Skip to main content
Neurotrophins affect neuronal development and plasticity via spatially localized effects, yet little is known about the subcellular distribution of the Trk neurotrophin receptors and the impact of this distribution on neurotrophin action.... more
Neurotrophins affect neuronal development and plasticity via spatially localized effects, yet little is known about the subcellular distribution of the Trk neurotrophin receptors and the impact of this distribution on neurotrophin action. To address this, we examined the subcellular location of full-length TrkB and TrkC tyrosine kinase receptors and truncated TrkB isoforms after transfection of Madin–Darby canine kidney (MDCK) cells, dissociated primary hippocampal neurons, and cortical neurons within intact brain slices. Myc-, herpes virus glycoprotein (HVG)-, or FLAG-derived epitope–tagged receptor isoforms were created to allow their unambiguous identification and localization after transfection. All tagged receptors were appropriately synthesized, and full-length myc-TrkB and myc-TrkC mediated appropriate neurotrophin-signaling events. We found that full-length TrkB receptors were excluded from the apical
Type 2 diabetes (T2D) increases the risk of Alzheimer’s disease (AD). Even though these two diseases share common molecular pathways, the mechanisms remain elusive. To shed light into these mechanisms, mice with different AD- and/or... more
Type 2 diabetes (T2D) increases the risk of Alzheimer’s disease (AD). Even though these two diseases share common molecular pathways, the mechanisms remain elusive. To shed light into these mechanisms, mice with different AD- and/or tauopathy-linked genetic backgrounds were utilized; APPswe/PS1dE9 (A+Tw), Tau P301L (AwT+), and APPswe/PS1dE9/Tau P301L (A+T+). Feeding these mice with typical Western diet (TWD) led to obesity and diabetic phenotype as compared to respective mice with a standard diet. TWD also exacerbated memory and learning impairment in A+Tw and AwT+, but not in A+T+ mice. Furthermore, RNA sequencing of mouse hippocampal samples revealed altered responses to AD-related pathologies in A+Tw and A+T+ mice upon TWD, pointing specifically towards aberrant microglial functionality and PI3K-Akt signaling. Accordingly, fewer microglia alongside an increased number of dystrophic neurites around β-amyloid plaques, and impaired PI3K-Akt signaling, were discovered in the hippocam...
The most common neurodegenerative dementias include Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). The correct etiology-based diagnosis is pivotal for clinical management of these diseases as... more
The most common neurodegenerative dementias include Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). The correct etiology-based diagnosis is pivotal for clinical management of these diseases as well as for the suitable timing and choosing the accurate disease-modifying therapies when these become available. Enzyme-linked immunosorbent assay (ELISA)-based methods, detecting altered levels of cerebrospinal fluid (CSF) Tau, phosphorylated Tau, and Aβ-42 in AD, allowed the wide use of this set of biomarkers in clinical practice. These analyses demonstrate a high diagnostic accuracy in AD but suffer from a relatively restricted usefulness due to invasiveness and lack of prognostic value. In recent years, the development of novel advanced techniques has offered new state-of-the-art opportunities in biomarker discovery. These include single molecule array technology (SIMOA), a tool for non-invasive analysis of ultra-low levels of central nervous...
Frontotemporal lobar degeneration (FTLD) is a clinically, genetically, and neuropathologically heterogeneous group of neurodegenerative syndromes, leading to progressive cognitive dysfunction and frontal and temporal atrophy. C9orf72... more
Frontotemporal lobar degeneration (FTLD) is a clinically, genetically, and neuropathologically heterogeneous group of neurodegenerative syndromes, leading to progressive cognitive dysfunction and frontal and temporal atrophy. C9orf72 hexanucleotide repeat expansion (C9-HRE) is the most common genetic cause of FTLD, but pathogenic mechanisms underlying FTLD are not fully understood. Here, we compared cellular features and functional properties, especially related to protein degradation pathways and mitochondrial function, of FTLD patient–derived skin fibroblasts from C9-HRE carriers and non-carriers and healthy donors. Fibroblasts from C9-HRE carriers were found to produce RNA foci, but no dipeptide repeat proteins, and they showed unchanged levels of C9orf72 mRNA transcripts. The main protein degradation pathways, the ubiquitin–proteasome system and autophagy, did not show alterations between the fibroblasts from C9-HRE-carrying and non-carrying FTLD patients and compared to healthy...
