Comparative Study of Ergonomics in Conventional and Robotic-Assisted Laparoscopic Surgery
<p>Versius<sup>TM</sup> Robotic Platform: instrument beside units (<b>left</b>) and surgeon console (<b>right</b>).</p> "> Figure 2
<p>EdaMove 4 activity sensor placed on the surgeon’s ankle.</p> "> Figure 3
<p>Example of location of EMG sensors (<b>left</b>) and inertial sensors for motion analysis (<b>right</b>).</p> "> Figure 4
<p>Comparison of SURG-TLX parameters (mental demand, temporal demand, physical demand, stress, task complexity, and distractions), and EDA and ECG signal results during simulator tasks using conventional (CONV) and robotic-assisted (ROBOT) laparoscopy for novice and experienced laparoscopic surgeons. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Comparative range of motion of the neck, back, shoulder, elbow, wrist, and knees during laparoscopic (CONV) and robotic-assisted (ROBOT) suture on simulator. Group of novice surgeons in laparoscopic surgery.</p> "> Figure 6
<p>Comparative range of motion of the neck, back, shoulder, elbow, wrist, and knees during laparoscopic (CONV) and robotic-assisted (ROBOT) suture on simulator. Group of experienced surgeons in laparoscopic surgery.</p> "> Figure 7
<p>Comparison of muscle activity (%MVC) of experienced (<b>upper image</b>) and novice (<b>bottom image</b>) surgeons during performance of simulator suturing task using conventional (red) and robotic-assisted (blue) laparoscopic surgery for the following muscles: Brachioradialis (BRACH), Erector spinae (ER_SPIN), Gastrocnemius medialis (GAS_MED), Middle trapezius (MID_TRAP), Triceps brachii (TRI_BRA), Upper trapezius (UP_TRAP), and Vastus lateralis (VAS_LAT).</p> "> Figure 8
<p>Comparison of fatigue and muscle strength increase/decrease for experienced (<b>upper graph</b>) and novice (<b>bottom graph</b>) surgeons between simulator suturing task in laparoscopic (red) and robotic-assisted (blue) surgeries.</p> "> Figure 9
<p>Comparison of fatigue and force increasing/decreasing when performing suturing task in robotic-assisted (<b>upper graph</b>) and laparoscopic surgeries (<b>bottom graph</b>) between expert surgeons (blue) and novice surgeons (red).</p> "> Figure 9 Cont.
<p>Comparison of fatigue and force increasing/decreasing when performing suturing task in robotic-assisted (<b>upper graph</b>) and laparoscopic surgeries (<b>bottom graph</b>) between expert surgeons (blue) and novice surgeons (red).</p> "> Figure 10
<p>Comparative range of motion of the neck, back, shoulder, elbow, wrist, and knees during conventional (CONV) and robotic-assisted (ROBOT) laparoscopic gastrotomy.</p> "> Figure 11
<p>Comparative range of motion of the neck, back, shoulder, elbow, wrist, and knees during conventional (CONV) and robotic-assisted (ROBOT) laparoscopic total nephrectomy.</p> "> Figure 12
<p>Comparative range of motion of the neck, back, shoulder, elbow, wrist, and knees during conventional (CONV) and robotic-assisted (ROBOT) laparoscopic total ovariectomy.</p> "> Figure 13
<p>Comparison of muscle activity (%MVC) during the performance of a gastrotomy by conventional (red) and robotic-assisted (blue) laparoscopic surgeries for the following muscles: Brachioradialis (BRACH), Erector spinae (ER_SPIN), Gastrocnemius medialis (GAS_MED), Middle trapezius (MID_TRAP), Triceps brachii (TRI_BRA), Upper trapezius (UP_TRAP), and Vastus lateralis (VAS_LAT).</p> "> Figure 14
