change (<b>a</b>) and driving forces (<b>b</b>) in the Naiman region.</p> "> Figure 6
<p>Typical change areas in the Ar Horqin region: (<b>a</b>) a typical human-induced vegetation decrease area from the optimized residual trends method (RESTREND) method; (<b>b</b>–<b>e</b>) Landsat false color image maps for (<b>a</b>) on 09/24/2000, 09/06/2005, 09/17/2009, and 09/04/2014, respectively; (<b>f</b>) a typical human-induced vegetation increase area detected by the optimized RESTREND method; (<b>g</b>–<b>j</b>) Landsat false color image maps for (<b>f</b>) on 09/24/2000, 09/06/2005, 09/17/2009, and 09/04/2014, respectively.</p> "> Figure 7
<p>Typical change areas in the Naiman region (<b>a</b>) a typical human-induced vegetation decrease area from the optimized RESTREND method; (<b>b</b>–<b>e</b>) Landsat false color image maps for (<b>a</b>) on 09/24/2000, 09/06/2005, 09/17/2009, and 09/04/2014, respectively; (<b>f</b>) a typical human-induced vegetation increase area detected by the optimized RESTREND method; (<b>g</b>–<b>j</b>) Landsat false color image maps for (<b>f</b>) on 09/24/2000, 09/06/2005, 09/17/2009, and 09/04/2014, respectively.</p> "> Figure 8
<p>Photographs of in situ investigation of the circular grassland in <a href="#sustainability-10-01068-f006" class="html-fig">Figure 6</a>j, collected in August 2015.</p> "> Figure 9
<p>Human-induced changes on different land covers in Ar Horqin region (<b>a</b>) and Naiman region (<b>b</b>).</p> "> Figure 10
<p>(<b>a</b>) Amount of chemical fertilizer and (<b>b</b>) number of livestock at the end of each year in the two regions.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Data Preprocessing
2.3. Methodology
2.3.1. Detecting Vegetation Dynamics Using the SMK Method
2.3.2. Discriminating Human-Induced Changes Using Optimized RESTREND
3. Results
3.1. Vegetation Dynamics during the Past 15 Years
3.2. Human-Induced Vegetation Changes
3.2.1. Significant Human-Induced Change in the Ar Horqin Region
3.2.2. Significant Human-Induced Change in the Naiman Region
3.2.3. Validation of Human-Induced Vegetation Change
4. Discussion
4.1. Different Driving Factors in the Study Areas
4.2. Limitations and Further Research
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Omuto, C.T.; Vargas, R.R.; Alim, M.S.; Paron, P. Mixed-effects modelling of time series NDVI-rainfall relationship for detecting human-induced loss of vegetation cover in drylands. J. Arid Environ. 2010, 74, 1552–1563. [Google Scholar] [CrossRef]
- Marchant, R.; Richer, S.; Capitani, C.; Courtney-Mustaphi, C.; Prendergast, M.; Stump, D.; Boles, O.; Lane, L.; Wynne-Jones, S.; Vázquez, C.F.; et al. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth Sci. Rev. 2018, 178, 322–378. [Google Scholar] [CrossRef]
- Zhou, X.; Yamaguchi, Y.; Arjasakusuma, S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Sci. Total Environ. 2018, 616–617, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, G.H.; Li, Z.S.; Ye, X.; Fu, B.J.; Lv, Y.H. Impacts of Drought and Human Activity on Vegetation Growth in the Grain for Green Program Region, China. Chin. Geogr. Sci. 2018. [Google Scholar] [CrossRef]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.A.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic vegetation and associated feedbacks under-climate change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Rêgo, J.C.L.; Soares-Gomes, A.; Silva, F.S. Loss of vegetation cover in a tropical island of the Amazon coastal zone (Maranhão Island, Brazil). Land Use Policy 2017. [Google Scholar] [CrossRef]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Horion, S.; Wang, K.L.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.M.; Luo, Y.Q.