[go: up one dir, main page]

WO2025023038A1 - Iron-based crystal alloy production method - Google Patents

Iron-based crystal alloy production method Download PDF

Info

Publication number
WO2025023038A1
WO2025023038A1 PCT/JP2024/025071 JP2024025071W WO2025023038A1 WO 2025023038 A1 WO2025023038 A1 WO 2025023038A1 JP 2024025071 W JP2024025071 W JP 2024025071W WO 2025023038 A1 WO2025023038 A1 WO 2025023038A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
alloy
less
phase
molten
Prior art date
Application number
PCT/JP2024/025071
Other languages
French (fr)
Japanese (ja)
Inventor
裕和 金清
Original Assignee
Hilltop株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilltop株式会社 filed Critical Hilltop株式会社
Publication of WO2025023038A1 publication Critical patent/WO2025023038A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Definitions

  • Such materials include iron-based amorphous materials and iron-based nanocrystalline materials, whose main raw materials are iron (Fe), silicon (Si), and boron (B).
  • Fe-Si-B amorphous alloy ribbons with a thickness of about 17 to 25 ⁇ m, which are produced using such soft magnetic materials by the molten metal rapid solidification method, is growing as an alternative to conventional silicon steel sheets, mainly for use in large transformers and inductors.
  • Fe-Si-B amorphous alloy ribbons mentioned above have lower core loss than silicon steel sheets, it is being considered to take advantage of this feature and apply them to the rotor and stator cores of brushless direct current (BLDC) motors to improve motor efficiency.
  • BLDC brushless direct current
  • high motor efficiency can be obtained as the operating range of the soft magnetic material is in the high-frequency band of around 2 kHz, so it is expected that they will be used in white goods such as vacuum cleaners and auxiliary motors for electrical equipment, which require high-speed motor rotation.
  • BLDC motors for driving EVs in the tens of kW class or more have been made more efficient by combining silicon steel core material with anisotropic rare earth iron boron sintered magnets, which have excellent permanent magnetic properties, and utilizing magnet torque.
  • silicon steel which has low magnetic permeability, cannot fully utilize the excellent magnetic properties of anisotropic rare earth iron boron sintered magnets, making it difficult to achieve a low iron loss core material. For this reason, there is extremely high market demand for high-output, high-efficiency BLDC motors that can contribute to energy savings in automobiles through the synergistic effect of effectively utilizing permanent magnet performance and reducing iron loss in the core material.
  • Fe-Si-B amorphous alloys have a higher magnetic permeability than silicon steel sheets and can reduce iron loss to about one-tenth of that of silicon steel sheets, so they are being considered as a replacement for silicon steel sheets as a core material for BLDC motors for driving EVs.
  • Bs saturation magnetic flux density
  • Fe-Si-B amorphous alloy ribbons are thin, at about 25 ⁇ m, and it is difficult to perform punching press processing to manufacture laminated cores for rotor cores and stator cores of BLDC motors, so their use is limited mainly to wound cores, making it difficult to replace silicon steel sheets in motor applications.
  • Fe-Si-B nanocrystalline materials are prone to cracking and chipping, so they can only be used as wound cores or crushed and then molded into pressed powder cores, and like Fe-Si-B amorphous alloys, they are difficult to use as laminated cores.
  • Patent Document 4 discloses a method for manufacturing a metal ribbon that uses a multi-hole nozzle to prevent the thickness of the metal ribbon from becoming uneven when producing a wide quenched ribbon.
  • the invention in Patent Document 4 is characterized by the shape of the nozzle opening, but there is a problem that the nozzle processing costs rise due to the difficulty of processing, making it difficult to use on a mass production level.
  • Patent Document 6 discloses an Fe-Si-B rapidly solidified alloy that can be made into a laminated core and is characterized by a high Bs of Bs ⁇ 1.7T and a thickness of ⁇ 40 ⁇ m.
  • the invention in Patent Document 6 optimizes the compounding ratio of each element in the ternary composition of the essential elements iron, silicon, and boron, but the workability of the punching press used to manufacture laminated cores from the resulting alloy ribbon is inferior to that of silicon steel sheet, leaving room for further improvement in the manufacture of laminated cores at low cost.
  • the present invention aims to provide a method for manufacturing an iron-based crystalline alloy that can be easily punched while ensuring low iron loss and high saturation magnetic flux density.
  • the object of the present invention is to provide a method for producing a molten alloy of an (Fe,Co)-B system, the molten alloy being expressed by a composition formula (Fe1 - yCoy ) 100-x ( B1- zCz ) x , where x, y, and z satisfy 10.0 ⁇ x ⁇ 18.0 atomic %, 0.05 ⁇ y ⁇ 0.5, and 0.0 ⁇ z ⁇ 0.3, respectively, and a rapid solidification step of rapidly solidifying the molten alloy on a chill roll, the rapid solidification step being performed by rotating the chill roll at a roll surface speed of 15 m/sec or more and 40 m/sec or less, and ejecting the molten alloy from a single slit nozzle onto the surface of the chill roll, so that the ratio of the ⁇ -Fe phase is 50 vol % or more and less than 95 vol %, and the balance being Fe-B and producing an iron-based crystalline alloy consisting of a ferromagnetic phase, the iron
  • the slit width of the discharge nozzle is 0.2 mm or more and 0.7 mm or less.
  • the distance from the molten metal nozzle to the surface of the cooling roll is 0.2 mm or more and 5.0 mm or less.
  • the present invention provides a method for producing an iron-based crystalline alloy that can be easily punched while ensuring low iron loss and high saturation magnetic flux density.
  • FIG. 1 is a schematic diagram of an apparatus used in a method for producing a ribbon-shaped iron-based crystalline alloy according to an embodiment of the present invention.
  • 2A and 2B are enlarged views showing the main parts of the device shown in FIG. 1, in which FIG. 1 is a powder X-ray diffraction profile of an iron-based crystalline alloy obtained in one embodiment of the present invention.
  • 1 is a powder X-ray diffraction profile of an iron-based crystalline alloy obtained in another embodiment of the present invention.
  • 1 is a powder X-ray diffraction profile of an iron-based crystalline alloy obtained in still another example of the present invention.
  • 1 is a powder X-ray diffraction profile of an iron-based crystalline alloy obtained in a comparative example of the present invention.
  • the composition of the iron-based crystalline alloy of the present invention is based on a binary Fe-B alloy composition, with part of the Fe replaced by Co, which is a ferromagnetic element like Fe, and is expressed by the formula (Fe1 -yCoy ) 100-x (B1 -zCz ) x .
  • y in the above composition formula must be 0.05 or more.
  • 0.05 ⁇ y ⁇ 0.5 is required, and from the perspective of achieving a high Bs, 0.1 ⁇ y ⁇ 0.5 is preferable, and when considering manufacturing costs, 0.15 ⁇ y ⁇ 0.4 is even more preferable.
  • B is an essential element for obtaining low core loss and high magnetic permeability, and plays a role in forming a uniform fine structure consisting of the ⁇ -Fe phase and the Fe-B phase.
  • a part of B may be replaced with C, which lowers the melting point of the molten alloy, easing the rapid solidification conditions and making it easier to produce the iron-based crystalline alloy.
  • z in the above composition formula is 0.0 ⁇ z ⁇ 0.3, and from the viewpoint of maintaining high Bs characteristics, 0.0 ⁇ z ⁇ 0.2 is preferable, and 0.05 ⁇ z ⁇ 0.15 is even more preferable.
  • x in the above composition formula is 10.0 ⁇ x ⁇ 18.0 atomic %, preferably 11.0 ⁇ x ⁇ 17.0 atomic %, and more preferably 12.0 ⁇ x ⁇ 16.0 atomic %.
  • the iron-based crystal alloy of the present invention is an (Fe,Co)-B-based iron-based crystal alloy having a composite structure of an ⁇ -Fe phase and an Fe-B phase, and has magnetic and mechanical properties that greatly contribute to improving the efficiency of a BLDC motor. If the abundance ratio of the ⁇ -Fe phase is too low, it becomes difficult to ensure Bs ⁇ 1.7T, while if it is too high, coarse ⁇ -Fe of about 10 ⁇ m or more is likely to precipitate, which may become the starting point of cracks during punching press, and furthermore, it is likely to cause an increase in iron loss and a decrease in magnetic permeability.
  • the abundance ratio of the ⁇ -Fe phase is 50 vol% or more and less than 95 vol%, preferably 60 vol% or more and less than 90 vol%, and more preferably 60 vol% or more and less than 85 vol%.
  • the Fe-B phase is the remaining phase of the ⁇ -Fe phase, and is a phase mainly composed of FeB and Fe2B. As will be described later, the abundance ratio and crystal grain size of the ⁇ -Fe phase can be adjusted to a desired value by controlling the quenching speed of the molten alloy.
  • the average crystal grain size of the ⁇ -Fe phase is preferably 2 nm to 20 nm, and can be determined from the half-width of the X-ray diffraction peak by powder X-ray diffraction (XRD) described later.
  • the iron-based crystalline alloy of the present invention has a saturation magnetic flux density of Bs ⁇ 1.7T, but when considering application to a BLDC motor for driving an EV of 30 kW or more, Bs ⁇ 1.72T is preferable, and Bs ⁇ 1.75T is even more preferable.
  • the iron-based crystalline alloy of the present invention has an iron loss (W10/1k) of ⁇ 20 W/kg at a magnetic flux of 1.0 T and a frequency of 1 kHz, which is significantly lower than the iron loss (W10/1k) of silicon steel plate (JIS standard 35A360) of 96.6 W/kg. If the iron loss (W10/1k) exceeds 20 W/kg, the effect of improving motor efficiency decreases. To further improve motor efficiency, it is preferable that the iron loss (W10/1k) is ⁇ 15 W/kg, and it is even more preferable that the iron loss (W10/1k) is ⁇ 10 W/kg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Provided is an iron-based crystal alloy production method comprising: a step for preparing an (Fe,Co)-B-based molten alloy 3 that has a composition represented by the empirical formula (Fe1-yCoy)100-x(B1-zCz)x, where x, y and z satisfy the conditions 10.0≤x≤18.0 at%, 0.05≤y≤0.5, and 0.0≤z≤0.3, respectively; and a rapid solidification step for rapidly solidifying the molten alloy 3 on a cooling roller 8, said rapid solidification step comprising a step for fabricating an iron-based crystal alloy 9 such that the proportion of an α-Fe phase is at least 50 vol% and less than 95 vol% and the remainder is composed of an Fe-B phase by jetting the molten alloy 3 from a tapping nozzle 6 onto the surface of the cooling roller 8 while rotating the cooling roller 8 at a roller surface speed of at least 15 m/sec and at most 40 m/sec. The iron-based crystal alloy is formed in a thin ribbon shape having a thickness of at most 50 µm, and has a saturation magnetic flux density of at least 1.7 T, an iron loss (W10/1k) at a magnetic flux of 1.0 T and a frequency of 1 kHz of at most 20 W/kg, and a magnetic permeability at 1 kHz of at least 1500. The arithmetic average roughness of the surface of the cooling roller 8 is at least 0.01 µm and at most 0.6 µm.

