Serge Marguet
The Physics of
Nuclear Reactors
The Physics of Nuclear Reactors
Serge Marguet
The Physics of Nuclear
Reactors
Serge Marguet
EDF-R&D - PERICLES
Palaiseau, France
ISBN 978-3-319-59559-7
ISBN 978-3-319-59560-3
DOI 10.1007/978-3-319-59560-3
(eBook)
Library of Congress Control Number: 2017942959
© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.
Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
To my parents Josette and Daniel who
supported my studies.
To my wife Agnès who continues to support
me. . . !
To my children Hélène and Vincent, who
excite my immune system!
Foreword to the 2011 Edition
In the context of a worldwide economic crisis, what better indication could there be
than the publication of this textbook on reactor physics?
Renunciation of the policy of adding further capacity to electrical production
facilities in Europe, the immense energy requirements of countries such as China,
India, and Brazil, and the growing international awareness that energy is a rare and
expensive commodity are so many factors militating in favor of the proper use of
the means of electricity production.
Furthermore, the avowed official desire to combat climate change and reduce
energy costs means that renewable energy and nuclear production are priorities.
Nuclear energy is once again making vigorous strides forwards, as attested in
France in particular by the commissioning of the EPR in 2012, 80 years after
discovery of the neutron by James Chadwick in 1932. The brief history of civil
nuclear power shows that it is not possible to harness this energy in the long run
without flawless safety levels, in all places and at all times.
Experts distinguish three safety functions: confinement of radioactive products,
reliable removal of decay heat, and complete control over reactivity. To ensure that
these conditions are met, the branches of neutron physics, fluid mechanics, thermal
physics, materials physics, and chemistry have an essential role to play. Neutron
physics is the science that describes and explains the behavior of neutrons in matter
and the reactions they induce. In order to guarantee complete control of reactivity, a
solid knowledge of neutron physics is indispensable in order to be able to define the
proper measures to be taken, beginning with the reactor design stage and then
throughout decades of operation.
Achieving complete understanding of the complex physical phenomena that
occur in a nuclear installation and displayed to the operation engineers via monitors
and computers in the control rooms is of cardinal importance for the optimal
operation of power reactors (440 in service in 2009, a number that will doubtless
rise two- or threefold by 2030 or 2040), of experimental reactors for deepening our
level of understanding, and of laboratories and facilities for fuel cycle studies that
are set to increase worldwide.
vii
viii
Foreword to the 2011 Edition
This textbook addresses all aspects of neutron physics: experts, engineers, and
students will find between its covers a host of scientific references that will enable
them to acquire, maintain, and improve their skills.
It is my hope that it will be used by the large community of engineers working in
the service of peaceful use of nuclear energy, a lasting energy form, for the greater
good of mankind.
World Association of Nuclear Operators (WANO)
Paris, France
Laurent Stricker
Chairman of Wano
Foreword to the 2017 Edition
The supply of clean, affordable, and reliable energy is a global challenge. The
projected increase in populations, particularly in Africa and Asia, means that by
2035 global energy needs are predicted to increase by 50% over 2015 levels. The
increasing evidence of man-made climate change has given greater prominence for
low carbon technologies such as renewables, nuclear, and carbon capture and
storage which should be developed and deployed widely. The Paris Agreement
on climate change (2016) has shown governments’ resolve to reduce the world’s
greenhouse gas emissions by accelerating the deployment of such technologies.
Against this background, nuclear energy is a critically important part of the
global energy mix. Today, nuclear power accounts for over 10% of the world’s
electricity generation; over 440 reactors are operating around the world, delivering
clean electricity to the grid. In 2017, there are more reactors being built than at any
time during the previous 25 years. Sixty reactors are currently under construction in
fourteen countries, including more than one third of these in China and others in
countries which are new to nuclear, such as the United Arab Emirates.
However in 2011, the Tōhoku earthquake and tsunami led to the nuclear accident
at the Fukushima Daiichi plant which has, alongside previous nuclear accidents,
emphasized the importance of nuclear safety and three crucial safety functions:
confinement of radioactive products, reliable removal of decay heat, and complete
control over reactivity.
To ensure that these functions are delivered effectively, the branches of neutron
physics, fluid dynamics, reactor physics, materials science, mechanical engineering, and chemistry/corrosion each have an essential role to play. Each of these
technical fields is important in its own right as are the synergies between them.
However, peculiar to nuclear science and engineering is the understanding of
neutrons in materials and the reactions they induce. In order to ensure the control
of the reactivity in operating reactor cores, a full understanding of neutron physics
is required. Achieving a full understanding of the complex physical mechanisms
that occur in a nuclear power reactor ensures both good design and safe operations.
ix
x
Foreword to the 2017 Edition
This textbook addresses all aspects of neutron physics creating a body of
scientific knowledge and supporting references that will be invaluable to those
learning about and responsible for nuclear reactor systems.
I commend this textbook to students, engineers, experts, and reactor operators as
a means to learn and maintain an up-to-date knowledge of such an important field of
nuclear science.
National Nuclear Laboratory
London, UK
Andrew H. Sherry
Chief Scientist of NLL
Acknowledgements
This book would not have been possible without the friendly assistance of Paul
Reuss: his advice was precious and his proofreading extremely scrupulous. If
neutron physics is a kingdom, then Paul is undoubtedly one of its princes since
his technical expertise is equaled only by his modesty, two areas that I should
certainly work on personally! My first contact with Paul dates back to my very first
day at EDF in a sense, namely September 1, 1987. My director had left two things
for me on my empty desk: the output listing of the COCCINELLE code and the
renowned neutron physics treatise by Jean Bussac and Paul Reuss, the bilious green
1985 edition that everyone in the department referred to simply as “Reuss”, in spite
of Bussac’s co-authorship. On asking my colleagues about some physics question
or other for the third time, I was told “It’s in Reuss”, and I realized that I might have
to go through this thick textbook thoroughly. I do not feel that I wasted my time in
so doing! Later on, I was lucky enough to attend Paul’s lectures as part of the
Reactor Physics Master’s at Saclay. I always marveled at his crystal clear
explanations.
I also wish to thank my colleague and reactor physics expert, Michel Lam-Hime,
for giving up (an enormous amount of) his personal time to proofread this book. My
thoughts also go out to a few colleagues and close friends: Philippe Tétart, Patrick
Erhard, and David Couyras, who were the stoic guinea pigs on whom I tested my
craziest ideas, sometimes very late in the evening. Their judicious comments and
remarks resulted in numerous improvements. Finally, I would like to thank JeanMichel Delbecq as well, my ex-Head of Department and member of the editorial
committee at EDF, who believed in this project from the outset, Laurent Stricker,
who did me the honor of writing the foreword to the 2011 edition, and Professor
Andrew Sherry for the foreword to this edition.
