Skip to main content
This study takes advantage of fibroblast growth factor 2 (FGF2) knock-out mice to determine the contribution of FGF2 to the regeneration of oligodendrocytes in the adult CNS. The role of FGF2 during spontaneous remyelination was examined... more
This study takes advantage of fibroblast growth factor 2 (FGF2) knock-out mice to determine the contribution of FGF2 to the regeneration of oligodendrocytes in the adult CNS. The role of FGF2 during spontaneous remyelination was examined using two complementary mouse models of experimental demyelination. The murine hepatitis virus strain A59 (MHV-A59) model produces focal areas of spinal cord demyelination with inflammation. The cuprizone neurotoxicant model causes extensive corpus callosum demyelination without a lymphocytic cell response. In both models, FGF2 expression is upregulated in areas of demyelination in wild-type mice. Surprisingly, in both models, oligodendrocyte repopulation of demyelinated white matter was significantly increased in FGF2 -/- mice compared with wild-type mice and even surpassed the oligodendrocyte density of nonlesioned mice. This dramatic result indicated that the absence of FGF2 promoted oligodendrocyte regeneration, possibly by enhancing oligodendro...
Fibroblast growth factor 2 (FGF2) is an excellent candidate to regulate remyelination based on its proposed actions in oligodendrocyte lineage cell development in conjunction with its involvement in CNS regeneration. To assess the... more
Fibroblast growth factor 2 (FGF2) is an excellent candidate to regulate remyelination based on its proposed actions in oligodendrocyte lineage cell development in conjunction with its involvement in CNS regeneration. To assess the potential for FGF2 to play a role in remyelination, we examined the expression pattern of FGF2 and FGF receptors (FGFRs) in an experimental demyelinating disease with extensive remyelination. Adult mice were intracranially injected with murine hepatitis virus strain A-59 (MHV-A59) to induce focally demyelinated spinal cord lesions that spontaneously remyelinate, with corresponding recovery of motor function. Using kinetic RT-PCR analysis of spinal cord RNA, we found significantly increased levels of FGF2 mRNA transcripts, which peaked during the initial stage of remyelination. Analysis of tissue sections demonstrated that increased levels of FGF2 mRNA and protein were localized within demyelinated regions of white matter, including high FGF2 expression associated with astrocytes. The expression of corresponding FGF receptors was significantly increased in lesion areas during the initial stage of remyelination. In normal and lesioned white matter, oligodendrocyte lineage cells, including progenitors and mature cells, were found to express multiple FGFR types (FGFR1, FGFR2, and/or FGFR3). In addition, in lesion areas, astrocytes expressed FGFR1, FGFR2, and FGFR3. These findings indicate that, during remyelination, FGF2 may play a role in directly regulating oligodendrocyte lineage cell responses and may also act through paracrine or autocrine effects on astrocytes, which are known to synthesize other growth factors and immunoregulatory molecules that influence oligodendrocyte lineage cells.
Wolters Kluwer Health may email you for journal alerts and information, but is committed to maintaining your privacy and will not share your personal information without your express consent. For more information, please refer to our... more
Wolters Kluwer Health may email you for journal alerts and information, but is committed to maintaining your privacy and will not share your personal information without your express consent. For more information, please refer to our Privacy Policy. ... Skip Navigation Links Home > May ...
Childhood ataxia with diffuse central nervous system hypomyelination syndrome (CACH) is a recently described leukodystrophy of unknown etiology. To characterize the neuropathological features and gain insight as to the pathogenesis of... more
Childhood ataxia with diffuse central nervous system hypomyelination syndrome (CACH) is a recently described leukodystrophy of unknown etiology. To characterize the neuropathological features and gain insight as to the pathogenesis of this disorder, we studied cerebral tissue from six patients with the CACH syndrome. Evaluation of toluidine blue-stained, semithin sections of white matter from CACH patients disclosed unusual cells with "foamy" cytoplasm, small round nuclei and fine chromatin. Electron microscopy (EM) revealed cells in the white matter with abundant cytoplasm containing many mitochondria and loosely clustered, membranous structures, but lacking the lysosomal structures seen in macrophages. Further analysis of tissue sections with antibodies and special stains demonstrated that the abnormal cells with abundant cytoplasm labeled with oligodendroglial markers, but did not react with macrophage or astrocytic markers. Double immunolabeling with macrophage and oligodendroglial markers clearly distinguished macrophages from the "foamy" oligodendroglial cells (FODCs). Proteolipid protein (PLP) mRNA in situ hybridization demonstrated PLP mRNA transcripts in a high proportion of oligodendrocytes in CACH patients compared to control patients, and PLP mRNA transcript signal in cells, morphologically consistent with FODCs. Normal and pathological brain control tissues did not contain FODCs. These neuropathological findings will be useful pathological identifiers of CACH, and may provide clues to the pathogenesis of this disorder.