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Xu, L.L.; Li, B.L.; Yuan, Y.C.; Gao, X.Z.; Zhang, T.; Sun, Q.L. Detecting Different Types of Directional Land Cover Changes Using MODIS NDVI Time Series Dataset. Remote Sens. 2016, 8, 495. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D.; Anderegg, W.; Christoffersen, B.O.; Dietze, M.C.; Farrior, C.; Holm, J.A.; Hurtt, G.; Knox, R.G.; Lawrence, P.J.; et al. Vegetation Demographics in Earth System Models: A review of progress and priorities. Glob. Chang. Biol. 2017, 24, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Wessels, K.J.; Pretorius, D.J.; Prince, S.D. Reality of rangeland degradation mapping with remote sensing: The South African experience. In Proceedings of the 14th Australasian Remote Sensing and Photogrammetry Conference, Darwin, Australia, 29 September–3 October 2008. [Google Scholar]
- Wang, Y.W.; Wang, Z.Y.; Li, R.R.; Meng, X.L.; Ju, X.J.; Zhao, Y.G.; Sha, Z.Y. Comparison of Modeling Grassland Degradation with and without Considering Localized Spatial Associations in Vegetation Changing Patterns. Sustainability 2018, 10, 316. [Google Scholar] [CrossRef]
- Marignani, M.; Chiarucci, A.; Sadori, L.; Mercuri, A.M. Natural and human impact in Mediterranean landscapes: An intriguing puzzle or only a question of time? Plant Biosyst. 2017, 151, 900–905. [Google Scholar] [CrossRef]
- Mercuri, A.M. Genesis and evolution of the cultural landscape in central Mediterranean: The ‘where, when and how’ through the palynological approach. Landsc. Ecol. 2014, 29, 1799–1810. [Google Scholar] [CrossRef]
- Turner, B.; Benjamin, P. Fragile Lands: Identification and Use for Agriculture: Agriculture, Environment, and Health: Sustainable Development in the 21st Century; University of Minnesota Press: Minneapolis, MN, USA; London, UK, 1994. [Google Scholar]
- Wessels, K.J.; Prince, S.D.; Frost, P.E.; Zyl, D.V. Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens. Environ. 2004, 91, 47–67. [Google Scholar] [CrossRef]
- Guo, Z.L.; Huang, N.; Dong, Z.B.; Pelt, R.S.V.; Zobeck, T.M. Wind Erosion Induced Soil Degradation in Northern China: Status, Measures and Perspective. Sustainability 2014, 6, 8951–8966. [Google Scholar] [CrossRef]
- Petit, C.; Scudder, T.; Lambin, E. Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia. Int. J. Remote Sens. 2001, 22, 3435–3456. [Google Scholar] [CrossRef]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y.J. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Lyon, J.G.; Yuan, D.; Lunetta, R.S.; Elvidge, C.D. A change detection experiment using vegetation indices. Photogramm. Eng. Remote Sens. 1998, 64, 143–150. [Google Scholar]
- Shi, X.; Wang, W.; Shi, W. Progress on quantitative assessment of the impacts of climate change and human activities on cropland change. J. Geogr Sci. 2016, 26, 339–354. [Google Scholar] [CrossRef]
- Houerou, H.N.L. Rain-Use Efficiency: A Unifying Concept in Arid-Land Ecology. J. Arid Environ. 1984, 7, 213–247. [Google Scholar]
- Prince, S.D.; Colstoun, D.; Brown, E.; Kravitz, L.L. Evidence from rain-use efficiencies does not indicate extensive sahelian desertification. Glob. Chang. Biol. 1998, 4, 359–374. [Google Scholar] [CrossRef]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Grippa, M.; Mougin, E.; Ciais, P.; Nguyen, C.C. Rain-Use-Efficiency: What It Tells Us about the Conflicting Sahel Greening and Sahelian Paradox. Remote Sens. 2014, 6, 3446–3474. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Wu, J.; Huang, J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Wessels, K.J.; Van Den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; Vanzyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Zambatis, N.; MacFadyen, S.; Frost, P.E.; Vanzyl, D. Relationship between herbaceous biomass and 1-km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa. Int. J. Remote Sens. 2006, 27, 951–973. [Google Scholar] [CrossRef]