Description

鉄基結晶合金の製造方法Method for producing iron-based crystalline alloy

 本発明は、鉄基結晶合金の製造方法に関し、より詳しくは、直流モータに適用されるコア材として好適に使用することができる鉄基結晶合金の製造方法に関する。 The present invention relates to a method for producing an iron-based crystalline alloy, and more specifically, to a method for producing an iron-based crystalline alloy that can be suitably used as a core material for DC motors.

 近年、電子部品として使用されるインダクタやリアクトルといった各種受動素子やトランス向けに、鉄損が低く飽和磁束密度が高い材料が市場から求められている。このような材料としては、鉄( Fe )、 珪素( Si )、 硼素( B )を主原料とする鉄基アモルファス材料や鉄基ナノ結晶材料が知られており、このような軟磁性材料を用いて溶湯急冷凝固法により作製される厚み17μmから25μm程度の Fe-Si-B系アモルファス合金薄帯は、従来の珪素鋼板に代わるものとして、大型トランスやインダクタ向けを中心に需要を伸ばしている 。 In recent years, the market has been demanding materials with low iron loss and high saturation magnetic flux density for various passive elements and transformers, such as inductors and reactors used as electronic components. Such materials include iron-based amorphous materials and iron-based nanocrystalline materials, whose main raw materials are iron (Fe), silicon (Si), and boron (B). Demand for Fe-Si-B amorphous alloy ribbons with a thickness of about 17 to 25 μm, which are produced using such soft magnetic materials by the molten metal rapid solidification method, is growing as an alternative to conventional silicon steel sheets, mainly for use in large transformers and inductors.

 また、上記のFe-Si-B系アモルファス合金薄帯は、珪素鋼板に比べて低鉄損であることから、この特長を活かして、ブラシレス直流(BLDC)モータのロータコアおよびステータコアに適用することで、モータ効率を高めることが検討されている。特に、20,000rpmを超えるような高速回転型のBLDCモータに使用する場合には、軟磁性材料の動作域が2kHz前後の高周波帯域となることで高いモータ効率が得られるため、モータの高速回転が要求される掃除機等の白物家電や電装向け補機モータ等への展開が期待されている。 In addition, since the Fe-Si-B amorphous alloy ribbons mentioned above have lower core loss than silicon steel sheets, it is being considered to take advantage of this feature and apply them to the rotor and stator cores of brushless direct current (BLDC) motors to improve motor efficiency. In particular, when used in high-speed BLDC motors that exceed 20,000 rpm, high motor efficiency can be obtained as the operating range of the soft magnetic material is in the high-frequency band of around 2 kHz, so it is expected that they will be used in white goods such as vacuum cleaners and auxiliary motors for electrical equipment, which require high-speed motor rotation.

 一方、白物家電のモータ以上に高効率化が求められているEV向けの駆動用モータは、珪素鋼板と同等の飽和磁束密度(Bs)を確保できないと必要な出力を得られないが、Fe-Si-B系アモルファス合金のBsは最大でも1.6T程度であるため、Bsが1.7T以上の珪素鋼板を代替することが困難である。このため、Fe-Si-B系アモルファス合金を用いたEV駆動用BLDCモータが市場へ投入された例は、これまで存在していない。 On the other hand, drive motors for EVs, which require even higher efficiency than motors for white goods, cannot obtain the necessary output unless they have a saturation magnetic flux density (Bs) equivalent to that of silicon steel sheet. However, the maximum Bs of Fe-Si-B amorphous alloys is around 1.6 T, making it difficult to replace silicon steel sheets, which have a Bs of 1.7 T or more. For this reason, there have been no examples to date of EV drive BLDC motors using Fe-Si-B amorphous alloys being introduced to the market.

 数10kW以上クラスのEV駆動用BLDCモータは、珪素鋼板のコア材と、優れた永久磁石特性を発現する異方性希土類鉄硼素系焼結磁石とを組み合わせて、マグネットトルクの活用による高効率化が従来進められてきたが、透磁率の低い珪素鋼板では、異方性希土類鉄硼素系焼結磁石の優れた磁気特性を十分活用することができないため、低鉄損コア材の実現が困難である。このため、永久磁石性能の有効活用とコア材の低鉄損化との相乗効果により、自動車の省エネルギー化に貢献可能な高出力・高効率BLDCモータの市場要求は極めて高い。  In the past, BLDC motors for driving EVs in the tens of kW class or more have been made more efficient by combining silicon steel core material with anisotropic rare earth iron boron sintered magnets, which have excellent permanent magnetic properties, and utilizing magnet torque. However, silicon steel, which has low magnetic permeability, cannot fully utilize the excellent magnetic properties of anisotropic rare earth iron boron sintered magnets, making it difficult to achieve a low iron loss core material. For this reason, there is extremely high market demand for high-output, high-efficiency BLDC motors that can contribute to energy savings in automobiles through the synergistic effect of effectively utilizing permanent magnet performance and reducing iron loss in the core material.

