Skip to main content
Sean Lim
    Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures that are initially spatially uniform. These patterns are the result of chemical gradients that are created from the directed movement and... more
    Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures that are initially spatially uniform. These patterns are the result of chemical gradients that are created from the directed movement and metabolic activity of billions of cells. A recent study on pattern formation in wild bacterial isolates has revealed unique collective behaviors of the bacteria Enterobacter cloacae. As in other bacteria species, Enterobacter cloacae form macroscopic aggregates. Once formed, these bacterial clusters can migrate several millimeters, sometimes resulting in the merging of two or more clusters. To better understand these phenomena, we examine the formation and dynamics of thousands of bacterial clusters that form within a 22 cm square culture dish filled with soft agar over two days. At the macroscale, the aggregates display spatial order at short length scales, and the migration of cell clusters is superdiffusive, with a merging acceleration that is correlate...
    Some strains of motile bacteria self-organize to form spatial patterns of high and low cell density over length scales that can be observed by eye. One such collective behavior is the formation in semisolid agar media of a high cell... more
    Some strains of motile bacteria self-organize to form spatial patterns of high and low cell density over length scales that can be observed by eye. One such collective behavior is the formation in semisolid agar media of a high cell density swarm band. We isolated 7 wild strains of the Enterobacter cloacae complex capable of forming this band and found its propagation speed can vary 2.5 fold across strains. To connect such variability in collective motil-ity to strain properties, each strain's single-cell motility and exponential growth rates were measured. The band speed did not significantly correlate with any individual strain property; however, a multilinear analysis revealed that the band speed was set by a combination of the run speed and tumbling frequency. Comparison of variability in closely-related wild isolates has the potential to reveal how changes in single-cell properties influence the collective behavior of populations.
    From microbial communities to cancer cells, many complex collectives embody emergent and self-organising behaviour. Such behaviour drives cells to develop composite features such as formation of aggregates or expression of specific genes... more
    From microbial communities to cancer cells, many complex collectives embody emergent and self-organising behaviour. Such behaviour drives cells to develop composite features such as formation of aggregates or expression of specific genes as a result of cell-cell interactions within a cell population. Currently, we lack universal mathematical tools for analysing the collective behaviour of biological swarms. To address this, we propose a multifractal inspired framework to measure the degree of emergence and self-organisation from scarce spatial (geometric) data and apply it to investigate the evolution of the spatial arrangement of Enterobacter cloacae aggregates. In a plate of semi-solid media, Enterobacter cloacae form a spatially extended pattern of high cell density aggregates. These aggregates nucleate from the site of inoculation and radiate outward to fill the entire plate. Multifractal analysis was used to characterise these patterns and calculate dynamics changes in emergence and self-organisation within the bacterial population. In particular, experimental results suggest that the new aggregates align their location with respect to the old ones leading to a decrease in emergence and increase in self-organisation.