Introduction: Behavioral variant frontotemporal dementia (bvFTD) is the most common clinical subtype of frontotemporal lobar degeneration. bvFTD is often characterized by changes in behavior and personality, frequently leading to... more
Introduction: Behavioral variant frontotemporal dementia (bvFTD) is the most common clinical subtype of frontotemporal lobar degeneration. bvFTD is often characterized by changes in behavior and personality, frequently leading to psychiatric misdiagnoses. On the other hand, substantial clinical overlap with other neurodegenerative diseases, such as Alzheimer disease (AD), further complicates the diagnostics. Objective: Our aim was to identify the main differences in early symptoms of bvFTD and AD in the prodromal stages of the diseases. In addition, patients with bvFTD were analyzed separately according to whether they carry the C9orf72repeat expansion or not. Methods: Patient records of bvFTD (n = 75) and AD (n = 83) patients were analyzed retrospectively for memory and neuropsychiatric symptoms, sleeping disorders, and somatic complaints before the setting of the accurate diagnosis. Results: A total of 84% of bvFTD patients (n = 63) and 98.8% of AD patients (n = 82) reported subjective memory disturbances in the prodromal phases of the disease. bvFTD patients presented significantly more often with sleeping disorders, headache, inexplicable collapses, transient loss of consciousness, somatization, delusions, and hallucinations, suicidality, changes in oral behaviors, and urinary problems. In addition, poor financial judgement was frequently detected in patients with prodromal bvFTD. Aberrant sensations in the nose and throat without any physical explanation, regarded as somatizations, emerged only in bvFTD patients with the C9orf72 repeat expansion. Conclusions: Subjective reporting of impaired episodic memory is a poor indicator in differentiating bvFTD from AD. Sleeping disturbances, delusions, hallucinations, and unexplained somatic complaints in a patient with cognitive disturbances should prompt the clinicians to consider bvFTD as a possible diagnostic option behind these symptoms. The spectrum of symptoms in the prodromal stages of bvFTD may be more diverse than the latest criteria suggest.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-β (Aβ) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular... more
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-β (Aβ) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of β-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aβ. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aβ in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a ...
Background Alzheimer’s disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms... more
Background Alzheimer’s disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms underlying these two diseases remain elusive. Methods Mice with different AD- and/or tauopathy-linked genetic backgrounds (APPswe/PS1dE9, Tau P301L and APPswe/PS1dE9/Tau P301L) were fed for 6 months with standard diet or typical Western diet (TWD). After behavioral and metabolic assessments of the mice, the effects of TWD on global gene expression as well as dystrophic neurite and microglia pathology were elucidated. Consequently, mechanistic aspects related to autophagy, cell survival, phagocytic uptake as well as Trem2/Dap12 signaling pathway, were assessed in microglia upon modulation of PI3K-Akt signaling. To evaluate whether the mouse model-derived results translate to human patients, the effects of diabetic phenotype on microglial pathology wer...
Hexanucleotide repeat expansion (HRE) in the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause underpinning frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). It leads to the... more
Hexanucleotide repeat expansion (HRE) in the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause underpinning frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). It leads to the accumulation of toxic RNA foci and various dipeptide repeat (DPR) proteins into cells. These C9orf72 HRE-specific hallmarks are abundant in neurons. So far, the role of microglia, the immune cells of the brain, in C9orf72 HRE-associated FTLD/ALS is unclear. In this study, we overexpressed C9orf72 HRE of a pathological length in the BV-2 microglial cell line and used biochemical methods and fluorescence imaging to investigate its effects on their phenotype, viability, and functionality. We found that BV-2 cells expressing the C9orf72 HRE presented strong expression of specific DPR proteins but no sense RNA foci. Transiently increased levels of cytoplasmic TAR DNA-binding protein 43 (TDP-43), slightly altered levels of p62 and lysosome-associated membrane protein (LAMP) 2A, and reduced levels of polyubiquitinylated proteins, but no signs of cell death were detected in HRE overexpressing cells. Overexpression of the C9orf72 HRE did not affect BV-2 cell phagocytic activity or response to an inflammatory stimulus, nor did it shift their RNA profile toward disease-associated microglia. These findings suggest that DPR proteins do not affect microglial cell viability or functionality in BV-2 cells. However, additional studies in other models are required to further elucidate the role of C9orf72 HRE in microglia.