 Fe-Si-B系アモルファス合金は、珪素鋼板に比べて透磁率が高く、また、鉄損を1/10程度まで低減可能であることから、EV駆動用BLDCモータのコア材として、珪素鋼板からの代替が検討されている。ところが、上記のように飽和磁束密度(Bs)が低いため、鉄損の影響が顕著になる15,000rpm以上の高速回転型のBLDCモータへの展開が主となり、回転数が15,000rpm未満のEV向け駆動用モータへの適用が困難である。また、Fe-Si-B系アモルファス合金薄帯は、厚みが25μm程度と薄く、BLDCモータのロータコアおよびステータコア用の積層コア等を製造するための打抜きプレス加工が困難であるため、主として巻きコアとしての利用に限定され、モータ用途において珪素鋼板を代替し難い。 Fe-Si-B amorphous alloys have a higher magnetic permeability than silicon steel sheets and can reduce iron loss to about one-tenth of that of silicon steel sheets, so they are being considered as a replacement for silicon steel sheets as a core material for BLDC motors for driving EVs. However, because of the low saturation magnetic flux density (Bs) mentioned above, they are mainly used in high-speed BLDC motors of 15,000 rpm or more, where the effects of iron loss become significant, and it is difficult to apply them to EV drive motors with rotation speeds of less than 15,000 rpm. In addition, Fe-Si-B amorphous alloy ribbons are thin, at about 25 μm, and it is difficult to perform punching press processing to manufacture laminated cores for rotor cores and stator cores of BLDC motors, so their use is limited mainly to wound cores, making it difficult to replace silicon steel sheets in motor applications.

 一方、Fe-Si-B系ナノ結晶材は、割れや欠けが生じ易いため、巻きコアとして利用するか、あるいは、粉砕後に成形して圧粉コアとして利用するしかなく、Fe-Si-B系アモルファス合金と同様に、積層コアとして利用することが難しい。 On the other hand, Fe-Si-B nanocrystalline materials are prone to cracking and chipping, so they can only be used as wound cores or crushed and then molded into pressed powder cores, and like Fe-Si-B amorphous alloys, they are difficult to use as laminated cores.

 Fe-Si-B系のアモルファス組織やナノ結晶組織を得るためには、SiおよびBを添加する必要があり、ナノ結晶組織とするためには、さらにCu、Nb等の添加元素が必要となるため、結果的にFeの組成比率が低下することに起因して、Bs≧1.7Tを得ることが出来ない。このため、従来においては、積層コア化が容易であり、かつ、Bs≧1.7Tを確保可能な鉄基合金は見出されていない。 In order to obtain an Fe-Si-B system amorphous structure or nanocrystalline structure, it is necessary to add Si and B, and to obtain a nanocrystalline structure, additional elements such as Cu and Nb are required, which results in a decrease in the Fe composition ratio, making it impossible to obtain Bs ≧ 1.7T. For this reason, no iron-based alloy has been found to date that can be easily made into a laminated core and that can ensure Bs ≧ 1.7T.

 例えば、非特許文献1には、リン(P)を添加することで急冷凝固速度を低下させ、厚み50μm以上の鉄基非晶質合金薄帯が得られることが開示されている。ところが、リン添加系合金は、リンの添加によってBsの低下を招来するだけでなく、合金溶解時にリン成分が揮発して溶湯急冷装置内外の汚染が著しくなり、更には燃えやすいおそれがあるため、未だ産業分野での応用例は少ない。 For example, Non-Patent Document 1 discloses that the addition of phosphorus (P) reduces the rapid solidification rate, and an iron-based amorphous alloy ribbon with a thickness of 50 μm or more can be obtained. However, phosphorus-added alloys not only cause a decrease in Bs due to the addition of phosphorus, but also have the risk of serious contamination inside and outside the molten metal rapid cooling equipment due to the volatilization of phosphorus components during alloy melting, and are also flammable, so there are still few examples of their application in the industrial field.

 特許文献1-3には、複数のスリットノズルから回転する冷却ロール上に合金溶湯を出湯する多重スリット法により、打抜き加工が可能な程度の板厚(例えば50μm程度)を有する非晶質合金薄帯を製造する方法が開示されている。ところが、このような技術を用いてもBs≧1.7Tを実現することは困難であり、珪素鋼板に代わるEV駆動用BLDCモータ向け積層コア向けの軟磁性材料としての適用は困難である。 Patent Documents 1-3 disclose a method for producing amorphous alloy ribbons with a thickness (e.g., about 50 μm) that allows punching processing, using a multiple slit method in which molten alloy is poured from multiple slit nozzles onto a rotating cooling roll. However, even with this technology, it is difficult to achieve Bs ≥ 1.7 T, making it difficult to use as a soft magnetic material for laminated cores in BLDC motors for EV drives to replace silicon steel sheets.

 特許文献4には、多孔ノズルを使用して、幅広の急冷薄帯を作製する際の金属薄帯の厚みが不均一になるのを抑制する金属薄帯の製造方法が開示されている。特許文献4の発明は、ノズル開口部の形状に特徴を有するものであるが、加工が難しいためにノズル加工費が高騰するという問題があり、量産レベルでの利用は難しい。 Patent Document 4 discloses a method for manufacturing a metal ribbon that uses a multi-hole nozzle to prevent the thickness of the metal ribbon from becoming uneven when producing a wide quenched ribbon. The invention in Patent Document 4 is characterized by the shape of the nozzle opening, but there is a problem that the nozzle processing costs rise due to the difficulty of processing, making it difficult to use on a mass production level.

 特許文献5には、千鳥型のマルチオリフィスを有する出湯ノズルを用いて厚板化を図った鉄基珪素硼素系非晶質合金の製造方法が開示されているが、珪素鋼板と比較した場合には、高Bsや十分な厚みの確保が困難であった。 Patent Document 5 discloses a method for manufacturing an iron-based silicon boron amorphous alloy using a discharge nozzle with a staggered multi-orifice to produce thicker plates, but compared to silicon steel plates, it is difficult to ensure a high Bs and sufficient thickness.

 特許文献6には、Bs≧1.7Tでかつ、厚み≧40μmの高Bsを特長とする積層コア化が可能なFe-Si-B系急冷凝固合金が開示されている。特許文献6の発明は、必須元素である鉄、珪素、硼素の三元組成において、各元素の配合比率を最適化したものであるが、これによって得られる合金薄帯から積層コアを製造する際の打抜きプレスの加工性は、珪素鋼板に比べると劣るため、積層コアを低コストで作製する上で更に改良の余地があった。 Patent Document 6 discloses an Fe-Si-B rapidly solidified alloy that can be made into a laminated core and is characterized by a high Bs of Bs ≧ 1.7T and a thickness of ≧ 40μm. The invention in Patent Document 6 optimizes the compounding ratio of each element in the ternary composition of the essential elements iron, silicon, and boron, but the workability of the punching press used to manufacture laminated cores from the resulting alloy ribbon is inferior to that of silicon steel sheet, leaving room for further improvement in the manufacture of laminated cores at low cost.

特開平5-329587号公報Japanese Patent Application Publication No. 5-329587 特開平7-113151号公報Japanese Unexamined Patent Publication No. 7-113151 特開平8-124731号公報Japanese Patent Application Publication No. 8-124731 特開昭63-220950号公報Japanese Unexamined Patent Publication No. 63-220950 特開2018-153828号公報JP 2018-153828 A 特開2021-193199号公報JP 2021-193199 A

高飽和磁束密度を有する新規バルク金属ガラス/アモルファス厚板の創製(東北大学・金属ガラス総合研究センター)牧野彰宏、久保田健、常春涛Creation of new bulk metallic glass/amorphous thick plates with high saturation magnetic flux density (Tohoku University, Metallic Glass Research Center) Akihiro Makino, Ken Kubota, Tono Chuntao

 本発明は、低鉄損および高飽和磁束密度を確保しつつ、打抜き加工を容易に行うことができる鉄基結晶合金の製造方法の提供を目的とする。 The present invention aims to provide a method for manufacturing an iron-based crystalline alloy that can be easily punched while ensuring low iron loss and high saturation magnetic flux density.