<p>Comparison of muscle activity (%MVC) during the performance of a total nephrectomy by conventional (red) and robotic-assisted (blue) laparoscopic surgeries for the following muscles: Brachioradialis (BRACH), Erector spinae (ER_SPIN), Gastrocnemius medialis (GAS_MED), Middle trapezius (MID_TRAP), Triceps brachii (TRI_BRA), Upper trapezius (UP_TRAP), and Vastus lateralis (VAS_LAT).</p> "> Figure 15
<p>Comparison of muscle activity (%MVC) during the performance of an ovariectomy by conventional (red) and robotic-assisted (blue) laparoscopic surgeries for the following muscles: Brachioradialis (BRACH), Erector spinae (ER_SPIN), Gastrocnemius medialis (GAS_MED), Middle trapezius (MID_TRAP), Triceps brachii (TRI_BRA), Upper trapezius (UP_TRAP), and Vastus lateralis (VAS_LAT).</p> "> Figure 16
<p>Comparison of fatigue and increase/decrease in force exerted by surgeons during the performance of surgical procedures (circle: ovariectomy; triangle: total nephrectomy; square: gastrotomy) using conventional (red) and robotic-assisted (blue) laparoscopic surgeries.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation in a Simulation Setting
2.2. Evaluation in Experimental Model
2.3. Subjective Evaluation
2.4. Data Recording
2.4.1. Physiological Data
2.4.2. Kinematic Data
2.5. Data Analysis
2.5.1. Stress
2.5.2. Motion Analysis
2.5.3. Localized Muscle Fatigue
2.6. Statistical Analysis
3. Results
3.1. Evaluation in a Simulation Setting
3.1.1. Stress
3.1.2. Motion Analysis
3.1.3. Muscle Activity
3.1.4. Localized Muscle Fatigue
3.2. Evaluation in Experimental Model
3.2.1. Stress
3.2.2. Motion Analysis
3.2.3. Muscle Activity
3.2.4. Localized Muscle Fatigue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabrielson, A.T.; Clifton, M.M.; Pavlovich, C.P.; Biles, M.J.; Huang, M.; Agnew, J.; Pierorazio, P.M.; Matlaga, B.R.; Bajic, P.; Schwen, Z.R. Surgical ergonomics for urologists: A practical guide. Nat. Rev. Urol. 2021, 18, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.T.; Ahn, J.; Brunner, S.; Poggemeier, J.; Storms, C.; Reisewitz, A.; Schmidt, T.; Bruns, C.J.; Fuchs, H.F. Ergonomics in robot-assisted surgery in comparison to open or conventional laparoendoscopic surgery: A narrative review. Int. J. Abdom. Wall Hernia Surg. 2023, 6, 61. [Google Scholar] [CrossRef]
- Grantcharov, P.D.; Boillat, T.; Elkabany, S.; Wac, K.; Rivas, H. Acute mental stress and surgical performance: Acute mental stress and surgical performance. BJS Open 2019, 3, 119–125. [Google Scholar] [CrossRef]
- Wilson, M.R.; Poolton, J.M.; Malhotra, N.; Ngo, K.; Bright, E.; Masters, R.S. Development and validation of a surgical workload measure: The surgery task load index (SURG-TLX). World J. Surg. 2011, 35, 1961–1969. [Google Scholar] [CrossRef]
- Nillahoot, N.; Pillai, B.M.; Sharma, B.; Wilasrusmee, C.; Suthakorn, J. 3D Force/Torque parameter acquisition and correlation identification during primary trocar insertion in laparoscopic abdominal surgery: 5 cases. Sensors 2022, 22, 8970. [Google Scholar] [CrossRef]
- Armijo, P.R.; Huang, C.K.; High, R.; Leon, M.; Siu, K.C.; Oleynikov, D. Ergonomics of minimally invasive surgery: An analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery. Surg. Endosc. 2019, 33, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
