Dynamics of Aggregation in Systems of Self-Propelled Rods
<p>Aggregation in a system of polylactic acid rods driven by capillary forces. The rods are <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> mm long and have diameter <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> mm. They were placed on the water surface of a Petri dish with 10 cm diameter. Subfigures (<b>a</b>–<b>d</b>) correspond to times <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> s (the initial distribution of rods on the water), <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> s, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>90</mn> </mrow> </semantics></math> s, and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>180</mn> </mrow> </semantics></math> s, respectively.</p> "> Figure 2
<p>An example of aggregation in a system of 20 rods inside a 12 cm Petri dish. Each rod is <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> mm long and has <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> mm diameter. Subfigures show the positions of rods at different times: (<b>a</b>) shortly after rods were placed on the water surface (<math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>); (<b>b</b>–<b>e</b>) correspond to times <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> s, <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>26</mn> </mrow> </semantics></math> s, <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>73</mn> </mrow> </semantics></math> s, and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>90</mn> </mrow> </semantics></math> s. The surprising cave-art style figure of a hunter chasing an animal (<b>f</b>), here shown for <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>25</mn> </mrow> </semantics></math> min, was generated by self-aggregated roots not by a human hand. The movie illustrating the most important fragments of the evolution is included in the <a href="#app1-entropy-26-00980" class="html-app">Supplementary Information</a> as 140-first-30s.mp4 (the first 30 s of time evolution after all rods are placed on the water surface), 140-second-1m30s.mp4 (evolution in the time interval [30 s, 2 min]), 140-start12m-end14-30.mp4 (evolution in the time interval [12 min, 14 min 30 s]). Scale bars are 10 mm.</p> "> Figure 3
<p>Qualitative analysis of the number of fragments as a function of time in systems of 20 self-propelled rods (<math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> mm) aggregating inside 12 cm Petri dish: (<b>a</b>) the total number of fragments; (<b>b</b>) the number of birods; (<b>c</b>) the number of monorods; (<b>d</b>) the number of trirods. The results were obtained from the time evolution leading to metastable structures illustrated in <a href="#entropy-26-00980-f004" class="html-fig">Figure 4</a>b,c,e (red, blue and black curves, respectively).</p> "> Figure 4
<p>The metastable aggregates observed at the end of experiments. Subfigures (<b>a</b>–<b>c</b>,<b>e</b>) correspond to times <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>63</mn> </mrow> </semantics></math> min, <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>b</mi> </msub> <mo>=</mo> <mn>60</mn> </mrow> </semantics></math> min, <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>65</mn> </mrow> </semantics></math> min, and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>56</mn> </mrow> </semantics></math> min. The structure shown in (<b>d</b>) (<math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> min) aggregated after dispersing an existing structure to single rods, i.e., 12 min after a concluded 60 min experiment. The structure in (<b>f</b>) (<math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math> min was formed in a smaller Petri dish with the diameter <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> cm. The freeze frames depicted were cropped in order to show the full extent of aggregates and all scale bars are 10 mm.</p> "> Figure 5