- Zhuo, L.; Cao, X.; Chen, J.; Chen, Z.X.; Shi, P.J. Assessment of grassland ecological restoration project in Xilin Gol grassland. Acta Geogr. Sin. 2007, 62, 471–480. (In Chinese) [Google Scholar]
- Prince, S.D.; Becker-Reshef, I.; Rishmawi, K. Detection and mapping of long-term land degradation using local net production scaling: Application to Zimbabwe. Remote Sens. Environ. 2009, 113, 1046–1057. [Google Scholar] [CrossRef]
- He, C.Y.; Tian, J.; Gao, B.; Zhao, Y.Y. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 2015, 187, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, T.; Yan, C.; Yan, C.Z.; Liu, Y.B.; Liu, L.C.; Li, A.M.; Du, H.Q. Change trends for desertified lands in the Horqin Sandy Land at the beginning of the twenty-first century. Environ. Earth Sci. 2010, 59, 1749–1757. [Google Scholar] [CrossRef]
- Yan, Q.L.; Zhu, J.J.; Hu, Z.B.; Sun, O.J. Environmental impacts of the shelter forests in Horqin Sandy land, northeast China. J. Environ. Qual. 2011, 40, 815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Dong, J.W.; Xiao, X.M.; Hu, Z.M.; Sheldon, S. Effectiveness of ecological restoration projects in Horqin Sandy Land, China Based on SPOT-VGT NDVI data. Ecol. Eng. 2012, 38, 20–29. [Google Scholar] [CrossRef]
- Yan, Q.L.; Zhu, J.J.; Zheng, X.; Jin, C.J. Causal effects of shelter forests and water factors on desertification control during 2000–2010 at the Horqin Sandy Land region, China. J. For. Res. 2015, 26, 33–45. [Google Scholar] [CrossRef]
- Chen, H.B.; Shao, L.Q.; Zhao, M.J.; Zhang, X.; Zhang, D.J. Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [Google Scholar] [CrossRef]
- Xu, L.L.; Li, B.L.; Yuan, Y.C.; Gao, X.Z.; Zhang, T. A. Temporal-Spatial Iteration Method to Reconstruct NDVI Time Series Datasets. Remote Sens. 2015, 7, 8906–8924. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E. Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions. Remote Sens. 2014, 6, 481–493. [Google Scholar] [CrossRef]
- Landmann, T.; Dubovyk, O. Spatial analysis of human-induced vegetation productivity decline over eastern Africa using a decade (2001–2011) of medium resolution MODIS time-series data. Int. J. Appl. Earth Obs. 2014, 33, 76–82. [Google Scholar] [CrossRef]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.H.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Fang, J.; Piao, S.; He, J.; Ma, W.H. Increasing terrestrial vegetation activity in China, 1982–1999. Sci. China Life Sci. 2004, 47, 229–240. [Google Scholar] [CrossRef]
- Song, Y.; Ma, M.G. A statistical analysis of the relationship between climatic factors and the Normalized Difference Vegetation Index in China. Int. J. Remote Sens. 2011, 45, 374–382. [Google Scholar] [CrossRef]
- Du, J.Q.; Shu, J.M.; Yin, J.Q.; Yuan, X.J.; Jiaerheng, A.; Xiong, S.S.; He, P.; Liu, W.L. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int. J. Appl. Earth Obs. 2015, 38, 216–228. [Google Scholar] [CrossRef]
- Xu, L.L.; Li, B.L.; Yuan, Y.C.; Gao, X.Z.; Liu, H.J.; Dong, G.H. Changes in China’s cultivated land and the evaluation of land requisition-compensation balance policy from 2000 to 2010. Resour. Sci. 2015, 37, 1543–1551. (In Chinese) [Google Scholar]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends-Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, Z.Y.; Gao, Z.H.; Wu, J.J.; Sun, B.; Li, C.L. Assessment of land degradation using time series trend analysis of vegetation indictors in Otindag Sandy land. In Proceedings of the 35th IOP Conference Series: Earth and Environmental Science, Beijing, China, 22–26 April 2013; p. 17. [Google Scholar]
- Olsson, L.; Eklundh, L.; Ardo, J. A recent greening of the Sahel-trends, patterns and potential causes. J. Arid Environ. 2005, 63, 556–566. [Google Scholar] [CrossRef]
