Skip to main content
A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the disease have been described. The frequency of these mutations has been investigated in a large sample of 51 Italian and Spanish cystinuric... more
A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the disease have been described. The frequency of these mutations has been investigated in a large sample of 51 Italian and Spanish cystinuric patients. In addition, to identify new mutated alleles, genomic DNA has been analyzed by an accurate and sensitive method able to detect nucleotide changes. Because of the lack of information available on the genomic structure of rBAT gene, the study was carried out using the sequence data so far obtained by us. More than 70% of the entire coding sequence and 8 intron-exon boundaries have been analyzed. Four new mutations and seven intragenic polymorphisms have been detected. All mutations so far identified in rBAT belong only to cystinuria type I alleles, accounting for approximately 44% of all type I cystinuric chromosomes. Mutation M467T is the most common mutated allele in the Italian and Spanish populations. After analysis of 70% of the rBAT coding ...
Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in a time- and concentration-dependent fashion by prior treatment of membranes with the acylating reagent diethyl pyrocarbonate (DEPC). Both... more
Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in a time- and concentration-dependent fashion by prior treatment of membranes with the acylating reagent diethyl pyrocarbonate (DEPC). Both components of Na+/alanine cotransport (systems A and ASC) were inhibited. Exposure of vesicles to p-bromophenacyl bromide and methyl p-nitrobenzenesulfonate, which share with DEPC reactivity against histidine residues, also led to inhibition of alanine transport through systems A and ASC. The presence of Na+ (100 mM NaCl) and L-alanine (10 mM) during exposure to vesicles to DEPC protected against inactivation of system A (but not system ASC) transport activity. This protective effect was specific and required the presence of L-alanine since the presence of L-phenylalanine alone (10 mM) or L-phenylalanine plus Na+ (100 mM NaCl) did not cause any detectable protection. This overall pattern of protection is opposite to that previously found against specific sulfhydryl reagents (i.e. N-ethylmaleimide), where protection of system ASC was nearly maximal. The pH profile for DEPC-dependent inhibition of system A transport activity suggests modification of amino acid residue(s) with a pKr of approximately 7, most likely histidine(s), in close parallel with the pH dependence of system A transport activity. Our results suggest the presence of critical histidine residues on the system A carrier that may be responsible for the pH dependence of system A transport activity.
The inhibition of insulin-stimulated glucose transport by isoprenaline, a mixed beta-adrenergic-receptor (AR) agonist, is well documented in rat adipocytes. Since it has been described that rat adipocytes possess not only beta 1- and beta... more
The inhibition of insulin-stimulated glucose transport by isoprenaline, a mixed beta-adrenergic-receptor (AR) agonist, is well documented in rat adipocytes. Since it has been described that rat adipocytes possess not only beta 1- and beta 2- but also beta 3-ARs, the influence of various subtype-selective beta-AR agonists and antagonists on 2-deoxyglucose (2-DG) transport was assessed in order to characterize the beta-AR subtype involved in the adrenergic counter-regulation of the insulin effect. The stimulation of 2-DG transport by insulin was counteracted, in a dose-dependent manner, by all the beta-AR agonists tested, and the magnitude of the inhibition followed the rank order: BRL 37344 > isoprenaline = noradrenaline >> dobutamine = procaterol. The same rank order of potency was obtained for lipolysis activation. This is not in accordance with the pharmacological definition of a beta 1- or a beta 2-adrenergic effect, but agrees with the pharmacological pattern of a beta ...
Cardiac muscle is characterized by a high rate of glucose consumption. In the absence of insulin, glucose transport into cardiomyocytes limits the rate of glucose utilization and therefore it is important to understand the regulation of... more
Cardiac muscle is characterized by a high rate of glucose consumption. In the absence of insulin, glucose transport into cardiomyocytes limits the rate of glucose utilization and therefore it is important to understand the regulation of glucose transporters. Cardiac muscle cells express 2 distinct glucose transporters, GLUT4 and GLUT1; although GLUT4 is quantitatively the more important glucose transporter expressed in heart, GLUT1 is also expressed at a substantial level. In isolated rat cardiomyocytes, insulin acutely stimulates glucose transport and translocates both GLUT4 and GLUT1 from an intracellular site to the cell surface. Recent evidence indicates the existence of at least 2 distinct intracellular membrane populations enriched in GLUT4 with a different protein composition. Elucidation of the intracellular location of these 2 GLUT4 vesicle pools in cardiac myocytes, their role in GLUT4 trafficking, and their relation to insulin-induced GLUT4 translocation needs to be addressed.