<p>Simple fragments of aggregate that can be used as an alphabet to code a large structure of rods. End-to-end connections between two rods: (<b>a</b>)—<span class="html-italic">I</span> junction, (<b>b</b>)—<span class="html-italic">V</span> junction, and (<b>c</b>)—<math display="inline"><semantics> <mo>Γ</mo> </semantics></math> junction (there is also a rotated version ℸ). End-to-center connections between two rods: (<b>d</b>) <span class="html-italic">T</span> junction; (<b>e</b>,<b>f</b>) complex branching following the <span class="html-italic">T</span> junction corresponding to <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>{</mo> <mo>{</mo> <mn>1</mn> <mo>}</mo> <mo>,</mo> <mo>{</mo> <mo>}</mo> <mo>,</mo> <mo>{</mo> <mi>V</mi> <mo>}</mo> <mo>}</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>{</mo> <mo>{</mo> <mn>1</mn> <mo>}</mo> <mo>,</mo> <mo>{</mo> <mn>1</mn> <mo>}</mo> <mo>,</mo> <mo>{</mo> <mo>}</mo> <mo>}</mo> </mrow> </semantics></math>; (<b>h</b>) <math display="inline"><semantics> <mi>λ</mi> </semantics></math>–connection. (<b>g</b>) End-to-end connections between three rods–the <span class="html-italic">Y</span> junction. (<b>i</b>) A complex connection of rods needing a separate symbol.</p> "> Figure 6
<p>Aggregation of PacMan [<a href="#B54-entropy-26-00980" class="html-bibr">54</a>] characters made of camphene–camphor–polypropylene plastic floating on water surface inside square-shaped <math display="inline"><semantics> <mrow> <mn>15</mn> <mo>×</mo> <mn>15</mn> </mrow> </semantics></math> cm area. Subfigures (<b>a</b>–<b>d</b>) correspond to the times 8, 17, 23, and 26 s. The movie illustrating the time evolution can be watched on YouTube ([<a href="#B56-entropy-26-00980" class="html-bibr">56</a>]).</p> ">
Abstract
:1. Introduction
2. The Theoretical Background of Models Describing Aggregation of Self-Propelled Objects
3. Experimental Aggregation of Self-Propelled Rods and Basic Properties of Their Interaction
4. Conclusions and Perspectives
5. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ginot, F.; Theurkauff, I.; Detcheverry, F.; Ybert, C.; Cottin-Bizonne, C. Aggregation-fragmentation and individual dynamics of active clusters. Nat. Commun. 2018, 9, 696. [Google Scholar] [CrossRef] [PubMed]
- Aragones, J.L.; Steimel, J.P.; Alexander-Katz, A. Aggregation dynamics of active rotating particles in dense passive media. Soft Matter 2019, 15, 3929–3937. [Google Scholar] [CrossRef] [PubMed]
- Vernerey, F.J.; Benet, E.; Blue, L.; Fajrial, A.K.; Sridhar, S.L.; Lum, J.S.; Shakya, G.; Song, K.H.; Thomas, A.N.; Borden, M.A. Biological active matter aggregates: Inspiration for smart colloidal materials. Adv. Colloid Interface Sci. 2019, 263, 38–51. [Google Scholar] [CrossRef]
- Eckert, T.; Schmidt, M.; de las Heras, D. Gravity-induced phase phenomena in plate-rod colloidal mixtures. Commun. Phys. 2021, 4, 202. [Google Scholar] [CrossRef]
- Ziepke, A.; Maryshev, I.; Aranson, I.S.; Frey, E. Multi-scale organization in communicating active matter. Nat. Commun. 2022, 13, 6727. [Google Scholar] [CrossRef]
- Gil, T.; Ipsen, J.H. Capillary condensation between disks in two dimensions. Phys. Rev. E 1997, 55, 1713–1721. [Google Scholar] [CrossRef]
- Chatterjee, N.; Flury, M. Effect of Particle Shape on Capillary Forces Acting on Particles at the Air–Water Interface. Langmuir 2013, 29, 7903–7911. [Google Scholar] [CrossRef] [PubMed]
- Ho, I.; Pucci, G.; Harris, D.M. Direct Measurement of Capillary Attraction between Floating Disks. Phys. Rev. Lett. 2019, 123, 254502. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, B.A.; Bowden, N.; Arias, F.; Yang, H.; Whitesides, G.M. Modeling of Menisci and Capillary Forces from the Millimeter to the Micrometer Size Range. J. Phys. Chem. B 2001, 105, 404–412. [Google Scholar] [CrossRef]
- Bain, C.D.; Burnett-Hall, G.D.; Montgomerie, R.R. Rapid motion of liquid drops. Nature 1994, 372, 414–415. [Google Scholar] [CrossRef]
- Manning-Benson, S.; Bain, C.D.; Darton, R.C. Measurement of Dynamic Interfacial Properties in an Overflowing Cylinder by Ellipsometry. J. Colloid Interface Sci. 1997, 189, 109–116. [Google Scholar] [CrossRef]
- Krechetnikov, R. Thermodynamics of chemical Marangoni-driven engines. Soft Matter 2017, 13, 4931–4950. [Google Scholar] [CrossRef] [PubMed]
- Michelin, S. Self-Propulsion of Chemically Active Droplets. Annu. Rev. Fluid Mech. 2023, 55, 77–101. [Google Scholar] [CrossRef]
