Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications
<p>First step in image processing. Image (<b>b</b>) at is subtracted from initial image (<b>a</b>) to produce the differential image (<b>c</b>).</p> "> Figure 2
<p>Step 2 in image processing where RGB values of subtracted images are extracted.</p> "> Figure 3
<p>Optical and SEM characterization images of individual crystals of Tb-mesoMOF before infusion with vitamin B<sub>12</sub>: (<b>a</b>) Optical microscope image of the MOF; (<b>b</b>) SEM image of MOF and (<b>c</b>,<b>d</b>) are higher magnification parts of the crystal shown in (<b>b</b>).</p> "> Figure 4
<p>Optical microscopy and SEM characterization of vitamin B<sub>12</sub> uptake in Tb-mesoMOF: (<b>a</b>) Optical microscope image of a crystal infused with vitamin B<sub>12</sub> for a short period of time; (<b>b</b>) corresponding SEM image of the same crystal in the same orientation as in the optical microscopy image.</p> "> Figure 5
<p>Optical microscopy monitoring of dynamics of molecular vitamin B<sub>12</sub> uptake by individual Tb-mesoMOF crystals. (<b>Ia</b>,<b>IIa</b>,<b>IIIa</b>) are schematic representations of microscopy images taken at 20 min (<b>Ib</b>), 60 min (<b>IIb</b>), and 300 min (<b>IIIb</b>), respectively, and (<b>IV</b>) is an image taken at 780 min, during the final stages of uptake.</p> "> Figure 6
<p>Optical microscopy monitoring of dynamics of molecular vitamin B<sub>12</sub> uptake by individual Tb-mesoMOF crystals. Image (<b>Ia</b>,<b>Ib</b>) show uncut samples of MOF infused with vitamin B<sub>12</sub> for 10 min. (<b>IIa</b>) shows uncut, and (<b>IIb</b>) shows cut MOF crystals infused with vitamin B12 for 20 min. (<b>IIIa</b>) shows uncut, and (<b>IIIb</b>) shows cut MOF crystals infused with vitamin B<sub>12</sub> for 180 min. Here, the MOF looks red from outside, but the cut sample shows there is still vacant MOF. (<b>IVa</b>) shows uncut and (<b>IVb</b>) cut MOF crystals infused with vitamin B<sub>12</sub> for 780 min. Here, the MOF is completely infused.</p> "> Figure 7
<p>Optical microscopy characterization of vitamin B<sub>12</sub> release from an individual Tb-mesoMOF crystal. Images of the crystal infused with vitamin B<sub>12</sub> suspended in methanol, and vitamin B<sub>12</sub> diffusion out of the crystal at times (<b>a</b>) t = 15 min, (<b>b</b>) t= 30 min, (<b>c</b>) t = 60 min, (<b>d</b>) t = 100 min, (<b>e</b>) t = 200 min, (<b>f</b>) t = 300 min, (<b>g</b>) t = 500 min, (<b>h</b>) t = 1000 min, (<b>i</b>) 1600 min, (<b>j</b>) t = 2350 min, (<b>k</b>) t = 5000 min, and (<b>l</b>) t = 7000 min; (<b>m</b>) a plot demonstrating speed of release of the vitamin B<sub>12</sub> vs. time.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar]
- Cheng, W.; Tang, X.; Zhang, Y.; Wu, D.; Yang, W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci. Technol. 2021, 112, 268–282. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Masoomi, M.Y.; Morsali, A. Stimuli-responsive metal–organic framework (MOF) with chemo-switchable properties for colorimetric detection of CHCl3. Chem. A Eur. J. 2017, 23, 12559–12564. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Liu, J.; Gao, X.; Ji, G.; Wang, D.; Liu, Z. A multi-chemosensor based on Zn-MOF: Ratio-dependent color transition detection of Hg (II) and highly sensitive sensor of Cr (VI). Sens. Actuators B Chem. 2018, 269, 164–172. [Google Scholar] [CrossRef]
- Bermúdez-García, J.M.; Vicent-Luna, J.M.; Yanez-Vilar, S.; Hamad, S.; Sánchez-Andújar, M.; Castro-García, S.; Calero, S.; Senaris-Rodriguez, M.A. Liquid self-diffusion of H2O and DMF molecules in Co-MOF-74: Molecular dynamics simulations and dielectric spectroscopy studies. Phys. Chem. Chem. Phys. 2016, 18, 19605–19612. [Google Scholar] [CrossRef] [PubMed]
- Maity, T.; Malik, P.; Bawari, S.; Ghosh, S.; Mondal, J.; Haldar, R. Chemically routed interpore molecular diffusion in metal-organic framework thin films. Nat. Commun. 2023, 14, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Heinke, L.; Wöll, C. Surface-mounted metal–organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater. 2019, 31, 1806324. [Google Scholar] [CrossRef] [PubMed]