At least, I would like to thank Electricité de France for the funding of the English
translation, especially Bertrand Bouriquet for his enthusiastic support to this project. It would be a shame to forget Ansar Calloo (EDF/R&D), whose translation is
far beyond my poor level in English and Patrick Saunders (Novatrad) for his very
xi
xii
Acknowledgements
professional proofreading. Finally, the translation of the French manuscript was
taken in good hands by Novatrad company.
Finally, SPI-global (Saravanan and team!) made an amazing job increasing the
global quality of this English version.
Introduction
Reactor physics is a young branch of science. It is widely held to have been born on
December 2, 1942, in Chicago, with the news that “the Italian navigator has just
landed in the New World”, a coded sentence informing all authorized persons that
the Italian, Enrico Fermi, had succeeded in his prodigious feat of diverging a
uranium and graphite pile. However, very soon after this incredible feat of which
the general public was largely unaware, this young science struck terror into the
world with the explosion of two US atomic bombs over the Japanese cities of
Hiroshima and Nagasaki, on August 6 and 9, 1945. The Land of the Rising Sun was
brought to its knees by nuclear fire. Humanity was led wincing into the atomic age,
filled with a mixture of fear and fascination. Since then, public interest has never
waned thanks to tireless efforts of popularization.
The atomic age ushered in by scientists held out hope of unlimited energy,
possibly free (according to the publications of the time), and to the end of war.
Subsequent events unfortunately showed this dream to be an unrealizable utopia.
The short supply on Earth of fissile material is already of great concern, and as for
warfare. . . clearly when one war stops, another breaks out elsewhere on the planet.
Reactor physics flourished in the 1950s and 1960s. The construction of large power
reactors in the 1970s and 1980s led to intensive development of this technology,
yielding sustainable technologies such as reactors running on natural uranium
cooled with carbon gas and moderated by graphite, and pressurized water reactors,
which form the backbone of the French reactor fleet. At the same time, the
underlying physics became more stable: nuclear data were increasingly abundant
and filled large databases, and the notation specific to the field of neutron physics
became established. The knowledge of physicists was sustained through large-scale
calculation codes, while generations of numerical physicists improved these codes
thanks to breakthroughs in ever more elaborate and complex numerical methods.
xiii
xiv
Introduction
Popularization of the atomic age reached its peak in the 1950s (here we see a special edition of the
French science magazine, “Science et Vie” [Science and Life] published in 1958, the Marguet
collection, courtesy Science et Vie)
In 1979, the accident at the Three Mile Island 2 reactor in the USA shook the
scientific community; the reactor core was totally destroyed, despite such an
accident being deemed impossible on account of all the precautionary measures
taken. As a result of the almost complete lack of release of radioactive matter into
the environment, awareness among the general public of the inherent dangers of the
accident did not peak, but it created massive unease among scientists. Murphy’s
Law had been confirmed once more. However, in 1986, the Chernobyl accident in
Ukraine, in which most of the core was expelled into the environment, contaminating significant areas and with far-reaching effects throughout Europe, created a
terrible shock.
Civil nuclear energy programs were now perceived in the public mind as a huge
threat to humanity, and hostility towards the nuclear technocrats gathered pace. In
France, the combined action of the media and of the ecological parties, coupled
with public defiance, led to decommissioning of the SuperPhénix fast-neutron
reactor. The nuclear age stooped from splendor to misery, as the question of
disposal of long-lasting nuclear waste materials scared the public, and scientists
toiled without success to find a viable alternative to deep burial.
By the end of the 1990s, as students showed disaffection with the so-called hard
sciences, the popularity of nuclear engineering had sunk to a new low, with the
Introduction
xv
Master’s in Reactor Physics almost being phased out in the mid-1990s owing to the
lack of students and the poor prospects for renewal of the reactor fleet. However, in
the 2000s, scientists showed beyond doubt that global warming was due to human
activities and to the release of greenhouse gases into the atmosphere. Indeed, the oil
crisis accompanying the wane of that particular fuel (total depletion within 40 years
was being touted in 2008!) heralded a revival of the fortunes of nuclear energy; the
latter does not produce greenhouse gases and it is assumed that the requisite natural
resources will last ten times longer than oil, and plutonium could well prove to be
the wildcard to replace uranium 235, which may run out before the advent of fusion.
After a period of dwindling in human resources and loss of expertise over the
years (in 2008, the French situation in terms of expertise in fast neutron reactors
which had to be set up from scratch after the retirement of the SuperPhénix
generation, is characteristic, and even perhaps a caricature of this state of affairs),
know-how regarding reactor physics lay buried in the extensive computational
codes. For this reason, it seemed to me timely to write this textbook amid the
resurgence of interest in nuclear engineering to ensure renewal of the international
reactor fleet, along with increasing energy demand.
This textbook is thus addressed to students in higher studies, engineering
students in nuclear energy and engineering, and engineers and research scientists
at large who wish to review the founding notions of their professions. It is the
culmination of 15 years of lectures given at the “Ecole Nationale Supérieure
d’Ingénieurs” in Bourges (France), where I was able to observe (with great pleasure) the renewed interest of students in this particular field. I wanted this textbook
to be both educational in terms of its content and convivial through its illustrations,
and I hope that it will provide answers for beginners and knowledgeable readers
alike. The textbook first sets out the minimum knowledge in nuclear physics
required for an understanding of more advanced concepts. The subject itself has
become a separate branch of science. It then examines neutron physics, which
describes the intrinsic behavior of neutrons in matter, and then reactor physics,
which is the art of making a pile critical in order to produce heat. The thermal
hydraulics of the coolant material and the thermal physics of the nuclear fuel that
are often associated with reactor physics will be explored in a separate textbook
entitled “Physique des accidents dans les réacteurs nucléaires” [Physics of accidents in nuclear reactors]; these very important subject areas are too vast to be
presented in the present volume. Indeed, as part of the generation that grew up with
water reactors and because of my experience in this area, I have focused chiefly on
Pressurized Water Reactors, which have flourished during my career at Électricité
De France. Throughout the various chapters, I have done my utmost to review the
history of this young science that is currently enjoying a revival.
Contents
Part I
Neutronics
1
Fundamentals of Nuclear Physics . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Chemical Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3
Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4
Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5
Avogadro’s Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6
Mass-Energy Equivalence . . . . . . . . . . . . . . . . . . . . . . . . .
1.7
Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8
Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9
Protons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10
The Electron Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.11
The Atomic Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.12
Nuclear Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.13
Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.13.1 Alpha Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.13.2 β Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.13.3 β+ Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . .
1.13.4 Electron Capture . . . . . . . . . . . . . . . . . . . . . . . . .
1.13.5 γ Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . .
1.13.6 Internal Conversion . . . . . . . . . . . . . . . . . . . . . . .
1.13.7 (β ,n) Decay or Neutron Decay . . . . . . . . . . . . . .
