[go: up one dir, main page]

Academia.eduAcademia.edu
<} }< A Fourier]Bessel Expansion for Solving Radial Schrodinger Equation in Two ¨ Dimensions H. TAŞELI AND A. ZAFER Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey; E-mail (H.T.): taseli@rorqual.cc.metu.edu.tr Received January 15, 1996; accepted March 1, 1996 ABSTRACT The spectrum of the two-dimensional Schrodinger equation for polynomial oscillators ¨ bounded by infinitely high potentials, where the eigenvalue problem is defined on a finite interval r g w 0, L., is variationally studied. The wave function is expanded into a Fourier]Bessel series, and matrix elements in terms of integrals involving Bessel functions are evaluated analytically. Numerical results presented accurate to 30 digits show that, by the time L approaches a critical value, the low-lying state energies behave almost as if the potentials were unbounded. The method is applicable to multiwell oscillators as well. Q 1997 John Wiley & Sons, Inc. 1. Introduction I n his recent articles w 1]3x , Taşeli modified the usual requirement that the wave function should tend to zero at infinity and showed that the eigensolution of the Dirichlet boundary value problem can be effectively used to find the spectrum of an unbounded problem in one dimension. In these works, the eigenfunctions satisfying the boundary value problem d2 C dx 2 q m2 C s 0, C Ž a . s C Ž b . s 0 Ž 1.1. International Journal of Quantum Chemistry, Vol. 61, 759]768 (1997) Q 1997 John Wiley & Sons, Inc. were employed as the basis set in the Rayleigh]Ritz variational method. The approach has a natural extension to the two-dimensional Schrodinger equation written in Cartesian coordi¨ nates. Actually, two-dimensional anharmonic oscillators can be treated in a similar fashion by means of the boundary value problem defined by d2 C dx 2 q d2 C dy 2 q m2 C s 0, C < G s 0, Ž 1.2. where G denotes the boundary of a finite rectangular region in the xy-plane w 4x . In this study, we examined the dimensionless radial Schrodinger equation in the cylindrical polar ¨ CCC 0020-7608 / 97 / 050759-10 TAŞELI AND ZAFER coordinates: y d2 dr 2 y 1 d r dr q l2 r2 q V Ž r . C Ž r . s EC Ž r . , special case of the harmonic oscillator, V Ž r . s r 2 , admits exact solutions in the unbounded domain of r of the form 2 Fn l Ž r . s eyŽ1 r2. r LŽnl . Ž r 2 . , r g w 0, ` . , CŽ r . s OŽ r l . Ž 1.4. as r ª 0. The second condition, however, is replaced by C Ž L. s 0 n, l s 0, 1, . . . , Ž 1.3. where l s 0, 1, . . . , V Ž r . and E stand for the magnetic quantum number, the potential function, and the energy eigenvalue, respectively. It is obvious that the coupling might depend on the direction. We have, however, omitted the angle dependence of the potential for the sake of dealing with a system which can be investigated via an ordinary differential equation. Therefore, l characterizes the angular dependence of the system in a global sense, and the wave function C has been regarded as a function of the single variable r. The accompanying boundary conditions of Ž1.3. are the regularity and the appropriately vanishing behavior of the wave function specified as r ª 0 and r ª `, respectively. The regularity condition implies that Ž 1.5. when the interval is truncated to w 0, L x . Such a truncation is clearly motivated by the success of the simple