- Ahmedou, O.C.A.; Nagasawa, R.; Osman, A.E.; Hattori, K. Rainfall variability and vegetation dynamics in the Mauritanian Sahel. Clim. Res. 2009, 38, 75–81. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; Mcconkey, B.; Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Beurs, K.M.; de Henebry, G.M. A statistical framework for the analysis of long image time series. Int. J. Remote Sens. 2005, 26, 1551–1573. [Google Scholar] [CrossRef]
- Cai, B.F.; Yu, R. Advance and evaluation in the long time series vegetation trends research based on remote sensing. J. Remote Sens. 2009, 13, 1170–1186. (In Chinese) [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardo, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in global vegetation activity trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Lin, H.L.; Wang, X.Y. Analysis of the impact of price factors on livestock output in China. J. Gansu Radio TV Univ. 2016, 26, 83–86. (In Chinese) [Google Scholar]
- Li, F.; Lawrence, D.M.; Bond-Lamberty, B. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories. Glob. Planet. Chang. 2018, 162, 18–27. [Google Scholar] [CrossRef]
- Veenendaal, E.M.; Torelloraventos, M.; Miranda, H.S.; Margaretesato, N.; Oliveras, I.; Langevelde, F.V.; Asner, G.P.; Lloyd, J. On the relationship between fire regime and vegetation structure in the tropics. New Phytol. 2018, 218, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, J.D.; Zhou, H.M.; Wang, J. Automatic detection of forest fire disturbance based on dynamic modeling from MODIS time-series observations. Int. J. Remote Sens. 2018, 39, 3801–3815. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, H. Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor since 2000 Induced by Climate Change and Human Activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef]
- Yang, L.H.; Zhou, J.; Zhong, P.L.; Long, H.; Zhang, J.R. Lateglacial and Holocene dune evolution in the Horqin dunefield of northeastern China based on luminescence dating. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 296, 44–51. [Google Scholar] [CrossRef]
Accumulated | Code of Indices 1 | Total |
---|---|---|
One month | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 9 |
Two months | 12, 23, 34, 45, 56, 67, 78, 89 | 8 |
Three months | 123, 234, 345, 456, 567, 678, 789 | 7 |
Four months | 1234, 2345, 3456, 4567, 5678, 6789 | 6 |
Five months | 12345, 23456, 34567, 45678, 56789 | 5 |
Six months | 123456, 234567, 345678, 456789 | 4 |
Seven months | 1234567, 2345678, 3456789 | 3 |
Eight months | 12345678, 23456789 | 2 |
Nine months | 123456789 | 1 |
Total | --- | 45 |
Significant Trend Change () | Ar Horqin Region | Naiman Region | ||
---|---|---|---|---|
Rate (%) | Area (km2) | Rate (%) | Area (km2) | |
<−40% | 0.1 | 17.6 | 0.0 | 3.2 |
−40–−20% | 0.7 | 88.1 | 0.5 | 40.0 |
−20–−10% | 0.5 | 61.5 | 0.6 | 46.8 |
−10–10% | 0.5 | 61.0 | 1.1 | 89.0 |
10–20% | 2.2 | 281.2 | 14.2 | 1133.0 |
20–40% | 7.7 | 983.8 | 34.0 | 2717.4 |
>40% | 6.9 | 877.9 | 15.9 | 1272.6 |
Total | 18.6 | 2371.1 | 66.3 | 5301.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Tu, Z.; Zhou, Y.; Yu, G. Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets. Sustainability 2018, 10, 1068. https://doi.org/10.3390/su10041068
Xu L, Tu Z, Zhou Y, Yu G. Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets. Sustainability. 2018; 10(4):1068. https://doi.org/10.3390/su10041068
Chicago/Turabian StyleXu, Lili, Zhenfa Tu, Yuke Zhou, and Guangming Yu. 2018. "Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets" Sustainability 10, no. 4: 1068. https://doi.org/10.3390/su10041068
APA StyleXu, L., Tu, Z., Zhou, Y., & Yu, G. (2018). Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets. Sustainability, 10(4), 1068. https://doi.org/10.3390/su10041068