1.13.8 Spontaneous Fission . . . . . . . . . . . . . . . . . . . . . .
1.14
Radioactive Decay Branches . . . . . . . . . . . . . . . . . . . . . . .
1.15
Heavy Nucleus Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3
7
9
12
14
19
22
25
28
28
40
50
51
61
68
71
72
73
74
75
76
76
82
2
Interaction Between Neutrons and Matter . . . . . . . . . . . . . . . . .
2.1
Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1
Elastic Scattering on a Fixed Target . . . . . . . . . . .
2.1.2
Elastic Scattering on a Moving Target . . . . . . . . .
.
.
.
.
89
89
90
97
xvii
xviii
Contents
2.1.3
Moderator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.4
Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . .
Transmutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1
Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2
(n,γ) Neutron Capture or Radiative Capture . . . . .
2.2.3
(n,α) Capture . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4
Other Forms of Capture . . . . . . . . . . . . . . . . . . . .
2.2.5
High-Energy Reactions . . . . . . . . . . . . . . . . . . . .
2.2.6
Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . .
Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1
Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.2
Measurement of Cross Sections . . . . . . . . . . . . . .
2.5.3
Notion of Flux and Reaction Rate . . . . . . . . . . . .
2.5.4
Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1
Fission Energy . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.2
Spontaneous Fission . . . . . . . . . . . . . . . . . . . . . .
2.6.3
Neutrons Produced by Fission . . . . . . . . . . . . . . .
2.6.4
Prompt Fission Photons . . . . . . . . . . . . . . . . . . . .
2.6.5
Delayed Fission Neutrons . . . . . . . . . . . . . . . . . .
Fission Products Resulting from Fission . . . . . . . . . . . . . . .
2.7.1
Direct Yield of an Isotope . . . . . . . . . . . . . . . . . .
2.7.2
Total Chain Yield . . . . . . . . . . . . . . . . . . . . . . . .
2.7.3
Cumulative Yield of an Isotope . . . . . . . . . . . . . .
2.7.4
Slowing Down of Fission Products in Matter . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
99
100
103
104
105
106
106
107
107
110
110
111
111
113
114
116
128
131
133
134
142
143
147
149
150
151
151
Interaction of Electromagnetic Radiation and Charged Particles
with Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
Electromagnetic Radiation . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
X-radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
Interaction of Photons with Matter . . . . . . . . . . . . . . . . . . .
3.3.1
Attenuation of a Photon Beam . . . . . . . . . . . . . . .
3.3.2
Photon Transport . . . . . . . . . . . . . . . . . . . . . . . .
3.3.3
Rayleigh-Thomson Scattering . . . . . . . . . . . . . . .
3.3.4
Photoelectric Effect . . . . . . . . . . . . . . . . . . . . . . .
3.3.5
Compton Effect . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.6
Pair Production . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.7
Cumulative Effects . . . . . . . . . . . . . . . . . . . . . . .
3.3.8
Scattered Radiation and Build-Up Factors . . . . . .
3.3.9
Application of Photon Attenuation in Matter . . . .
3.3.10
Photoneutrons . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.11
Photofission . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4
Measuring Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
153
153
154
157
158
160
161
161
166
171
174
174
177
181
182
182
2.2
2.3
2.4
2.5
2.6
2.7
3
Contents
3.5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
184
186
187
189
189
190
190
193
198
204
205
205
206
207
Neutron Slowing-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1
Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2
Continuous-Energy Slowing-Down Theory . . . . . . . . . . . . . .
4.2.1
Elastic Collision with a Stationary Target . . . . . . . .
4.2.2
Collision Statistics . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3
Effect of the Motion of the Target Nucleus . . . . . . .
4.2.4
Transfer Probability as a Function of Angle . . . . . .
4.2.5
Isotropic Collision . . . . . . . . . . . . . . . . . . . . . . . .
4.3
Continuous Slowing-Down Theory . . . . . . . . . . . . . . . . . . . .
4.3.1
Slowing Down by Non-Absorbing Hydrogen . . . . .
4.3.2
Taking into Account Absorption by Hydrogen . . . .
4.3.3
Taking Account of a Spectral Source . . . . . . . . . . .
4.3.4
Slowing Down by Targets Heavier Than
Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.5
Influence of the Fast Fission Spectrum . . . . . . . . . .
4.3.6
Mixture of Moderators . . . . . . . . . . . . . . . . . . . . .
4.4
Slowing Down in an Absorbing Medium . . . . . . . . . . . . . . .
4.4.1
Slowly Varying Absorption: The Greuling-Goertzel
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2
Slowing Down in a Medium with a Resonant Cross
Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.3
Inelastic Slowing-Down . . . . . . . . . . . . . . . . . . . .
4.4.4
The Qn Slowing-Down Approximation . . . . . . . . . .
211
211
214
215
223
226
227
230
231
237
246
247
268
271
275
Resonant Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1
Cross Section Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1
Historical Background . . . . . . . . . . . . . . . . . . . . .
5.1.2
Intermediate Nucleus Theory . . . . . . . . . . . . . . . .
5.1.3
Principle of Reciprocity . . . . . . . . . . . . . . . . . . .
281
281
281
282
285
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
4
5
xix
Interaction of Electrons with Matter . . . . . . . . . . . . . . . . . .
3.5.1
Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2
Wilson Chamber . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.3
Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.4
Braking Radiation or Bremsstrahlung . . . . . . . . . .
3.5.5
Annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cherenkov-Mallet Effect . . . . . . . . . . . . . . . . . . . . . . . . . .
Charged Particles: Rutherford Diffusion . . . . . . . . . . . . . . .
Transfer of Energy to Matter . . . . . . . . . . . . . . . . . . . . . . .
Ion-Electron Pair Production by Ionization . . . . . . . . . . . . .
Variation in Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fission Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Path Length in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Biological Effects of Radiation . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
248
256
259
260
265
xx
Contents
5.2
Single-Level Breit-Wigner Formalism . . . . . . . . . . . . . . . . .
5.2.1
Total Cross Section . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2
Scattering Cross Section . . . . . . . . . . . . . . . . . . . .
5.2.3
Radiative Capture Cross Section . . . . . . . . . . . . . .
5.2.4
Fission Cross Section . . . . . . . . . . . . . . . . . . . . . .
5.2.5
Absorption Cross Section . . . . . . . . . . . . . . . . . . .
5.2.6
Negative Resonances . . . . . . . . . . . . . . . . . . . . . .
5.2.7
Distribution of Resonances . . . . . . . . . . . . . . . . . .
5.2.8
Resonant Absorption . . . . . . . . . . . . . . . . . . . . . . .
Self-Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slowing-Down Through Resonances . . . . . . . . . . . . . . . . . .