technique presented in the aforementioned articles w 1]4x . The question which now arises is whether there exists a corresponding basis set, preferably in terms of elementary or special functions of mathematical analysis for solving Ž1.3.. Fortunately, in the case of the radial Schrodinger ¨ equation, the Bessel functions of the first kind are to be shown in Section 2 to play the same role with the trigonometric basis. The potential function V Ž r . in Ž1.3. is taken as a general polynomial: En , l s 2 Ž 2 n q l q 1 . , Ž 1.7. LŽnl . denotes the associated Laguerre polynowhere mials. In general, the asymptotic behavior of the wave function as r ª ` completely depends on the dominant coupling. As a result, it is rather difficult to introduce a trial function reflecting the desired properties of the solution for an arbitrary anharmonic interaction w 5x . The definition of the problem in a finite interval r g w 0, L x , however, makes it possible to consider a general polynomial potential rather than a specific one. The idea is based upon regarding the boundary value L as a nonlinear optimization parameter to be determined in such a way that the spectrum fits to the spectrum of the corresponding unbounded problem, where L ª `, to any prescribed accuracy. Moreover, a model of this kind, namely, an enclosed quantum mechanical system, is of importance not only for finding the spectrum of an unbounded one but also its various applications in several fields w 6x Žand the references cited therein.. Within these perspectives, Section 2 sets out the basic variational formulation of the problem. Section 3 includes the evaluation of integrals containing Bessel functions. The last section presents the applications of the method and concludes the article with a discussion of the results. 2. The Fourier]Bessel Expansion In this section, we begin with solving the unperturbed Schrodinger equation defined by ¨ ž d2 dr 2 q 1 d 2 r dr qm y l2 r2 / F Ž r . s 0, r g w 0, L x , Ž 2.1. M VŽr. s Ý v2 j r 2 j , v 2 M ) 0, M s 1, 2, . . . js1 Ž 1.6. in r 2 . The positiveness of the dominant coupling constant v 2 M is sufficient to make the potential bounded below. Therefore, the operator being considered has now a purely discrete spectrum. The 760 subject to FŽ r . s OŽ r l . as r ª 0, F Ž L . s 0, Ž 2.2. where m is a constant, and we have assumed a potential function of the form VŽr. s ½ 0, `, 0Fr-L r ) L. Ž 2.3. VOL. 61, NO. 5 A FOURIER ]BESSEL EXPANSION It is readily shown that the two linearly independent solutions of Ž2.1. are Jl Ž m r . and Yl Ž m r ., namely, the Bessel functions of the first and the second kind, respectively. However, the Bessel functions of the second kind do not remain finite at r s 0 so that we may take plying the result by r Fm Ž r ., and integrating from zero to L, we obtain F Ž r . s cJl Ž m r . , for m s 1, 2, . . . . If we define the variational matrix to be Ž 2.4. ` Ý ns1 cml 2 l l! rl Ž 2.5. Ž 2.6. We know from the theory of Bessel functions that there is an enumerable infinite set of roots m s m 1 , m 2 , . . . m n , . . . satisfying Ž2.6. w 7x . Furthermore, when c is properly chosen, the sequence of functions LJlq1Ž m n L . Jl Ž m n r . , forms an orthonormal set over the range of r, r g w 0, L x , with respect to the weighting function r. Thus, we have L n m Ž r . dr s dn m Ž 2.8. for