Skip to main content
Three-dimensional structure of basal body triplet revealed by electron cryo-tomography
Detector technology plays a pivotal role in high-resolution and high-throughput cryo-EM structure determination. Compared with the first-generation, single-electron counting direct detection camera (Gatan K2), the latest K3 camera is... more
Detector technology plays a pivotal role in high-resolution and high-throughput cryo-EM structure determination. Compared with the first-generation, single-electron counting direct detection camera (Gatan K2), the latest K3 camera is faster, larger, and now offers a correlated-double sampling mode (CDS). Importantly this results in a higher DQE and improved throughput compared to its predecessor. In this study, we focused on optimizing camera data collection parameters for daily use within a cryo-EM facility and explored the balance between throughput and resolution. In total, eight data sets of murine heavy-chain apoferritin were collected at different dose rates and magnifications, using 9-hole image shift data collection strategies. The performance of the camera was characterized by the quality of the resultant 3D reconstructions. Our results demonstrated that the Gatan K3 operating in CDS mode outperformed nonCDS mode in terms of reconstruction resolution in all tested condition...
Affinity grids have great potential to facilitate rapid preparation of even quite impure samples in single-particle cryo-electron microscopy (EM). Yet despite the promising advances of affinity grids over the past decades, no single... more
Affinity grids have great potential to facilitate rapid preparation of even quite impure samples in single-particle cryo-electron microscopy (EM). Yet despite the promising advances of affinity grids over the past decades, no single strategy has demonstrated general utility. Here we chemically functionalize cryo-EM grids coated with mostly one or two layers of graphene oxide to facilitate affinity capture. The protein of interest is tagged using a system that rapidly forms a highly specific covalent bond to its cognate catcher linked to the grid via a polyethylene glycol (PEG) spacer. Importantly, the spacer keeps particles away from both the air–water interface and the graphene oxide surface, protecting them from potential denaturation and rendering them sufficiently flexible to avoid preferential sample orientation concerns. Furthermore, the PEG spacer successfully reduces nonspecific binding, enabling high-resolution reconstructions from a much cruder lysate sample.
Over-expression and aggregation of alpha-synuclein (ASyn) are linked to the onset and pathology of Parkinsons disease and related synucleinopathies. Elevated levels of the stress induced chaperone, Hsp70, protects against ASyn misfolding... more
Over-expression and aggregation of alpha-synuclein (ASyn) are linked to the onset and pathology of Parkinsons disease and related synucleinopathies. Elevated levels of the stress induced chaperone, Hsp70, protects against ASyn misfolding and ASyn-driven neurodegeneration in cell and animal models, yet there is minimal mechanistic understanding of this important protective pathway. It is generally assumed that Hsp70 binds to ASyn using its canonical and promiscuous substrate-binding cleft to limit aggregation. Here we report that this activity is due to a novel and unexpected mode of Hsp70 action, involving neither ATP nor the typical substrate-binding cleft. We use novel ASyn oligomerization assays to show that Hsp70 directly blocks ASyn oligomerization, an early event in ASyn misfolding. Using truncations, mutations and inhibitors, we confirmed that Hsp70 interacts with ASyn via an as yet unidentified, non-canonical interaction site in the C-terminal domain. Finally, a biological r...
Cryo-EM samples prepared using the traditional methods often suffer from too few particles, poor particle distribution, or strongly biased orientation, or damage from the air-water interface. Here we report that functionalization of... more
Cryo-EM samples prepared using the traditional methods often suffer from too few particles, poor particle distribution, or strongly biased orientation, or damage from the air-water interface. Here we report that functionalization of graphene oxide (GO) coated grids with amino groups concentrates samples on the grid with improved distribution and orientation. By introducing a PEG spacer, particles are kept away from both the GO surface and the air-water interface, protecting them from potential denaturation.
Despite their great potential to facilitate rapid preparation of quite impure samples, affinity grids have not yet been widely employed in single particle cryo-EM. Here, we chemically functionalize graphene oxide coated grids and use a... more
Despite their great potential to facilitate rapid preparation of quite impure samples, affinity grids have not yet been widely employed in single particle cryo-EM. Here, we chemically functionalize graphene oxide coated grids and use a highly specific covalent affinity tag system. Importantly, our polyethylene glycol spacer keeps particles away from the air-water interface and graphene oxide surface, protecting them from denaturation or aggregation and permits high-resolution reconstructions of small particles.