The Livolant-Jeanpierre Formalism . . . . . . . . . . . . . . . . . . .
5.5.1
Homogeneous Medium . . . . . . . . . . . . . . . . . . . . .
5.5.2
Fine Structure Equation . . . . . . . . . . . . . . . . . . . . .
5.5.3
Tabulating Effective Cross Sections . . . . . . . . . . . .
Modeling the Slowing-Down Operator Using the Resonant
Isotope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.1
Narrow Resonance Approximation . . . . . . . . . . . . .
5.6.2
Wide Resonance Approximation . . . . . . . . . . . . . .
5.6.3
Statistical Approach . . . . . . . . . . . . . . . . . . . . . . .
5.6.4
All Resonance Model (TR) . . . . . . . . . . . . . . . . . .
Heterogeneous Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.1
Two-Media Problem . . . . . . . . . . . . . . . . . . . . . . .
5.7.2
Accounting for Spatial Interaction . . . . . . . . . . . . .
5.7.3
Generalization to Several Self-Shielding Regions . . . .
Accounting for Energy Interactions: Self-Shielding of
Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Intermediate Resonance Model in Flux Calculations . . . . . . .
The Probability Table Method . . . . . . . . . . . . . . . . . . . . . . .
286
287
288
288
290
290
291
291
294
295
298
301
301
304
306
Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1
An Intuitive Analysis of the Doppler Effect . . . . . . . . . . . . .
6.2
Effective Interaction Cross Section with “Hot” Matter . . . . . .
6.2.1
Distribution of the Target Nuclei Velocities
in Matter: The Free Gas Model . . . . . . . . . . . . . . .
6.2.2
Definition of the Effective Cross Section . . . . . . . .
6.2.3
Cross Section Inversely Proportional to Velocity . . . .
6.2.4
Constant Cross Section . . . . . . . . . . . . . . . . . . . . .
6.3
Generalized Doppler Broadening: Bethe-Placzek Formula . . .
6.4
Doppler Broadening of a Breit-Wigner Cross Section . . . . . .
6.4.1
Overview of the Breit-Wigner Formalism . . . . . . . .
6.4.2
Voigt’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.3
Interference Function . . . . . . . . . . . . . . . . . . . . . .
6.5
Application to the Large Resonance of Uranium 238 . . . . . . .
333
333
334
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
6
308
308
309
310
311
313
313
317
320
322
323
326
335
336
337
337
341
345
345
347
353
354
Contents
6.6
Temperature Effect on Cross Sections . . . . . . . . . . . . . . . . .
6.6.1
First Voigt Function ψ . . . . . . . . . . . . . . . . . . . . .
6.6.2
Interference Function . . . . . . . . . . . . . . . . . . . . . .
6.6.3
Asymptotic Numeric Evaluation . . . . . . . . . . . . . .
6.6.4
Derivatives of the Voigt Functions with Respect
to Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.5
Some Mathematical Properties of Voigt Profiles . . .
Effective Resonance Integral . . . . . . . . . . . . . . . . . . . . . . . .
6.7.1
Homogeneous Medium . . . . . . . . . . . . . . . . . . . . .
6.7.2
Heterogeneous Medium . . . . . . . . . . . . . . . . . . . . .
6.7.3
Analytical Calculation of a Broadened Resonance:
The Campos-Martinez Model . . . . . . . . . . . . . . . .
Effective Doppler Temperature . . . . . . . . . . . . . . . . . . . . . .
6.8.1
Lattice Bonding Effects . . . . . . . . . . . . . . . . . . . . .
6.8.2
Heterogeneity Effects of the Temperature Field . . . .
356
357
358
359
Thermalization of Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1
Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2
Boltzmann Theory of Gases . . . . . . . . . . . . . . . . . . . . . . . . .
7.3
Application to Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4
Neutron Flux Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5
Neutron Thermalization Equation . . . . . . . . . . . . . . . . . . . . .
7.6
Wigner-Wilkins Model: Free Proton Gas . . . . . . . . . . . . . . .
7.7
Asymptotic Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8
Simplified Solution to Thermalization with Absorption . . . . .
7.9
Horowitz-Tretiakoff Model . . . . . . . . . . . . . . . . . . . . . . . . .
7.9.1
Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9.2
Case of Absorption Inversely Proportional
to Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9.3
Case of a Finite Reactor (with Leakage) . . . . . . . . .
7.9.4
Thermalization Equation for a Homogeneous
Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10
Heavy Gas Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.11
Cadilhac, Horowitz and Soulé Differential Model . . . . . . . . .
7.12
Application of the Cadilhac Model to Heterogeneous Media . . . .
7.13
Graphical Representation of Flux over the Energy Spectrum . . . .
7.14
True Moderators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.15
Heating and Cooling by Scattering . . . . . . . . . . . . . . . . . . . .
7.16
Thermalized Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.16.1 Calculation of Reaction Rate in a Pure Thermal
Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.16.2 Definition of the Westcott Coefficient g(T) . . . . . . .
7.17
Calculation of the Reaction Rate in a True Thermal Spectrum . . .
387
387
388
392
395
397
401
404
408
412
412
6.7
6.8
7
xxi
362
363
364
364
367
374
378
378
380
419
419
420
421
422
426
431
432
434
437
440
441
446
xxii
Contents
7.17.1
.
449
.
.
.
.
.
.
453
456
457
458
460
461
The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1
Setting Up the Boltzmann Equation . . . . . . . . . . . . . . . . . . .
8.1.1
Concept of Flux . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2
The Integro-Differential Transport Equation . . . . . . . . . . . . .
8.2.1
The Integro-Differential Transport Equation in
Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.2
The Integro-Differential Equation in Steady-State . . .
8.3
Integral Form of the Boltzmann Equation . . . . . . . . . . . . . . .
8.3.1
Peierls Operator . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.2
The Volume Integral Form . . . . . . . . . . . . . . . . . .
8.3.3
The First Collision Probability . . . . . . . . . . . . . . . .
8.3.4
1D Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.5
Escape Probabilities . . . . . . . . . . . . . . . . . . . . . . .
8.3.6
The Integral Equation in 2D . . . . . . . . . . . . . . . . .
8.3.7
Application to an Infinite Medium with a Fission
Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.8
Graphical Solution to the Dispersion Equation . . . .
8.4
Third Form of the Transport Equation: the SurfaceIntegral Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.1
Placzek’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.2
Flux Equation at the Interface . . . . . . . . . . . . . . . .
8.4.3
Application to the Milne Problem . . . . . . . . . . . . .
8.4.4
Second Complementarity Theorem . . . . . . . . . . . .
8.5
Concept of Characteristic Function . . . . . . . . . . . . . . . . . . . .
8.6
Fourier Transform of the Boltzmann Equation . . . . . . . . . . .