Background Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer’s disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare... more
Background Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer’s disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. Methods To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. Results Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not...
Dysfunctional autophagy or ubiquitin-proteasome system (UPS) are suggested to underlie abnormal protein aggregation in neurodegenerative diseases. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS)-associated C9orf72 is... more
Dysfunctional autophagy or ubiquitin-proteasome system (UPS) are suggested to underlie abnormal protein aggregation in neurodegenerative diseases. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS)-associated C9orf72 is implicated in autophagy, but whether it activates or inhibits autophagy is partially controversial. Here, we utilized knockdown or overexpression of C9orf72 in mouse N2a neuroblastoma cells or cultured neurons to elucidate the potential role of C9orf72 proteins in autophagy and UPS. Induction of autophagy in C9orf72 knockdown N2a cells led to decreased LC3BI to LC3BII conversion, p62 degradation, and formation of LC3-containing autophagosomes, suggesting compromised autophagy. Proteasomal activity was slightly decreased. No changes in autophagy nor proteasomal activity in C9orf72-overexpressing N2a cells were observed. However, in these cells, autophagy induction by serum starvation or rapamycin led to significantly decreased C9orf72 levels. The de...
Due to the significant clinical overlap between frontotemporal lobar degeneration (FTLD) spectrum disorders and late-onset primary psychiatric disorders (PPD), diagnostic biomarkers reflecting the different underlying pathophysiologies... more
Due to the significant clinical overlap between frontotemporal lobar degeneration (FTLD) spectrum disorders and late-onset primary psychiatric disorders (PPD), diagnostic biomarkers reflecting the different underlying pathophysiologies are urgently needed. Thus far, elevated cerebrospinal fluid (CSF) levels of neurofilament light chain (NfL) have been reported in various neurological conditions. Furthermore, recent advancements in ultrasensitive analytical methods (e.g., single molecule array, Simoa) have enabled sensitive and less invasive NfL detection also from blood samples. In this study, we evaluated the potential of serum NfL (sNfL) as a diagnostic tool between FTLD and PPD. We analyzed sNfL levels with Simoa from 125 participants including patients from FTLD (n = 91) and PPD (n = 34) spectra. Our results show that sNfL levels are higher in the FTLD group compared to the PPD group as well as in separate clinical subtypes of FTLD compared to different psychiatric manifestation...
In this study, our aim was to evaluate potential peripheral inflammatory changes in frontotemporal lobar degeneration (FTLD) patients carrying or not the C9orf72 repeat expansion. To this end, levels of several inflammatory markers... more
In this study, our aim was to evaluate potential peripheral inflammatory changes in frontotemporal lobar degeneration (FTLD) patients carrying or not the C9orf72 repeat expansion. To this end, levels of several inflammatory markers (MCP-1, RANTES, IL-10, IL-17A, IL-12p, IFN-γ, IL-1β, IL-8, and hs-CRP) and blood cells counts in plasma and/or serum of FTLD patients (N = 98) with or without the C9orf72 repeat expansion were analyzed. In addition, we evaluated whether the analyzed peripheral inflammatory markers correlated with disease progression or distinct clinical phenotypes under the heterogenous FTLD spectrum. Elevated levels of pro-inflammatory RANTES or MCP-1 and decreased levels of anti-inflammatory IL-10 were found to associate with Parkinsonism and a more rapid disease progression, indicated by longitudinal measurements of either MMSE or ADCS-ADL decline. These findings were observed in the total cohort in general, whereas the C9orf72 repeat expansion carriers showed only sli...
Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel protein associated with language development, synaptic plasticity, tissue remodeling, and angiogenesis. We investigated the expression and spatial localization of SRPX2 in... more
Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel protein associated with language development, synaptic plasticity, tissue remodeling, and angiogenesis. We investigated the expression and spatial localization of SRPX2 in normal mouse, rat, monkey, and human brain using in situ hybridization and immunohistochemistry. Antibody specificity was determined using in vitro siRNA based silencing of SRPX2. Cell type-specific expression was verified by double-labeling with oxytocin or vasopressin. Western blot was used to detect SRPX2 protein in rat and human plasma and cerebrospinal fluid. Unexpectedly, SRPX2 mRNA expression levels were strikingly higher in the hypothalamus as compared to the cortex. All SRPX2 immunoreactive (ir) neurons were localized in the hypothalamic paraventricular, periventricular, and supraoptic nuclei in mouse, rat, monkey, and human brain. SRPX2 colocalized with vasopressin or oxytocin in paraventricular and supraoptic neurons. Hypothalamic SRPX2-ir po...
Idiopathic normal pressure hydrocephalus (iNPH) is a late onset, surgically treated progressive brain disease caused by impaired cerebrospinal fluid dynamics and subsequent ventriculomegaly. Comorbid Alzheimer's disease (AD) seems to... more
Idiopathic normal pressure hydrocephalus (iNPH) is a late onset, surgically treated progressive brain disease caused by impaired cerebrospinal fluid dynamics and subsequent ventriculomegaly. Comorbid Alzheimer's disease (AD) seems to be frequent in iNPH. We aim to evaluate the role of AD-related polymorphisms in iNPH. Overall 188 shunt-operated iNPH patients and 688 controls without diagnosed neurodegenerative disease were included into analysis. Twenty-three single-nucleotide polymorphisms (SNPs FRMD4A [rs7081208_A, rs2446581_A, rs17314229_T], CR1, BIN, CD2AP, CLU, MS4A6A, MS4A4E, PICALM, ABCA7, CD33, INPP5D, HLA_DRB5, EPHA1, PTK2B, CELF1, SORL1, FERMT2, SLC24A, DSG2, CASS4, and NME8) adjusted to APOE were analyzed between groups by using binary logistic regression analysis. Neuroradiological characteristics and AD-related changes in the right frontal cortical brain biopsies were available for further analysis. Logistic regression analysis adjusted to age, gender, and other SNP...
We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated... more
We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P…
Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease (AD). A central step in the generation of toxic amyloid-β (Aβ) peptides is the cleavage of amyloid precursor protein (APP) by β-site APP cleaving... more
Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease (AD). A central step in the generation of toxic amyloid-β (Aβ) peptides is the cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme (BACE1). Here, we have elucidated whether down-regulation of septin (SEPT) protein family members, which are implicated in synaptic plasticity and vesicular trafficking, affects APP processing and Aβ generation. SEPT8 was found to reduce soluble APPβ and Aβ levels in neuronal cells via a post-translational mechanism leading to the decreased levels of BACE1 protein. In human temporal cortex, we identified alterations in the expression of specific SEPT8 transcript variants in relation to AD-related neurofibrillary pathology. These changes associated with altered β-secretase activity. We also discovered that the overexpression of a specific AD-associated SEPT8 transcript variant increased the levels of BACE1 and Aβ in neuronal cells. These changes w...
One of the defining pathological features of Alzheimer's disease (AD) is the intraneuronal accumulation of Tau protein. Tau is also secreted from neurons in response to various stimuli and accumulates in the cerebrospinal fluid of AD... more
One of the defining pathological features of Alzheimer's disease (AD) is the intraneuronal accumulation of Tau protein. Tau is also secreted from neurons in response to various stimuli and accumulates in the cerebrospinal fluid of AD patients. Tau pathology may spread from cell to cell via a mechanism involving secretion and uptake. We developed an assay to follow cellular release and uptake of Tau dimers. RNAi knockdown of ten common late-onset AD risk genes in HEK293T cells expressing the Tau reporters suggested thatFRMD4Ais functionally linked to Tau secretion.FRMD4ARNAi reduced and overexpression increased Tau secretion. Activity of cytohesins, interactors of FRMD4A and guanine-nucleotide exchange factors of Arf6, was necessary for FRMD4A-induced Tau secretion. Increased Arf6 and cell polarity signaling via Par6 and aPKCζ stimulated Tau secretion. In mature cortical neurons, FRMD4A RNAi or inhibition of cytohesins strongly upregulated secretion of endogenous Tau. These resul...