- Merbah, J.; Caré, B.R.; Gorce, P.; Gadea, F.; Prince, F. A new approach to quantifying muscular fatigue using wearable EMG sensors during surgery: An ergonomic case study. Sensors 2023, 23, 1686. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-García, C.; Sánchez-González, P.; Sánchez-Margallo, J.A.; Snoriguzzi, N.; Rabazo, J.C.; Sánchez-Margallo, F.M.; Gómez, E.J.; Oropesa, I. Correlating Personal Resourcefulness and Psychomotor Skills: An Analysis of Stress, Visual Attention and Technical Metrics. Sensors 2022, 22, 837. [Google Scholar] [CrossRef]
- Takacs, K.; Lukacs, E.; Levendovics, R.; Pekli, D.; Szjiarto, A.; Haidegger, T. Assessment of surgeons’ stress levels with digital sensors during robot-assisted surgery: An experimental study. Sensors 2024, 24, 2915. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Kakaraparthi, V.N.; Vishwanathan, K.; Gadhavi, B.; Reddy, R.S.; Tedla, J.S.; Samuel, P.S.; Dixit, S.; Alshahrani, M.S.; Gannamaneni, V.K. Application of the rapid upper limb assessment tool to assess the level of ergonomic risk among health care professionals: A systematic review. Work 2022, 71, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Diego-Mas, J.A.; Poveda-Bautista, R.; Garzon-Leal, D.C. Influences on the use of observational methods by practitioners when identifying risk factors in physical work. Ergonomics 2015, 58, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Diego-Mas, J.A.; Alcalde-Marzal, J. Using Kinect sensor in observational methods for assessing postures at work. Appl. Ergon. 2014, 45, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Dufaug, A.; Barthod, C.; Goujon, L.; Marechal, L. New joint analysis of electromyography spectrum and amplitude-based methods towards real-time muscular fatigue evaluation during a simulated surgical procedure: A pilot analysis on the statistical significance. Med. Eng. Phys. 2020, 79, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.I.; Lee, M.R.; Green, I.; Allaf, M.; Marohn, M.R. Surgeons’ physical discomfort and symptoms during robotic surgery: A comprehensive ergonomic survey study. Surg. Endosc. 2017, 31, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Menke, V.; Hansen, O.; Schmidt, J.; Dechantsreiter, G.; Staib, L.; Davliatov, M.; Schilcher, F.; Hübner, B.; Bianco, F.; Kastelan, Z.; et al. The stress for surgeons: Exploring stress entities with the robotic senhance surgical system. J. Robot. Surg. 2024, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Sujka, J.; Ahmed, A.; Kang, R.; Grimsley, E.A.; Weche, M.; Janjua, H.; Mi, Z.; English, D.; Martinez, C.; Velanovich, V.; et al. Examining surgeon stress in robotic and laparoscopic surgery. J. Robot. Surg. 2024, 18, 82. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Margallo, F.M.; Sánchez-Margallo, J.A. Assessment of Postural Ergonomics and Surgical Performance in Laparoendoscopic Single-Site Surgery Using a Handheld Robotic Device. Surg. Innov. 2018, 25, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, A.; Huckleby, J.; Kabbani, M.; Delano, A.; De Sutter, M.; Crawford, D. Ergonomic assessment of robotic general surgeons: A pilot study. J. Robot. Surg. 2020, 14, 387–392. [Google Scholar] [CrossRef]
- Stefanidis, D.; Hope, W.W.; Scott, D.J. Robotic suturing on the FLS model possesses construct validity, is less physically demanding, and is favoured by more surgeons compared with laparoscopy. Surg. Endosc. 2011, 25, 2141–2146. [Google Scholar] [CrossRef]
