[go: up one dir, main page]

WO2025022681A1 - Bearing device for drive wheel - Google Patents

Bearing device for drive wheel Download PDF

Info

Publication number
WO2025022681A1
WO2025022681A1 PCT/JP2023/041756 JP2023041756W WO2025022681A1 WO 2025022681 A1 WO2025022681 A1 WO 2025022681A1 JP 2023041756 W JP2023041756 W JP 2023041756W WO 2025022681 A1 WO2025022681 A1 WO 2025022681A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint member
guide groove
contact
raceway surface
bearing device
Prior art date
Application number
PCT/JP2023/041756
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 吉岡
勇史 柏木
眞人 池尾
拓也 本岡
真嗣 財部
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Publication of WO2025022681A1 publication Critical patent/WO2025022681A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/14Torque-transmitting axles composite or split, e.g. half- axles; Couplings between axle parts or sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts

Definitions

  • the bearing device for the drive wheel in Reference 1 has a structure in which the inner ring is eliminated by providing an inner ring raceway surface on the outer joint member of the constant velocity joint of the drive shaft, which is effective in reducing weight, but further weight reduction is desired in the design of this type of bearing device for the drive wheel.
  • This disclosure was made in consideration of these issues, and aims to provide a technology that is effective in reducing the weight of bearing devices for drive wheels.
  • a first inner raceway surface that guides the multiple first rolling elements in the circumferential direction is provided on the radial outer surface of the cylindrical portion of the outer joint member, and an outer guide groove that guides the multiple third rolling elements along the axial direction is provided on the radial inner surface of the cylindrical portion of the outer joint member.
  • the first inner raceway surface is arranged radially outward of the outer guide groove so as to overlap at least a portion of the outer guide groove.
  • the first inner raceway surface is arranged on a vertical line perpendicular to the tangent line of the outer guide groove. This allows the outer guide groove and the first inner raceway surface to be brought closer together in the axial direction. In this case, the axial dimension of the connecting portion of the outer joint member can be shortened, making it possible to further reduce the weight of the driving wheel bearing device.
  • the above-mentioned aspect allows the weight of the driving wheel bearing device to be reduced.
  • the axial direction of the drive wheel bearing device and its components is the X direction
  • the radial direction is the Y direction
  • the circumferential direction is the Z direction
  • the direction around the axis is the D direction.
  • the outer ring 10 is formed in a substantially cylindrical shape.
  • the inner peripheral surface of the outer ring 10 is provided with annular raceway surfaces 11, 12 formed in two rows spaced apart in the axial direction X.
  • the raceway surface 11 is a raceway surface for a plurality of first balls 60.
  • the raceway surface 12 is a raceway surface for a plurality of second balls 70.
  • the outer ring 10 is fixed to the vehicle body member 2 by bolts (not shown).
  • the vehicle body member 2 is, for example, a member called a "knuckle.”
  • the outer joint member 30 is a member called an outer race of the constant velocity universal joint 1a.
  • the outer joint member 30 has a cylindrical portion (joint portion) 31 having a bottom and a connecting portion 35 that is connected to the hub 20 so as to be capable of transmitting torque.
  • the cylindrical portion 31 and the connecting portion 35 are integrated together.
  • the cylindrical portion 31 of the outer joint member 30 is formed in a cup shape having a bottom surface.
  • the cylindrical portion 31 and the hub 20 are fitted together at the fitting portion 36 by pressing in the axial direction X.
  • a gap may be formed in the fitting portion 36 to allow the hub 20 and the outer joint member 30 to be positioned.
  • the cylindrical portion 31 has an internal space 31a and an abutment surface 31b that abuts against the hub 20 in the axial direction X.
  • the abutment surface 31b is formed at an intermediate position between the first inner raceway surface 33 provided on the cylindrical portion 31 and the second inner raceway surface 21 provided on the hub 20.
  • the inner surface in the radial direction Y of the cylindrical portion 31 of the outer joint member 30 is provided with a plurality of outer guide grooves 32 that guide the plurality of third balls 50 along the axial direction X.
  • the plurality of outer guide grooves 32 are formed at equal intervals in the circumferential direction Z of the cylindrical portion 31.
  • the first inner raceway surface 33 is provided on the outer surface in the radial direction Y of the cylindrical portion 31 of the outer joint member 30 so as to overlap with the internal space 31a in order to guide the plurality of first balls 60 in the circumferential direction Z.
  • the first inner raceway surface 33 is formed in an annular shape in the circumferential direction Z of the cylindrical portion 31.
  • the head 23 of the bolt 23 abuts against the hub 20, and the male thread on the shaft portion 23 b extending from the head 23 a of the bolt 23 screws into the female thread on the recess 35 a of the connecting portion 35, thereby fastening and fixing the outer joint member 30 and the hub 20.