- Suematsu, N.J.; Nakata, S. Evolution of Self-Propelled Objects: From the Viewpoint of Nonlinear Science. Chem. Eur. J. 2018, 24, 6308–6324. [Google Scholar] [CrossRef] [PubMed]
- Nakata, S.; Iguchi, Y.; Ose, S.; Kuboyama, M.; Ishii, T.; Yoshikawa, K. Self-Rotation of a Camphor Scraping on Water: New Insight into the Old Problem. Langmuir 1997, 13, 4454–4458. [Google Scholar] [CrossRef]
- Nakata, S.; Nagayama, M.; Kitahata, H.; Suematsu, N.J.; Hasegawa, T. Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments. Phys. Chem. Chem. Phys. 2015, 17, 10326–10338. [Google Scholar] [CrossRef]
- Tomlinson, C. On the motions of camphor on the surface of water. Proc. R. Soc. Lond. 1862, 11, 575–577. [Google Scholar] [CrossRef]
- Rayleigh, L. Measurements of the amount of oil necessary in order to check the motions of camphor upon water. Proc. R. Soc. Lond. 1890, 47, 364–367. [Google Scholar] [CrossRef]
- Soh, S.; Bishop, K.J.M.; Grzybowski, B.A. Dynamic Self-Assembly in Ensembles of Camphor Boats. J. Phys. Chem. B 2008, 112, 10848–10853. [Google Scholar] [CrossRef]
- Kitahata, H.; Koyano, Y.; Iida, K.; Nagayama, M. Mathematical Model and Analyses on Spontaneous Motion of Camphor Particle. In Self-Organized Motion: Physicochemical Design Based on Nonlinear Dynamics; The Royal Society of Chemistry: London, UK, 2018. [Google Scholar] [CrossRef]
- Arango-Restrepo, A.; Rubi, J.M. Thermodynamic Insights into Symmetry Breaking: Exploring Energy Dissipation across Diverse Scales. Entropy 2024, 26, 231. [Google Scholar] [CrossRef]
- Suematsu, N.J.; Ikura, Y.; Nagayama, M.; Kitahata, H.; Kawagishi, N.; Murakami, M.; Nakata, S. Mode-Switching of the Self-Motion of a Camphor Boat Depending on the Diffusion Distance of Camphor Molecules. J. Phys. Chem. C 2010, 114, 9876–9882. [Google Scholar] [CrossRef]
- Iida, K.; Kitahata, H.; Nagayama, M. Theoretical study on the translation and rotation of an elliptic camphor particle. Phys. D Nonlinear Phenom. 2014, 272, 39–50. [Google Scholar] [CrossRef]
- Shao, D.; Rappel, W.J.; Levine, H. Computational Model for Cell Morphodynamics. Phys. Rev. Lett. 2010, 105, 108104. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, N. Spontaneous motion and deformation of a self-propelled droplet. Phys. Rev. E 2014, 89, 012913. [Google Scholar] [CrossRef]
- Kitahata, H.; Iida, K.; Nagayama, M. Spontaneous motion of an elliptic camphor particle. Phys. Rev. E 2013, 87, 010901. [Google Scholar] [CrossRef]
- Ei, S.I.; Kitahata, H.; Koyano, Y.; Nagayama, M. Interaction of non-radially symmetric camphor particles. Phys. D Nonlinear Phenom. 2018, 366, 10–26. [Google Scholar] [CrossRef]
- Kitahata, H.; Koyano, Y. Spontaneous Motion of a Camphor Particle with a Triangular Modification from a Circle. J. Phys. Soc. Jpn. 2020, 89, 094001. [Google Scholar] [CrossRef]
- Koyano, Y.; Kitahata, H. Imperfect bifurcation in the rotation of a propeller-shaped camphor rotor. Phys. Rev. E 2021, 103, 012202. [Google Scholar] [CrossRef]
- Tanaka, S.; Nakata, S.; Kano, T. Dynamic Ordering in a Swarm of Floating Droplets Driven by Solutal Marangoni Effect. J. Phys. Soc. Jpn. 2017, 86, 101004. [Google Scholar] [CrossRef]
- Suematsu, N.J. Collective Behaviour of Self-propelled Objects on a Water Surface. In Self-Organized Motion: Physicochemical Design Based on Nonlinear Dynamics; The Royal Society of Chemistry: London, UK, 2018. [Google Scholar] [CrossRef]
- Ikura, Y.S.; Heisler, E.; Awazu, A.; Nishimori, H.; Nakata, S. Collective motion of symmetric camphor papers in an annular water channel. Phys. Rev. E 2013, 88, 012911. [Google Scholar] [CrossRef]
- Hayakawa, M.; Onoe, H.; Nagai, K.; Takinoue, M. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors. Micromachines 2016, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Nanzai, B.; Ban, T. Chapter 6. Physical Chemistry of Energy Conversion. In Self-Propelled Droplets Induced by Dewetting Effect; Royal Society of Chemistry: London, UK, 2018; Volume 2019, pp. 139–166. [Google Scholar] [CrossRef]
- Wikipedia Article. Camphene. Available online: https://en.wikipedia.org/wiki/Camphene (accessed on 13 November 2024).
- Wikipedia Article. Camphor. Available online: https://en.wikipedia.org/wiki/Camphor (accessed on 13 November 2024).