We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of... more
We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis.
The 7th Kuopio Alzheimer symposium was held on 11–13 June, 2015, in Kuopio, Finland and attracted ˜250 attendees from 14 different countries around the world. The theme for the symposium in its seventh year was ‘From mechanisms to... more
The 7th Kuopio Alzheimer symposium was held on 11–13 June, 2015, in Kuopio, Finland and attracted ˜250 attendees from 14 different countries around the world. The theme for the symposium in its seventh year was ‘From mechanisms to prevention and intervention of Alzheimer's disease’. The 3-day international scientific symposium composed of seven oral sessions and a poster session. The program, spanning from molecular mechanisms to prevention, prediction, diagnosis and treatment of Alzheimer's disease, provided a forum for the attendees to share their research, network and to obtain a comprehensive overview of the current status and future directions of research into Alzheimer's disease.
Golgi-localized γ-ear-containing ADP-ribosylation factor-binding protein (GGA3) is a central regulator of trafficking and degradation of BACE1 (β-site AβPP-cleaving enzyme), the rate-limiting enzyme in the production of amyloid-β (Aβ) in... more
Golgi-localized γ-ear-containing ADP-ribosylation factor-binding protein (GGA3) is a central regulator of trafficking and degradation of BACE1 (β-site AβPP-cleaving enzyme), the rate-limiting enzyme in the production of amyloid-β (Aβ) in Alzheimer's disease (AD). Here, we assessed the potential role of GGA3 in AD pathogenesis using independent neuropathological, case-control, and family-based human sample cohorts. Increased BACE1 levels coincided with decreased GGA3 levels and with elevated phosphorylation status of eIF2α-Ser51 in the temporal cortex of AD patients as compared to age-matched controls. Severity of the disease did not alter mRNA or protein levels of GGA3 in the inferior temporal cortex of AD patients, while a positive correlation between GGA3 and the levels of total, but not phosphorylated, tau was observed. Genetically, we did not observe consistent evidence for association between AD risk and common GGA3 polymorphisms across a number of independent sample cohort...
The Alzheimer's disease (AD)-associated amyloid-β protein precursor (AβPP) is cleaved by α-, β-, and presenilin (PS)/γ-secretases through sequential regulated proteolysis. These proteolytic events control the generation of the... more
The Alzheimer's disease (AD)-associated amyloid-β protein precursor (AβPP) is cleaved by α-, β-, and presenilin (PS)/γ-secretases through sequential regulated proteolysis. These proteolytic events control the generation of the pathogenic amyloid-β (Aβ) peptide, which excessively accumulates in the brains of individuals afflicted by AD. A growing number of additional proteins cleaved by PS/γ-secretase continue to be discovered. Similarly to AβPP, most of these proteins are type-I transmembrane proteins involved in vital signaling functions regulating cell fate, adhesion, migration, neurite outgrowth, or synaptogenesis. All the identified proteins share common structural features, which are typical for their proteolysis. The consequences of the PS/γ-secretase-mediated cleavage on the function of many of these proteins are largely unknown. Here, we review the current literature on the proteolytic processing mediated by the versatile PS/γ-secretase complex. We begin by discussing th...
Age-related macular degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with Alzheimer's disease (AD), including stress stimuli such as oxidative stress and... more
Age-related macular degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with Alzheimer's disease (AD), including stress stimuli such as oxidative stress and inflammation. In both diseases, the detrimental intra- and extracellular deposits have many similarities. Aging, hypercholesterolaemia, hypertension, obesity, arteriosclerosis, and smoking are risk factors to develop AMD and AD. Cellular aging processes have similar organelle and signaling association in the retina and brain tissues. However, it seems that these diseases have a different genetic background. In this review, differences and similarities of AMD and AD are thoroughly discussed.
