[go: up one dir, main page]

Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 14, 2024

Effect of biaxial strain on the binding energies of adsorbed In and Al atoms on (001) surfaces of InAs and AlAs

  • Ivan A. Aleksandrov ORCID logo EMAIL logo , Dmitry V. Gulyaev ORCID logo , Eugeny A. Kolosovsky ORCID logo and Konstantin S. Zhuravlev ORCID logo

Abstract

The dependence of the binding energies of adsorbed In and Al atoms on the (001) surfaces of InAs and AlAs with β 2 (2 × 4) reconstruction on the biaxial compression and tension strains has been investigated using the density functional theory. The maps of the potential energy surface of the adsorbed In atom on the (001) surface of InAs and AlAs with β 2 (2 × 4) reconstruction have been calculated. According to the calculation results, a general trend towards an increase in the absolute values of the binding energy of the adsorbed In and Al atoms on the (001) surface of InAs and AlAs with an increase in the biaxial tension strain has been observed. For certain positions of the adsorbed atoms, a change in the sign of the derivative of the binding energy dependence on the biaxial strain has been observed with a change in the symmetry of the adsorbed state of the atom.

MSC 2020: 00A79; 74F25; 82B26

Funding statement: This work is supported by the Russian Science Foundation (project 23-22-10054) and by government of the Novosibirsk region (project r-50).

Acknowledgements

The Siberian Branch of the Russian Academy of Sciences (SB RAS) Siberian Supercomputer Center and Novosibirsk State University are gratefully acknowledged for providing computational resources.

References

[1] W. Barvosa-Carter, R. S. Ross, C. Ratsch, F. Grosse, J. H. G. Owen and J. J. Zinck, Atomic scale structure of InAs(001)-(2x4) steady-state surfaces determined by scanning tunneling microscopy and density functional theory, Surface Sci. 499 (2002), L129–L134. 10.1016/S0039-6028(01)01638-7Search in Google Scholar

[2] Y. A. Burenkov, S. Y. Davydov and S. P. Nikanorov, The elastic properties of indium arsenide, Sov. Phys. Solid State 17 (1975), no. 7, 1446–1447. Search in Google Scholar

[3] A. M. Dabiran and P. I. Cohen, Surface reconstructions and growth mode transitions of AlAs(100), J. Crystal Growth 150 (1995), 23–27. 10.1016/0022-0248(95)80174-BSearch in Google Scholar

[4] A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput. Material Sci. 95 (2014), Paper No. 337. 10.1016/j.commatsci.2014.07.043Search in Google Scholar

[5] K. Fujiwara, A. Ishii and T. Aisaka, First principles calculation of Indium migration barrier energy on an InAs(001) surface, Thin Solid Films 464–465 (2004), 35–37. 10.1016/j.tsf.2004.06.062Search in Google Scholar

[6] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, Advanced capabilities for materials modelling with QUANTUM ESPRESSO, J. Phys. Condensed Matter 29 (2017), no. 46, Article ID 465901.10.1088/1361-648X/aa8f79Search in Google Scholar PubMed

[7] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009), no. 39, Article ID 395502. 10.1088/0953-8984/21/39/395502Search in Google Scholar PubMed

[8] F. Grosse and M. F. Gyure, Ab initio based modeling of III-V semiconductor surfaces: Thermodynamic equilibrium and growth kinetics on atomic scales, Phys. Rev. B 66 (2002), Article ID 075320. 10.1103/PhysRevB.66.075320Search in Google Scholar

[9] T. Ito, T. Akiyama, K. Nakamura and A.-M. Pradipto, Theoretical investigations for surface reconstructions of submonolayer InAs Grown on GaAs(001), Phys. Status Solidi A 216 (2019), Article ID 1800476. 10.1002/pssa.201800476Search in Google Scholar

[10] S. V. Ivanov, P. S. Kop’ev and N. N. Ledentsov, Thermodynamic analysis of segregation effects in MBE of AIII-BV Compounds, J. Crystal Growth 111 (1991), 151–161. 10.1016/0022-0248(91)90963-6Search in Google Scholar

[11] P. S. Kop’ev and N. N. Ledentsov, Molecular beam epitaxy of heterostructures made of III-V compounds–review, Sov. Phys. Semiconductors 22 (1988), Article ID 1093. Search in Google Scholar

[12] M. Krieger, H. Sigg, N. Herres, K. Bachem and K. Kohler, Elastic constants and Poisson ratio in the system AlAs-GaAs, Appl. Phys. Lett. 66 (1995), 682–684. 10.1063/1.114098Search in Google Scholar

[13] E. Penev, P. Kratzer and M. Scheffler, Effect of strain on surface diffusion in semiconductor heteroepitaxy, Phys. Rev. B 64 (2001), Article ID 085401. 10.1103/PhysRevB.64.085401Search in Google Scholar

[14] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phsy. Rev. B 23 (1981), Article ID 5048. 10.1103/PhysRevB.23.5048Search in Google Scholar

[15] M. Rosini, R. Magri and P. Kratzer, Adsorption of indium on an InAs wetting layer deposited on the GaAs(001) surface, Phys. Rev. B 77 (2008), Article ID 165323. 10.1103/PhysRevB.77.165323Search in Google Scholar

[16] M. Rosini, P. Kratzer and R. Magri, In adatom diffusion on InxGa1-xAs/GaAs(001): Effects of strain, reconstruction and composition, J. Phys. Condens. Matter 21 (2009), Article ID 355007. 10.1088/0953-8984/21/35/355007Search in Google Scholar PubMed

[17] K. Shiraishi, A new slab model approach for electronic structure calculation of polar semiconductor surface, J. Phys. Soc. Japan 59 (1990), no. 10, 3455–3458. 10.1143/JPSJ.59.3455Search in Google Scholar

[18] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys. 89 (2001), no. 11, 5815–5875. 10.1063/1.1368156Search in Google Scholar

[19] I. W. Yeu, J. Park, G. Han, C. S. Hwang and J.-H. Choi, Surface reconstruction of InAs (001) depending on the pressure and temperature examined by density functional thermodynamics, Sci. Rep. 7 (2017), Article ID 10691. 10.1038/s41598-017-10881-2Search in Google Scholar PubMed PubMed Central

Received: 2024-06-13
Revised: 2024-10-29
Accepted: 2024-11-07
Published Online: 2024-11-14
Published in Print: 2024-12-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.2.2025 from https://www.degruyter.com/document/doi/10.1515/mcma-2024-2023/pdf
Scroll to top button