- Gianikellis, K.; Skiadopoulos, A.; Palma, C.E.; Sanchez-Margallo, F.M.; Carrasco, J.B.P.; Sanchez-Margallo, J.A. A method to assess upper-body postural variability in laparoscopic surgery. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 76–81. [Google Scholar]
- Yu, D.; Dural, C.; Morrow, M.M.B.; Yang, L.; Collins, J.W.; Hallbeck, S.; Kjellman, M.; Forsman, M. Intraoperative workload in robotic surgery assessed by wearable motion tracking sensors and questionnaires. Surg. Endosc. 2017, 31, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Szeto, G.P.Y.; Poon, J.T.C.; Law, W.L. A comparison of surgeon’s postural muscle activity during robotic-assisted and laparoscopic rectal surgery. J. Robot. Surg. 2013, 7, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Dalsgaard, T.; Jensen, M.D.; Hartwell, D.; Mosgaard, B.J.; Jørgensen, A.; Jensen, B.R. Robotic Surgery Is Less Physically Demanding Than Laparoscopic Surgery: Paired Cross Sectional Study. Ann. Surg. 2020, 271, 106–113. [Google Scholar] [CrossRef]
- Dalager, T.; Jensen, P.T.; Eriksen, J.R.; Jakobsen, H.L.; Mogensen, O.; Søgaard, K. Surgeons’ posture and muscle strain during laparoscopic and robotic surgery. Br. J. Surg. 2020, 107, 756–766. [Google Scholar] [CrossRef] [PubMed]
- González-Sánchez, M.; González-Poveda, I.; Mera-Velasco, S.; Cuesta-Vargas, A.I. Comparison of fatigue accumulated during and after prolonged robotic and laparoscopic surgical methods: A cross-sectional study. Surg. Endosc. 2017, 31, 1119–1135. [Google Scholar] [CrossRef] [PubMed]
- Patel, E.; Saikali, S.; Mascarenhas, A.; Patel, V. Muscle fatigue and physical discomfort reported by surgeons performing robotic-assisted surgery: A multinational survey. J. Robot. Surg. 2023, 17, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Hägg, G.M.; Suurküla, J.; Liew, M. A worksite method for shoulder muscle fatigue measurement using EMG, test contractions and zero crossing technique. Ergonomics 1987, 30, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Mastaglia, F.L. The relationship between muscle pain and fatigue. Neuromuscul. Disord. 2012, 22, 178–180. [Google Scholar] [CrossRef]
- Luttmann, A.; Jäger, M.; Laurig, W. Electromyographical indication of muscular fatigue in occupational field studies. Int. J. Ind. Ergon. 2000, 25, 645–660. [Google Scholar] [CrossRef]
- Krämer, B.; Seibt, R.; Stoffels, A.K.; Rothmund, R.; Brucker, S.Y.; Rieger, M.A.; Steinhilber, B. An ergonomic field study to evaluate the effects of a rotatable handle piece on muscular stress and fatigue as well as subjective ratings of usability, wrist posture and precision during laparoscopic surgery: An explorative pilot study. Int. Arch. Occup. Environ. Health 2018, 91, 1021–1029. [Google Scholar] [CrossRef]
- Nordander, C.; Hansson, G.A.; Ohlsson, K.; Arvidsson, I.; Balogh, I.; Stromberg, U.; Rittner, R.; Skerfving, S. Exposure-response relationship for work-related neck and shoulder musculoskeletal disorders—Analyses of polled uniform data sets. Appl. Ergon. 2016, 55, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Luger, T.; Bonsch, R.; Seibt, R.; Krämer, B.; Rieger, M.A.; Steinhilber, B. Intraoperative active and passive break during minimally invasive surgery influence upper extremity physical strain and physical stress response—A controlled, randomized cross-over, laboratory trial. Surg. Endosc. 2023, 37, 5975–5988. [Google Scholar] [CrossRef] [PubMed]