  • the third balls 50 are spheres of the same shape.
  • the third balls 50 are housed in the internal space 31a of the cylindrical portion 31 of the outer joint member 30.
  • the third balls 50 have a function of connecting the cylindrical portion 31 of the outer joint member 30 and the inner joint member 41 in a manner enabling torque transmission.
  • One third ball 50 is guided by one outer guide groove 32.
  • the number of the outer guide grooves 32 and the third balls 50 is six or eight.
  • the first balls 60 are spherical bodies of the same shape.
  • the first balls 60 are provided between the raceway surface 11 of the outer ring 10 and the first inner raceway surface 33 of the outer joint member 30.
  • the first balls 60 have a function of supporting the outer ring 10 and the outer joint member 30 so as to be relatively rotatable in the direction D around the axis (see Fig. 1).
  • the number of the first balls 60 is not limited to 20 as shown in Fig. 2, but is set to an appropriate number.
  • the second balls 70 are spheres of the same shape.
  • the second balls 70 are provided between the raceway surface 12 of the outer ring 10 and the second inner raceway surface 21 of the hub 20.
  • the second balls 70 have a function of supporting the outer ring 10 and the hub 20 so as to be relatively rotatable in the axial direction D (see FIG. 1).
  • the second inner raceway surface 21 is provided on the outer surface of the hub 20 in the radial direction Y so as to overlap with the internal space 31a of the cylindrical portion 31 in order to guide the second balls 70 in the circumferential direction Z.
  • the second inner raceway surface 21 is formed in an annular shape in the circumferential direction Z of the hub 20.
  • the number of the second balls 70 is not limited to 20 as shown in FIG. 3, but is set to an appropriate number.
  • the bearing device 1 does not have a separate member (such as a member called an "inner ring” or “hub inner ring") between the outer joint member 30 and the first balls 60, which is advantageous for weight reduction.
  • the bearing device 1 of this embodiment is equipped with the following first to eighth lightweight structures to further reduce weight.
  • the first lightweight structure is a structure in which the first inner raceway surface 33 is disposed on the outer side of the outer guide groove 32 in the radial direction Y in the outer joint member 30 so as to overlap at least a part of the outer guide groove 32.
  • the region in which the outer guide groove 32 extends along the axial direction X is shown as a hatched region A
  • the region in which the first inner raceway surface 33 extends along the arc surface is shown as a hatched region B.
  • the region B in which the first inner raceway surface 33 extends along the arc surface completely overlaps in the radial direction Y with the region A in which the outer guide groove 32 extends along the axial direction X.
  • a part of the region B may overlap in the radial direction Y with the region A.
  • the second lightweight structure is a structure in which, in the outer joint member 30, the first inner raceway surface 33 is disposed on a vertical line L4 perpendicular to the tangent line L3 of the outer guide groove 32.
  • the tangent line L3 is typically a tangent line at the groove bottom 32b (see FIG. 4) of the outer guide groove 32.
  • this tangent line L3 may be a tangent line to the path of the contact position 32a (see FIG. 4) of the outer guide groove 32, or may be a tangent line to the path of the center of the third ball 50.
  • the fourth lightweight structure is a structure in which the angle ⁇ b between a virtual line L6 and the central axis L1 of the outer joint member 30 is set to 35 to 75 degrees when the joint angle is zero degrees (the state shown in FIG. 1).
  • the virtual line L6 is a line that virtually connects the center Q1 of the third ball 50 and the center Q2 of the first ball 60.
  • one of the three first extension lines M1 passes through the contact position 32a of the third ball 50 in the outer guide groove 32, but the third extension line M3 for the third ball 50 at that contact position 32a does not pass through the contact position 33a of any of the first balls 60 in the first inner raceway surface 33.
  • one third extension line M3 passes through the contact position 33a of the first ball 60 in the first inner raceway surface 33, but the first extension line M1 for the first ball 60 at that contact position 33a does not pass through the contact position 32a of any of the third balls 50 in the outer guide groove 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

This bearing device (1) for a drive wheel comprises: an outer ring (10) that is fixed to a vehicle body-side member (2); a hub (20) to which a wheel (3) is attached; and an outer joint member (30) that has a bottomed cylindrical part (31) and a connection part (35) that is connected to the hub (20) so as to be able to transmit torque. In the outer joint member (30), a first inner raceway surface (33) provided on the outer surface of the cylindrical part (31) is disposed outside in the radial direction (Y) of an outer guide groove (32) provided to the inner surface of the cylindrical part (31), so as to overlap at least a portion of the outer guide groove (32).