8.6.1
Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6.2
Resolution Using Green’s Function . . . . . . . . . . . .
8.7
The 1D Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . .
8.7.1
General Points . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.7.2
Lafore and Millot Method, Case Method . . . . . . . .
8.7.3
Perovich Method . . . . . . . . . . . . . . . . . . . . . . . . . .
8.8
Asymptotic Solution for Diffusion . . . . . . . . . . . . . . . . . . . .
8.8.1
Exponential Relaxation of the Flux, Far from
the Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
465
465
468
474
7.18
8
Westcott Formalism: Introduction of the
Coefficients r and s . . . . . . . . . . . . . . . . . . . . . . .
7.17.2 Extension of the Model to Other Nuclides:
The Linear Logarithmic Model . . . . . . . . . . . . . .
7.17.3 Progressive Junction at Epithermal Energy . . . . . .
7.17.4 Westcott Junction . . . . . . . . . . . . . . . . . . . . . . . .
7.17.5 Determination of Cut-Off Function . . . . . . . . . . .
7.17.6 Limits of the Westcott Formalism . . . . . . . . . . . .
Application of the Westcott Formalism . . . . . . . . . . . . . . . .
474
475
507
507
510
512
522
524
538
539
540
543
544
546
547
548
549
553
553
555
559
559
562
571
572
572
Contents
xxiii
8.8.2
8.9
9
Finding the Dispersion Equation from the
Asymptotic Flux . . . . . . . . . . . . . . . . . . . . . . . . .
8.8.3
Critical Absorption Limiting the Asymptotic
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.8.4
Definition of a Diffusion Coefficient from the
Transport Equation . . . . . . . . . . . . . . . . . . . . . . .
The 3D Transport Equations . . . . . . . . . . . . . . . . . . . . . . .
Computational Neutron Transport Methods . . . . . . . . . . . . . . . .
9.1
Discrete Ordinates Method Sn . . . . . . . . . . . . . . . . . . . . . .
9.2
Exact Sn Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3
Legendre Polynomial Method . . . . . . . . . . . . . . . . . . . . . .
9.3.1
Theory and Application to 1D Transport . . . . . . .
9.3.2
Multi-group 1D Transport and Diffusion
Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4
SPn Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5
Interfaces Between Different Media . . . . . . . . . . . . . . . . . .
9.6
Spherical Harmonics Method . . . . . . . . . . . . . . . . . . . . . . .
9.6.1
Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.2
P1 Approximation . . . . . . . . . . . . . . . . . . . . . . . .
9.7
Milne Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.8
DPn Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9
Semi-infinite Plane: Albedo Problem . . . . . . . . . . . . . . . . .
9.9.1
Fundamentals of Discrete Eigenfunctions . . . . . . .
9.9.2
Ganapol Method by Laplace Transform . . . . . . . .
9.10
Bn Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.11
Tn Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.12
Fn Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.13
Cn Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.14
The SKn Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.15
Method of Characteristics (MOC) . . . . . . . . . . . . . . . . . . . .
9.15.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.15.2 Heterogeneous Geometries . . . . . . . . . . . . . . . . .
9.15.3 Characteristic Direction Probabilities (CDP) . . . . .
9.16
Even–Odd Formulation of the Transport Equation . . . . . . . .
9.16.1 Even–Odd Flux Equation . . . . . . . . . . . . . . . . . .
9.16.2 Variational Nodal Method of the Even–Odd
Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.16.3 Ritz Method . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.17
Variational Method for Time-Dependent Problems . . . . . . .
9.18
Gauss-Seidel Method for Sources in Time-Dependent
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.19
Probabilistic Approach: The Monte Carlo Method . . . . . . . .
9.19.1 Fundamental Concepts of the Monte Carlo
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
580
.
582
.
.
584
589
.
.
.
.
.
593
593
601
604
604
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
619
623
628
630
630
638
640
643
646
646
652
657
667
670
670
675
677
677
679
684
686
687
.
.
.
691
694
697
.
.
699
700
.
700
xxiv
Contents
9.19.2
9.19.3
9.19.4
9.19.5
9.19.6
9.19.7
9.19.8
9.19.9
Application to Neutron Transport: A Simple
2D Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Statistical Error . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calculation of Physical Quantities . . . . . . . . . . . . .
Generalization, Biasing . . . . . . . . . . . . . . . . . . . . .
Resonance Escape Probability Factor Calculation . . . .
Midway Monte Carlo . . . . . . . . . . . . . . . . . . . . . .
Quasi-Deterministic Approximation
of the Importance Function . . . . . . . . . . . . . . . . . .
Example of a Monte Carlo Calculation . . . . . . . . . .
705
713
713
714
716
719
723
726
Contents for Volume 2
Part II
10
Reactor Physics
Diffusion Approximation in Neutron Physics . . . . . . . . . . . . . . . .
10.1
Fick’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1.1
Evaluation of the Neutron Diffusion Coefficient . . .
10.1.2
Discussion of the Hypotheses . . . . . . . . . . . . . . . .
10.1.3
The Diffusion Equation in a Force Field . . . . . . . . .
10.2
Boundary Conditions for a Medium Surrounded by a Vacuum
in Diffusion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.1
P1 Approximation . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.2
Rulko’s Variational Approach . . . . . . . . . . . . . . . .
10.3
Boundary Conditions Between Any Two Media . . . . . . . . . .
10.3.1
Notion of a Reflector Albedo . . . . . . . . . . . . . . . . .
10.4
Diffusion Equation in Energy . . . . . . . . . . . . . . . . . . . . . . . .
10.5
One-Group Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . .
10.6
“Thermal Diffusion” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6.1
“Thermal” Diffusion Equation . . . . . . . . . . . . . . . .
10.6.2
Interpretation of the Thermal Scattering Path . . . . .
10.6.3
Deriving the Four-Factor Formula . . . . . . . . . . . . .
10.7
Scattering of an Isotropic Source in a Non-Multiplying
Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.1
Point Source in an Infinite Scattering Medium . . . .
10.7.2
Anisotropic Point Source in Spherical Geometry . . .
10.7.3
Infinite Thin Rod Source in an Infinite Scattering
Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.4
Infinite Plane Source in an Infinite Scattering
Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.5
Infinite Plane Source in an Infinite Scattering Slab . . .
10.7.6
Uniform Source in an Infinite Scattering Slab . . . . .
10.7.7
Semi-infinite Slab Source . . . . . . . . . . . . . . . . . . .
731
731
731
736
741
743
744
745
749
750
751
753
755
755
757
759
759
760
763
769
771
773
775
776
xxv
xxvi
Contents for Volume 2
10.7.8
10.7.9
.
778
.
.
.
.
.
779
780
782
783
784
.
.
.
.
.
.
.
.
.
787
791
797
802
802
803
804
806
808
Nuclear Reactor Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1
Multiplication Factor of a Chain Reaction . . . . . . . . . . . . . . .