- Straker, L.; Mathiassen, S.E. Increased physical workloads in modern work—A necessity for better health and performance? Ergonomics 2009, 52, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Wee, I.J.Y.; Kuo, L.J.; Ngu, J.C.Y. A systematic review of the true benefit of robotic surgery: Ergonomic. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, e2113. [Google Scholar] [CrossRef] [PubMed]
- Sjogaard, G.; Lundberg, U.; Kadefors, R. The role of muscle activity and mental load in the development of pain and degenerative processes at the muscle cell level during computer work. Eur. J. Appl. Physiol. 2000, 83, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Duarte, F.J.; Lucas-Hernandez, M.; Matos-Azevedo, A.; Sánchez-Margallo, J.A.; Diaz-Guemes, I.; Sánchez-Margallo, F.M. Objective analysis of surgeons’ ergonomy during laparoendoscopic single-site surgery through the use of surface electromyography and a motion capture data glove. Surg. Endosc. 2014, 28, 1314–1320. [Google Scholar] [CrossRef]
- Diederichsen, L.P.; Norregaard, J.; Dyhre-Poulsen, P.; Winther, A.; Tufekovic, G.; Bandholm, T.; Rasmussen, L.R.; Krogsgaard, M. The effect of handedness on electromyograpic activity of human shoulder muscle during movement. J. Electromyogr. Kinesiol. 2007, 17, 410–419. [Google Scholar] [CrossRef]
Experience | Technique | Value | |
---|---|---|---|
Upper limbs | Novices | CONV | 4.333 ± 0.577 |
ROB | 3.500 ± 0.707 | ||
Experienced | CONV | 4.000 ± 1.414 | |
ROB | 3.000 ± 0.000 | ||
Body and lower limbs | Novices | CONV | 7.000 ± 0.000 |
ROB | 5.500 ± 2.121 | ||
Experienced | CONV | 6.000 ± 1.414 | |
ROB | 5.000 ± 1.414 | ||
Global score | Novices | CONV | 6.333 ± 0.577 |
ROB | 4.000 ± 1.414 | ||
Experienced | CONV | 5.500 ± 2.121 | |
ROB | 5.000 ± 2.828 |
Procedure | Technique | Value | |
---|---|---|---|
Upper limbs | Gastrotomy | CONV | 3 |
ROB | 3 | ||
Total nephrectomy | CONV | 3 | |
ROB | 3 | ||
Ovariectomy | CONV | 3 | |
ROB | 4 | ||
Body and low limbs | Gastrotomy | CONV | 7 |
ROB | 7 | ||
Total nephrectomy | CONV | 3 | |
ROB | 3 | ||
Ovariectomy | CONV | 7 | |
ROB | 7 | ||
Global score | Gastrotomy | CONV | 6 |
ROB | 6 | ||
Total nephrectomy | CONV | 4 | |
ROB | 4 | ||
Ovariectomy | CONV | 6 | |
ROB | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Salazar, M.J.; Caballero, D.; Sánchez-Margallo, J.A.; Sánchez-Margallo, F.M. Comparative Study of Ergonomics in Conventional and Robotic-Assisted Laparoscopic Surgery. Sensors 2024, 24, 3840. https://doi.org/10.3390/s24123840
Pérez-Salazar MJ, Caballero D, Sánchez-Margallo JA, Sánchez-Margallo FM. Comparative Study of Ergonomics in Conventional and Robotic-Assisted Laparoscopic Surgery. Sensors. 2024; 24(12):3840. https://doi.org/10.3390/s24123840
Chicago/Turabian StylePérez-Salazar, Manuel J., Daniel Caballero, Juan A. Sánchez-Margallo, and Francisco M. Sánchez-Margallo. 2024. "Comparative Study of Ergonomics in Conventional and Robotic-Assisted Laparoscopic Surgery" Sensors 24, no. 12: 3840. https://doi.org/10.3390/s24123840
APA StylePérez-Salazar, M. J., Caballero, D., Sánchez-Margallo, J. A., & Sánchez-Margallo, F. M. (2024). Comparative Study of Ergonomics in Conventional and Robotic-Assisted Laparoscopic Surgery. Sensors, 24(12), 3840. https://doi.org/10.3390/s24123840