Graphene oxide (GO) sheets have been used successfully as a supporting substrate film in several recent cryogenic electron-microscopy (cryo-EM) studies of challenging biological macromolecules. However, difficulties in preparing... more
Graphene oxide (GO) sheets have been used successfully as a supporting substrate film in several recent cryogenic electron-microscopy (cryo-EM) studies of challenging biological macromolecules. However, difficulties in preparing GO-covered holey carbon EM grids have limited their widespread use. Here, we report a simple and robust method for covering holey carbon EM grids with GO sheets and demonstrate that these grids can be used for high-resolution single particle cryo-EM. GO substrates adhere macromolecules, allowing cryo-EM grid preparation with lower specimen concentrations and provide partial protection from the air-water interface. Additionally, the signal of the GO lattice beneath the frozen-hydrated specimen can be discerned in many motion-corrected micrographs, providing a high-resolution fiducial for evaluating beam-induced motion correction.
The Hsp90 molecular chaperone and its Cdc37 cochaperone help stabilize and activate more than half of the human kinome. However, both the mechanism by which these chaperones assist their "client" kinases and the reason why some... more
The Hsp90 molecular chaperone and its Cdc37 cochaperone help stabilize and activate more than half of the human kinome. However, both the mechanism by which these chaperones assist their "client" kinases and the reason why some kinases are addicted to Hsp90 while closely related family members are independent are unknown. Our structural understanding of these interactions is lacking, as no full-length structures of human Hsp90, Cdc37, or either of these proteins with a kinase have been elucidated. Here we report a 3.9 angstrom cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex. Surprisingly, the two lobes of Cdk4 are completely separated with the β4-β5 sheet unfolded. Cdc37 mimics part of the kinase N lobe, stabilizing an open kinase conformation by wedging itself between the two lobes. Finally, Hsp90 clamps around the unfolded kinase β5 strand and interacts with exposed N- and C-lobe interfaces, protecting the kinase in a trapped unfolded state. On ...
Specific interactions of chromatin with the nuclear envelope (NE) in early embryos of Drosophila melanogaster have been mapped and analyzed. Using fluorescence in situ hybridization, the three-dimensional positions of 42 DNA probes,... more
Specific interactions of chromatin with the nuclear envelope (NE) in early embryos of Drosophila melanogaster have been mapped and analyzed. Using fluorescence in situ hybridization, the three-dimensional positions of 42 DNA probes, primarily to chromosome 2L, have been mapped in nuclei of intact Drosophila embryos, revealing five euchromatic and two heterochromatic regions associated with the NE. These results predict that there are approximately 15 NE contacts per chromosome arm, which delimit large chromatin loops of approximately 1-2 Mb. These NE association sites do not strictly correlate with scaffold-attachment regions, heterochromatin, or binding sites of known chromatin proteins. Pairs of neighboring probes surrounding one NE association site were used to delimit the NE association site more precisely, suggesting that peripheral localization of a large stretch of chromatin is likely to result from NE association at a single discrete site. These NE interactions are not estab...
Bacterial cytoskeletal proteins participate in a variety of processes, including cell division and DNA segregation. Polymerization of one plasmid-encoded, actin-like protein, ParM, segregates DNA by pushing two plasmids in opposite... more
Bacterial cytoskeletal proteins participate in a variety of processes, including cell division and DNA segregation. Polymerization of one plasmid-encoded, actin-like protein, ParM, segregates DNA by pushing two plasmids in opposite directions and forms the current paradigm for understanding active plasmid segregation. An essential feature of ParM assembly is its dynamically instability, the stochastic switching between growth and disassembly. It is unclear whether dynamic instability is an essential feature of all actin-like protein-based segregation mechanisms or whether bacterial filaments can segregate plasmids by different mechanisms. We expressed and purified AlfA, a plasmid-segregating actin-like protein from Bacillus subtilis , and found that it forms filaments with a unique structure and biochemistry; AlfA nucleates rapidly, polymerizes in the presence of ATP or GTP, and forms highly twisted, ribbon-like, helical filaments with a left-handed pitch and protomer nucleotide bin...
Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal β-strand previously shown to cross between protomers in the closed... more
Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal β-strand previously shown to cross between protomers in the closed state. In this study, we address the regulatory function of this extension or ‘strap’ and demonstrate its responsibility for an unusual temperature dependence in ATPase rates. This dependence is a consequence of a thermally sensitive kinetic barrier between the apo ‘open’ and ATP-bound ‘closed’ conformations. The strap stabilizes the closed state through trans-protomer interactions. Displacement of cis-protomer contacts from the apo state is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting its role as a thermal and kinetic regulator, adapting Hsp90s to th...
We have studied the in vitro reconstitution of sperm nuclei and small DNA templates to mitotic chromatin in Xenopus laevis egg extracts by three-dimensional (3D) electron microscopy (EM) tomography. Using specifically developed software,... more
We have studied the in vitro reconstitution of sperm nuclei and small DNA templates to mitotic chromatin in Xenopus laevis egg extracts by three-dimensional (3D) electron microscopy (EM) tomography. Using specifically developed software, the reconstituted chromatin was interpreted in terms of nucleosomal patterns and the overall chromatin connectivity. The condensed chromatin formed from small DNA templates was characterized by aligned arrays of packed nucleosomal clusters having a typical 10-nm spacing between nucleosomes within the same cluster and a 30-nm spacing between nucleosomes in different clusters. A similar short-range nucleosomal clustering was also observed in condensed chromosomes; however, the clusters were smaller, and they were organized in 30- to 40-nm large domains. An analysis of the overall chromatin connectivity in condensed chromosomes showed that the 30–40-nm domains are themselves organized into a regularly spaced and interconnected 3D chromatin network that...
Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples:... more
Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of redconverted EGFP using riboflavin is comparable to othe...
Maintaining a healthy proteome is fundamental for organism survival1,2. Integral to this are Hsp90 and Hsp70 molecular chaperones that together facilitate the folding, remodeling and maturation of Hsp90’s many “client” proteins3–7. The... more
Maintaining a healthy proteome is fundamental for organism survival1,2. Integral to this are Hsp90 and Hsp70 molecular chaperones that together facilitate the folding, remodeling and maturation of Hsp90’s many “client” proteins3–7. The glucocorticoid receptor (GR) is a model client strictly dependent upon Hsp90/Hsp70 for activity8–13. Chaperoning GR involves a cycle of inactivation by Hsp70, formation of an inactive GR:Hsp90:Hsp70:Hop “loading” complex, conversion to an active GR:Hsp90:p23 “maturation” complex, and subsequent GR release14. Unfortunately, a molecular understanding of this intricate chaperone cycle is lacking for any client. Here, we report the cryo-EM structure of the GR loading complex, in which Hsp70 loads GR onto Hsp90, revealing the molecular basis of direct Hsp90/Hsp70 coordination. The structure reveals two Hsp70s—one delivering GR and the other scaffolding Hop. Unexpectedly, the Hop cochaperone interacts with all components of the complex including GR, poising...
SUMMARYA bacteriophage-encoded tubulin homologue, PhuZ, harnesses dynamic instability to position genomes of ՓKZ-like bacteriophage at the midline of their Pseudomonas hosts, facilitating phage infectivity. While much has been learned... more
SUMMARYA bacteriophage-encoded tubulin homologue, PhuZ, harnesses dynamic instability to position genomes of ՓKZ-like bacteriophage at the midline of their Pseudomonas hosts, facilitating phage infectivity. While much has been learned about molecular origins of microtubule dynamics, how GTP binding and hydrolysis control dynamics in the divergent 3-stranded PhuZ filaments is not understood. Here we present cryo-EM reconstructions of the PhuZ filamentin a pre-hydrolysis (3.5Å) and three post-hydrolysis states (4.2 Å, 7.3 Å and 8.1 Å resolutions), likely representing distinct depolymerization stages. Core polymerization-induced structural changes reveal similarities to αβ-tubulin, suggesting broad conservation within the tubulin family. By contrast, GTP hydrolysis is sensed quite differently and is communicated by the divergent PhuZ C-terminus to the lateral interface, leading to PhuZ polymer destabilization. This provides a contrasting molecular description of how nucleotide state ca...
