[go: up one dir, main page]

Kryliouk et al., 1999 - Google Patents

GaN Substrates: Growth and Characterization

Kryliouk et al., 1999

View PDF
Document ID
14923699599490999460
Author
Kryliouk O
Reek M
Mastro M
Anderson T
Chai B
Publication year
Publication venue
physica status solidi (a)

External Links

Snippet

Single crystal GaN substrates were grown by Hydride‐Metal Organic Vapor Phase Epitaxy (H‐MOVPE) on nearly lattice matched LiGaO2 substrates. The key to obtain high quality GaN films on LiGaO2 was the initial surface nitridation step. A self‐separating technique was …
Continue reading at onlinelibrary.wiley.com (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Similar Documents

Publication Publication Date Title
Liu et al. Substrates for gallium nitride epitaxy
Lahreche et al. Buffer free direct growth of GaN on 6H–SiC by metalorganic vapor phase epitaxy
US7435608B2 (en) III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
US6440823B1 (en) Low defect density (Ga, Al, In)N and HVPE process for making same
Jang et al. High-quality GaN/Si (1 1 1) epitaxial layers grown with various Al0. 3Ga0. 7N/GaN superlattices as intermediate layer by MOCVD
EP1298709B1 (en) Method for producing a iii nitride element comprising a iii nitride epitaxial substrate
Weeks Jr et al. Undoped and doped GaN thin films deposited on high-temperature monocrystalline AlN buffer layers on vicinal and on-axis α (6H)–SiC (0001) substrates via organometallic vapor phase epitaxy
Ghosh et al. Reduced-stress GaN epitaxial layers grown on Si (1 1 1) by using a porous GaN interlayer converted from GaAs
Parillaud et al. Localized Epitaxy of GaN by HVPE on patterned Substrates
Kryliouk et al. Large area GaN substrates
Kryliouk et al. Growth of GaN single crystal substrates
US6339014B1 (en) Method for growing nitride compound semiconductor
Yamamoto et al. A comparative study of OMVPE-grown InN heteroepitaxial layers on GaAs (1 1 1) B and α-Al2O3 (0 0 0 1) substrates
Wen et al. Influence of barrier growth temperature on the properties of InGaN/GaN quantum well
Kumagai et al. Growth of thick hexagonal GaN layer on GaAs (111) A surfaces for freestanding GaN by metalorganic hydrogen chloride vapor phase epitaxy
Twigg et al. Nucleation layer microstructure, grain size, and electrical properties in GaN grown on a-plane sapphire
Kryliouk et al. GaN Substrates: Growth and Characterization
Koljonen et al. Growth of high-quality GaSb by metalorganic vapor phase epitaxy
Horikawa et al. Hetero-epitaxial growth of InP on Si substrates by LP-MOVPE
Wong et al. Growth of GaN by gas-source molecular beam epitaxy by ammonia and by plasma generated nitrogen radicals
Li et al. A new buffer layer for MOCVD growth of GaN on sapphire
Wu et al. Investigation of GaN crystal quality on silicon substrates using GaN/AlN superlattice structures
Lee et al. Properties of freestanding GaN substrates grown by hydride vapor phase epitaxy
Jang et al. The influence of AlxGa1− xN intermediate buffer layer on the characteristics of GaN/Si (1 1 1) epitaxy
Hemmingsson et al. Growth of III-nitrides with halide vapor phase epitaxy (HVPE)