The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of... more
The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b(0,+) -like and y(+)L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b(0,+)-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary ...
1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and white muscle, as well as in brown and white adipose tissue from 7-day streptozotocin-induced diabetic and 48 h-fasted rats. 2. In agreement with... more
1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and white muscle, as well as in brown and white adipose tissue from 7-day streptozotocin-induced diabetic and 48 h-fasted rats. 2. In agreement with previous data, white adipose tissue showed a substantial decrease in GLUT-4 mRNA and protein levels in response to both diabetes and fasting. Similarly, GLUT-4 mRNA and protein markedly decreased in brown adipose tissue in both insulinopenic conditions. 3. Under control conditions, the level of expression of GLUT-4 protein content differed substantially in heart, red and white skeletal muscle. Thus GLUT-4 protein was maximal in heart, and red muscle had a greater GLUT-4 content compared with white muscle. In spite of the large differences in GLUT-4 protein content, GLUT-4 mRNA levels were equivalent in heart and red skeletal muscle. 4. In heart, GLUT-4 mRNA decreased to a greater extent than GLUT-4 protein in response to diabetes and fasting. In con...
A major objective for the understanding of muscle glucose disposal is the elucidation of the intracellular trafficking pathway of GLUT4 glucose carriers in the muscle fiber. In this report, we provide functional and biochemical... more
A major objective for the understanding of muscle glucose disposal is the elucidation of the intracellular trafficking pathway of GLUT4 glucose carriers in the muscle fiber. In this report, we provide functional and biochemical characterization of two distinct intracellular GLUT4 vesicle pools ...
To assess in rodent and human adipocytes the antilipolytic capacity of hexaquis(benzylammonium) decavanadate (B6V10), previously shown to exert antidiabetic effects in rodent models, such as lowering free fatty acids (FFA) and glucose... more
To assess in rodent and human adipocytes the antilipolytic capacity of hexaquis(benzylammonium) decavanadate (B6V10), previously shown to exert antidiabetic effects in rodent models, such as lowering free fatty acids (FFA) and glucose circulating levels. Adipose tissue (AT) samples were obtained after informed consent from overweight women undergoing plastic surgery. Comparison of the effects of B6V10 and reference antilipolytic agents (insulin, benzylamine, vanadate) on the lipolytic activity was performed on adipocytes freshly isolated from rat, mouse and human AT. Glycerol release was measured using colorimetric assay as an index of lipolytic activity. The influence of B6V10 and reference agents on glucose transport into human fat cells was determined using the radiolabelled 2-deoxyglucose uptake assay. In all the species studied, B6V10 exhibited a dose-dependent inhibition of adipocyte lipolysis when triglyceride breakdown was moderately enhanced by β-adrenergic receptor stimula...
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational... more
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).
Semicarbazide-sensitive amine oxidase (SSAO) is very abundant at the plasma membrane in adipocytes. The combination of SSAO substrates and low concentrations of vanadate markedly stimulates glucose transport and GLUT4 glucose transporter... more
Semicarbazide-sensitive amine oxidase (SSAO) is very abundant at the plasma membrane in adipocytes. The combination of SSAO substrates and low concentrations of vanadate markedly stimulates glucose transport and GLUT4 glucose transporter recruitment to the cell surface in rat adipocytes by a mechanism that requires SSAO activity and hydrogen peroxide formation. Substrates of SSAO such as benzylamine or tyramine in combination with vanadate potently stimulate tyrosine phosphorylation of both insulin-receptor substrates 1 (IRS-1) and 3 (IRS-3) and phosphatidylinositol 3-kinase (PI 3-kinase) activity in adipose cells, which occurs in the presence of a weak stimulation of insulin-receptor kinase. Moreover, the acute administration of benzylamine and vanadate in vivo enhances glucose tolerance in non-diabetic and streptozotocin-induced diabetic rats and reduces hyperglycemia after chronic treatment in streptozotocin-diabetic rats. Based on these observations, we propose that SSAO activity and vanadate potently mimic insulin effects in adipose cells and exert an anti-diabetic action in an animal model of type 1 diabetes mellitus.
