Liu et al., 2019 - Google Patents
A multi-loop-controlled AC-coupling supply modulator with a mode-switching CMOS PA in an EER system with envelope shapingLiu et al., 2019
- Document ID
- 18095959168467380247
- Author
- Liu X
- Zhang H
- Mok P
- Luong H
- Publication year
- Publication venue
- IEEE Journal of Solid-State Circuits
External Links
Snippet
This paper presents an ac-coupling supply modulator, consist of a 25-MHz three-level switching amplifier and a wide-bandwidth assisting linear amplifier, and a CMOS power amplifier (PA), in an envelope-elimination-and-restoration system with envelope shaping …
- 230000000051 modifying 0 title abstract description 70
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0294—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0277—Selecting one or more amplifiers from a plurality of amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
- H03F1/565—Modifications of input or output impedances, not otherwise provided for using inductive elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/30—Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
- H03F3/3001—Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
- H03F3/3055—Parallelled mixed SEPP stages, e.g. a CMOS common drain and a CMOS common source in parallel or bipolar SEPP and FET SEPP in parallel
- H03F3/3059—Parallelled mixed SEPP stages, e.g. a CMOS common drain and a CMOS common source in parallel or bipolar SEPP and FET SEPP in parallel with symmetrical driving of the end stage
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | A multi-loop-controlled AC-coupling supply modulator with a mode-switching CMOS PA in an EER system with envelope shaping | |
Wu et al. | A two-phase switching hybrid supply modulator for RF power amplifiers with 9% efficiency improvement | |
Kwak et al. | A 2 W CMOS hybrid switching amplitude modulator for EDGE polar transmitters | |
Chowdhury et al. | A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMax applications | |
Sowlati et al. | A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier | |
US9716477B2 (en) | Bias control for stacked transistor configuration | |
Kim et al. | Envelope-tracking two-stage power amplifier with dual-mode supply modulator for LTE applications | |
Kitchen et al. | Combined Linear and $\Delta $-Modulated Switch-Mode PA Supply Modulator for Polar Transmitters | |
Shrestha et al. | A wideband supply modulator for 20 MHz RF bandwidth polar PAs in 65 nm CMOS | |
Kang et al. | A highly efficient and linear class-AB/F power amplifier for multimode operation | |
He et al. | A 2.5-W 40-MHz-bandwidth hybrid supply modulator with 91% peak efficiency, 3-V output swing, and 4-mV output ripple at 3.6-V supply | |
Mahmoudidaryan et al. | Wideband hybrid envelope tracking modulator with hysteretic-controlled three-level switching converter and slew-rate enhanced linear amplifier | |
Jing et al. | A high slew-rate adaptive biasing hybrid envelope tracking supply modulator for LTE applications | |
Liu et al. | 2.4 A 2.4 V 23.9 dBm 35.7%-PAE-32.1 dBc-ACLR LTE-20MHz envelope-shaping-and-tracking system with a multiloop-controlled AC-coupling supply modulator and a mode-switching PA | |
Paek et al. | A− 137 dBm/Hz noise, 82% efficiency AC-coupled hybrid supply modulator with integrated buck-boost converter | |
CN100559319C (en) | Hybrid Switching/Linear Power Amplifier Power Supplies for Polar Transmitters | |
McCune | Envelope tracking or polar—Which is it?[microwave bytes] | |
US20160006396A1 (en) | Efficiency for linear amplifier of envelope tracking modulator | |
Kim et al. | An EDGE/GSM quad-band CMOS power amplifier | |
Bhardwaj et al. | A review of hybrid supply modulators in CMOS technologies for envelope tracking PAs | |
Martínez-García et al. | Four-quadrant linear-assisted DC/DC voltage regulator | |
He et al. | A 40 MHz bandwidth, 91% peak efficiency, 2.5 W output power supply modulator with dual-mode Sigma–Delta control and adaptive biasing amplifier for multistandard communications | |
Liu et al. | Design techniques for high-efficiency envelope-tracking supply modulator for 5th generation communication | |
Liu et al. | A K-band power amplifier with adaptive bias in 90-nm CMOS | |
Kim et al. | A 500-MHz bandwidth 7.5-mV pp ripple power-amplifier supply modulator for RF polar transmitters |