 本発明の前記目的は、組成式(Fe1-yCoy100-x(B1-zCz)xで表現され、x、y、zがそれぞれ10.0≦x≦18.0原子%、0.05≦y≦0.5、0.0≦z≦0.3を満足する組成を有する(Fe,Co)-B系の合金溶湯を用意する工程と、冷却ロール上で前記合金溶湯を急冷凝固する急冷凝固工程を備え、前記急冷凝固工程は、前記冷却ロールをロール表面速度15m/sec以上40m/sec以下で回転させながら、前記冷却ロールの表面に前記合金溶湯をシングルスリットノズルからなる出湯ノズルから噴射することにより、α-Fe相の存在比率が50体積%以上95体積%未満であり、残部がFe-B 相からなる鉄基結晶合金を作製する工程を備え、前記鉄基結晶合金は、厚みが50μm以下の薄帯状に形成され、飽和磁束密度が1.7T以上であり、磁束1.0Tおよび周波数1kHzでの鉄損(W10/1k)が20W/kg以下であり、1kHzでの透磁率が1500以上であり、前記冷却ロールの表面における算術平均粗さが、0.01μm以上0.6μm以下である鉄基結晶合金の製造方法により達成される。 The object of the present invention is to provide a method for producing a molten alloy of an (Fe,Co)-B system, the molten alloy being expressed by a composition formula (Fe1 - yCoy ) 100-x ( B1- zCz ) x , where x, y, and z satisfy 10.0≦x≦18.0 atomic %, 0.05≦y≦0.5, and 0.0≦z≦0.3, respectively, and a rapid solidification step of rapidly solidifying the molten alloy on a chill roll, the rapid solidification step being performed by rotating the chill roll at a roll surface speed of 15 m/sec or more and 40 m/sec or less, and ejecting the molten alloy from a single slit nozzle onto the surface of the chill roll, so that the ratio of the α-Fe phase is 50 vol % or more and less than 95 vol %, and the balance being Fe-B and producing an iron-based crystalline alloy consisting of a ferromagnetic phase, the iron-based crystalline alloy being formed into a ribbon shape having a thickness of 50 μm or less, a saturation magnetic flux density of 1.7 T or more, an iron loss (W10/1k) of 20 W/kg or less at a magnetic flux of 1.0 T and a frequency of 1 kHz, a magnetic permeability of 1500 or more at 1 kHz, and an arithmetic mean roughness of the surface of the cooling roll being 0.01 μm or more and 0.6 μm or less.

 この鉄基結晶合金の製造方法において、前記出湯ノズルは、スリット幅が0.2mm以上0.7mm以下であることが好ましい。 In this method for producing an iron-based crystalline alloy, it is preferable that the slit width of the discharge nozzle is 0.2 mm or more and 0.7 mm or less.

 また、前記出湯ノズルから前記冷却ロールの表面までの距離が、0.2mm以上5.0mm以下であることが好ましい。 It is also preferable that the distance from the molten metal nozzle to the surface of the cooling roll is 0.2 mm or more and 5.0 mm or less.

 本発明によれば、低鉄損および高飽和磁束密度を確保しつつ、打抜き加工を容易に行うことができる鉄基結晶合金の製造方法を提供することができる。 The present invention provides a method for producing an iron-based crystalline alloy that can be easily punched while ensuring low iron loss and high saturation magnetic flux density.

本発明の一実施形態に係る薄帯状の鉄基結晶合金の製造方法に用いる装置の概略構成図である。1 is a schematic diagram of an apparatus used in a method for producing a ribbon-shaped iron-based crystalline alloy according to an embodiment of the present invention. 図1に示す装置の要部を示す拡大図であり、(a)は断面図、(b)は底面図である。2A and 2B are enlarged views showing the main parts of the device shown in FIG. 1, in which FIG. 本発明の一実施例で得られた鉄基結晶合金の粉末X線回折プロファイルである。1 is a powder X-ray diffraction profile of an iron-based crystalline alloy obtained in one embodiment of the present invention. 本発明の他の実施例で得られた鉄基結晶合金の粉末X線回折プロファイルである。1 is a powder X-ray diffraction profile of an iron-based crystalline alloy obtained in another embodiment of the present invention. 本発明の更に他の実施例で得られた鉄基結晶合金の粉末X線回折プロファイルである。1 is a powder X-ray diffraction profile of an iron-based crystalline alloy obtained in still another example of the present invention. 本発明の一比較例で得られた鉄基結晶合金の粉末X線回折プロファイルである。1 is a powder X-ray diffraction profile of an iron-based crystalline alloy obtained in a comparative example of the present invention.

[合金組成]
 鉄基合金の打抜き加工性を改善するには、硬くて割れやすいアモルファス組織ではなく結晶組織にする必要がある。本発明の鉄基結晶合金組成は、Fe-Bの二元合金組成を基本とし、Feの一部を、Feと同じく強磁性元素であるCoで置換したものであり、組成式が(Fe1-yCoy100-x(B1-zCz)xで表現される。
[Alloy composition]
To improve the punchability of iron-based alloys, it is necessary to make them crystalline rather than amorphous, which is hard and easily broken. The composition of the iron-based crystalline alloy of the present invention is based on a binary Fe-B alloy composition, with part of the Fe replaced by Co, which is a ferromagnetic element like Fe, and is expressed by the formula (Fe1 -yCoy ) 100-x (B1 -zCz ) x .

 CoのFeに対する置換率は、低すぎるとBs≧1.7Tの実現が困難になるため、上記組成式のyは、0.05以上を確保する必要がある。yの値が増加すると、y=0.5までは鉄基結晶合金のBsが単調に増加するが、yの値が0.5を超えると、Bsは増加せずに、高価な元素であるCoの使用により製造コストのみが増大する。このため、0.05≦y≦0.5であり、高Bs化の観点から0.1≦y≦0.5が好ましく、製造コストをも考慮すると、0.15≦y≦0.4がより好ましい。 If the substitution rate of Co for Fe is too low, it becomes difficult to achieve Bs≧1.7T, so y in the above composition formula must be 0.05 or more. As the value of y increases, the Bs of the iron-based crystal alloy increases monotonically up to y=0.5, but when the value of y exceeds 0.5, Bs does not increase and only the manufacturing cost increases due to the use of Co, which is an expensive element. For this reason, 0.05≦y≦0.5 is required, and from the perspective of achieving a high Bs, 0.1≦y≦0.5 is preferable, and when considering manufacturing costs, 0.15≦y≦0.4 is even more preferable.

 本発明の鉄基結晶合金において、Bは、低鉄損および高透磁率を得るために必須の元素であり、α-Fe相およびFe-B相からなる組織を均一な微細組織とするための役割りを果たしている。Bの一部をCで置換してもよく、これによって合金溶湯の融点が低下するため、急冷凝固条件が緩和されて、鉄基結晶合金の作製が容易になる。 In the iron-based crystalline alloy of the present invention, B is an essential element for obtaining low core loss and high magnetic permeability, and plays a role in forming a uniform fine structure consisting of the α-Fe phase and the Fe-B phase. A part of B may be replaced with C, which lowers the melting point of the molten alloy, easing the rapid solidification conditions and making it easier to produce the iron-based crystalline alloy.

 但し、Bに対するCの置換率が高すぎると、Fe-C化合物が生成されることでα-Fe相およびFe-B相からなる均一で微細な結晶組織を得難くなる。このため、上記組成式のzは、0.0≦z≦0.3であり、高Bs特性を維持する観点から、0.0≦z≦0.2が好ましく、0.05≦z≦0.15がより好ましい。 However, if the substitution rate of C for B is too high, Fe-C compounds are generated, making it difficult to obtain a uniform and fine crystal structure consisting of α-Fe phase and Fe-B phase. For this reason, z in the above composition formula is 0.0≦z≦0.3, and from the viewpoint of maintaining high Bs characteristics, 0.0≦z≦0.2 is preferable, and 0.05≦z≦0.15 is even more preferable.

 鉄基結晶合金の全体組成に対するBおよびCの割合が低すぎると、打抜きプレス時に割れの起点となる粗大なα-Fe相が析出し易くなる一方、鉄基結晶合金の全体組成に対するBおよびCの割合が高すぎると、Fe-B相の体積比率の増加とα-Fe相の体積比率の低下を招来して、Bs≧1.7Tを確保することが困難になる。このため、上記組成式のxは、10.0≦x≦18.0原子%であり、11.0≦x≦17.0原子%が好ましく、12.0≦x≦16.0原子%がより好ましい。 If the proportions of B and C in the overall composition of the iron-based crystalline alloy are too low, coarse α-Fe phases that can become the starting points for cracks during punching presses are more likely to precipitate, while if the proportions of B and C in the overall composition of the iron-based crystalline alloy are too high, the volume ratio of the Fe-B phase increases and the volume ratio of the α-Fe phase decreases, making it difficult to ensure Bs≧1.7T. For this reason, x in the above composition formula is 10.0≦x≦18.0 atomic %, preferably 11.0≦x≦17.0 atomic %, and more preferably 12.0≦x≦16.0 atomic %.