Insulin action in skeletal muscle is markedly depressed at late pregnancy. The purpose of this study was to investigate whether insulin resistance of skeletal muscle during pregnancy is associated to intrinsic alterations in the... more
Insulin action in skeletal muscle is markedly depressed at late pregnancy. The purpose of this study was to investigate whether insulin resistance of skeletal muscle during pregnancy is associated to intrinsic alterations in the biological activities of insulin receptor. To that end, insulin receptors from mixed, red and white skeletal muscle from control and 19-20 days pregnant rats were partially purified and insulin binding and tyrosine kinase activities were evaluated. Muscle insulin receptors from diabetic rats were also studied provided that changes in receptor number and tyrosine kinase activities had been clearly substantiated. Total high affinity insulin binding sites expressed either per gram of tissue or per milligram of protein were similar in muscles from control and pregnant rats, in contrast to diabetic rats in which an increased high affinity receptor number was observed. No differences in affinity were detected for high affinity binding sites in any of the groups investigated. The integrity of the partially purified insulin receptors from control and pregnant groups was identical as determined by affinity cross-linking of [125I-TyrB26]insulin to the receptor and by beta-subunit phosphorylation. Autophosphorylation of the beta-subunit and the pattern of phosphopeptides obtained after digestion of phosphorylated beta-subunit with trypsin, elastase, and staphylococcal V8 protease were indistinguishable in control and pregnant groups. Tyrosine receptor kinase was also similar in receptor preparations from control and pregnant muscle. This is in contrast to diabetes in which a defective tyrosine kinase was confirmed. In order to detect possible differences due to the fiber type, further sets of experiments were performed in receptor preparations from red and white muscle. In keeping with previous data, tyrosine kinase activity of the insulin receptor was 2.5-fold greater in red muscle than white muscle; however, under these conditions, receptor kinase activity was unmodified in preparations from pregnant rats in red and white muscle fibers. Recent evidence has revealed the existence of an insulin binding inhibitor in muscle extracts. We detected the presence of such an inhibitor in the flow-through fraction after WGA chromatography. This inhibitory activity was found to be greater in muscle extracts obtained from pregnant rats as compared to fractions from control rats. We conclude that insulin resistance of skeletal muscle at late pregnancy is not explained by intrinsic modifications of insulin receptor binding or kinase activities.(ABSTRACT TRUNCATED AT 400 WORDS)
The human rBAT protein elicits sodium-independent, high affinity obligatory exchange of cystine, dibasic amino acids, and some neutral amino acids in Xenopus oocytes (Chillarón, J., Estévez, R., Mora, C., Wagner, C. A., Suessbrich, H.,... more
The human rBAT protein elicits sodium-independent, high affinity obligatory exchange of cystine, dibasic amino acids, and some neutral amino acids in Xenopus oocytes (Chillarón, J., Estévez, R., Mora, C., Wagner, C. A., Suessbrich, H., Lang, F., Gelpí, J. L., Testar, X., Busch, A. E., Zorzano, A., and Palacín, M. (1996) J. Biol. Chem. 271, 17761-17770). Mutations in rBAT have been found to cause cystinuria (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Galluci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-426). We have performed functional studies with the most common point mutation, M467T, and its relative, M467K, using the oocyte system. The Km and the voltage dependence for transport of the different substrates were the same in both M467T and wild type-injected oocytes. However, the time course of transport was delayed in the M467T mutant: maximal activity was accomplished 3-4 days later than in the wild type. This delay was cRNA dose-dependent: at cRNA levels below 0.5 ng the M467T failed to achieve the wild type transport level. The M467K mutant displayed a normal Km, but the Vmax was between 5 and 35% of the wild type. The amount of rBAT protein was similar in normal and mutant-injected oocytes. In contrast to the wild type, the mutant proteins remained endoglycosidase H-sensitive, suggesting a longer residence time in the endoplasmic reticulum. We quantified the amount of rBAT protein in the plasma membrane by surface labeling with biotin 2 and 6 days after injection. Most of the M467T and M467K protein was located in an intracellular compartment. The converse situation was found in the wild type. Despite the low amount of M467T protein reaching the plasma membrane, the transport activity at 6 days was the same as in the wild type-injected oocytes. The increase in plasma membrane rBAT protein between 2 and 6 days was completely dissociated from the rise in transport activity. These data indicate impaired maturation and transport to the plasma membrane of the M467T and M467K mutant, and suggest that rBAT alone is unable to support the transport function.