ABSTRACT Frontotemporal lobar degeneration (FTLD) is a neuropathologically and genetically heterogeneous group of neurodegenerative syndromes leading to dementia and primarily affecting frontal and temporal lobes. FTLD patients can... more
ABSTRACT Frontotemporal lobar degeneration (FTLD) is a neuropathologically and genetically heterogeneous group of neurodegenerative syndromes leading to dementia and primarily affecting frontal and temporal lobes. FTLD patients can develop non-cognitive symptoms in keeping with amyotrophic lateral sclerosis or parkinsonian syndromes. This wide clinical spectrum is explained to some extent with similar pathological and genetic backgrounds. FTLD shows a strong familial component, with up to 50 % of cases having a positive family history. So far, mutations in seven genes are known to cause autosomal dominant FTLD. Mutations in the genes microtubule-associated protein tau and progranulin, and the most recently identified hexanucleotide repeat expansion within C9ORF72 cover most of the genetically identified cases. Recent advances in molecular genetics and neuropathological characterization of FTLD have provided valuable insights into the pathogenic mechanisms of FTLD and opened possibilities to identify new biomarkers and therapeutic targets for the diagnostics and treatment of this disease.
Background: Recent evidence suggests decreased expression of synapticrelated genes and loss of synapses in major depressive disorder (MDD), and the decreased expression of pre-synaptic-related genes is accompanied by an increased... more
Background: Recent evidence suggests decreased expression of synapticrelated genes and loss of synapses in major depressive disorder (MDD), and the decreased expression of pre-synaptic-related genes is accompanied by an increased expression of the depression-associated transcription factor GATA1 transcriptional factor. Depression is also linked to cognitive decline, including in Alzheimer disease (AD), but the exact nature of the relationship is poorly understood. In this study, we explored the GATA1 expression in postmortem AD brains and examined the causal effect of GATA1 on amyloid processing in neuronal cells experimentally. Methods: Frontal cortex region (BM9) from 24 post mortem AD subjects were analyzed by qPCR for the depression-associated transcription factor GATA1 and synaptic genes. To assess a potential causal role of GATA1 on amyloid processing we examined b-amyloid level and downstream synaptic gene expression in neuronal cells expressing exogenous GATA1. Results:We found a significant elevation of GATA1 in the BM9 region of AD brains (CDR1⁄45) as compared to normal subjects (CDR1⁄40). Coincidentally, we also found decreased expression of some pre-synaptic genes (e.g. synapsin1, calmodulin2 and rab3a). Interestingly, GATA1 expresison was positive correlated with the b-amyloid plaque count. Exogenous expression of GATA1 in neuronal cells resulted in decreased expression of pre-synaptic genes as well as elevated b-amyloid level. Conclusions: Our study for the first time suggests that the depression-associated transcription factor GATA1 expression may influence synaptic plasticity and eventually cognitive function in AD brain through mechanisms involving AD-type neuropathology.
Alzheimer's disease (AD) is a common neurodegenerative disorder affecting an increasing number of... more
Alzheimer's disease (AD) is a common neurodegenerative disorder affecting an increasing number of people worldwide as the population ages. Currently, there are no drugs available that could prevent AD pathogenesis or slow down its progression. Increasing evidence links ubiquilin-1, an ubiquitin-like protein, into the pathogenic mechanisms of AD and other neurodegenerative diseases. Ubiquilin-1 has been shown to play a key role in the regulation of the levels, subcellular targeting, aggregation and degradation of various neurodegenerative disease-associated proteins. These include the amyloid precursor protein and presenilins that are intimately involved in the mechanisms of AD. Here, the properties and diverse functions of ubiquilin-1 protein in the context of the pathogenesis of AD and other neurodegenerative disorders are discussed. This review recapitulates the available knowledge on the involvement of ubiquilin-1 in the genetic and molecular mechanisms in AD. Furthermore, the association of ubiquilin-1 with specific proteins and mechanisms involved in the pathogenesis of neurodegenerative diseases is described and the known ubiquilin-1-interacting proteins summarized. The variety of ubiquilin-1-interacting proteins and its central role in the regulation of protein levels and degradation provides a number of novel candidates and approaches for future research and drug discovery.
