Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012
"> Figure 1
<p>The ecological regions of West Africa (data source [<a href="#B50-remotesensing-07-05471" class="html-bibr">50</a>]).</p> "> Figure 2
<p>Spatial pattern of slope of the linear regression of Normalized Difference Vegetation Index (NDVI) against (<b>a</b>) soil moisture and (<b>b</b>) rainfall.</p> "> Figure 3
<p>Intercept of NDVI in West Africa when (<b>a</b>) soil moisture is zero and (<b>b</b>) rainfall is zero.</p> "> Figure 4
<p>Spatial distribution slopes of the residuals of regressions of NDVI against time (<b>a</b>) from the RESTREND analysis using soil moisture and (<b>b</b>) areas with significant negative trends (95% confidence) (<b>c</b>) from the RESTREND analysis using rainfall (<b>d</b>) areas with significant negative trends (95% confidence). Negative values indicate land degradation in the study area between 1982 and 2012. White color indicates areas with non-significant changes.</p> "> Figure 4 Cont.
<p>Spatial distribution slopes of the residuals of regressions of NDVI against time (<b>a</b>) from the RESTREND analysis using soil moisture and (<b>b</b>) areas with significant negative trends (95% confidence) (<b>c</b>) from the RESTREND analysis using rainfall (<b>d</b>) areas with significant negative trends (95% confidence). Negative values indicate land degradation in the study area between 1982 and 2012. White color indicates areas with non-significant changes.</p> "> Figure 5
<p>Trends of NDVI residuals that have been adjusted for (<b>a</b>) soil moisture and (<b>b</b>) rainfall with RESTREND. Note difference of scale.</p> "> Figure 6
<p>Temporal trend of annual NDVI residuals from RESTREND from 1982 to 2012 averaged over all pixels in the study region, adjusted for (<b>a</b>) soil moisture and (<b>b</b>) rainfall. Note difference of scale.</p> "> Figure 7
<p>Comparison between the correlation coefficients of NDVI and soil moisture; and NDVI and rainfall across the six sampling sites in the study area.</p> "> Figure 7 Cont.
<p>Comparison between the correlation coefficients of NDVI and soil moisture; and NDVI and rainfall across the six sampling sites in the study area.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Datasets
2.1.1. NDVI
2.1.2. Rainfall
2.1.3. Soil Moisture
2.2. Methods of Analysis
2.2.1. Regression Analysis
- y = Dependent variable and in this case the NDVI
- x = Independent variable i.e., rainfall and/or soil moisture
- α = intercept, which represents the value of y when x is 0 (measured in units of the y variable).
- β = slope of the relationship between the x and y variables, and it measured the rate of change of y per unit change of x.
- ε is the error term.
2.2.2. Residual Trend Analysis Method (RESTREND)
- First, a regression model between the observed NDVI and rainfall or soil moisture is calculated for each pixel.
- Second, the residual difference between the observed NDVI and the predicted NDVI from the linear model is calculated. This is called RESTREND residuals.
- Third, another linear regression of the RESTREND residuals against time is carried out. Trends in these residuals are interpreted as changes in vegetation productivity that are independent of rainfall or soil moisture and are used as an indicator of land degradation.