ABSTRACT
Joan Bertran$, Angela Roca, Emilia Pola, Xavier Testar, Antonio Zorzano, and Manuel Palacing From the Ilepartament de Bioquimica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Ada. Diagonal 645, 08028 Barcelona, Spain ...... more
Joan Bertran$, Angela Roca, Emilia Pola, Xavier Testar, Antonio Zorzano, and Manuel Palacing From the Ilepartament de Bioquimica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Ada. Diagonal 645, 08028 Barcelona, Spain ... Sodium-dependent alanine ...
Female rats receiving ethanol in the drinking water before and during gestation (ET) were compared to pair-fed animals (PF) and normal controls (C) fed ad libitum. On the 21st day of gestation the maternal body and liver weight, blood... more
Female rats receiving ethanol in the drinking water before and during gestation (ET) were compared to pair-fed animals (PF) and normal controls (C) fed ad libitum. On the 21st day of gestation the maternal body and liver weight, blood glucose, and plasma protein concentrations were lower in ET and PF animals as compared to C. In contrast to C or PF mothers, ET-fed mothers had higher circulating beta-hydroxybutyrate and triacyglyceride levels and beta-hydroxy-butyrate/acetoacetate ratio. Liver triacylglycerides were increased whereas liver glycogen concentration was reduced in ET-fed animals. Only fetal body and liver weights and blood glucose were lower in both ET and PF than in C. Blood beta-hydroxybutyrate was increased and liver glycogen was decreased only in ET fetuses. There were no differences among the groups in fetal circulating beta-hydroxy-butyrate/acetoacetate ratio, plasma proteins, and triacylglycerides or liver triacyglyceride content. Results indicate that certain changes in ET mothers are specifically produced by the ethanol intake rather than undernutrition. Further, metabolic changes occurring in the fetus are influenced by the ethanol effects in the mother and these actions may be added to those directly produced by the ethanol crossing the placenta. However, the collaterals were three times more likely to report more drinking days than the patients; 40.4% (86/213) of the cohabiting contacts reported more drinking days compared to 12.7% (27/213) of the patients reporting more drinking days (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
Research Interests:
Lipoprotein lipase (EC 3.1. 1.34) activity present in the capillary endothelia catalyses the hydrolysis of triacylglycerols in circulating triacylglycerol-rich lipoproteins, the products of which are taken up by the subjacent tissue... more
Lipoprotein lipase (EC 3.1. 1.34) activity present in the capillary endothelia catalyses the hydrolysis of triacylglycerols in circulating triacylglycerol-rich lipoproteins, the products of which are taken up by the subjacent tissue (Nilsson-Ehle et al., 1980; Lasuncion & ...