11.1.1
Deterministic Approach to Chain Reactions . . . . . .
11.1.2
Stochastic Approach to Chain Reaction . . . . . . . . .
11.2
“Four-factor” Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.1
Detailed Analysis of the Four-factor Formula . . . . .
11.2.2
Technological Moderation Ratio Effect
on the Four-factor Formula . . . . . . . . . . . . . . . . . .
11.3
Allowing for Leakages in a Finite Reactor . . . . . . . . . . . . . .
11.4
Two-group Multiplication Factor . . . . . . . . . . . . . . . . . . . . .
11.5
Multiplication Factor Through a Reaction Rate Balance . . . .
11.6
Reactivity Effects or Reactivity Difference . . . . . . . . . . . . . .
11.6.1
Comparison of the Effects on a UOX Fuel . . . . . . .
11.6.2
Reactivity Effect of Isotopic Change . . . . . . . . . . .
11.7
Calculation of Reactivity by Perturbation Theory Estimate . . .
11.8
Evolution of the Reactivity Along the Cycle . . . . . . . . . . . . .
815
815
815
816
821
822
827
828
829
835
840
841
842
845
847
Critical Homogeneous Reactor Theory . . . . . . . . . . . . . . . . . . . .
12.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2
The Notion of Geometrical and Material Buckling . . . . . . .
12.3
Criticality Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4
Notion of Critical Size: The Rod Model . . . . . . . . . . . . . . .
12.4.1
Analysis of Criticality . . . . . . . . . . . . . . . . . . . . .
12.4.2
Invariant Imbedding . . . . . . . . . . . . . . . . . . . . . .
12.5
Fundamental Mode for a Reactor with Simple Geometry . . .
12.5.1
Plane Slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5.2
Parallelepiped . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5.3
Infinite Cylinder . . . . . . . . . . . . . . . . . . . . . . . . .
849
849
854
855
856
856
860
864
864
868
870
10.8
10.9
10.10
10.11
10.12
11
12
Extension to the Infinite Homogeneous Medium . .
Expansion on the Eigenfunctions of the Laplacian
Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.10 Superposition of Flux Induced by Point Sources . .
10.7.11 Absorbing Slab in an Infinite Source Medium . . . .
10.7.12 Thin Absorbing Slabs, the Galanin Method . . . . .
10.7.13 Flux Transient . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement of the Scattering Path of a Moderator by
Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pulsed Neutron Method . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diffusion in a Homogeneous Slab . . . . . . . . . . . . . . . . . . .
Source Thermalization Transient in Diffusion Theory . . . . .
10.11.1 Infinite Medium . . . . . . . . . . . . . . . . . . . . . . . . .
10.11.2 Finite Medium . . . . . . . . . . . . . . . . . . . . . . . . . .
10.11.3 Expansion on Eigenfunctions . . . . . . . . . . . . . . . .
10.11.4 Case of a Pulsed Source . . . . . . . . . . . . . . . . . . .
Polykinetic Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
Contents for Volume 2
12.5.4
Finite Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5.5
Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5.6
Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5.7
Hemisphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5.8
Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5.9
Accounting for Singularities in 2D . . . . . . . . . . . . .
12.5.10 Anisotropic Point Source in a Multiplying Medium
12.5.11 Zero Flux Distance . . . . . . . . . . . . . . . . . . . . . . . .
12.5.12 Annular Reactor . . . . . . . . . . . . . . . . . . . . . . . . . .
Any Three-Dimensional Reactor . . . . . . . . . . . . . . . . . . . . .
Fermi Age Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.7.1
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.7.2
Overview of Slowing-Down . . . . . . . . . . . . . . . . .
12.7.3
Application to Neutron Diffusion . . . . . . . . . . . . . .
12.7.4
Relation Between Fermi Age and Time . . . . . . . . .
12.7.5
Link Between the Age Theory and Diffusion
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.7.6
Two-Energy Group Equation in Fermi Age Theory . . .
12.7.7
Age-Diffusion Theory . . . . . . . . . . . . . . . . . . . . . .
Multi-Group Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reactor Kinetics in One-Group Diffusion Theory
with Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Source Calculation: Extension to Multi-Group Conditions . . .
873
875
878
881
882
884
892
893
895
899
900
901
902
904
905
Neutron Reflectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.1
Some Mathematical Considerations on Reflectors . . . . . . . . .
13.2
Reflectors in Diffusion Theory . . . . . . . . . . . . . . . . . . . . . . .
13.2.1
Case of the Slab Reactor Surrounded by an Infinite
Reflector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.2
Reflected Homogeneous Slab Reactor . . . . . . . . . .
13.2.3
Case of an Infinite Cylindrical Reactor Surrounded
by an Infinite Reflector . . . . . . . . . . . . . . . . . . . . .
13.2.4
Case of an Infinite Cylindrical Reactor with a Finite
Reflector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3
Definition of Reflector Albedo . . . . . . . . . . . . . . . . . . . . . . .
13.3.1
Albedo Calculation for a Slab Reflector . . . . . . . . .
13.3.2
Albedo Calculation of a Cylindrical Reflector . . . . .
13.3.3
Albedo of a Spherical Reflector . . . . . . . . . . . . . . .
13.3.4
Albedo Calculation for the Upper Reflector of
a Cylindrical Reactor . . . . . . . . . . . . . . . . . . . . . .
13.3.5
Extrapolation and Null-flux Distances . . . . . . . . . .
13.3.6
Numerical Example . . . . . . . . . . . . . . . . . . . . . . .
13.4
Reflector Theory with Two Energy Groups . . . . . . . . . . . . . .
13.4.1
Slab Reflector . . . . . . . . . . . . . . . . . . . . . . . . . . . .
919
919
922
12.6
12.7
12.8
12.9
12.10
13
xxvii
907
909
912
912
914
916
922
926
928
934
939
941
942
942
943
944
947
947
948
xxviii
Contents for Volume 2
13.4.2
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15
14
Infinite Cylindrical Reactor with Reflector in
Two Groups Without Up-Scattering . . . . . . . . . . . .
13.4.3
Flux Calculation in the Fuel . . . . . . . . . . . . . . . . .
13.4.4
Flux in the Reflector . . . . . . . . . . . . . . . . . . . . . . .
Slab Reactor with Finite Reflector and Without Up-Scattering
The Ackroyd “Magic Shell” Albedo Model . . . . . . . . . . . . .
The Lefebvre-Lebigot Reflector Model . . . . . . . . . . . . . . . . .
13.7.1
“Equivalent” Reflectors Theory . . . . . . . . . . . . . . .
13.7.2
Calculation of Core Characteristics . . . . . . . . . . . .
13.7.3
Core/Reflector Operating Point . . . . . . . . . . . . . . .