 [金属組織]
 本発明の鉄基結晶合金は、α-Fe相とFe-B相のコンポジット組織を有する(Fe,Co)-B系鉄基結晶合金であり、BLDCモータの効率向上に大きく寄与する磁気的性質および機械的性質を有する。α-Fe相の存在比率は、低すぎると、Bs≧1.7Tの確保が困難になる一方、高すぎると、10μm以上程度の粗大なα-Feが析出し易いため、打抜きプレス時に割れの起点になるおそれがあり、更には鉄損の増加および透磁率の低下が生じ易い。したがって、α-Fe相の存在比率は、50体積%以上95体積%未満であり、60体積%以上90体積%未満が好ましく、60体積%以上85体積%未満がさらに好ましい。Fe-B相は、α-Fe相の残部の相であり、FeB、Fe2Bを主とする相である。後述するように、α-Fe相は、合金溶湯の急冷速度を制御することにより、存在比率や結晶粒径を所望の値に調整することができる。α-Fe相の平均結晶粒径は、2nm ~ 20 nmであることが好ましい。α‐Fe相の平均結晶粒径は、後述する粉末X線回折(XRD)によるX線回折ビークの半値幅より求めることができる。
[Metal structure]
The iron-based crystal alloy of the present invention is an (Fe,Co)-B-based iron-based crystal alloy having a composite structure of an α-Fe phase and an Fe-B phase, and has magnetic and mechanical properties that greatly contribute to improving the efficiency of a BLDC motor. If the abundance ratio of the α-Fe phase is too low, it becomes difficult to ensure Bs≧1.7T, while if it is too high, coarse α-Fe of about 10 μm or more is likely to precipitate, which may become the starting point of cracks during punching press, and furthermore, it is likely to cause an increase in iron loss and a decrease in magnetic permeability. Therefore, the abundance ratio of the α-Fe phase is 50 vol% or more and less than 95 vol%, preferably 60 vol% or more and less than 90 vol%, and more preferably 60 vol% or more and less than 85 vol%. The Fe-B phase is the remaining phase of the α-Fe phase, and is a phase mainly composed of FeB and Fe2B. As will be described later, the abundance ratio and crystal grain size of the α-Fe phase can be adjusted to a desired value by controlling the quenching speed of the molten alloy. The average crystal grain size of the α-Fe phase is preferably 2 nm to 20 nm, and can be determined from the half-width of the X-ray diffraction peak by powder X-ray diffraction (XRD) described later.

 [磁気特性]
 本発明の鉄基結晶合金の飽和磁束密度は、Bs≧1.7Tであるが、30kW以上のEV駆動用のBLDCモータの適用を想定した場合、Bs≧1.72Tが好ましく、Bs≧1.75Tがさらに好ましい。
[Magnetic properties]
The iron-based crystalline alloy of the present invention has a saturation magnetic flux density of Bs≧1.7T, but when considering application to a BLDC motor for driving an EV of 30 kW or more, Bs≧1.72T is preferable, and Bs≧1.75T is even more preferable.

 また、本発明の鉄基結晶合金は、磁束:1.0Tおよび周波数:1kHzでの鉄損(W10/1k)≦20W/kgであり、珪素鋼板(JIS規格35A360)の鉄損(W10/1k):96.6W/kgに比べて大幅に低い低鉄損性能を有する。鉄損(W10/1k)が20W/kgを超えると、モータ効率の改善効果が低下する。モータ効率の改善効果をより高めるためには、鉄損(W10/1k)≦15W/kgが好ましく、鉄損(W10/1k)≦10W/kgがさらに好ましい。 Furthermore, the iron-based crystalline alloy of the present invention has an iron loss (W10/1k) of ≦20 W/kg at a magnetic flux of 1.0 T and a frequency of 1 kHz, which is significantly lower than the iron loss (W10/1k) of silicon steel plate (JIS standard 35A360) of 96.6 W/kg. If the iron loss (W10/1k) exceeds 20 W/kg, the effect of improving motor efficiency decreases. To further improve motor efficiency, it is preferable that the iron loss (W10/1k) is ≦15 W/kg, and it is even more preferable that the iron loss (W10/1k) is ≦10 W/kg.

 本発明の鉄基結晶合金は、1kHzでの透磁率が1500以上である。1kHzでの透磁率が1500より低いと、ステータコアにおけるティース部表面の磁束量について、珪素鋼板に対する優位性が少なくなる。珪素鋼板に対する優位性をより高めるため、1kHzでの透磁率は、2000以上が好ましく、3000以上がより好ましい。 The iron-based crystalline alloy of the present invention has a magnetic permeability of 1500 or more at 1 kHz. If the magnetic permeability at 1 kHz is lower than 1500, the advantage over silicon steel plate is reduced in terms of the amount of magnetic flux on the surface of the teeth in the stator core. To further increase the advantage over silicon steel plate, the magnetic permeability at 1 kHz is preferably 2000 or more, and more preferably 3000 or more.

 [鉄基結晶合金の製造方法]
 本発明の鉄基結晶合金は、上記の組成を有する(Fe,Co)-B系の合金溶湯を用意する工程と、用意した合金溶湯を急冷凝固する急冷凝固工程を備える鉄基結晶合金の製造方法により製造される。
[Method of manufacturing iron-based crystalline alloy]
The iron-based crystalline alloy of the present invention is produced by a method for producing an iron-based crystalline alloy, the method including a step of preparing a molten alloy of an (Fe,Co)-B system having the above-mentioned composition, and a step of rapidly solidifying the prepared molten alloy.

 図1は、本発明の一実施形態に係る鉄基結晶合金の製造方法に用いる単ロール溶湯急冷装置の概略構成図である。図1に示す単ロール溶湯急冷装置1は、溶解炉2と、貯湯容器5と、冷却ロール8とを備えている。 Figure 1 is a schematic diagram of a single-roll molten metal quenching device used in a manufacturing method for an iron-based crystalline alloy according to one embodiment of the present invention. The single-roll molten metal quenching device 1 shown in Figure 1 includes a melting furnace 2, a molten metal storage container 5, and a cooling roll 8.

 溶解炉2は、高周波誘導加熱により原料を溶解した合金溶湯3を、傾動軸4の回動により貯湯容器5に供給する。貯湯容器5は、底部に出湯ノズル6を備えており、加熱コイル(図示せず)により合金溶湯3を更に加熱して、出湯ノズル6の下端に形成されたスリット7から冷却ロール8の表面(外周面)に合金溶湯3を噴出する。冷却ロール8は、内部に冷却水が供給されることにより、表面に接触する合金溶湯を急冷し、(Fe,Co)-B系の薄帯状の急冷凝固合金9を形成する。出湯ノズル6の材質は、例えば、石英(SiO2)、窒化硼素(BN)、炭化珪素素(SiC)およびアルミナ(Al2O3)から適宜選択することができる。 The melting furnace 2 supplies the molten alloy 3, which is obtained by melting the raw materials by high-frequency induction heating, to a molten alloy storage container 5 by rotating a tilting shaft 4. The molten alloy storage container 5 is provided with a discharge nozzle 6 at the bottom, and the molten alloy 3 is further heated by a heating coil (not shown) and ejected from a slit 7 formed at the lower end of the discharge nozzle 6 onto the surface (outer circumferential surface) of a chill roll 8. The chill roll 8 quenches the molten alloy in contact with the surface by supplying cooling water to the inside, forming a thin ribbon-like rapidly solidified alloy 9 of (Fe,Co)-B system. The material of the discharge nozzle 6 can be appropriately selected from, for example, quartz (SiO 2 ), boron nitride (BN), silicon carbide (SiC), and alumina (Al 2 O 3 ).