Ubiquilin-1 is an Alzheimer's disease-associated protein, which is known to... more
Ubiquilin-1 is an Alzheimer's disease-associated protein, which is known to modulate amyloid precursor protein (APP) processing, amyloid-β (Aβ) secretion, and presenilin-1 (PS1) accumulation. Here, we aim to elucidate the molecular mechanisms by which full-length transcript variant 1 of ubiquilin-1 (TV1) affects APP processing and γ-secretase function in human neuroblastoma cells stably overexpressing APP (SH-SY5Y-APP751). We found that TV1 overexpression significantly increased the level of APP intracellular domain (AICD) generation. However, there was no increase in the levels of secreted Aβ40, Aβ42, or total Aβ, suggesting that ubiquilin-1 in particular enhances γ-secretase-mediated ε-site cleavage. This is supported by the finding that TV1 also significantly increased the level of intracellular domain generation of another γ-secretase substrate, leukocyte common antigen-related (LAR) phosphatase. However, in these cells, the increase in AICD levels was abolished, suggesting a preference of the γ-secretase for LAR over APP. TV2, another ubiquilin-1 variant that lacks the protein fragment encoded by exon 8, did not increase the level of AICD generation like TV1 did. The subcellular and plasma membrane localization of APP or γ-secretase complex components PS1 and nicastrin was not altered in TV1-overexpressing cells. Moreover, the effects of TV1 were not mediated by altered expression or APP binding of FE65, an adaptor protein thought to regulate AICD generation and stability. These data suggest that ubiquilin-1 modulates γ-secretase-mediated ε-site cleavage and thus may play a role in regulating γ-secretase cleavage of various substrates.
Idiopathic normal pressure hydrocephalus (iNPH) is a dementing condition in which Alzheimer's disease (AD)-related amyloid-β (Aβ) plaques are frequently observed in the neocortex. iNPH patients with prominent Aβ pathology show... more
Idiopathic normal pressure hydrocephalus (iNPH) is a dementing condition in which Alzheimer's disease (AD)-related amyloid-β (Aβ) plaques are frequently observed in the neocortex. iNPH patients with prominent Aβ pathology show AD-related alterations in amyloid-β protein precursor (AβPP) processing resulting from increased γ-secretase activity. Our goal was to assess potential alterations in the global gene expression profile in the brain of iNPH patients as compared to non-demented controls and to evaluate the levels of the identified targets in the cerebrospinal fluid (CSF) of iNPH patients. The genome-wide expression profile of ∼35,000 probes was assessed in the RNA samples obtained from 22 iNPH patients and eight non-demented control subjects using a microarray chip. The soluble levels of sAβPPα, sAβPPβ, and transthyretin (TTR) were measured from the CSF of 102 iNPH patients using ELISA. After correcting the results for multiple testing, significant differences in the express...
The agonist-induced activation of human δ-opioid receptor (δOR) has been shown to increase β- (BACE1) and γ-secretase activities leading to increased production of amyloid-β (Aβ) peptide. We have recently shown that phenylalanine to... more
The agonist-induced activation of human δ-opioid receptor (δOR) has been shown to increase β- (BACE1) and γ-secretase activities leading to increased production of amyloid-β (Aβ) peptide. We have recently shown that phenylalanine to cysteine substitution at amino acid 27 in δOR (δOR-Phe27Cys) increases amyloid-β protein precursor processing through altered endocytic trafficking. Also, a genetic meta-analysis of the δOR-Phe27Cys variation (rs1042114) in two independent Alzheimer's disease (AD) patient cohorts indicated that the heterozygosity of δOR-Phe27Cys increases the risk of AD. Here, we investigated α-, β-, and γ-secretase activities in human brain with respect to δOR-Phe27Cys variation in the temporal cortex of 71 subjects with varying degree of AD-related neurofibrillary pathology (Braak stages I-VI). As a result, a significant increase in β- (p = 0.03) and γ- (p = 0.01), but not α-secretase, activities was observed in late stage AD samples (Braak stages V-VI), which were heterozygous for δOR-Phe27Cys as compared to the δOR-Phe27 and δOR-Cys27 homozygotes. The augmented β-secretase activity was not associated with increased mRNA expression or protein levels of BACE1 in the late stage AD patients, who were heterozygous for the δOR-Phe27Cys variation. These findings suggest that δOR-Phe27Cys variation modulates β- and γ-secretase activity in the late stages of AD likely via post-translational mechanisms other than alterations in the mRNA or protein levels of BACE1, or, in the expression of γ-secretase complex components.

And 30 more