13.7.4
Effect of Thermal-Hydraulic Feedbacks . . . . . . . . .
13.7.5
Calculation of Constants in the Mathematical
Reflector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Albedo Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Allowing for Up-Scattering . . . . . . . . . . . . . . . . . . . . . . . . .
Diffusion/Transport Correspondence . . . . . . . . . . . . . . . . . . .
Reuss-Nisan Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mondot Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Generalized BETA Method . . . . . . . . . . . . . . . . . . . . . . . . .
Absorption in the Reflector . . . . . . . . . . . . . . . . . . . . . . . . .
Double-Differential Albedo . . . . . . . . . . . . . . . . . . . . . . . . .
Heterogeneous Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.1
Why Is Heterogeneity Desirable? . . . . . . . . . . . . . . . . . . . . .
14.2
Gurevich-Pomeranchuk Heterogeneous Resonant
Absorption Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.1
Theoretical Background . . . . . . . . . . . . . . . . . . . .
14.2.2
Effective Resonance Integral . . . . . . . . . . . . . . . . .
14.3
Modeling the Pin Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.1
First-Collision Probability . . . . . . . . . . . . . . . . . . .
14.3.2
The Amouyal-Benoist-Horowitz (A-B-H) Theory . . .
14.3.3
Multi-cell Approach in Two Dimensions . . . . . . . .
14.3.4
Carlvik Rational Approximation . . . . . . . . . . . . . .
14.3.5
Heterogeneity of the Isotopic Composition . . . . . . .
14.3.6
Shadowing Effect on the Resonance Integral . . . . .
14.3.7
Heterogeneous Pi , j Calculations for Fast Reactors
with Perturbation Methods . . . . . . . . . . . . . . . . . . .
14.4
Transport-Diffusion Equivalence . . . . . . . . . . . . . . . . . . . . .
14.4.1
Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.4.2
Spatial Homogenization . . . . . . . . . . . . . . . . . . . .
14.4.3
Multi-group Approach . . . . . . . . . . . . . . . . . . . . . .
14.4.4
Kavenoky-Hébert SPH Equivalence . . . . . . . . . . . .
14.4.5
Flux Reconstruction Between Different
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
949
950
952
955
957
959
960
965
967
969
970
971
972
977
978
984
986
987
988
991
991
993
993
998
999
1000
1002
1014
1032
1038
1038
1042
1045
1045
1047
1048
1049
1051
Contents for Volume 2
14.5
15
14.4.6
Spatial Homogenization with Leakage . . . . . . . . .
14.4.7
Equivalence for Slab Reactors . . . . . . . . . . . . . . .
14.4.8
Equivalence by Conservation of Reaction Rates . .
Homogenization Theory in Diffusion . . . . . . . . . . . . . . . . .
14.5.1
Flux-Volume Homogenization . . . . . . . . . . . . . . .
14.5.2
Homogenization of Heterogeneous Neutron
Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5.3
Average Flux Homogenization at the Boundary,
Selengut Normalization . . . . . . . . . . . . . . . . . . . .
14.5.4
Pin Power Reconstruction . . . . . . . . . . . . . . . . . .
14.5.5
Discontinuity Factors . . . . . . . . . . . . . . . . . . . . .
Fuel Cycle Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.1
Schematic Notation for Fuel Cycle Physics . . . . . . . . . . . . .
15.2
Disintegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.3
Neutron-Induced Reactions . . . . . . . . . . . . . . . . . . . . . . . .
15.4
The Bateman Equations . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.4.1
Heavy Nuclides . . . . . . . . . . . . . . . . . . . . . . . . .
15.4.2
Fission Products . . . . . . . . . . . . . . . . . . . . . . . . .
15.4.3
Activation Products . . . . . . . . . . . . . . . . . . . . . . .
15.5
Vectorial Form of the Bateman Equation . . . . . . . . . . . . . .
15.6
Calculation of Relevant Quantities for the Fuel Cycle . . . . .
15.6.1
Mass Balance . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.6.2
Burn-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.6.3
Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.6.4
Calculation of Decay Heat . . . . . . . . . . . . . . . . . .
15.6.5
Photon γ and Neutron Dose Calculation . . . . . . . .
15.7
Isotopic Depletion Calculation . . . . . . . . . . . . . . . . . . . . . .
15.7.1
Chain-Decay Process: Recurrence Relations . . . . .
15.7.2
Case of Heavy Nuclides . . . . . . . . . . . . . . . . . . .
15.7.3
Case of Fission Products . . . . . . . . . . . . . . . . . . .
15.7.4
Reference Composition of Some PWR Fuel . . . . .
15.8
Decay Chain Reduction Principle . . . . . . . . . . . . . . . . . . . .
15.8.1
Heavy Nuclide Chain for Reactivity Calculations
of Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.8.2
Decay Chain Reduction . . . . . . . . . . . . . . . . . . . .
15.9
Activation: The Example of Control Rods . . . . . . . . . . . . .
15.10 Xenon Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.10.1 Production of Xenon . . . . . . . . . . . . . . . . . . . . . .
15.10.2 Xenon Saturation . . . . . . . . . . . . . . . . . . . . . . . .
15.10.3 Xenon Poisoning After Reactor Shutdown . . . . . .
15.11 Samarium Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.12 Gadolinium Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.13 The Industrial Fuel Cycle in France . . . . . . . . . . . . . . . . . .
xxix
.
.
.
.
.
1062
1067
1072
1076
1076
. 1077
. 1080
. 1082
. 1087
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1091
1091
1092
1092
1092
1093
1095
1096
1097
1097
1097
1098
1104
1104
1115
1117
1118
1121
1122
1123
1124
.
.
.
.
.
.
.
.
.
.
1126
1134
1137
1138
1138
1140
1142
1144
1145
1146
xxx
16
17
Contents for Volume 2
Neutronic Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1
Effect of Fuel Temperature on the Multiplication Factor . . . .
16.1.1
Fuel Doppler Effect . . . . . . . . . . . . . . . . . . . . . . .
16.1.2
Doppler Effect on Reactor Behavior . . . . . . . . . . .
16.2
Moderator Temperature Effect . . . . . . . . . . . . . . . . . . . . . . .
16.2.1
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.2.2
Leakage and Absorber Effects . . . . . . . . . . . . . . . .
16.2.3
Pressure Effect . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.2.4
Graphite Moderator . . . . . . . . . . . . . . . . . . . . . . . .
16.2.5
Neutron Spectrum Shift . . . . . . . . . . . . . . . . . . . . .
16.2.6
Void Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.3
Boron Effect in Pressurized Water Reactors . . . . . . . . . . . . .
16.3.1
Differential Efficiency of Boron . . . . . . . . . . . . . . .
16.3.2
Boron Effect on the Moderator Differential
Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.4
Power Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.5
Feedback Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.5.1
A Simple Model: Power Feedback . . . . . . . . . . . . .