 図2は、図1に示す装置の出湯ノズル6を示す拡大図であり、(a)は断面図、(b)は底面図である。図2(a)に示す出湯ノズル6は、単一のスリット7が形成されたシングルスリットノズルである。スリット7の幅W1は、冷却ロール8に供給される合金溶湯3の出湯レートを調整する役割を果たす。スリット幅W1が小さ過ぎると、スリット加工が困難になり易く、更には溶湯によるスリット7の閉塞が生じ易い一方、スリット幅W1が大き過ぎると、出湯レートが高くなり過ぎて冷却ロール8での抜熱が間に合わず、冷却ロール8に急冷凝固合金が張り付いて安定した溶湯急冷凝固を継続し難いことから、スリット幅W1は、0.2mm以上0.7mm以下である。スリット幅W1は、0.3mm以上0.6mm以下が好ましく、0.3mm以上0.5mm以下がさらに好ましい。 2 is an enlarged view of the discharge nozzle 6 of the device shown in FIG. 1, (a) being a cross-sectional view, and (b) being a bottom view. The discharge nozzle 6 shown in FIG. 2(a) is a single-slit nozzle with a single slit 7 formed therein. The width W1 of the slit 7 serves to adjust the discharge rate of the molten alloy 3 supplied to the chill roll 8. If the slit width W1 is too small, the slit processing is likely to become difficult, and the slit 7 is likely to be blocked by the molten alloy. On the other hand, if the slit width W1 is too large, the discharge rate becomes too high, and the heat removal at the chill roll 8 is not kept up, and the rapidly solidified alloy sticks to the chill roll 8, making it difficult to continue stable molten rapid solidification. Therefore, the slit width W1 is 0.2 mm or more and 0.7 mm or less. The slit width W1 is preferably 0.3 mm or more and 0.6 mm or less, and more preferably 0.3 mm or more and 0.5 mm or less.

 冷却ロール8の表面に供給された溶湯は、冷却ロール8の回転により薄帯状の急冷凝固合金9となって、冷却ロール8から剥離される。冷却ロール8の表面速度が低すぎると、厚みが50μmを超える過大な厚みの(Fe,Co)-B系急冷凝固合金となるため、粗大なα-Fe相が析出して、打抜きプレス時に割れが生じ易くなる。一方、冷却ロール8の表面速度が高すぎると、(Fe,Co)-B系結晶合金の微細化が進み過ぎることで、α-Fe相の存在比率が低下するため、Bs≧1.7Tの確保が困難になり易い。このため、冷却ロール8の表面速度は、15m/sec以上40m/sec以下であり、好ましくは、15m/sec以上35m/sec以下であり、さらに好ましくは、17m/sec以上32m/sec以下である。冷却ロール8の直径は、例えば、200~20000mmである。冷却ロール8は、急冷凝固時間が10sec以下の短時間であれば、水冷は必ずしも必要ではないが、急冷凝固時間が10sec以上におよぶ場合は、冷却ロール8の内部に冷却水を流すことで、冷却ロール8の表面の温度上昇を抑制することが好ましい。冷却ロール8の水冷能力は、単位時間あたりの凝固潜熱と出湯レートに応じて、適宜調整することが好ましい。 The molten metal supplied to the surface of the cooling roll 8 becomes a thin ribbon of rapidly solidified alloy 9 by the rotation of the cooling roll 8, and is peeled off from the cooling roll 8. If the surface speed of the cooling roll 8 is too low, the (Fe,Co)-B-based rapidly solidified alloy becomes excessively thick, exceeding 50 μm, and coarse α-Fe phases precipitate, which makes it easy for cracks to occur during punching press. On the other hand, if the surface speed of the cooling roll 8 is too high, the (Fe,Co)-B-based crystal alloy becomes too fine, and the proportion of α-Fe phase decreases, making it difficult to ensure Bs≧1.7T. For this reason, the surface speed of the cooling roll 8 is 15 m/sec or more and 40 m/sec or less, preferably 15 m/sec or more and 35 m/sec or less, and more preferably 17 m/sec or more and 32 m/sec or less. The diameter of the cooling roll 8 is, for example, 200 to 20,000 mm. The cooling roll 8 does not necessarily need to be water-cooled if the quenching and solidification time is short, 10 seconds or less, but if the quenching and solidification time is 10 seconds or more, it is preferable to suppress the temperature rise on the surface of the cooling roll 8 by running cooling water inside the cooling roll 8. It is preferable to adjust the water-cooling capacity of the cooling roll 8 appropriately according to the latent heat of solidification and the molten metal pouring rate per unit time.

 薄帯状の急冷凝固合金9の作製においては、冷却ロール8の外表面に対する合金溶湯3の密着性が重要になるが、この溶湯密着性は、冷却ロール8の表面粗度に大きく依存する。冷却ロール8の表面粗度が小さ過ぎると、冷却ロール8の表面で合金溶湯3が滑ることで十分な冷却が困難になる一方、冷却ロール8の表面粗度が大き過ぎると、急冷合金が冷却ロール8に張り付くおそれがある。このため、冷却ロール8の表面における算術平均粗さ(Ra)は、0.01μm以上0.6μm以下であり、0.05μm以上0.55μm以下が好ましく、0.1μm以上0.5μm以下がさらに好ましい。 In producing the ribbon-shaped rapidly solidified alloy 9, the adhesion of the molten alloy 3 to the outer surface of the chill roll 8 is important, but this adhesion of the molten alloy is largely dependent on the surface roughness of the chill roll 8. If the surface roughness of the chill roll 8 is too small, the molten alloy 3 will slip on the surface of the chill roll 8, making sufficient cooling difficult, whereas if the surface roughness of the chill roll 8 is too large, the quenched alloy may stick to the chill roll 8. For this reason, the arithmetic mean roughness (Ra) of the surface of the chill roll 8 is 0.01 μm or more and 0.6 μm or less, preferably 0.05 μm or more and 0.55 μm or less, and more preferably 0.1 μm or more and 0.5 μm or less.

 図1において、出湯ノズル6の先端から冷却ロール8の表面までの距離dは、小さ過ぎると、急冷合金が冷却ロール8に張り付いて、合金溶湯3の安定した急冷凝固を継続できないおそれがある一方、大き過ぎると、冷却ロール8の表面上に湯だまり(パドル)が形成されずに、合金溶湯3の急冷凝固を実施できないおそれがある。このため、上記の距離dは、0.2mm以上5.0mm以下であり、好ましくは、0.3mm以上3.0mm以下であり、より好ましくは、0.3mm以上2.0mm以下である。 In FIG. 1, if the distance d from the tip of the discharge nozzle 6 to the surface of the chill roll 8 is too small, the quenched alloy may stick to the chill roll 8, making it difficult to continue stable quenching and solidification of the molten alloy 3. On the other hand, if the distance is too large, a puddle may not be formed on the surface of the chill roll 8, making it difficult to rapidly solidify the molten alloy 3. For this reason, the distance d is 0.2 mm or more and 5.0 mm or less, preferably 0.3 mm or more and 3.0 mm or less, and more preferably 0.3 mm or more and 2.0 mm or less.

 冷却ロール8は、純銅、銅合金、モリブテン(Mo)およびタングステン(W)のいずれかを主原料とする材料により形成することで、熱伝導性や耐久性に優れることが好ましい。主原料とは、重量比において50%以上を占めることをいう。冷却ロール8の表面には、クロム、ニッケル、またはこれらの合金からなるめっきを施してもよく、これによって、冷却ロール8表面の耐熱性および硬度を増し、急冷凝固時におけるロール表面の溶融や劣化を抑制することができる。 The cooling roll 8 is preferably made of a material whose main raw material is either pure copper, copper alloy, molybdenum (Mo) or tungsten (W), which provides excellent thermal conductivity and durability. The main raw material means that it accounts for 50% or more by weight. The surface of the cooling roll 8 may be plated with chromium, nickel or an alloy of these, which increases the heat resistance and hardness of the surface of the cooling roll 8 and prevents melting or deterioration of the roll surface during rapid solidification.

