[go: up one dir, main page]

Przejdź do zawartości

Funkcja mierzalna

Z Wikipedii, wolnej encyklopedii

Funkcja mierzalna – funkcja zachowująca strukturę przestrzeni mierzalnych; stanowi ona naturalny kontekst dla teorii całkowania (w szczególności całki Lebesgue’a).

Funkcja między przestrzeniami mierzalnymi jest mierzalna, jeżeli przeciwobraz dowolnego zbioru mierzalnego jest mierzalny. Z punktu widzenia teorii kategorii funkcje mierzalne są morfizmami przestrzeni mierzalnych; jest to pojęcie analogiczne np. do funkcji ciągłych między przestrzeniami topologicznymi, czy homomorfizmów struktur algebraicznych.

Definicja ta wydaje się prosta, jednak należy zwracać szczególną uwagę na stosowane -algebry. W szczególności, jeżeli o funkcji mówi się, że jest mierzalna w sensie Lebesgue’a, to ma się w rzeczywistości na myśli, iż mierzalna jest funkcja tzn. dziedzina i przeciwdziedzina różnią się -algebrami określonymi na tym samym zbiorze (tutaj oznacza σ-algebrę zbiorów mierzalnych w sensie Lebesgue’a, zaś jest σ-algebrą borelowską na prostej). W wyniku tego złożenie funkcji mierzalnych w sensie Lebesgue’a nie musi być mierzalne w sensie Lebesgue’a.

Jeżeli nie zaznaczono inaczej, to zwykle przyjmuje się, że przestrzeń topologiczna wyposażona jest w σ-algebrę borelowską generowaną przez jej podzbiory otwarte. Najczęściej przestrzenią tą są przestrzenie liczb rzeczywistych bądź zespolonych. Np. funkcja mierzalna o wartościach rzeczywistych – to funkcja, której przeciwobraz dowolnego zbioru borelowskiego jest mierzalny. Analogicznie definiuje się funkcję mierzalną o wartościach zespolonych. Niektórzy autorzy używają terminu „funkcja mierzalna” na oznaczenie funkcji mierzalnych o wartościach rzeczywistych względem σ-algebry borelowskiej[1].

Funkcje niemierzalne uważane są za patologiczne, przynajmniej z punktu widzenia analizy. W rachunku prawdopodobieństwa (rzeczywiste bądź zespolone) funkcje mierzalne nazywane są zmiennymi losowymi; funkcje mierzalne o wartościach w przestrzeni euklidesowej nazywane są często wektorami losowymi.

Szczególne przypadki

[edytuj | edytuj kod]
  • Jeżeli oraz przestrzeniami borelowskimi, to funkcja mierzalna bywa nazywana funkcją borelowską. Funkcje ciągłe są borelowskie, ale nie wszystkie funkcje borelowskie są ciągłe. Mimo wszystko funkcja mierzalna jest niemal funkcją ciągłą, o czym mówi twierdzenie Łuzina. Jeżeli funkcja jest cięciem pewnego przekształcenia to nazywa się je cięciem borelowskim.
  • funkcja mierzalna w sensie Lebesgue’a to funkcja mierzalna gdzie oznacza σ-algebrę zbiorów mierzalnych w sensie Lebesgue’a, zaś to σ-algebra borelowska liczb zespolonych Funkcje mierzalne w sensie Lebesgue’a są w centrum zainteresowania analizy matematycznej z powodu ich całkowalności.
  • Zmienne losowe definiuje się jako funkcje mierzalne określone na przestrzeniach próbek (zdarzeń elementarnych).

Własności

[edytuj | edytuj kod]
  • Suma i iloczyn dwóch funkcji mierzalnych (a więc i ich kombinacje liniowe) o wartościach zespolonych są mierzalne[2]. Mierzalny jest także ich iloraz, o ile nie występuje dzielenie przez zero[1].
  • Jeżeli funkcja jest -mierzalna, a funkcja jest -mierzalna, to ich złożenie jest -mierzalne[1][3], gdzie sformułowanie „funkcja -mierzalna” oznacza, że mierzalna jest funkcja Innymi słowy złożenie funkcji mierzalnych jest mierzalne, o ile tylko odpowiednie -algebry do siebie pasują (zob. kontrprzykład funkcji mierzalnych w sensie Lebesgue’a we wstępie).
  • (Punktowe) kresy dolny i górny (infimum i supremum) oraz granice dolna i górna (limes inferior i superior) ciągu funkcji mierzalnych o wartościach rzeczywistych także są funkcjami mierzalnymi[1][4]. Mierzalne są także funkcje minimum i maksimum.
  • Granica punktowa ciągu funkcji mierzalnych jest mierzalna (odpowiednie twierdzenie dotyczące funkcji ciągłych wymaga założeń silniejszych niż zbieżność punktowa, przykładowo zbieżności jednostajnej).

Funkcje niemierzalne

[edytuj | edytuj kod]

Spotykane w zastosowaniach funkcje o wartościach rzeczywistych są zwykle mierzalne; jednak nietrudno wskazać funkcje niemierzalne.

  • O ile tylko istnieją zbiory niemierzalne przestrzeni mierzalnej, to istnieją także funkcje niemierzalne na niej określone. Jeżeli jest pewną przestrzenią mierzalną, a jest zbiorem niemierzalnym, tj. to funkcja charakterystyczna zbioru jest niemierzalna (gdzie wyposażona jest w zwyczajową σ-algebrę borelowską), ponieważ przeciwobrazem zbioru mierzalnego jest zbiór niemierzalny
  • Funkcja stała jest mierzalna względem dowolnej σ-algebry. Dowolna funkcja, która nie jest stałą, może być przekształcona w niemierzalną poprzez wyposażenie dziedziny i przeciwdziedziny w odpowiednie -algebry. Jeżeli jest dowolną niestałą funkcją o wartościach rzeczywistych, to jest niemierzalna, jeśli wyposażyć w algebrę antydyskretną gdyż przeciwobrazem dowolnego punktu obrazu jest pewien właściwy, niepusty podzbiór który nie należy do

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. a b c d Robert Strichartz: The Way of Analysis. Jones and Bartlett, 2000. ISBN 0-7637-1497-6.
  2. Gerald B. Folland: Real Analysis: Modern Techniques and their Applications. Wiley, 1999. ISBN 0-471-31716-0.
  3. Patrick Billingsley: Probability and Measure. Wiley, 1995. ISBN 0-471-00710-2.
  4. H.L. Royden: Real Analysis. Prentice Hall, 1988. ISBN 0-02-404151-3.

Bibliografia

[edytuj | edytuj kod]
  • Patrick Billingsley: Probability and Measure, 2nd Edition. Nowy Jork: John Wiley & Sons Inc, 1986.
  • Witold Kołodziej: Analiza matematyczna. Warszawa: PWN, 1979.
  • Stanisław Łojasiewicz: Wstęp do teorii funkcji rzeczywistych. Warszawa: PWN, 1973.

Linki zewnętrzne

[edytuj | edytuj kod]
  • publikacja w otwartym dostępie – możesz ją przeczytać Measurable mapping (ang.), Encyclopedia of Mathematics, encyclopediaofmath.org [dostęp 2024-10-05].