The microtubule cytoskeleton is essential in mediating a number of critical cellular processes, affecting cell shape, transport, organelle organization, and chromosomal segregation during mitosis. Microtubule network dynamics are... more
The microtubule cytoskeleton is essential in mediating a number of critical cellular processes, affecting cell shape, transport, organelle organization, and chromosomal segregation during mitosis. Microtubule network dynamics are controlled by many factors including the efficiency and localization of the nucleation machinery. Microtubule nucleation is dependent on the universally conserved γ-tubulin small complex (γTuSC), a 300 kDa heterotetramer composed of two copies of γ-tubulin and one each of accessory proteins GCP2 and GCP3. In yeast, nucleation is mediated by a heptameric ring of γTuSC, which presents 13 γ-tubulins to form a template for microtubule nucleation.We have obtained single-particle structures of the γTuSC as a monomer and dimer at resolutions of 3.6-4.6Å, allowing us to build an atomic model for this important complex. By comparison with a crystal structure of isolated γ-tubulin, it is clear that γ-tubulin is activated upon assembly into the γTuSC, in a manner anal...
Microtubules are dynamic polymers that play fundamental roles in all eukaryotes. Despite their importance, how new microtubules form is poorly understood. Textbooks have focused on variations of a nucleation-elongation mechanism in which... more
Microtubules are dynamic polymers that play fundamental roles in all eukaryotes. Despite their importance, how new microtubules form is poorly understood. Textbooks have focused on variations of a nucleation-elongation mechanism in which monomers rapidly equilibrate with an unstable oligomer (nucleus) that limits the rate of polymer formation; once formed, the polymer then elongates efficiently from this nucleus by monomer addition. Such models faithfully describe actin assembly, but they fail to account for how more complex polymers like hollow microtubules assemble. Here we articulate a new model for microtubule formation that has three key features: i) microtubules initiate via rectangular, sheet-like structures which grow faster the larger they become; ii) the dominant pathway proceeds via accretion, stepwise addition of longitudinal or lateral layers; iii) a ‘straightening penalty’ to account for the energetic cost of tubulin’s curved-to-straight conformational transition. This...
The Hsp90 protein family are ATP-dependent molecular chaperones that maintain protein homeostasis and regulate many essential cellular processes. Higher eukaryotic cells have organelle-specific Hsp90 paralogs that are adapted to each... more
The Hsp90 protein family are ATP-dependent molecular chaperones that maintain protein homeostasis and regulate many essential cellular processes. Higher eukaryotic cells have organelle-specific Hsp90 paralogs that are adapted to each unique sub-cellular environment. The mitochondrial Hsp90, TRAP1, supports the folding and activity of electron transport components and is increasingly being appreciated as a critical player in mitochondrial signaling. It is well known that calcium plays an important regulatory role in mitochondria and can even accumulate to much higher concentrations than in the cytoplasm. Surprisingly, we find that calcium can replace the requirement for magnesium to support TRAP1 ATPase activity. Using anomalous x-ray diffraction, we reveal a novel calcium-binding site within the TRAP1 nucleotide-binding pocket located near the ATP γ-phosphate and completely distinct from the magnesium site adjacent to the α- and β-phosphates. In the presence of magnesium, ATP hydrol...
The microtubule (MT) cytoskeleton plays important roles in many cellular processes. In vivo, MT nucleation is controlled by the γ-tubulin ring complex (γTuRC), a 2.1 MDa complex composed of γ-tubulin small complex (γTuSC) subunits. The... more
The microtubule (MT) cytoskeleton plays important roles in many cellular processes. In vivo, MT nucleation is controlled by the γ-tubulin ring complex (γTuRC), a 2.1 MDa complex composed of γ-tubulin small complex (γTuSC) subunits. The mechanisms underlying the assembly of γTuRC are largely unknown. In yeast the conserved protein Spc110p both stimulates the assembly of the γTuRC and anchors the γTuRC to the spindle pole body (SPB). Using a quantitative in vitro FRET assay, we show that γTuRC assembly is critically dependent on the oligomerization state of Spc110p, with higher-order oligomers dramatically enhancing the stability of assembled γTuRCs. Our in vitro findings were confirmed with a novel in vivo γTuSC recruitment assay. We conclude that precise spatial control over MT nucleation is achieved by coupling localization and higher-order oligomerization of the receptor for γTuRC.