16.5.2
An Advanced Feedback Model: The Lefebvre-Seban
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.6
Historical Isotopic Correction . . . . . . . . . . . . . . . . . . . . . . . .
Reactor Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.1
Prompt Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.1.1
Evolution of a Hypothetical Prompt Neutron
Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.1.2
Flux Calculation: Point Reactor Hypothesis . . . . . .
17.2
Delayed Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.2.1
Delayed Neutron Fraction . . . . . . . . . . . . . . . . . . .
17.3
Effect of Delayed Neutrons on Reactor Kinetics . . . . . . . . . .
17.4
Neutron Kinetics Equation . . . . . . . . . . . . . . . . . . . . . . . . . .
17.4.1
Precursor Concentration . . . . . . . . . . . . . . . . . . . .
17.4.2
Point-Reactor Kinetics . . . . . . . . . . . . . . . . . . . . .
17.4.3
Mobile Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.5
Nordheim Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.6
“Prompt Jump” Notion: Insertion of a Reactivity Step . . . . . .
17.7
Age Theory in the Kinetics Equation for Thermal Neutrons . . . .
17.8
Reduced Kinetics Equations . . . . . . . . . . . . . . . . . . . . . . . . .
17.9
Kinetics with an Imposed Neutron Source . . . . . . . . . . . . . . .
17.10 Delayed Neutron Spectrum . . . . . . . . . . . . . . . . . . . . . . . . .
17.11 First-Order Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.12 Numerical Reactimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.13 Practical Evaluation of Prompt Neutron Generation Time . . .
17.14 Main Causes of Reactivity Changes . . . . . . . . . . . . . . . . . . .
17.14.1 Increased Fissile Nuclei . . . . . . . . . . . . . . . . . . . . .
1153
1153
1153
1156
1158
1158
1160
1162
1163
1164
1165
1166
1166
1167
1168
1168
1171
1172
1183
1187
1187
1188
1193
1195
1199
1200
1203
1205
1206
1208
1208
1213
1215
1218
1220
1221
1229
1231
1234
1236
1236
Contents for Volume 2
17.15
17.16
17.17
17.18
17.19
17.20
17.21
17.22
17.23
17.24
17.25
17.26
17.27
18
xxxi
17.14.2 Increased Neutron Moderation . . . . . . . . . . . . . . . .
17.14.3 Decreased Neutron Capture . . . . . . . . . . . . . . . . . .
Reactivity Accident: Insertion of Very High Reactivity
Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.15.1 Analysis with One Group of Delayed Neutrons . . . .
17.15.2 Analysis of the Case of ρ >> β: The Reactivity
Accident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.15.3 Insertion of Low Reactivity 0 ρ << β . . . . . . . .
Anti-reactivity Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview of Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reactivity Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dropped Control Rod, Insertion of a Large Amount
of Anti-reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reactivity Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reactivity Transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Excursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.22.1 The Nordheim-Fuchs Model . . . . . . . . . . . . . . . . .
17.22.2 The Chernick Model . . . . . . . . . . . . . . . . . . . . . . .
17.22.3 The Bethe-Tait Model . . . . . . . . . . . . . . . . . . . . . .
Subcritical Approach: Reactor Start-Up . . . . . . . . . . . . . . . .
Reactor Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Space-Time Xenon Oscillations . . . . . . . . . . . . . . . . . . . . . .
Mechanical Kinetic Effects . . . . . . . . . . . . . . . . . . . . . . . . .
Neutron Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.27.1 Noise Concept, Spectral Analysis . . . . . . . . . . . . . .
17.27.2 Neutron Correlations . . . . . . . . . . . . . . . . . . . . . . .
17.27.3 The Feynman-α Method . . . . . . . . . . . . . . . . . . . .
17.27.4 Delayed-Neutron Effect . . . . . . . . . . . . . . . . . . . . .
17.27.5 Application to Measurement of Void Fraction
Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.27.6 Application to Detection of Vibrations . . . . . . . . . .
Computation Methods in Diffusion Theory . . . . . . . . . . . . . . . . .
18.1
Calculation Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.2
Multi-group Diffusion Equations . . . . . . . . . . . . . . . . . . . .
18.2.1
General Case . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.2.2
“1.5”-group Diffusion . . . . . . . . . . . . . . . . . . . . .
18.2.3
Adjoint Diffusion . . . . . . . . . . . . . . . . . . . . . . . .
18.2.4
Taking into Account the Neutron Over-Production
Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . .
18.3
The Power Iteration Method . . . . . . . . . . . . . . . . . . . . . . . .
18.3.1
General Considerations . . . . . . . . . . . . . . . . . . . .
18.3.2
Matrix Representation . . . . . . . . . . . . . . . . . . . . .
18.3.3
Chebyshev Acceleration . . . . . . . . . . . . . . . . . . .
18.4
Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . . .
1237
1237
1238
1238
1241
1243
1245
1246
1247
1249
1250
1254
1254
1255
1259
1262
1266
1267
1271
1276
1277
1278
1280
1287
1295
1296
1298
.
.
.
.
.
.
1301
1301
1304
1304
1305
1305
.
.
.
.
.
.
1307
1308
1308
1310
1312
1315
xxxii
Contents for Volume 2
18.5
18.6
18.7
18.8
18.9
18.4.1
Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.4.2
Boundary Conditions . . . . . . . . . . . . . . . . . . . . . .
18.4.3
Matrix Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nodal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.5.1
Nodal Method of Order 4 . . . . . . . . . . . . . . . . . . .
18.5.2 Quadratic Approximation of Transverse Leakage . . .
18.5.3
AFEN Method . . . . . . . . . . . . . . . . . . . . . . . . . . .
Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.7.1
Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.7.2
Accounting for Boundary Conditions . . . . . . . . . . .
Calculation of Control Rods . . . . . . . . . . . . . . . . . . . . . . . . .
18.8.1
Physical Effect of Rods . . . . . . . . . . . . . . . . . . . . .
18.8.2
Rod Worth: Perturbation Analysis . . . . . . . . . . . . .
18.8.3
Measuring Rod Efficiency in PWR . . . . . . . . . . . . .
18.8.4
Calculation of Rod Efficiency . . . . . . . . . . . . . . . .
18.8.5
Analytical Decomposition of the Rodded Domain . .
Instrumentation Considerations . . . . . . . . . . . . . . . . . . . . . .
18.9.1
Modeling with Trace Quantities . . . . . . . . . . . . . . .
18.9.2
Modeling of the EPR Instrumentation: The KTM
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1315
1320
1321
1322
1324
1332
1335
1336
1340
1340
1342
1343
1344
1345
1348
1349
1353
1357
1357
1357
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
Annex: Reactor Physics and Neutronic Codes at Electricité
De France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1369
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1403
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431