2.2.3. Mann-Kendal Non-Parametric Trend Analysis
3. Results and Discussion
3.1. Comparison between the Rate of NDVI Change due to Changing Rainfall and Soil Moisture
3.2. Spatial Patterns of the Residual Trends of Soil Moisture and Rainfall
3.3. Temporal Variation of Annual NDVI Residuals from RESTREND from 1982–2012, Adjusted for Soil Moisture or Rainfall
Restrend | τ | τs | p | |
(τ) | (τs) | |||
Rainfall-NDVI (all years) | 0.107 | 0.217 | 0.0021 * | <0.0001 * |
Soil moisture-NDVI (all years) | 0.128 | 0.281 | <0.0001 * | <0.0001 * |
3.4. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hulme, M. Climatic perspectives on Sahelian desiccation: 1973–1998. Glob. Environ. Chang. Human Policy Dimens. 2001, 11, 19–29. [Google Scholar] [CrossRef]
- Helldén, U. Desertification—Time for an assessment. Ambio 1991, 20, 372–383. [Google Scholar]
- Olsson, L.; Eklundh, L.; Ardö, J. A recent greening of the Sahel—Trends, patterns and potential causes. J. Arid Environ. 2005, 63, 556–566. [Google Scholar] [CrossRef]
- Giannini, A.S.R.; Chang, P. Oceanic forcing of sahel rainfall on interannual to interdecadal time scales. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Caminade, C.; Terray, L. Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Clim. Dynam. 2010, 35, 75–94. [Google Scholar] [CrossRef]
- Nicholson, S. Land surface processes and Sahel climate. Rev. Geophys. 2000, 38, 117–139. [Google Scholar] [CrossRef]
- Myoung, B.; Choi, Y.-S.; Choi, S.-J.; Park, S.K. Impact of vegetation on land-atmosphere coupling strength and its implication for desertification mitigation over East Asia. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Tucker, C.J.; Nicholson, S.E. Variation in the size of the Sahara desert from 1980 to 1997. Ambio 1999, 28, 587–591. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystem and Human Well-Being: Desertification Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- United Nations Convention to Combat Desertification. United Nations Convention to Combat Desertification (UNCCD) Madrid Declaration. 2007. Available online: http://www.unccd.int/Lists/OfficialDocuments/cop8/16eng.pdf (accessed on 12 August 2013).
- Middleton, N. Desertification; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Dynamic causal patterns of desertification. BioScience 2004, 54, 817–829. [Google Scholar] [CrossRef]
- United Nations Environmental Program (UNEP). World Atlas of Desertification, 2nd ed.; Middleton, N., Thomas, D.S.G., Eds.; Edward Arnold: London, UK, 1997. [Google Scholar]
- Reynolds, J.F.; Stafford Smith, D.M. Do humans cause deserts? In Global Desertification: Do Human Cause Deserts? Reynolds, J.F., Stafford, J.F., Smith, D.M., Eds.; Dahlem University Press: Berlin, Germany, 2002. [Google Scholar]
- United Nations Convention to Combat Desertification (UNCCD). Text of the United Nations Convention to Combat Desertification. 1994. Available online: www.unccd.int/convention/text/convention.php (accessed on 23 February 2011).
- Herrmann, S.M.; Hutchinson, C.F. The changing contexts of the desertification debate. J. Arid Environ. 2005, 63, 538–555. [Google Scholar] [CrossRef]
- Verón, S.R.; Paruelo, J.M.; Oesterheld, M. Assessing desertification. J. Arid Environ. 2006, 66, 751–763. [Google Scholar] [CrossRef]
- Helldén, U.; Tottrup, C. Regional desertification: A global synthesis. Glob. Planet. Chang. 2008, 64, 169–176. [Google Scholar] [CrossRef]
- Grainger, A. Desertification: How People Make Deserts, How People Can Stop and Why They Don’t; Earthscan: London, UK, 1985. [Google Scholar]
- Dregne, H.E. Desertification of arid lands. Econ. Geogr. 1977, 53, 322–331. [Google Scholar] [CrossRef]
- Rasmussen, B; Fog, B; Madsen, J.E. Desertification in reverse? Observations from northern Burkina Faso. Glob. Environ. Chang. 2001, 11, 271–282. [Google Scholar]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Tucker, C.J.; Ba, M.B. Desertification, drought and surface vegetation: An example from West African Sahel. Bull. Am. Meteorol. Soc. 1998, 79, 815–829. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 2005, 63, 596–614. [Google Scholar] [CrossRef]