all values of n and m. The orthonormality property suggests the expansion of the wave function in the form ` CŽ r . s Ý a nFn Ž r . s ns1 '2 L ` Ý ns1 Ž r . dr y Edn m a n L H0 V Ž r . r F Ž r . F n m Ž 2.10. Ž r . dr , Ž 2.11. we then arrive at the secular equations of the form Ý Ž Hn m y Edn m . a n s 0, m s 1, 2, . . . , ns1 Ž 2.12. for determination of the coefficients a n . Using Ž1.6. and making a simple change of variable, the variational matrix is expressible as M 2 Hn m s Ž a nrL . dn m q Ý v 2 j L2 j InŽ lm, j. , wherein InŽ l,m j. stands for the integral InŽ lm, j. s c nŽ lm. 1 H0 j 2 jq1 Jl Ž a n j . Jl Ž a m j . d j Ž 2.14. to be determined for each l. Hereafter, a1 , a 2 , . . . , a n , . . . denote the positive zeros of Jl Ž x ., and the constant c nŽ lm. is given by c nŽ lm. s 2 Jlq1Ž a n . Jlq1Ž a m . . an Jl Ž m n r . , Ž 2.15. It is apparent that InŽ l,m j. is symmetric in n and m and, hence, that Hn m is symmetric. In the coming section, we shall show that the integrals in Ž2.14. may be evaluated recursively. In particular, InŽ lm, 0. s dn m Jlq1Ž m n L . Ž 2.13. js1 n s 1, 2, . . . Ž 2.7. H0 r F Ž r . F m ` Jl Ž m L . s 0. '2 n Hn m s m 2n dn m q as r ª 0. Imposing the second condition, we see that Ž2.4. is the required solution if m is a positive root of the equation Fn Ž r . s L H0 V Ž r . r F Ž r . F s 0, which behaves correctly at the origin, where c is some normalization constant. More specifically, FŽ r . f m2n dn m q Ž 2.16. provided that Jl Ž a n . s 0 for any l fixed. Ž 2.9. 3. Evaluation of Matrix Elements which is called the Fourier]Bessel expansion of C Ž r .. The theory of such an expansion is given by Watson in w 8x . Substituting Ž2.9. into Ž1.3., multi- In this section, the integrals appearing in the matrix elements are evaluated analytically for l s 0 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 761 TAŞELI AND ZAFER and l s 1, which are representative for the other cases. Since such integrals are not so trivial to deal with, we feel that we should give a sketch of the derivation steps. So let us consider Ž2.14. setting l s 0, InŽ0,m j. s c nŽ0.m 1 H0 j 2 jq1 J0 Ž a n j . J0 Ž a m j . d j ; n, m s 1, 2, . . . , Ž 3.1. tuting into Ž3.2., we find that InŽ0,m j. s s Ž a n2 y a m2 . a n2 y a m2 Ž am Am n y an Anm . , Ž 3.2. H0 j 2j J1 Ž a p j . J 0 Ž a q j . d j Ž 3.3. and A p q / A q p . Integration by parts of the last integral leads to jy1. a m A n m q a n A m n s 2 y 2 Ž j y 1 . PnŽ1, , m j ) 0, Ž 3.4. where a temporary quantity PnŽ1,m j., j. Ž0. PnŽ1, m s cn m 1 H0 j 2 jq1 J1 Ž a n j . J1 Ž a m j . d j , j. Ž1 , j. PnŽ1, m s Pm n , j. PnŽ1, m s dj j 2 j J0 Ž a n j . J0 Ž a m j . y a m2 . 2 Ž 3.9. for the calculation of PnŽ1,m j. recursively. The initial conditions for these recursions are InŽ0,m 0. s 0 Ž 3.10. 0. PnŽ1, m s 0, Ž 3.11. and respectively. The first condition is a consequence of the orthogonality of the Bessel functions, and the second one can be deduced from the integral Ž3.5. with j s 0. Whenever m s n, InŽ0,n j. may be derived by means of certain limit operations as a n ª a m using l’Hospital rule. It is, however, easier to follow an alternative way. Indeed, noting that Ž3.4. and Ž3.7. are valid for m s n as well, we show that Ž j q 1 . InŽ0,n j. s 1 y jPnŽ1n, j. Ž 3.12. a n A n n s jInŽ0,n jy1. . Ž 3.13. and that On integrating by