Newly developed direct electron detection cameras have a high image output frame rate that enables recording dose fractionated image stacks of frozen hydrated biological samples by electron cryomicroscopy (cryoEM). Such novel image... more
Newly developed direct electron detection cameras have a high image output frame rate that enables recording dose fractionated image stacks of frozen hydrated biological samples by electron cryomicroscopy (cryoEM). Such novel image acquisition schemes provide opportunities to analyze cryoEM data in ways that were previously impossible. The file size of a dose fractionated image stack is 20-60 times larger than that of a single image. Thus, efficient data acquisition and on-the-fly analysis of a large number of dose-fractionated image stacks become a serious challenge to any cryoEM data acquisition system. We have developed a computer-assisted system, named UCSFImage4, for semi-automated cryo-EM image acquisition that implements an asynchronous data acquisition scheme. This facilitates efficient acquisition, on-the-fly motion correction, and CTF analysis of dose fractionated image stacks with a total time of ∼60s/exposure. Here we report the technical details and configuration of thi...
Hsp90 is a ubiquitous molecular chaperone that mediates the folding and maturation of hundreds of “client” proteins. Although Hsp90s generally function as homodimers, recent discoveries suggested that the mitochondrion specific Hsp90... more
Hsp90 is a ubiquitous molecular chaperone that mediates the folding and maturation of hundreds of “client” proteins. Although Hsp90s generally function as homodimers, recent discoveries suggested that the mitochondrion specific Hsp90 (TRAP1) also forms functionally relevant tetramers. The structural mechanism of tetramer formation remains elusive. Here we used a combination of solution, biochemical and cryo-electron microscopy (cryo-EM) approaches to confirm that, independent of nucleotide state, a subpopulation of TRAP1 exists as tetramers. Unexpectedly, cryo-EM reveals multiple tetramer conformations having TRAP1 dimers arranged in orthogonal, parallel, or antiparallel configurations. The cryo-EM structure of one of the orthogonal tetrameric states was determined at 3.5 Å resolution. Each of the two TRAP1 dimers is in a symmetric AMP·PNP-bound closed state with the tetramer being stabilized through three distinct dimer-dimer interaction sites. In unique ways, each of the three TRA...
TRAP1 is a mitochondrion specific Hsp90, a ubiquitous chaperone family that mediates the folding and maturation of hundreds of “client” proteins. Through the interaction with client proteins, TRAP1 regulates mitochondrial protein... more
TRAP1 is a mitochondrion specific Hsp90, a ubiquitous chaperone family that mediates the folding and maturation of hundreds of “client” proteins. Through the interaction with client proteins, TRAP1 regulates mitochondrial protein homeostasis, oxidative phosphorylation/glycolysis balance, and plays a critical role in mitochondrial dynamics and disease. However, the molecular mechanism of client protein recognition and remodeling by TRAP1 remains elusive. Here we established the succinate dehydrogenase B subunit (SdhB) from mitochondrial complex II as a client protein for TRAP1 amenable to detailed biochemical and structural investigation. SdhB accelerates the rate of TRAP1 dimer closure and ATP hydrolysis by 5-fold. Cryo-EM structures of the TRAP1:SdhB complex show TRAP1 stabilizes SdhB folding intermediates by trapping an SdhB segment in the TRAP1 lumen. Unexpectedly, client protein binding induces an asymmetric to symmetric transition in the TRAP1 closed state. Our results highligh...
Hsp90, an essential eukaryotic chaperone, depends upon its intrinsic ATPase activity for function. Crystal structures of the bacterial Hsp90 homolog, HtpG, and the yeast Hsp90 reveal large domain rearrangements between the nucleotide-free... more
Hsp90, an essential eukaryotic chaperone, depends upon its intrinsic ATPase activity for function. Crystal structures of the bacterial Hsp90 homolog, HtpG, and the yeast Hsp90 reveal large domain rearrangements between the nucleotide-free and the nucleotide-bound forms. Using small-angle xray scattering and newly developed molecular modeling methods, we describe the solution structure of HtpG and demonstrate how it differs from known Hsp90 conformations. In addition to this novel HtpG conformation, we demonstrate that under physiologically-relevant conditions, multiple conformations co-exist in equilibrium. In solution, nucleotide-free HtpG adopts a more extended conformation than observed in the crystal, and upon the addition of AMPPNP, HtpG is in equilibrium between this open state and a closed state that is in good agreement with the yeast AMPPNP crystal structure. These studies provide a unique view of Hsp90 conformational dynamics and provide a new model for the role of nucleot...