 [熱処理]
 好ましい実施形態では、(Fe,Co)-B系急冷凝固合金を200℃以上700℃以下の一定温度にて熱処理することにより、急冷凝固合金中の歪除去が可能となり、さらなる低鉄損化を実現できる。熱処理温度が200℃未満では、歪除去の効果が少なく、700℃を超えるとα-Fe相の粗大化が進むため、急冷凝固合金の脆性が増し、打ち抜き加工時に急冷凝固合金が割れ易くなる。上記の熱処理温度は、300℃以上700℃以下が好ましく、400℃以上680℃以下がより好ましい。上記熱処理の熱処理時間は、熱処理装置の均熱帯の形状に依存するが、3分間以上2時間未満の時間範囲内にて、適宜、最適な熱処理時間を選択する。なお、上記熱処理は、真空もしくは不活性ガスの雰囲気で行われることが好ましいが、大気中での熱処理も許容される。
[Heat treatment]
In a preferred embodiment, the (Fe,Co)-B based rapidly solidified alloy is heat-treated at a constant temperature of 200°C to 700°C, which allows the removal of strain in the rapidly solidified alloy and further reduces iron loss. If the heat treatment temperature is less than 200°C, the effect of removing strain is small, and if it exceeds 700°C, the α-Fe phase becomes coarse, which increases the brittleness of the rapidly solidified alloy and makes the rapidly solidified alloy more likely to crack during punching. The heat treatment temperature is preferably 300°C to 700°C, more preferably 400°C to 680°C. The heat treatment time of the heat treatment depends on the shape of the soaking zone of the heat treatment device, but an optimal heat treatment time is appropriately selected within a time range of 3 minutes to less than 2 hours. The heat treatment is preferably performed in a vacuum or inert gas atmosphere, but heat treatment in the air is also acceptable.

 [実施例]
 以下、本発明を実施例により更に具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。
[Example]
The present invention will be described in more detail below with reference to examples, although the present invention is not limited to the following examples.

 下記表1の実施例1-11および比較例12-17に示す合金組成となるように、純度99.5%以上のB、C、CoおよびFeの各元素を配合した素原料100kgをアルミナ製坩堝(溶解炉)に収容し、高周波誘導加熱により溶解して合金溶湯を形成した。この合金溶湯50kgを、表1に示すスリットを有するBN製の出湯ノズルを底部に備える内径200mm×高さ400mmのアルミナ製の貯湯容器に注いだ。出湯ノズルのスリット幅およびスリット長さは、表1に示すとおりである。 100 kg of raw materials containing B, C, Co, and Fe with a purity of 99.5% or more was placed in an alumina crucible (melting furnace) and melted by high-frequency induction heating to form a molten alloy, so as to obtain the alloy compositions shown in Examples 1-11 and Comparative Examples 12-17 in Table 1 below. 50 kg of this molten alloy was poured into an alumina storage vessel with an inner diameter of 200 mm and height of 400 mm, equipped at the bottom with a BN discharge nozzle with a slit as shown in Table 1. The slit width and length of the discharge nozzle are as shown in Table 1.

 この後、貯湯容器の周囲に設置された高周波加熱用コイルへ通電することで合金溶湯50kgをさらに加熱し、合金溶湯の温度が配合組成合金の融点より100℃以上高温に到達した後、出湯ノズルの上部に配したアルミナ製溶湯ストッパーを引き抜いた。これにより、出湯ノズルから直下の冷却ロール表面に合金溶湯を噴出した。冷却ロールは、クロムジルコン銅製であり、外径600mm、幅200mmである。また、出湯ノズルと冷却ロール表面とのギャップは、表1に示すとおりである。また、出湯ノズルからの合金溶湯の噴射圧、冷却ロールのロール表面速度、および、冷却ロールのロール表面の算術平均粗さ(Ra)は、表2に示すとおりである。 After this, 50 kg of the molten alloy was further heated by passing electricity through the high-frequency heating coil installed around the molten alloy storage vessel. After the temperature of the molten alloy reached a temperature 100°C higher than the melting point of the alloy composition, the alumina molten alloy stopper placed on the top of the discharge nozzle was removed. This caused the molten alloy to be ejected from the discharge nozzle onto the surface of the chill roll directly below. The chill roll was made of chrome zircon copper and had an outer diameter of 600 mm and a width of 200 mm. The gap between the discharge nozzle and the chill roll surface is as shown in Table 1. The ejection pressure of the molten alloy from the discharge nozzle, the roll surface speed of the chill roll, and the arithmetic mean roughness (Ra) of the chill roll surface are as shown in Table 2.

 冷却ロールの表面へ噴出された合金溶湯は、冷却ロール表面上に湯だまり(パドル)を形成し、パドルと冷却ロールの界面にて急冷凝固されることで、表3に示す平均厚みおよび平均幅を持つ薄帯状の急冷凝固合金を得た。実施例3については、急冷凝固合金に対して、Ar流気中で650℃×10分間の熱処理を施した。こうして得られた急冷凝固合金に対して打ち抜き試験を行ったところ、表3に示す結果となった。 The molten alloy sprayed onto the surface of the chill roll formed a puddle on the surface of the chill roll and was rapidly solidified at the interface between the paddle and the chill roll, resulting in a ribbon-shaped rapidly solidified alloy with the average thickness and average width shown in Table 3. For Example 3, the rapidly solidified alloy was subjected to a heat treatment at 650°C for 10 minutes in a flow of Ar. A punching test was performed on the rapidly solidified alloy thus obtained, with the results shown in Table 3.

 得られた急冷凝固合金に対して粉末X線回折(XRD)による組織評価を行ったところ、実施例1-11の急冷凝固合金は、いずれもα-Fe型およびFe-B型の化合物からなる結晶合金であった。急冷凝固合金中に析出したα-Feの体積%(X線回折にてα-Fe存在比率を判定)を表3に示す。粉末X線回析による構成相の定量分析は一般的な評価手法であり、X線回折装置の解析ソフトに組み込まれ、各相の構成比の把握が可能である。実施例の急冷凝固合金の粉末X線回折プロファイルの代表例として、実施例4を図3に、実施例9を図4にそれぞれ示す。図3および図4に示すように、実施例4および実施例9の急冷凝固合金の組織は、α-Fe相およびFe-B相からなるコンポジット組織であった。 The rapidly solidified alloys obtained were subjected to a structural evaluation by powder X-ray diffraction (XRD), and all of the rapidly solidified alloys of Examples 1-11 were crystalline alloys consisting of α-Fe and Fe-B type compounds. The volume percentage of α-Fe precipitated in the rapidly solidified alloys (the α-Fe abundance ratio was determined by X-ray diffraction) is shown in Table 3. Quantitative analysis of the constituent phases by powder X-ray diffraction is a common evaluation method, and can be incorporated into the analysis software of the X-ray diffraction device to grasp the composition ratio of each phase. Representative examples of the powder X-ray diffraction profiles of the rapidly solidified alloys of the examples are shown in Figure 3 for Example 4 and Figure 4 for Example 9, respectively. As shown in Figures 3 and 4, the structures of the rapidly solidified alloys of Examples 4 and 9 were composite structures consisting of α-Fe and Fe-B phases.

 実施例1-11および比較例12-17のas-spun(急冷凝固直後)または熱処理後の急冷凝固合金のBs、鉄損および透磁率を、表4に示す。Bsは、東英工業株式会社製の振動式試料磁力計により測定し、鉄損および透磁率は、岩崎通信機株式会社製B-Hアナライザを用いて測定した。上記のとおり、実施例3の急冷凝固合金のみ熱処理が施されているが、図5に示すように、実施例3の急冷凝固合金の粉末X線回折プロファイルについても、α-Fe相およびFe-B相からなるコンポジット組織であった。 Table 4 shows the Bs, core loss and magnetic permeability of the as-spun (immediately after rapid solidification) or heat-treated rapidly solidified alloys of Examples 1-11 and Comparative Examples 12-17. Bs was measured using a vibrating sample magnetometer manufactured by Toei Kogyo Co., Ltd., and core loss and magnetic permeability were measured using a B-H analyzer manufactured by Iwasaki Electric Co., Ltd. As mentioned above, only the rapidly solidified alloy of Example 3 was subjected to heat treatment, but as shown in Figure 5, the powder X-ray diffraction profile of the rapidly solidified alloy of Example 3 also showed a composite structure consisting of α-Fe phase and Fe-B phase.