parts, it is not difficult to prove that PnŽ1,n j. satisfies also the equation Therefore, substituting Ž3.13. into Ž3.14. and eliminating PnŽ1,n j. from Ž3.12. and Ž3.14., it follows that y a n j 2 j J1 Ž a n j . J 0 Ž a m j . y a m j 2 j J 0 Ž a n j . J1 Ž a m j . ; Ž 3.6. a n2 Ž 2 j q 1 . InŽ0,n j. s a n2 y 2 j 3 InŽ0n, jy1. , j s 1, 2, . . . , M. it follows immediately that j ) 0, Ž 3.7. which is independent of Ž3.4.. Solving simultaneously Ž3.4. and Ž3.7. for A n m and A m n and substi- 762 4j Ž a n2 j. a n Ž j q 1 . PnŽ1, s a n y ja n InŽ0n, j. q 2 jA n n . Ž 3.14. n s 2 j j 2 jy1 J0 Ž a n j . J0 Ž a m j . a n A n m q a m A m n s 2 jInŽ0,m jy1. , Ž 3.8. =  Ž a n2 q a m2 . 1 y Ž j y 1 . PnŽ1m, jy1. Ž 3.5. has been introduced. It should be noticed that PnŽ1,m j. is not a constant multiple of InŽ1,m j. defined by Ž2.14. since a n’s are not the zeros of J1Ž x . in this case of l s 0. If we now make use of the identity d 1 y Ž j y 1 . PnŽ1m, jy1. for j ) 0 and m / n. Likewise, we obtain the relation when n / m, where A p q s c Ž0. pq 2 an am y2 ja n a m InŽ0,m jy1. 4 2j 1 2 yj Ž a n2 q a m2 . InŽ0,m jy1. 4 with J0 Ž a n . s 0 and j s 1, 2, . . . , M. Integrating by parts and using some well-known properties of the Bessel functions, we see that Ž3.1. may be written as InŽ0,m j. 4j Ž 3.15. Initially, we have from Ž2.16. InŽ0,n 0. s 1 Ž 3.16. for all n. VOL. 61, NO. 5 A FOURIER ]BESSEL EXPANSION In a similar fashion, for l s 1, the integral InŽ1m, j. s c nŽ1.m 1 H0 j 2 jq1 and the double-well potential of the form V Ž r . s yr 2 q d 4 r 4 J1 Ž b n j . J1 Ž b m j . d j ; n, m s 1, 2, . . . Ž 3.17. may be evaluated recursively, where the bn’s are now the positive zeros of J1Ž x .. If m / n, we find that InŽ1,m j. s 4j Ž bn2 y bm2 . 2  2 bn bm 1y for a wide range of the coupling constants. As v 2 k ª ` in Ž4.1., we have the infinite-field limit Hamiltonian described by the equation ž jQ nŽ0m, jy1. y d2 dr 2 s 4j Ž bn2 y bm2 . 2 Ž bn2 q bm2 . 1y Ž 3.18. jQ nŽ0m, jy1. y2 Ž j y 1 . bn bm InŽ1,m jy1. 4 , Q nŽ0,m0. s 0, 1 H0 j 2 jq1 J0 Ž bn j . J0 Ž bm j . d j , Ž0 , j. Q nŽ0,m j. s Q m n . Ž 3.20. If m s n, then Ž 2 j q 1 . bn2 InŽ1n, j. s bn2 y 2 j Ž j 2 y 1 . InŽ1,n jy1. , InŽ1,n 0. s 1. Ž 3.21. In general, the problem of calculating integrals in Ž2.14. for any l requires a treatment of this kind. 4. Applications and Concluding Remarks k s 2, 3, 4, l2 r2 / q r 2 k C Ž r . s lC Ž r . , Ž 4.4. This asymptotic relation shows that the total enkq1. ergy E of the system Ž1.3. grows like v 21rŽ for k large values of v 2 k . For this reason, we also consider the potentials VŽ r. s r2k, k s 1, 2, 3, 4, and 10, Ž 4.5. to cover the limiting case of the anharmonicity constant, as v 2 k ª `. The potential in Ž4.5. with k s 1, or Ž4.1. with v 2 k s 0, corresponds to the harmonic oscillator whose exact eigenstates are given by Ž1.7. for the unbounded interval of r, r g w 0, `.. Therefore, this problem provides a very good check on the accuracy of the present approach, which assumes a finite interval, r g w 0, L x . As a specimen test, Table I demonstrates the rate of convergence of the method as functions of TABLE I Convergence rate of the method as functions of L and N for the ground-state energy E 0, 0 of the harmonic oscillator, V ( r ) = r 2. L The present technique is applied to some specific potentials in Ž1.6. to