- Löffler, R.J.G.; Hanczyc, M.M.; Gorecki, J. A hybrid camphor–camphene wax material for studies on self-propelled motion. Phys. Chem. Chem. Phys. 2019, 21, 24852–24856. [Google Scholar] [CrossRef] [PubMed]
- Löffler, R.J.G.; Hanczyc, M.M.; Gorecki, J. A Perfect Plastic Material for Studies on Self-Propelled Motion on the Water Surface. Molecules 2021, 26, 3116. [Google Scholar] [CrossRef] [PubMed]
- Löffler, R.J.G.; Hanczyc, M.M.; Gorecki, J. A camphene-camphor-polymer composite material for the production of superhydrophobic absorbent microporous foams. Sci. Rep. 2022, 12, 243. [Google Scholar] [CrossRef]
- Web Page with Cave Art. Available online: https://steemit.com/art/@godflesh/the-role-of-the-primitive-art-in-the-process-of-human-being (accessed on 13 November 2024).
- Shields, C.W.; Velev, O.D. The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems. Chem 2017, 3, 539–559. [Google Scholar] [CrossRef]
- Lin, Z.; Gao, C.; Chen, M.; Lin, X.; He, Q. Collective motion and dynamic self-assembly of colloid motors. Curr. Opin. Colloid Interface Sci. 2018, 35, 51–58. [Google Scholar] [CrossRef]
- Vicsek, T.; Zafeiris, A. Collective motion. Phys. Rep. 2012, 517, 71–140. [Google Scholar] [CrossRef]
- Hiraiwa, T. Two types of exclusion interactions for self-propelled objects and collective motion induced by their combination. Phys. Rev. E 2019, 99, 012614. [Google Scholar] [CrossRef]
- Gifford, W.; Scriven, L. On the attraction of floating particles. Chem. Eng. Sci. 1971, 26, 287–297. [Google Scholar] [CrossRef]
- Pozrikidis, C. Capillary attraction of floating rods. Eng. Anal. Bound. Elem. 2012, 36, 836–844. [Google Scholar] [CrossRef]
- Koyano, Y.; Kitahata, H.; Nakata, S.; Gorecki, J. On a simple model that explains inversion of a self-propelled rotor under periodic stop-and-release-operations. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 023105. [Google Scholar] [CrossRef] [PubMed]
- Holló, G.; Leelőssy, A.; Tóth, R.; Lagzi, I. Tactic Droplets at the Liquid–Air Interface. In Self-Organized Motion: Physicochemical Design Based on Nonlinear Dynamics; The Royal Society of Chemistry: London, UK, 2018. [Google Scholar] [CrossRef]
- Kitahata, H.; Yoshinaga, N. Effective diffusion coefficient including the Marangoni effect. J. Chem. Phys. 2018, 148, 134906. [Google Scholar] [CrossRef] [PubMed]
- Suematsu, N.J.; Sasaki, T.; Nakata, S.; Kitahata, H. Quantitative Estimation of the Parameters for Self-Motion Driven by Difference in Surface Tension. Langmuir 2014, 30, 8101–8108. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.P. Structure of a quantized vortex in boson systems. II Nuovo Cimento 1961, 20, 454–477. [Google Scholar] [CrossRef]
- Pitaevskii, L. Vortex Lines in an Imperfect Bose Gas. JETP 1961, 13, 451–454. [Google Scholar]
- MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wikipedia Article. Pac-Man. Available online: https://en.wikipedia.org/wiki/Pac-Man (accessed on 13 November 2024).
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef]
- Löffler, R.J.G. Self-Propelled Pac-Man Video. Available online: https://www.youtube.com/watch?v=rChsiUTW-QA (accessed on 13 November 2024).
- Löffler, R.J.G.; Gorecki, J.; Hanczyc, M.M. Better red than dead: On the influence of Oil Red O dye on complexity of evolution of a camphor-paraffin droplet on the water surface. In Proceedings of the 2018 Conference on Artificial Life, Tokyo, Japan, 23–27 July 2018; MIT Press: Cambridge, MA, USA, 2018; Volume 7, pp. 574–579. [Google Scholar] [CrossRef]
- Watanabe, C.; Tanaka, S.; Löffler, R.J.G.; Hanczyc, M.M.; Górecki, J. Dynamic ordering caused by a source-sink relation between two droplets. Soft Matter 2022, 18, 6465–6474. [Google Scholar] [CrossRef]
- van Laarhoven, P.J.M.; Aarts, E.H.L. Simulated Annealing: Theory and Applications; Springer: Dordrecht, The Netherlands, 1987. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Löffler, R.J.G.; Gorecki, J. Dynamics of Aggregation in Systems of Self-Propelled Rods. Entropy 2024, 26, 980. https://doi.org/10.3390/e26110980
Löffler RJG, Gorecki J. Dynamics of Aggregation in Systems of Self-Propelled Rods. Entropy. 2024; 26(11):980. https://doi.org/10.3390/e26110980
Chicago/Turabian StyleLöffler, Richard J. G., and Jerzy Gorecki. 2024. "Dynamics of Aggregation in Systems of Self-Propelled Rods" Entropy 26, no. 11: 980. https://doi.org/10.3390/e26110980