 比較例12-17の急冷凝固合金は、粉末X線回折(XRD)による評価により、アモルファス単相の金属組織であった。表3にα-Feの体積%(X線回折にてα-Fe存在比率を判定)を示す。比較例の急冷凝固合金の粉末X線回折プロファイルの代表例として、比較例12を図6に示す。図6に示すように、比較例12の急冷凝固合金の組織は、アモルファス単相組織であった。 The rapidly solidified alloys of Comparative Examples 12-17 were found to have an amorphous single-phase metal structure when evaluated by powder X-ray diffraction (XRD). Table 3 shows the volume percentage of α-Fe (the α-Fe abundance ratio was determined by X-ray diffraction). Figure 6 shows Comparative Example 12 as a representative example of the powder X-ray diffraction profile of the rapidly solidified alloy of the comparative example. As shown in Figure 6, the structure of the rapidly solidified alloy of Comparative Example 12 was an amorphous single-phase structure.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 l 単ロール溶湯急冷装置
 2 溶解炉
 3 合金溶湯
 4 傾動軸
 5 貯湯容器
 6 出湯ノズル
7 スリット
 8 冷却ロール
 9 急冷凝固合金
1 Single roll molten metal quenching device 2 Melting furnace 3 Molten alloy 4 Tilting shaft 5 Molten metal storage container 6 Melt discharge nozzle 7 Slit 8 Cooling roll 9 Rapidly solidified alloy

Claims (3)

 組成式(Fe1-yCoy100-x(B1-zCz)xで表現され、x、y、zがそれぞれ10.0≦x≦18.0原子%、0.05≦y≦0.5、0.0≦z≦0.3を満足する組成を有する(Fe,Co)-B系の合金溶湯を用意する工程と、
 冷却ロール上で前記合金溶湯を急冷凝固する急冷凝固工程を備え、
 前記急冷凝固工程は、前記冷却ロールをロール表面速度15m/sec以上40m/sec以下で回転させながら、前記冷却ロールの表面に前記合金溶湯をシングルスリットノズルからなる出湯ノズルから噴射することにより、α-Fe相の存在比率が50体積%以上95体積%未満であり、残部がFe-B 相からなる鉄基結晶合金を作製する工程を備え、
 前記鉄基結晶合金は、厚みが50μm以下の薄帯状に形成され、飽和磁束密度が1.7T以上であり、磁束1.0Tおよび周波数1kHzでの鉄損(W10/1k)が20W/kg以下であり、1kHzでの透磁率が1500以上であり、
 前記冷却ロールの表面における算術平均粗さが、0.01μm以上0.6μm以下である鉄基結晶合金の製造方法。
preparing a molten (Fe,Co)-B alloy having a composition represented by the formula ( Fe1-yCoy ) 100-x (B1 -zCz ) x , where x, y, and z satisfy 10.0≦x≦18.0 atomic %, 0.05≦y≦0.5, and 0.0≦z≦0.3, respectively;
a rapid solidification step of rapidly solidifying the molten alloy on a cooling roll,
the rapid solidification step includes a step of spraying the molten alloy from a single-slit nozzle onto the surface of the chill roll while rotating the chill roll at a roll surface speed of 15 m/sec or more and 40 m/sec or less, thereby producing an iron-based crystalline alloy in which the abundance ratio of α-Fe phase is 50 volume % or more and less than 95 volume %, and the remainder is Fe-B phase;
The iron-based crystalline alloy is formed into a ribbon shape having a thickness of 50 μm or less, has a saturation magnetic flux density of 1.7 T or more, has an iron loss (W10/1k) of 20 W/kg or less at a magnetic flux of 1.0 T and a frequency of 1 kHz, and has a magnetic permeability of 1500 or more at 1 kHz;
The method for producing an iron-based crystalline alloy, wherein the arithmetic mean roughness of the surface of the chill roll is 0.01 μm or more and 0.6 μm or less.
 前記出湯ノズルは、スリット幅が0.2mm以上0.7mm以下である請求項1に記載の鉄基結晶合金の製造方法。 The method for producing an iron-based crystalline alloy according to claim 1, wherein the slit width of the discharge nozzle is 0.2 mm or more and 0.7 mm or less.  前記出湯ノズルから前記冷却ロールの表面までの距離が、0.2mm以上5.0mm以下である請求項1または2に記載の鉄基結晶合金の製造方法。 The method for producing an iron-based crystalline alloy according to claim 1 or 2, wherein the distance from the discharge nozzle to the surface of the cooling roll is 0.2 mm or more and 5.0 mm or less.
PCT/JP2024/025071 2023-07-21 2024-07-11 Iron-based crystal alloy production method WO2025023038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023119069A JP7429078B1 (en) 2023-07-21 2023-07-21 Manufacturing method of iron-based crystal alloy
JP2023-119069 2023-07-21

Publications (1)

Publication Number Publication Date
WO2025023038A1 true WO2025023038A1 (en) 2025-01-30

Family

ID=89771002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/025071 WO2025023038A1 (en) 2023-07-21 2024-07-11 Iron-based crystal alloy production method

Country Status (2)

Country Link
JP (1) JP7429078B1 (en)
WO (1) WO2025023038A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7627981B1 (en) * 2024-05-27 2025-02-07 ネクストコアテクノロジーズ株式会社 Method for producing iron-based crystalline alloy
JP7656988B1 (en) * 2024-09-19 2025-04-04 ネクストコアテクノロジーズ株式会社 Manufacturing method of iron-based soft magnetic alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053939A (en) * 2000-08-04 2002-02-19 Alps Electric Co Ltd METHOD FOR MANUFACTURING Fe-BASE SOFT MAGNETIC ALLOY MAGNETIC CORE
CN107103976A (en) * 2016-02-22 2017-08-29 天津大学 A kind of iron cobalt-based toughness nano-crystal soft magnetic alloy and preparation method thereof
JP2022523627A (en) * 2019-01-11 2022-04-26 モナシュ ユニバーシティー Iron alloy
WO2022196672A1 (en) * 2021-03-17 2022-09-22 Hilltop株式会社 Method for producing fe-si-b-based thick rapidly solidified alloy thin strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053939A (en) * 2000-08-04 2002-02-19 Alps Electric Co Ltd METHOD FOR MANUFACTURING Fe-BASE SOFT MAGNETIC ALLOY MAGNETIC CORE
CN107103976A (en) * 2016-02-22 2017-08-29 天津大学 A kind of iron cobalt-based toughness nano-crystal soft magnetic alloy and preparation method thereof
JP2022523627A (en) * 2019-01-11 2022-04-26 モナシュ ユニバーシティー Iron alloy
WO2022196672A1 (en) * 2021-03-17 2022-09-22 Hilltop株式会社 Method for producing fe-si-b-based thick rapidly solidified alloy thin strip

Also Published As

Publication number Publication date
JP2025016054A (en) 2025-01-31
JP7429078B1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2025023038A1 (en) Iron-based crystal alloy production method
JP4288687B2 (en) Amorphous alloy composition
EP1749599B1 (en) Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
WO2013054854A1 (en) R-t-b alloy flakes, r-t-b sintered magnet, and production method therefor
WO2009096382A1 (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
WO2022196672A1 (en) Method for producing fe-si-b-based thick rapidly solidified alloy thin strip
JP2002030378A (en) Manufacturing method of iron-based permanent magnet alloy by controlling crystallization heat generation temperature
JP7584780B2 (en) Fe-Si-B based rapidly solidified alloy and its manufacturing method
CN103119665B (en) Ferromagnetic amorphous alloy strip steel rolled stock and manufacture method thereof
WO2023022002A1 (en) Method for producing fe-si-b-based thick rapidly solidified alloy thin strip
KR20000071057A (en) Thin plate magnet having microcrystalline structure
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JP2018144084A (en) Method for producing iron-based boron-based alloy
JP5344296B2 (en) TANDISH AND METHOD FOR PRODUCING R-T-B BASE ALLOY USING THE SAME
JP7625198B1 (en) Manufacturing method of iron-based soft magnetic alloy
JP7627981B1 (en) Method for producing iron-based crystalline alloy
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
CN111696741A (en) Magnet material, permanent magnet, rotating electrical machine, and vehicle
CN116313356A (en) Iron-based amorphous-nanocrystalline magnetically soft alloy, strip and preparation method thereof
KR102739072B1 (en) Soft magnetic alloy, soft magnetic alloy ribbon, method of manufacturing soft magnetic alloy ribbon, magnetic core, and component
JP7656988B1 (en) Manufacturing method of iron-based soft magnetic alloy
JP2002329604A (en) Method of manufacturing iron-based rare earth magnet material alloy
JP2003221655A (en) Nanocomposite magnet
JP4506123B2 (en) Rare earth quenching magnet alloy manufacturing method and quenching apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24845419

Country of ref document: EP

Kind code of ref document: A1