show its computational performance. To this end, the infinite system Ž2.14. has been truncated to a homogeneous system of a finite number of equations, N say. The truncated eigenvalues are then determined as the roots of the so-called characteristic equation. We examine numerically the generalized anharmonic oscillators V Ž r . s r 2 q v2 k r 2 k , r dr q rŽ kq1. l s vy1 E. 2k Ž 3.19. where Q nŽ0,m j. s c Ž1. nm 1 d where l is connected with the energy eigenvalues by the relation and Q nŽ0,m j. y Ž 4.3. y Ž j y 1 .Ž bn2 q bm2 . InŽ1,m jy1. 4 , InŽ1,m 0. s 0 Ž 4.2. N E 0, 0 5 8 10 12 2.000 000 001 346 2.000 000 001 3308 2.000 000 001 33077 7 14 16 18 2.000 000 000 000 000 0306 2.000 000 000 000 000 000 1007 2.000 000 000 000 000 000 1006 9 20 22 24 2.000 000 000 000 000 000 005 952 2.000 000 000 000 000 000 000 188 2.000 000 000 000 000 000 000 000 00000 11 26 28 30 2.000 000 000 000 000 000 0168 2.000 000 000 000 000 000 000 000 0236 2.000 000 000 000 000 000 000 000 00000 Ž 4.1. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 763 TAŞELI AND ZAFER the boundary parameter L and the truncation size N in calculating the exact ground-state energy, E0, 0 s 2, of the harmonic oscillator. It is seen that if we restrict ourselves to about 10 digit accuracy, it is sufficient to set L s 5. Increasing L from 5 to 7 and to 9, respectively, 20 and 30 significant figures are obtained. In our numerical tables, we report eigenvalues to 30 digits. Table I shows clearly that this prescribed accuracy is first achieved at L s 9, and if we take an L value beyond L s 9, for instance, L s 11, we certainly get the same result again at the cost of using a higher truncation size. Therefore, L s 9 is called the critical or optimum boundary value, denoted by L cr , for this case. Such a behavior of determining eigenvalues with respect to L is observed in all our calculations. In general, we continue changing L until the eigenvalues of the required accuracy, i.e., 30 digits, are obtained. The definition of L cr implies the statement that E Ž`. y E Ž L cr . - e , Ž 4.6. where e s 10y3 0 and EŽ L. and E Ž`. are the eigenvalues of the bounded and the corresponding unbounded problem, respectively. Also, the influence of the finite boundary on the spectrum, numerically speaking, is greater than e when L - L cr . Of course, L cr is not a unique value which has to be estimated very precisely. Our computational search shows that in the near vicinity of the reported L cr values the rate of convergence is more or less the same in finding the low-lying state energies. Furthermore, the algorithm employs a minimum number of the basis functions in this neighborhood of L cr . Actually, if L 4 L cr , then a considerable slowing down of convergence may occur. The existence of an optimum value of L, which should not be very small or very large, may also be deduced from the fact that the kinetic energy TABLE II Critical values L cr and the energy eigenvalues l n, 0 of the potential, V ( r ) = r 2 k , as a function of k. k l n, 0 n Lcr N 9.0 9.5 9.5 9.5 10.5 24 28 30 32 34 1 0 1 2 3 4 2.000 6.000 10.000 14.000 18.