Hsp90 is a ubiquitous molecular chaperone that facilitates the folding and maturation of hundreds of cellular “client” proteins. The ATP-driven client maturation process is regulated by a large number of co-chaperones. Among them, Aha1 is... more
Hsp90 is a ubiquitous molecular chaperone that facilitates the folding and maturation of hundreds of cellular “client” proteins. The ATP-driven client maturation process is regulated by a large number of co-chaperones. Among them, Aha1 is the most potent activator of Hsp90 ATPase activity and thus dramatically affects Hsp90’s client proteins. To understand the Aha1 activation mechanism, we determined full-length Hsp90:Aha1 structures in six different states by cryo-electron microscopy, including nucleotide-free semi-closed, nucleotide-bound pre-hydrolysis, and semi-hydrolyzed states. Our structures demonstrate that the two Aha1 domains can each interact with Hsp90 in two different modes, uncovering a complex multistep activation mechanism. The results show that Aha1 accelerates the chemical step of ATP hydrolysis like a conventional enzyme, but most unusually, catalyzes the rate-limiting large-scale conformational changes of Hsp90 fundamentally required for ATP hydrolysis. Our work ...
Hsp90 is a conserved and essential molecular chaperone responsible for the folding and activation of hundreds of ‘client’ proteins1,2. The glucocorticoid receptor (GR) is a model client that constantly depends on Hsp90 for activity3.... more
Hsp90 is a conserved and essential molecular chaperone responsible for the folding and activation of hundreds of ‘client’ proteins1,2. The glucocorticoid receptor (GR) is a model client that constantly depends on Hsp90 for activity3. Previously, we revealed GR ligand binding is inhibited by Hsp70 and restored by Hsp90, aided by the cochaperone p234. However, a molecular understanding of the chaperone-induced transformations that occur between the inactive Hsp70:Hsp90 ‘client-loading complex’ and an activated Hsp90:p23 ‘client-maturation complex’ is lacking for GR, or for any client. Here, we present a 2.56Å cryo-EM structure of the GR-maturation complex (GR:Hsp90:p23), revealing that the GR ligand binding domain is, surprisingly, restored to a folded, ligand-bound conformation, while simultaneously threaded through the Hsp90 lumen. Also, unexpectedly, p23 directly stabilizes native GR using a previously uncharacterized C-terminal helix, resulting in enhanced ligand-binding. This is ...
The first event of Drosophila gastrulation is the formation of the ventral furrow. This process, which leads to the invagination of the mesoderm, is a classical example of epithelial folding. To understand better the cellular changes and... more
The first event of Drosophila gastrulation is the formation of the ventral furrow. This process, which leads to the invagination of the mesoderm, is a classical example of epithelial folding. To understand better the cellular changes and dynamics of furrow formation, we examined living Drosophila embryos using three-dimensional time-lapse microscopy. By injecting fluorescent markers that visualize cell outlines and nuclei, we monitored changes in cell shapes and nuclear positions. We find that the ventral furrow invaginates in two phases. During the first ‘preparatory’ phase, many prospective furrow cells in apparently random positions gradually begin to change shape, but the curvature of the epithelium hardly changes. In the second phase, when a critical number of cells have begun to change shape, the furrow suddenly invaginates. Our results suggest that furrow formation does not result from an ordered wave of cell shape changes, contrary to a model for epithelial invagination in w...
Interactions between Hsp90, its co-chaperone Cdc37 and kinases have been biochemically studied for over three decades and have been shown to be functionally important in organisms from yeast to humans. However, formation of a stable... more
Interactions between Hsp90, its co-chaperone Cdc37 and kinases have been biochemically studied for over three decades and have been shown to be functionally important in organisms from yeast to humans. However, formation of a stable complex for structural studies has been elusive. In this protocol we describe expression and purification of Hsp90-Cdc37-Cdk4 kinase protein complex from Saccharomyces cerevisiae utilizing the viral 2A sequences to titrate the three proteins at similar levels.
