[go: up one dir, main page]

Paek et al., 2016 - Google Patents

A− 137 dBm/Hz noise, 82% efficiency AC-coupled hybrid supply modulator with integrated buck-boost converter

Paek et al., 2016

Document ID
7768971197872174759
Author
Paek J
Lee S
Youn Y
Kim D
Choi J
Jung J
Choo Y
Lee S
Han J
Cho T
Publication year
Publication venue
IEEE Journal of Solid-State Circuits

External Links

Snippet

This paper presents a hybrid supply modulator (SM) with a comprehensive analysis of receiver (RX) band noise in an envelope tracking power amplifier (ET-PA). The designed SM supports both ET mode and average power tracking (APT) mode depending on the PA …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2176Class E amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • H03G3/3047Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers for intermittent signals, e.g. burst signals

Similar Documents

Publication Publication Date Title
Paek et al. A− 137 dBm/Hz noise, 82% efficiency AC-coupled hybrid supply modulator with integrated buck-boost converter
Choi et al. A new power management IC architecture for envelope tracking power amplifier
US10080192B2 (en) Apparatus and methods for envelope tracking systems
Shrestha et al. A wideband supply modulator for 20 MHz RF bandwidth polar PAs in 65 nm CMOS
Sahu et al. A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply
Wang et al. A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier
Kitchen et al. Combined Linear and $\Delta $-Modulated Switch-Mode PA Supply Modulator for Polar Transmitters
Kim et al. Envelope-tracking two-stage power amplifier with dual-mode supply modulator for LTE applications
Kang et al. A highly efficient and linear class-AB/F power amplifier for multimode operation
Clifton et al. Novel multimode J-pHEMT front-end architecture with power-control scheme for maximum efficiency
Jing et al. A high slew-rate adaptive biasing hybrid envelope tracking supply modulator for LTE applications
CN103795354A (en) Efficient linear integrated power amplifier incorporating low and high power operating modes
Hassan et al. High efficiency envelope tracking power amplifier with very low quiescent power for 20 MHz LTE
Paek et al. Design of boosted supply modulator with reverse current protection for wide battery range in envelope tracking operation
Paek et al. Efficient rf-pa two-chip supply modulator architecture for 4g lte and 5g nr dual-connectivity rf front end
Bhardwaj et al. A review of hybrid supply modulators in CMOS technologies for envelope tracking PAs
Choi et al. Power amplifiers and transmitters for next generation mobile handsets
He et al. A 40 MHz bandwidth, 91% peak efficiency, 2.5 W output power supply modulator with dual-mode Sigma–Delta control and adaptive biasing amplifier for multistandard communications
Woo et al. Dynamic stack-controlled CMOS RF power amplifier for wideband envelope tracking
Kim et al. A CMOS envelope-tracking transmitter with an on-chip common-gate voltage modulation linearizer
Reynaert Polar modulation
Yu et al. A high-voltage-enabled class-D polar PA using interactive AM-AM modulation, dynamic matching, and power-gating for average PAE enhancement
Turkson et al. Envelope tracking technique with bang-bang slew-rate enhancer for linear wideband RF PAs
Oh et al. Dual-mode supply modulator IC with an adaptive quiescent current controller for its linear amplifier in LTE mobile power amplifier
Kim et al. Envelope tracking technique for multimode PA operation