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00000 00000 0000 0000 0000 2 0 1 2 3 4 2.344 9.529 18.735 29.301 40.941 829 781 195 548 918 072 384 504 228 353 744 014 701 942 803 275 807 770 291 625 209 959 773 903 625 808 799 554 145 662 995 611 069 808 009 79643 30530 1439 4950 1641 5.0 5.0 5.0 5.0 5.25 28 30 30 32 34 3 0 1 2 3 4 2.609 11.946 25.463 42.067 61.261 388 863 626 859 386 463 508 993 920 349 253 851 869 619 562 714 368 977 309 942 006 705 140 008 201 877 043 819 621 185 033 604 711 746 703 41876 0993 2200 0328 1423 3.6 3.6 3.6 3.6 3.6 34 36 36 38 38 4 0 1 2 3 4 2.828 13.699 30.581 52.183 77.884 786 710 181 559 490 159 847 755 593 773 942 251 692 757 999 523 447 765 451 550 348 928 465 059 572 784 135 261 366 609 150 472 256 450 283 37593 2390 2851 9780 8675 2.9 2.9 2.9 2.9 2.9 42 42 42 44 44 10 0 1 2 3 4 3.651 19.019 45.936 83.598 131.346 024 015 257 817 976 848 732 303 125 425 669 785 451 768 067 465 642 846 624 960 833 006 037 847 776 849 588 295 870 224 211 600 055 170 366 68554 8668 3049 5885 561 1.72 1.72 1.72 1.72 1.72 84 84 84 84 84 764 VOL. 61, NO. 5 A FOURIER ]BESSEL EXPANSION term in the variational matrix Ž2.13. grows unboundedly as L ª 0, whereas the potential energy term becomes infinite as L ª `. On the other hand, the full spectrum of an eigenvalue problem cannot be calculated by estimating a fixed critical distance. Naturally, the larger L cr values are needed for the higher excited states. As a result of these remarks, we may conclude that L cr depends on the required accuracy e , the state number n, and the potential function V Ž r . in question. In Tables II and III, we report the first few state energies of the potentials in Ž4.5. for l s 0 and l s 1, respectively. It is clear that the number of basis functions N we used increases from 24 to 84 as the potentials vary from harmonic oscillator to the potential V Ž r . s r 20 . Owing to the contraction of the potentials as k increases, however, L cr decreases. The eigenvalues of the quartic, sextic and octic anharmonic oscillators are tabulated in Tables IV]VI for a very wide range of the coupling con- stants. It is worth mentioning that there is no accuracy loss in any regime of the eigenvalues. In these tables, the eigenvalues for v 2 k ) 1 are rerŽ kq1. placed by vy1 E to show how rapidly they 2k converge to the v 2 k ª ` limit energies given in Table II. The rate of convergence in each case is consistent with that of the potential in Table II having the same asymptotic behavior. The numerical data are presented only for l s 0 in order not to overfill the content of the article with tabular material anymore. Further results are available from the authors. Finally, the method is applied to an eigenvalue problem of a different nature, where the potential has two minima in Cartesian coordinates. We see from Table VII that the method has the capability of yielding accurate results in this case as well. In general, the recorded eigenvalues to 30 digits in our tables are in good agreement with the previously published results to the accuracy quoted w 5x Žand the references therein.. TABLE III Critical values L cr and the energy eigenvalues l n, 1 of the potential, V ( r ) = r 2 k , as a function of k. k l n, 1 n Lcr N 9 9.5 9.5 9.5 10.5 26 28 30 32 34 1 0 1 2 3 4 4.000 8.000 12.000 16.000 20.