Research Interests:
ABSTRACT
Nonadrenergic imidazoline I2-binding sites colocalize with monoamine oxidase (MAO) in various tissues. As white adipocytes from various species have been reported to be very rich in I2-sites, the authors consider whether these cells show... more
Nonadrenergic imidazoline I2-binding sites colocalize with monoamine oxidase (MAO) in various tissues. As white adipocytes from various species have been reported to be very rich in I2-sites, the authors consider whether these cells show a substantial MAO activity and explore its functional role. Oxidation of [14C]tyramine by rat adipocyte membranes was dependent on both MAO and semicarbazide-sensitive amine oxidase (SSAO). Tyramine oxidation was identical in membranes and in intact adipocytes (Vmax: 11-12 nmol/min/mg protein). A similar effect of MAO and SSAO inhibitors was obtained in both the intact cells and the membranes: half of the activity was sensitive to semicarbazide and the other half more easily inhibited by MAO-A than by MAO-B inhibitors. As the reaction catalyzed by amine oxidases generates H2O2, which mimicks certain insulin effects in adipocytes, we tested whether tyramine oxidation influences glucose transport in adipocytes. One mM tyramine weakly stimulated glucos...
Sodium orthovanadate caused a 2-fold stimulation of system A transport activity in soleus muscle, as assessed by the uptake of the nonmetabolizable analog 2-(methylamino)isobutyric acid (MeAIB). The effect of vanadate on system A was... more
Sodium orthovanadate caused a 2-fold stimulation of system A transport activity in soleus muscle, as assessed by the uptake of the nonmetabolizable analog 2-(methylamino)isobutyric acid (MeAIB). The effect of vanadate on system A was rapid, concentration-dependent and was characterized by an increased Vmax without modification of Km for MeAIB. Under these conditions, vanadate also activated 3-O-methylglucose uptake and lactate production. The effects of vanadate on muscle metabolism showed a complex interaction with the effects of insulin. Thus, the stimulatory effects of vanadate and insulin on MeAIB and 3-O-methylglucose uptake were not additive; however, the effects of insulin and vanadate on lactate production were additive. In spite of the lack of additivity, insulin- and vanadate-induced stimulation of system A differed in their sensitivity to gramicidin D, being the vanadate effect more susceptible to inhibition by gramicidin D than the insulin effect. System A transport acti...
Hypes affect all areas of life, and thus also language, words and concepts. This is the case, for instance, of the concept of emotional intelligence. Many people have not noticed that it had been used for years before Daniel Goleman... more
Hypes affect all areas of life, and thus also language, words and concepts. This is the case, for instance, of the concept of emotional intelligence. Many people have not noticed that it had been used for years before Daniel Goleman popularised it when he published a book with the same title in 1995. The same has happened more recently with the concept of talent, but with one difference: talent has always been talked about, but this word was formerly mainly used in connection with arts, sports and creativity in general. In this case, the novelty lies in the area of application of the word and concept of talent. It has been used for some years increasingly in connection with research, innovation and entrepreneurship, that is, relating talent with most ingredients of what is known as knowledge society. It is just a small step from this link to associating talent to economic development. For many authors, the link between talent and knowledge-based economy is crystal-clear today. But i...
The results presented in this report were from a study commissioned by the European Commission (EC). Surveys were sent out to all registered European HEIs in 33 countries in 2011. In total, 6,280 responses were received from European... more
The results presented in this report were from a study commissioned by the European Commission (EC). Surveys were sent out to all registered European HEIs in 33 countries in 2011. In total, 6,280 responses were received from European academics and HEI management (HEI managers and HEI professionals working with industry) whilst from Spain, 596 responses from academics (471) and HEI management (125) were received. The study measured the perceptions of these two groups in respect to their own cooperation efforts and those of their university respectively.
Mammalian skeletal muscle expresses GLUT-4 and GLUT-1 glucose transporters. Here, we have investigated whether GLUT-1 and GLUT-4 expression is regulated in muscle by contractile activity. GLUT-1 mRNA levels were high in skeletal muscle at... more
Mammalian skeletal muscle expresses GLUT-4 and GLUT-1 glucose transporters. Here, we have investigated whether GLUT-1 and GLUT-4 expression is regulated in muscle by contractile activity. GLUT-1 mRNA levels were high in skeletal muscle at days 16 and 17 of fetal life and decreased markedly by days 19 and 21. In contrast, GLUT-4 mRNA levels were clearly detectable at day 21 of fetal life, and they increased progressively during postnatal life. The timing data for GLUT-4 induction and GLUT-1 repression suggest that these processes are related to skeletal muscle innervation. GLUT-4 mRNA decreased markedly in adult rat and rabbit tibialis anterior muscle after severage of peroneal nerve. In contrast, GLUT-1 mRNA levels showed a 9-fold increase in rat muscle 3 days after denervation. Direct stimulation of rabbit tibialis anterior muscle with extracellular electrodes protected GLUT-4 mRNA levels against the effect of denervation. This indicates that the repression of GLUT-4 mRNA associate...