Description

駆動輪用軸受装置Bearing device for driving wheels

 本開示は、駆動輪用軸受装置に関する。 This disclosure relates to a bearing device for a drive wheel.

 下記特許文献1には、従来の駆動輪用軸受装置が開示されている。この駆動輪用軸受装置は、駆動輪を回転可能に支持するための転がり軸受装置であって、転がり軸受と等速自在継手が一体化された構造を有する。転がり軸受は、外輪と、内輪に相当するハブ輪と、内輪が一体化された駆動軸と、転動体等から構成されるとともに、等速自在継手は、外側の継手部材が一体化された駆動軸と、内側の継手部材と、ボール等から構成されている。 Patent Document 1 below discloses a conventional bearing device for a driving wheel. This bearing device for a driving wheel is a rolling bearing device for rotatably supporting a driving wheel, and has a structure in which a rolling bearing and a constant velocity universal joint are integrated. The rolling bearing is composed of an outer ring, a hub wheel equivalent to an inner ring, a drive shaft with which the inner ring is integrated, and rolling elements, etc., while the constant velocity universal joint is composed of a drive shaft with which an outer coupling member is integrated, an inner coupling member, balls, etc.

特開2009-292275号公報JP 2009-292275 A

 電動モータまたは内燃機関を駆動源とする車両においては、航続距離の延長や電費または燃費の向上が求められている。このため、駆動輪用軸受装置の軽量化が望まれる。引用文献1の駆動輪用軸受装置は、ドライブシャフトの等速ジョイントの外側ジョイント部材に内輪軌道面を設けることで内輪を廃止した構造であり軽量化に有効であるが、この種の駆動輪用軸受装置の設計においては、さらなる軽量化が望まれる。 In vehicles powered by electric motors or internal combustion engines, there is a demand for extending the driving range and improving electricity consumption or fuel economy. For this reason, it is desirable to reduce the weight of the bearing device for the drive wheel. The bearing device for the drive wheel in Reference 1 has a structure in which the inner ring is eliminated by providing an inner ring raceway surface on the outer joint member of the constant velocity joint of the drive shaft, which is effective in reducing weight, but further weight reduction is desired in the design of this type of bearing device for the drive wheel.

 本開示は、かかる課題に鑑みてなされたものであり、駆動輪用軸受装置を軽量化するのに有効な技術を提供しようとするものである。 This disclosure was made in consideration of these issues, and aims to provide a technology that is effective in reducing the weight of bearing devices for drive wheels.

 本開示の一態様は、
 車体側部材に固定される外輪と、
 車輪が取り付けられるハブと、
 有底筒状の筒状部と、前記ハブにトルク伝達可能に連結される連結部と、を有する外側ジョイント部材と、
 前記外側ジョイント部材の前記筒状部に収容される内側ジョイント部材と、
 前記外輪と前記外側ジョイント部材との間に設けられ、前記外輪と前記外側ジョイント部材を軸回り方向に相対回転可能に支持する複数の第1転動体と、
 前記外輪と前記ハブの間に設けられ、前記外輪と前記ハブを軸回り方向に相対回転可能に支持する複数の第2転動体と、
 前記外側ジョイント部材の前記筒状部と前記内側ジョイント部材とをトルク伝達可能に連結する複数の第3転動体と、
を備え、
 前記外側ジョイント部材の前記筒状部の径方向の内面には、前記複数の第3転動体を軸方向に沿ってガイドする外側ガイド溝が設けられ、
 前記外側ジョイント部材の前記筒状部の径方向の外面には、前記複数の第1転動体を周方向にガイドする第1内側軌道面が設けられており、
 前記外側ジョイント部材において、前記外側ガイド溝の径方向の外側に前記第1内側軌道面が前記外側ガイド溝の少なくとも一部と重なるように配置されており、或いは、前記外側ガイド溝の接線に垂直な垂直線上に前記第1内側軌道面が配置されている、駆動輪用軸受装置、
にある。
One aspect of the present disclosure is
An outer ring fixed to a vehicle body side member;
a hub to which the wheel is attached;
an outer joint member having a bottomed cylindrical portion and a connecting portion that is connected to the hub so as to be capable of transmitting torque;
an inner joint member received in the cylindrical portion of the outer joint member;
a plurality of first rolling elements provided between the outer ring and the outer joint member and supporting the outer ring and the outer joint member so as to be rotatable relative to each other in a direction around an axis;
a plurality of second rolling elements provided between the outer ring and the hub and supporting the outer ring and the hub so as to be capable of relative rotation in a direction around the axis;
a plurality of third rolling elements that connect the cylindrical portion of the outer joint member and the inner joint member in a torque transmittable manner;
Equipped with
an outer guide groove that guides the third rolling elements along an axial direction is provided on an inner surface of the cylindrical portion of the outer joint member in a radial direction;
a first inner raceway surface that guides the first rolling elements in a circumferential direction is provided on a radial outer surface of the cylindrical portion of the outer joint member,
a bearing device for a driving wheel, in which, in the outer joint member, the first inner raceway surface is disposed radially outside the outer guide groove so as to overlap at least a portion of the outer guide groove, or the first inner raceway surface is disposed on a vertical line perpendicular to a tangent to the outer guide groove;
is located.