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00000 00000 0000 0000 0000 2 0 1 2 3 4 5.394 13.811 23.775 34.922 47.042 227 109 788 189 438 164 536 766 824 982 172 873 400 920 602 288 734 460 427 590 035 556 908 180 421 827 089 084 557 409 128 177 504 215 773 08911 2372 4638 2974 5228 5 5 5 5 5.25 28 30 30 32 34 3 0 1 2 3 4 6.298 18.042 33.226 51.197 71.579 495 624 111 907 036 901 963 031 527 686 483 215 283 921 497 604 149 994 898 045 243 284 491 817 242 475 883 360 904 774 867 606 615 695 490 95748 1618 7976 5520 7208 3.6 3.6 3.6 3.6 3.6 34 36 36 38 38 4 0 1 2 3 4 6.973 21.172 40.562 64.303 91.915 963 924 306 564 659 604 759 275 967 881 062 544 335 276 269 474 699 065 949 497 495 545 280 092 907 964 598 118 416 582 177 219 837 203 925 5380 3823 1528 5681 9112 2.9 2.9 2.9 2.9 2.9 42 42 42 44 44 10 0 1 2 3 4 9.234 30.496 62.906 105.705 158.326 548 392 669 424 821 141 239 978 592 543 850 950 234 282 865 486 681 303 686 973 506 357 678 348 806 709 948 956 235 795 132 495 781 155 382 62479 1962 7182 655 263 1.72 1.72 1.72 1.72 1.72 80 80 80 80 82 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 765 TAŞELI AND ZAFER TABLE IV Critical values L cr and the energy eigenvalues E n, 0 of the quartic oscillator, V ( r ) = r 2 + v4 r 4 , as a function of v4 . v4a n 10 y 3 0 1 2 3 4 2.001 6.013 10.037 14.073 18.120 995 936 726 268 467 522 098 447 901 854 094 189 540 848 849 708 653 990 599 535 533 073 997 025 519 684 559 168 546 253 913 642 029 920 608 20578 74371 2097 3647 5835 1 0 1 2 3 4 2.952 10.882 20.661 31.725 43.816 050 435 082 128 823 091 576 690 191 442 962 819 597 323 711 874 807 886 846 769 287 243 008 000 292 056 980 613 694 920 570 305 860 493 245 38705 2898 6236 6603 9907 5.25 10 3 0 1 2 3 4 2.351 9.543 18.754 29.326 40.971 338 744 903 237 122 918 980 714 058 304 312 405 202 380 391 985 963 645 066 642 396 422 896 510 340 323 344 830 244 873 609 031 091 951 918 83486 57957 2136 0992 4630 1.6 10 6 0 1 2 3 4 2.344 894 220 027 885 068 182 968 20759 9.529 921 064 696 036 065 423 201 49701 18.735 392 632 619 681 244 508 244 2998 29.301 795 163 271 981 703 005 355 0114 40.94 221 043 942 410 630 883 781 62603 0.5 a E n, 0 Lcr 10.5 Eigenvalues for v4 ) 1 are v4y 1/ 3 E n, 0 . TABLE V Critical values L cr and the energy eigenvalues E n, 0 of the sextic oscillator, V ( r ) = r 2 + v6 r 6 , as a function of v6 . v 6a n 10 y 4 0 1 2 3 4 2.000 6.007 10.032 14.086 18.178 598 751 542 013 227 762 220 763 194 767 132 149 227 042 416 326 997 701 651 675 882 804 804 079 616 320 295 824 974 115 348 328 865 348 325 64889 80437 7460 5427 6809 10 1 0 1 2 3 4 3.121 12.914 26.720 43.558 62.954 935 938 687 836 081 474 793 689 621 100 246 084 389 235 886 425 835 101 999 758 991 743 123 594 921 126 473 735 757 519 392 718 627 325 461 39363 5394 4174 0745 6064 3.6 10 4 0 1 2 3 4 2.614 11.956 25.476 42.082 61.278 732 628 265 827 364 045 506 711 572 418 811 631 477 804 969 295 557 599 005 761 321 144 711 058 486 263 562 336 067 805 037 373 570 242 218 39260 9480 5449 6942 6638 1.4 a E n, 0 Lcr Eigenvalues for v6 ) 1 are v6y 1/ 4 E n, 0 . 766 VOL. 61, NO. 5 A FOURIER ]BESSEL EXPANSION TABLE VI Critical values L cr and the energy eigenvalues E n, 0 of the octic oscillator, V ( r ) = r 2 + v8 r 8 , as a function of v8 . v 8a n 10 y 5 0 1 2 3 4 2.000 6.004 10.030 14.106 18.271 239 995 661 953 189 435 387 401 931 889 330 244 804 490 023 015 901 310 152 522 489 355 454 999 434 836 807 756 688 922 799 670 728 231 736 61699 65716 4019 7547 7644 9.2 1 0 1 2 3 4 3.287 14.491 31.551 53.294 79.113 880 330 234 182 049 426 259 380 462 969 306 511 201 089 649 474 367 413 