1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization... more
1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dy...
The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of... more
The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b(0,+) -like and y(+)L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b(0,+)-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary ...
We have recently reported that fluoride interacts directly with the insulin receptor, which causes inhibition of its phosphotransferase activity. The inhibitory effect of fluoride on phosphotransferase activity is not due to the formation... more
We have recently reported that fluoride interacts directly with the insulin receptor, which causes inhibition of its phosphotransferase activity. The inhibitory effect of fluoride on phosphotransferase activity is not due to the formation of complexes with aluminium and occurs in the absence of alterations to the binding of ATP or insulin. In this report we substantiate that the tyrosine kinase activity of insulin receptors partially purified from rat skeletal muscle shows a strict requirement of Mg2+ ions (Ka near 11 mM). This effect of Mg2+ was inhibited in a competitive manner by Mn2+, which is compatible with competition of both divalent ions for binding sites. The inhibition of tyrosine kinase activity caused by fluoride was dependent on the concentration of Mg2+ in the medium and no inhibitory effect was detected at low concentrations of Mg2+. Moreover, the addition of increasing concentrations of Mn2+ in the presence of a constant high concentration of Mg2+, led to a gradual ...
In this study we have used wortmannin, a highly specific inhibitor of phosphatidylinositol (PI) 3-kinase, to assess the role of this enzyme on GLUT1 glucose carrier distribution and glucose transport activity in myoblasts from two... more
In this study we have used wortmannin, a highly specific inhibitor of phosphatidylinositol (PI) 3-kinase, to assess the role of this enzyme on GLUT1 glucose carrier distribution and glucose transport activity in myoblasts from two skeletal-muscle cell lines, L6E9 and Sol8. As detected in L6E9 cells, myoblasts exhibited basal and insulin-stimulated PI 3-kinase activities. Incubation of intact myoblasts with wortmannin resulted in a marked inhibition of both basal and insulin-stimulated PI 3-kinase activities. L6E9 and Sol8 myoblasts showed basal and insulin-stimulated glucose transport activities, both of them inhibited by wortmannin in a dose-dependent manner (IC50 approximately 10-20 nM). Concomitantly, immunofluorescence analysis revealed that 1 h treatment with wortmannin led to a dramatic intracellular accumulation of GLUT1 carriers (the main glucose transporter expressed in L6E9 and Sol8 myoblasts) in both cell systems. The effect of wortmannin on GLUT1 cellular redistribution ...
GLUT1 and GLUT4 glucose transporter expression is highly regulated in muscle and adipose tissue during perinatal life. Here we have investigated the role of thyroid hormones in the regulation of GLUT4 induction and GLUT1 repression... more
GLUT1 and GLUT4 glucose transporter expression is highly regulated in muscle and adipose tissue during perinatal life. Here we have investigated the role of thyroid hormones in the regulation of GLUT4 induction and GLUT1 repression associated to neonatal development. Perinatal hypothyroidism markedly impaired GLUT4 protein induction in heart. This effect was heart specific, and a greater expression of GLUT4 was detected in brown adipose tissue from neonatal hypothyroid rats compared with controls. These changes in GLUT4 protein expression were not detected in brown adipose tissue or heart when hypothyroidism was induced in adult rats. These results indicate that GLUT4 induction during perinatal life is highly sensitive to thyroid hormones in both heart and adipose tissue. Perinatal hypothyroidism was characterized by decreased cardiac GLUT4 mRNA concentrations. T3 injection caused a marked increase in cardiac levels of GLUT4 mRNA in hypothyroid neonates. Thus, in 13-day-old hypothyr...

And 93 more