- Tovar, T.M.; Zhao, J.; Nunn, W.T.; Barton, H.F.; Peterson, G.W.; Parsons, G.N.; LeVan, M.D. Diffusion of CO2 in large crystals of Cu-BTC MOF. J. Am. Chem. Soc. 2016, 138, 11449–11452. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006, 45, 5974–5978. [Google Scholar] [CrossRef]
- An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc–adeninate metal–organic framework. J. Am. Chem. Soc. 2009, 131, 8376–8377. [Google Scholar] [CrossRef]
- Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780. [Google Scholar] [CrossRef] [PubMed]
- Liédana, N.; Galve, A.; Rubio, C.; Téllez, C.; Coronas, J. CAF@ZIF-8: One-Step Encapsulation of Caffeine in MOF. ACS Appl. Mater. Interfaces 2012, 4, 5016–5021. [Google Scholar] [CrossRef] [PubMed]
- Ke, F.; Yuan, Y.-P.; Qiu, L.-G.; Shen, Y.-H.; Xie, A.-J.; Zhu, J.-F.; Tian, X.-Y.; Zhang, L.-D. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem. 2011, 21, 3843–3848. [Google Scholar] [CrossRef]
- Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of Iron-Carboxylate nanoscale Metal− Organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263. [Google Scholar] [CrossRef] [PubMed]
- Valencia, V. Diffusion of Vitamin B12 across a Mesoporous Metal Organic Framework. Undergrad. J. Math. Model. One Two 2013, 5, 3–14. [Google Scholar] [CrossRef]
- Imaz, I.; Rubio-Martínez, M.; García-Fernández, L.; García, F.; Ruiz-Molina, D.; Hernando, J.; Puntes, V.; Maspoch, D. Coordination polymer particles as potential drug delivery systems. Chem. Commun. 2010, 46, 4737–4739. [Google Scholar] [CrossRef] [PubMed]
- Kärger, J. Diffusion Measurements by NMR Techniques. In Adsorption and Diffusion; Karge, H., Weitkamp, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 85–133. [Google Scholar]
- Jobic, H.; Theodorou, D.N. Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites. Microporous Mesoporous Mater. 2007, 102, 21–50. [Google Scholar] [CrossRef]
- Kortunov, P.V.; Heinke, L.; Arnold, M.; Nedellec, Y.; Jones, D.J.; Caro, J.; Kärger, J. Intracrystalline diffusivities and surface permeabilities deduced from transient concentration profiles: Methanol in MOF manganese formate. J. Am. Chem. Soc. 2007, 129, 8041–8047. [Google Scholar] [CrossRef] [PubMed]
- Heinke, L.; Chmelik, C.; Kortunov, P.; Ruthven, D.M.; Shah, D.B.; Vasenkov, S.; Kärger, J. Application of interference microscopy and IR microscopy for characterizing and investigating mass transport in nanoporous materials. Chem. Eng. Technol. 2007, 30, 995–1002. [Google Scholar] [CrossRef]
- Chmelik, C.; Hibbe, F.; Tzoulaki, D.; Heinke, L.; Caro, J.; Li, J.; Kärger, J. Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution. Microporous Mesoporous Mater. 2010, 129, 340–344. [Google Scholar] [CrossRef]
- Tzoulaki, D.; Schmidt, W.; Wilczok, U.; Kärger, J. Formation of surface barriers on silicalite-1 crystal fragments by residual water vapour as probed with isobutane by interference microscopy. Microporous Mesoporous Mater. 2008, 110, 72–76. [Google Scholar] [CrossRef]
- Heinke, L.; Tzoulaki, D.; Chmelik, C.; Hibbe, F.; van Baten, J.M.; Lim, H.; Li, J.; Krishna, R.; Kärger, J. Assessing Guest Diffusivities in Porous Hosts from Transient Concentration Profiles. Phys. Rev. Lett. 2009, 102, 065901-1–065901-4. [Google Scholar] [CrossRef] [PubMed]
- Chmelik, C.; Kortunov, P.; Vasenkov, S.; Kärger, J. Internal Transport Resistances and their Influence on Diffusion in Zeolites as Traced by Microscopic Measuring Techniques. Adsorption 2005, 11, 455–460. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, S.; Fu, C.W.; Hoang, T.; Li, X.; Valencia, V.; Zhang, Z.; Perman, J.A.; Ma, S. Investigation of the mesoporous metal–organic framework as a new platform to study the transport phenomena of biomolecules. ACS Appl. Mater. Interfaces 2017, 9, 10874–10881. [Google Scholar] [CrossRef]
- Karşilayan, H. Quantitation of vitamin B12 by first-derivative absorption spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1996, 52, 1163–1168. [Google Scholar] [CrossRef]
