Baron et al., 2013 - Google Patents
High-overtone bulk acoustic resonatorBaron et al., 2013
View HTML- Document ID
- 1013309587623081040
- Author
- Baron T
- Lebrasseur E
- Bassignot F
- Martin G
- Pétrini V
- Ballandras S
- Publication year
- Publication venue
- Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices
External Links
Snippet
Piezoelectricity has been used for the development of numerous time&frequency passive devices [1]. Among all these, radio-frequency devices based on surface acoustic waves (SAW) or bulk acoustic waves (BAW) have received a very large interest for bandpass filter …
- 239000000758 substrate 0 abstract description 37
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezo-electric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
- H03H9/171—Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
- H03H9/172—Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
- H03H9/174—Membranes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02086—Means for compensation or elimination of undesirable effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/022—Fluid sensors based on micro-sensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02062—Details relating to the vibration mode
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders; Supports
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezo-electric or electrostrictive material
- H03H9/56—Monolithic crystal filters
- H03H9/562—Monolithic crystal filters comprising a ceramic piezoelectric layer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2462—Probes with waveguides, e.g. SAW devices
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezo-electric or electrostrictive resonators or networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10270420B2 (en) | Surface elastic wave device comprising a single-crystal piezoelectric film and a crystalline substrate with low visoelastic coefficients | |
US7609132B2 (en) | Hybrid resonant structure | |
JP5438101B2 (en) | High bulk acoustic resonator type resonator with high temperature stability | |
García-Gancedo et al. | Direct comparison of the gravimetric responsivities of ZnO-based FBARs and SMRs | |
US9459156B2 (en) | Temperature sensor comprising a high-overtone bulk acoustic resonator | |
Baron et al. | High-overtone bulk acoustic resonator | |
Machado et al. | Generation and propagation of superhigh-frequency bulk acoustic waves in ga as | |
CN102084590B (en) | HBAR resonator with a high level of integration | |
US20240154603A1 (en) | Two-port acoustic wave sensor device | |
Ballandras et al. | High overtone Bulk Acoustic Resonators: application to resonators, filters and sensors | |
Strijbos et al. | Design and characterisation of high-Q solidly-mounted bulk acoustic wave filters | |
Bassignot et al. | Acoustic resonator based on periodically poled transducers: Concept and analysis | |
Zhao et al. | Frequency spectra of coupling vibration in high-frequency thickness-shear ZnO thin film resonator applied in sensing field based on the Hamilton principle | |
Mirea | FBAR Devices: Fundamentals, fabrication and applications | |
Alekseev et al. | Some trends in microwave acoustoelectronics development | |
Thomas et al. | High-Q and low TCF HBAR based on LiTaO 3 substrate | |
Kvashnin et al. | Peculiarities of microwave Lamb wave excitation in composite SAW resonator based on diamond substrate | |
Baron et al. | RF oscillators stabilized by temperature compensated HBARs based on LiNbO 3/Quartz combination | |
Turuk et al. | A brief investigation of one-port SAW resonator for the application in communication systems | |
US11588463B2 (en) | Surface acoustic wave devices with ultra-thin transducers | |
Resmi et al. | Analysis of fQ scaling in bulk acoustic wave resonators using different piezolayers | |
US20230023769A1 (en) | Resonator structure for mass sensing | |
Lebrasseur et al. | A feedback-loop oscillator stabilized using laterally-coupled-mode narrow-band HBAR filters | |
García-Gancedo et al. | Experimental comparison of FBARs and SMRs responsitivities to mass loadings | |
WO2025015153A1 (en) | Acoustic apparatus for contactless excitation of transverse piezo-acoustic phonons |