ABSTRACTMicrotubule (MT) nucleation is regulated by the γ-tubulin ring complex (γTuRC), conserved from yeast to humans. In Saccharomyces cerevisiae, γTuRC is composed of seven identical γ-tubulin small complex (γTuSC) sub-assemblies which... more
ABSTRACTMicrotubule (MT) nucleation is regulated by the γ-tubulin ring complex (γTuRC), conserved from yeast to humans. In Saccharomyces cerevisiae, γTuRC is composed of seven identical γ-tubulin small complex (γTuSC) sub-assemblies which associate helically to template microtubule growth. γTuRC assembly provides a key point of regulation for the MT cytoskeleton. Here we combine cross-linking mass spectrometry (XL-MS), X-ray crystallography and cryo-EM structures of both monomeric and dimeric γTuSCs, and open and closed helical γTuRC assemblies in complex with Spc110p to elucidate the mechanisms of γTuRC assembly. γTuRC assembly is substantially aided by the evolutionarily conserved CM1 motif in Spc110p spanning a pair of adjacent γTuSCs. By providing the highest resolution and most complete views of any γTuSC assembly, our structures allow phosphorylation sites to be mapped, surprisingly suggesting that they are mostly inhibitory. A comparison of our structures with the CM1 binding...
Analysis of the three-dimensional organization of chromosomes within the nucleus has revealed a number of characteristic structural features. Yet imaging of living nuclei indicate that chromosomes undergo considerable random motion.... more
Analysis of the three-dimensional organization of chromosomes within the nucleus has revealed a number of characteristic structural features. Yet imaging of living nuclei indicate that chromosomes undergo considerable random motion. Maintenance of nuclear organization in the face of such motion is thought to involve the attachment of chromosomes to the nuclear envelope or matrix. Yet while such attachments have been proposed to play a variety of functional roles as well as maintain nuclear organization, direct evidence for the existence of these mechanical interactions in vivo has been lacking. One way to demonstrate such attachment directly would be to estimate the motion of chromosomes and attempt thereby to demonstrate the presence of fixed points, which would indicate attachment of chromatin to some fixed superstructure.We have previously presented a motion estimation algorithm that is designed for tracking the motion of nonrigid and featureless objects such as chromosomes. This...
ABSTRACTAn outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic... more
ABSTRACTAn outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 i...
Greenan et al. use electron cryotomography on intact motile cilia to elucidate how basal bodies template the formation of motile axonemes.
Centrioles are cylindrical assemblies comprised of 9 singlet, doublet, or triplet microtubules, essential for the formation of motile and sensory cilia. While the structure of the cilium is being defined at increasing resolution,... more
Centrioles are cylindrical assemblies comprised of 9 singlet, doublet, or triplet microtubules, essential for the formation of motile and sensory cilia. While the structure of the cilium is being defined at increasing resolution, centriolar structure remains poorly understood. Here, we used electron cryo-tomography to determine the structure of mammalian (triplet) and Drosophila (doublet) centrioles. Mammalian centrioles have two distinct domains: a 200 nm proximal core region connected by A-C linkers, and a distal domain where the C-tubule is incomplete and a pair of novel linkages stabilize the assembly producing a geometry more closely resembling the ciliary axoneme. Drosophila centrioles resemble the mammalian core, but with their doublet microtubules linked through the A tubules. The commonality of core-region length, and the abrupt transition in mammalian centrioles, suggests a conserved length-setting mechanism. The unexpected linker diversity suggests how unique centriolar a...
Centriole is an essential structure with multiple functions in cellular processes. Centriole biogenesis and homeostasis is tightly regulated. Using electron cryo-tomography (cryoET) we present the structure of procentrioles from... more
Centriole is an essential structure with multiple functions in cellular processes. Centriole biogenesis and homeostasis is tightly regulated. Using electron cryo-tomography (cryoET) we present the structure of procentrioles from Chlamydomonas reinhardtii. We identified a set of non-tubulin components attached to the triplet microtubule (MT), many are at the junctions of tubules likely to reinforce the triplet. We describe structure of the A-C linker that bridges neighboring triplets. The structure infers that POC1 is likely an integral component of A-C linker. Its conserved WD40 β-propeller domain provides attachment sites for other A-C linker components. The twist of A-C linker results in an iris diaphragm-like motion of the triplets in the longitudinal direction of procentriole. Finally, we identified two assembly intermediates at the growing ends of procentriole allowing us to propose a model for the procentriole assembly. Our results provide a comprehensive structural framework ...

And 323 more