- Archibong, E.; Stewart, J.; Pyayt, A. Optofluidic spectroscopy integrated on optical fiber platform. Sens. Bio Sens. Res. 2015, 3, 1–6. [Google Scholar] [CrossRef]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Choi, S.B.; Kim, H.; Kim, K.; Won, B.H.; Choi, K.; Choi, J.S.; Ahn, W.S.; Won, N.; Kim, S.; et al. Crystal structure and guest uptake of a mesoporous metal–organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew. Chem. Int. Ed. 2007, 46, 8230–8233. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Synthesis, Characterization and Mechanistic Studies of Biomolecules@ mesoMOFs. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2014; pp. 1–149. [Google Scholar]
- Lykourinou, V.; Chen, Y.; Wang, X.S.; Meng, L.; Hoang, T.; Ming, L.J.; Musselman, R.L.; Ma, S. Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@ mesoMOF: A new platform for enzymatic catalysis. J. Am. Chem. Soc. 2011, 133, 10382–10385. [Google Scholar] [CrossRef]
- Costes, S.V.; Daelemans, D.; Cho, E.H.; Dobbin, Z.; Pavlakis, G.; Lockett, S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 2004, 86, 3993–4003. [Google Scholar] [CrossRef]
- Constantino, B.T. The red cell histogram and the dimorphic red cell population. Lab. Med. 2011, 42, 300–308. [Google Scholar] [CrossRef]
- Kang, Y.; Choi, S.H.; Kim, Y.J.; Kim, K.G.; Sohn, C.H.; Kim, J.H.; Yun, T.J.; Chang, K.H. Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging—Correlation with tumor grade. Radiology 2011, 261, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Crofts, A. Diffusion—Useful Equations. Available online: https://www-archiv.fdm.uni-hamburg.de/b-online/library/crofts/bioph354/diffusion1.html (accessed on 11 June 2024).
- Braga, J.; Desterro, J.M.; Carmo-Fonseca, M. Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol. Biol. Cell 2004, 15, 4749–4760. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, D.; Koppel, D.E.; Schlessinger, J.; Elson, E.; Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 1976, 16, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Sprague, B.L.; Pego, R.L.; Stavreva, D.A.; McNally, J.G. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 2004, 86, 3473–3495. [Google Scholar] [CrossRef] [PubMed]
- Pedron, I.T.; Mendes, R.S.; Buratta, T.J.; Malacarne, L.C.; Lenzi, E.K. Logarithmic diffusion and porous media equations: A unified description. Phys. Rev. E 2005, 72, 031106-1–031106-5. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, X.; Huang, S.; Xia, Q.; Li, Z. Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation. Ind. Eng. Chem. Res. 2011, 50, 2254–2261. [Google Scholar] [CrossRef]
- Amirjalayer, S.; Schmid, R. Mechanism of benzene diffusion in MOF-5: A molecular dynamics investigation. Microporous Mesoporous Mater. 2009, 125, 90–96. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Lin, Y. Adsorption and diffusion of carbon dioxide on metal− organic framework (MOF-5). Ind. Eng. Chem. Res. 2009, 48, 10015–10020. [Google Scholar] [CrossRef]
- Zhou, W.; Wöll, C.; Heinke, L. Liquid-and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks. Materials 2015, 8, 3767–3775. [Google Scholar] [CrossRef]
- Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal–organic frameworks—Prospective industrial applications. J. Mater. Chem. 2006, 16, 626–636. [Google Scholar] [CrossRef]
- Zybaylo, O.; Shekhah, O.; Wang, H.; Tafipolsky, M.; Schmid, R.; Johannsmann, D.; Wöll, C. A novel method to measure diffusion coefficients in porous metal–organic frameworks. Phys. Chem. Chem. Phys. 2010, 12, 8093–8098. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheemalapati, S.; Konnaiyan, K.; Chen, Y.; Ma, S.; Pyayt, A. Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications. Sensors 2024, 24, 3842. https://doi.org/10.3390/s24123842
Cheemalapati S, Konnaiyan K, Chen Y, Ma S, Pyayt A. Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications. Sensors. 2024; 24(12):3842. https://doi.org/10.3390/s24123842
Chicago/Turabian StyleCheemalapati, Surya, Karthik Konnaiyan, Yao Chen, Shengqian Ma, and Anna Pyayt. 2024. "Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications" Sensors 24, no. 12: 3842. https://doi.org/10.3390/s24123842