- Eklundh, L.; Olsson, L. Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An earth observing satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar]
- Eastman, J.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Grippa, M.; Tucker, C.J. Re-greening Sahel: 30 Years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ. 2014, 140, 350–364. [Google Scholar] [CrossRef]
- Brandt, M.; Verger, A.; Diouf, A.A.; Baret, F.; Samimi, C. Local vegetation trends in the Sahel of Mali and Senegal using long time series FAPAR satellite products and field measurement (1982–2010). Remote Sens. 2014, 6, 2408–2434. [Google Scholar] [CrossRef]
- Huber, S.; Fensholt, R.; Rasmussen, K. Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob. Planet. Chang. 2011, 76, 186–195. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Tappan, G.G. Vegetation impoverishment despite greening: A case study from central Senegal. J. Arid Environ. 2013, 90, 55–66. [Google Scholar] [CrossRef]
- Brandt, M.; Romankiewicz, C.; Spiekermann, R.; Samimi, C. Environmental change in time series—An interdisciplinary study in the Sahel of Mali and Senegal. J. Arid Environ. 2014, 105, 52–63. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Devenport, M.L.; Malo, A.R. A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim. Chang. 1990, 17, 209–241. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Sendzimir, J.; Reij, C.P.; Magnuszewski, P. Rebuilding resilience in the Sahel: Regreening in the Maradi and zinder regions of Niger. Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef]
- Mueller, T.; Dressler, G.; Tucker, C.J.; Pinzon, J.E.; Leimgruber, P.; Dubayah, R.O.; Hurtt, G.C.; Böhning-Gaese, K.; Fagan, W.F. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 2014, 6, 5717–5731. [Google Scholar] [CrossRef]
- Hoscilo, A.; Balzter, H.; Bartholomé, E.; Boschetti, M.; Brivio, P.A.; Brink, A.; Clerici, M.; Pekel, J.F. A conceptual model for assessing rainfall and vegetation trends in sub-Saharan Africa from satellite data. Int. J. Climatol. 2014. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K. Analysis of trends in the Sahelian “rain-use efficiency” using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 2011, 115, 438–451. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and rainfall relationships. Remote Sens. 2013, 5, 664–686. [Google Scholar] [CrossRef]
- Garcia, M.; Oyenarte, C.; Villagarcia, L.; Contreras, S.; Domingo, F.; Puigdefabregas, J. Monitoring land degradation using ASTER data: The non-evaporative fraction as an indicator of ecosystem function. Remote Sens. Environ. 2008, 112, 3720–3736. [Google Scholar] [CrossRef]
- Hein, L.; De Ridder, N. Desertification in the Sahel: A reinterpretation. Glob. Chang. Biol. 2006, 12, 751–758. [Google Scholar] [CrossRef]
- Seaquist, J.W.; Hickler, T.; Eklundh, L.; Ardo, J.; Heumann, B.W. Disentangling the effects of climate and people on Sahel vegetation dynamics. Biogeosciences 2009, 6, 469–477. [Google Scholar] [CrossRef]
- De Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar]
- Wessels, K.J.; Prince, S.D.; Frost, P.E.; Van Zyl, D. Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens. Environ. 2004, 91, 47–67. [Google Scholar] [CrossRef]
- Prince, S.D.; Wessels, K.J.; Tucker, C.J.; Nicholson, S.E. Desertification in the Sahel: A reinterpretation of a reinterpretation. Glob. Chang. Biol. 2007, 13, 1308–1313. [Google Scholar] [CrossRef]
- Huenneke, L.F.; Anderson, J.P.; Remmenga, M.; Schlesinger, W. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Glob Chang. Biol. 2002, 8, 247–264. [Google Scholar] [CrossRef]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). The Global Ecofloristic Zones Mapped by United Nations Food and Agricultural Organization; FAO: Rome, Italy, 2000. [Google Scholar]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Kogan, F.N. NOAA/AVHRR satellite data based indices for monitoring agricultural droughts. In Monitoring and Predicting Agricultural Drought: A Global Study; Boken, V.K., Cracknell, A., Heathcote, P., Eds.; Oxford University Press: New York; pp. 79–88.
