[go: up one dir, main page]

Ozdemir et al., 2020 - Google Patents

Engineering functionalized low LUMO [1] benzothieno [3, 2-b][1] benzothiophenes (BTBTs): unusual molecular and charge transport properties

Ozdemir et al., 2020

Document ID
1888190390868723656
Author
Ozdemir R
Ahn K
Deneme I
Zorlu Y
Kim D
Kim M
Usta H
Publication year
Publication venue
Journal of Materials Chemistry C

External Links

Snippet

Diacene-fused thienothiophenes (DAcTTs) have provided an excellent π-framework for the development of high mobility p-type molecular semiconductors in the past decade. However, n-type DAcTTs are rare and their electron transport characteristics remain largely …
Continue reading at pubs.rsc.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0072Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0073Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ringsystem, e.g. cumarine dyes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0052Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • H01L51/0512Field-effect devices, e.g. TFTs insulated gate field effect transistors
    • H01L51/0545Lateral single gate single channel transistors with inverted structure, i.e. the organic semiconductor layer is formed after the gate electrode
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Similar Documents

Publication Publication Date Title
Meng et al. Oligofluorene− thiophene derivatives as high-performance semiconductors for organic thin film transistors
US7982039B2 (en) N-type semiconductors and related devices
Ozdemir et al. Ultralow bandgap molecular semiconductors for ambient-stable and solution-processable ambipolar organic field-effect transistors and inverters
Ortiz et al. Thiophene–Diazine Molecular Semiconductors: Synthesis, Structural, Electrochemical, Optical, and Electronic Structural Properties; Implementation in Organic Field‐Effect Transistors
Ozdemir et al. Engineering functionalized low LUMO [1] benzothieno [3, 2-b][1] benzothiophenes (BTBTs): unusual molecular and charge transport properties
Chen et al. Asymmetric fused thiophenes for field-effect transistors: crystal structure–film microstructure–transistor performance correlations
Ozdemir et al. A new rod-shaped BODIPY-acetylene molecule for solution-processed semiconducting microribbons in n-channel organic field-effect transistors
Paramasivam et al. Small band gap D-π-A-π-D benzothiadiazole derivatives with low-lying HOMO levels as potential donors for applications in organic photovoltaics: a combined experimental and theoretical investigation
Ozdemir et al. Design, synthesis, and characterization of α, ω-disubstituted indeno [1, 2-b] fluorene-6, 12-dione-thiophene molecular semiconductors. Enhancement of ambipolar charge transport through synthetic tailoring of alkyl substituents
US20100006830A1 (en) Organic semiconductor compound based on 2,7-bis-(vinyl)[1]benzothieno[3,2-b]benzothiophene, organic semiconductor thin film and transistor using the same and methods of forming the same
Do et al. Naphthalimide end capped anthraquinone based solution-processable n-channel organic semiconductors: effect of alkyl chain engineering on charge transport
Nakano et al. Dibenzo [a, e] pentalene-embedded dicyanomethylene-substituted thienoquinoidals for n-channel organic semiconductors: synthesis, properties, and device characteristics
Ozdemir et al. A solution‐processable liquid‐crystalline semiconductor for low‐temperature‐annealed air‐stable N‐channel field‐effect transistors
Youn et al. Novel semiconductors based on functionalized benzo [d, d′] thieno [3, 2-b; 4, 5-b′] dithiophenes and the effects of thin film growth conditions on organic field effect transistor performance
Anjali et al. Ester-Flanked π-Extended Quinolines for Solution-Processable Ambipolar Organic Field-Effect Transistors
Song et al. Synthesis, Characterization, and Field‐Effect Transistor Properties of Carbazolenevinylene Oligomers: From Linear to Cyclic Architectures
Jin et al. Indole-Fused Acridone: Synthesis, Structures, Proton Transfer, and Hole-Transport Properties
Borshchev et al. Synthesis, characterization and organic field-effect transistors applications of novel tetrathienoacene derivatives
Usta et al. Understanding and tailoring excited state properties in solution-processable oligo (p-phenyleneethynylene) s: highly fluorescent hybridized local and charge transfer character via experiment and theory
Nakano et al. Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices
Fedorenko et al. Luminescent 2D single crystals of thiophene–phenylene co-oligomers for field-effect devices
Chen et al. n-Type Field-effect Transistors Based on Thieno [3, 2-b] thiophene-2, 5-dione and the Bis (dicyanomethylene) Derivatives
Cho et al. Synthesis, optical and electrochemical properties of small molecules DMM-TPA [DTS (FBTTh3) 3] and TPA [DTS (FBTTh3) 3], and their application as donors for bulk heterojunction solar cells
Duan et al. Organic field-effect transistors based on two phenylene–thiophene oligomer derivatives with a biphenyl or fluorene core
Mamillapalli et al. Solution-processable end-functionalized tetrathienoacene semiconductors: Synthesis, characterization and organic field effect transistors applications