064 292 147 660 588 595 429 366 816 563 699 073 316 113 682 742 078 46427 6330 1136 6777 1720 2.9 10 5 0 1 2 3 4 2.833 13.707 30.590 52.194 77.896 519 644 894 675 784 160 868 905 854 653 868 712 108 570 678 379 494 705 619 648 169 398 724 011 629 539 947 012 260 907 757 958 094 569 144 15041 8335 2824 8965 5488 0.9 a E n, 0 Lcr Eigenvalues for v8 ) 1 are v8y 1/ 5 E n, 0 . In this article, to the best of our knowledge, a Fourier]Bessel expansion for the wave function is utilized for the first time for solving eigenvalue problems of this kind. The accuracy of the method is quite impressive. The evaluation of the matrix elements given in Section 3 requires only the de- termination of the zeros of Bessel functions accurately. To this end, making use of Mathematica w 9x , we calculated the zeros to 40 digits. It is well known, from the variational principle, that the Rayleigh]Ritz method provides an upper bound for the eigenvalues. Therefore, better ap- TABLE VII Critical values L cr and the energy eigenvalues E n, 0 of the two-well potential, V ( r ) = yr 2 + d4 r 4 , as a function of d4 . E n, 0 + 1 / (4 d4 ) d4 n 10 y 2 0 1 2 3 4 1.398 4.164 6.863 9.491 12.040 819 445 695 359 996 606 401 271 674 051 958 438 722 405 530 560 967 825 070 290 193 973 702 730 407 588 159 783 025 545 327 747 019 119 701 78011 89411 62531 44685 1565 15 1 0 1 2 3 4 1.637 8.087 16.716 26.785 37.973 487 207 860 032 893 952 576 324 000 745 723 543 044 948 187 690 170 199 397 635 820 457 941 536 988 759 679 511 055 564 675 953 949 018 044 40693 48886 9881 3172 5983 5.25 10 2 0 1 2 3 4 10.745 43.934 86.538 135.475 189.408 379 440 410 768 304 344 817 698 778 514 538 669 064 152 324 852 132 907 347 643 199 038 492 645 004 155 133 909 925 961 496 141 114 981 139 0807 7197 7669 316 847 2.35 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY Lcr 767 TAŞELI AND ZAFER proximations are sure to be achieved for successive values of N. On the other hand, it is not surprising that the larger region has smaller eigenvalues for such a boundary value problem. Actually, Nunez w 10x showed theoretically that the eigenfunctions of an unbounded system can be approximated by means of the numerical solutions of the Dirichlet problem in the Hilbert space L2 Ž V . with sufficiently large V, where V is a bounded region. This makes our strategy plausible in obtaining the eigenvalues of unbounded oscillators by increasing the boundary parameter L. However, our studies on the estimation of error bounds and the generalization of the method to higherdimensional spaces are in progress and will be reported in the near future. 768 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. H. Taşeli, J. Comput. Phys. 101, 252 Ž1992.. H. Taşeli, Int. J. Quantum Chem. 46, 319 Ž1993.. H. Taşeli, Int. J. Quantum Chem. 60, 641 Ž1996.. H. Taşeli and R. Eid, Int. J. Quantum Chem. 59, 183 Ž1996.. H. Taşeli, Int. J. Quantum Chem. 57, 63 Ž1996.. F. M. Fernandez and E. A. Castro, Int. J. Quantum Chem. 19, 521 Ž1981.. I. N. Sneddon, Special Functions of Mathematical Physics and Chemistry ŽOliver and Boyd, Edinburgh, 1966., p. 133. G. N. Watson, A Treatise on the Theory of Bessel Functions ŽCambridge University Press, Cambridge, 1962., p. 59. S. Wolfram, Mathematica ŽAddison-Wesley, New York, 1991., p. 576. M. A. Nunez, Int. J. Quantum Chem. 50, 113 Ž1994.. VOL. 61, NO. 5