- Pinzon, J.; Tucker, C. A Non-stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Pinzón, J.; Brown, M.E.; Tucker, C.J. EMD correction of orbital drift artefacts in satellite data stream. In The Hilbert-Huang Transform and Its Applications; Huang, N., Shen, S., Eds.; World Scientific Publishing: City, Singapore, 2005; pp. 167–183. [Google Scholar]
- Xu, L.; Myneni, R.B.; Chapin, F.S., III; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tommervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nature Clim. Chang. 2013, 3. [Google Scholar] [CrossRef]
- Fensholt, R.; Nielsen, T.T.; Stisen, S. Evaluation of AVHRR PAL and GIMMS 10-day composite NDVI time series products using SPOT-4 vegetation data for the African continent. Int. J. Remote Sens. 2006, 27, 2719–2733. [Google Scholar] [CrossRef]
- Schucknecht, A.; Erasmi, S.; Niemeyer, I.; Matschullat, J. Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. Eur. J. Remote Sens. 2013, 46, 40–59. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Tucker, C.; Pinzon, J.; Brown, M.; Slayback, D.; Pak, E.; Mahoney, R.; Vermote, E.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and spot vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Jones, P.D.; Harris, I. CRU TS3.21 of High Resolution Gridded Data of Month by Month Variation in Climate (Jan. 1901–Dec. 2012). Available online: http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__ACTIVITY_0c08abfc-f2d5–11e2-a948–00163e251233 (accessed on 17 December 2013).
- van den Dool, H.; Huang, J.; Fan, Y. Performance and analysis of the constructed analogue method applied to US soil moisture over 1981–2001. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Fan, Y.; van den Dool, H. Climate Prediction Centre (CPC) global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res.: Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Li, H.; Shen, W.; Zou, C.; Jiang, J.; Fu, L.; She, G. Spatio-temporal variability of soil moisture and its effect on vegetation in a desertified aeolian riparian ecotone on the Tibetan Plateau, China. J. Hydrol. 2013, 479, 215–225. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Guo, Z.; Gao, X. Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeorol. 2004, 5, 1011–1033. [Google Scholar] [CrossRef]
- Foody, G.M. Spatial non-stationary and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecol. Biogeogr. 2005, 13, 315–320. [Google Scholar] [CrossRef]
- Omuto, C.T. A new approach for using time-series remote-sensing images to detect changes in vegetation cover and composition in drylands: A case study of eastern Kenya. Int. J. Remote Sens. 2011, 32, 6025–6045. [Google Scholar] [CrossRef]
- Reich, P.F.; Numbem, S.T.; Almaraz, R.A.; Eswaran, H. Land resource stresses and desertification in Africa. In Responses to Land Degradation. Proceedings of the 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand; Bridges, E.M., Hannam, I.D., Oldeman, L.R., Pening, F.W.T., de Vries, S.J., Scherr, S.J., Sompatpanit, S., Eds.; Oxford University Press: New Delhi, India, 2001. [Google Scholar]
- Stringer, L.C.; Dyer, J.C.; Reed, M.S.; Dougill, A.J.; Twyman, C.; Mkwambisi, D. Adaptations to climate change, drought and desertification: Local insights to enhance policy in southern Africa. Environ. Sci. Policy 2009, 12, 748–765. [Google Scholar] [CrossRef]
- Jamali, S.; Seaquist, J.; Ardo, J.; Eklundh, L. Investigating temporal relationships between rainfall, soil moisture and MODIS-derived NDVI and EVI for six sites in Africa. In Proceedings of The 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10 April 2011.
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture—Climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471-5494. https://doi.org/10.3390/rs70505471
Ibrahim YZ, Balzter H, Kaduk J, Tucker CJ. Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sensing. 2015; 7(5):5471-5494. https://doi.org/10.3390/rs70505471
Chicago/Turabian StyleIbrahim, Yahaya Z., Heiko Balzter, Jörg Kaduk, and Compton J. Tucker. 2015. "Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012" Remote Sensing 7, no. 5: 5471-5494. https://doi.org/10.3390/rs70505471