 上述の態様の駆動輪用軸受装置では、複数の第1転動体を周方向にガイドする第1内側軌道面が外側ジョイント部材の筒状部の径方向の外面に設けられ、複数の第3転動体を軸方向に沿ってガイドする外側ガイド溝が外側ジョイント部材の筒状部の径方向の内面に設けられる。第1転動体を外側ジョイント部材の筒状部に直に接触させる構造によれば、第1転動体と外側ジョイント部材との間に別部材を介在させないため、その分の軽量化が可能になる。 In the driving wheel bearing device of the above aspect, a first inner raceway surface that guides the multiple first rolling elements in the circumferential direction is provided on the radial outer surface of the cylindrical portion of the outer joint member, and an outer guide groove that guides the multiple third rolling elements along the axial direction is provided on the radial inner surface of the cylindrical portion of the outer joint member. With a structure in which the first rolling elements are in direct contact with the cylindrical portion of the outer joint member, no separate member is interposed between the first rolling elements and the outer joint member, making it possible to reduce weight accordingly.

 それに加えて、外側ジョイント部材において、外側ガイド溝の径方向の外側に第1内側軌道面が外側ガイド溝の少なくとも一部と重なるように配置されている。或いは、外側ジョイント部材において、外側ガイド溝の接線に垂直な垂直線上に第1内側軌道面が配置されている。これにより、外側ガイド溝と第1内側軌道面を軸方向に近づけることができる。この場合、外側ジョイント部材の連結部の軸方向の寸法を短くすることができ、駆動輪用軸受装置のさらなる軽量化を図ることが可能になる。 In addition, in the outer joint member, the first inner raceway surface is arranged radially outward of the outer guide groove so as to overlap at least a portion of the outer guide groove. Alternatively, in the outer joint member, the first inner raceway surface is arranged on a vertical line perpendicular to the tangent line of the outer guide groove. This allows the outer guide groove and the first inner raceway surface to be brought closer together in the axial direction. In this case, the axial dimension of the connecting portion of the outer joint member can be shortened, making it possible to further reduce the weight of the driving wheel bearing device.

 上述の態様によれば、駆動輪用軸受装置を軽量化することができる。 The above-mentioned aspect allows the weight of the driving wheel bearing device to be reduced.

 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。 Note that the reference characters in parentheses in the claims indicate the corresponding relationship to the specific means described in the embodiments described below, and do not limit the technical scope of this disclosure.

 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら説明する下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1の駆動輪用軸受装置の軸方向断面図であり、 図2は、図1のII-II線矢視断面図であり、 図3は、図1のIII-III線矢視断面図であり、 図4は、図1中の外側ジョイント部材の筒状部の内面に設けられた外側ガイド溝と第1ボールとの接触状態を示す断面図であり、 図5は、実施形態1の駆動輪用軸受装置の第1の軽量化構造を説明するための部分断面図であり、 図6は、実施形態1の駆動輪用軸受装置の第2の軽量化構造を説明するための部分断面図であり、 図7は、実施形態1の駆動輪用軸受装置の第3の軽量化構造および第4の軽量化構造を説明するための部分断面図であり、 図8は、実施形態1の駆動輪用軸受装置の第5の軽量化構造を説明するための部分断面図であり、 図9は、実施形態1の駆動輪用軸受装置の第6の軽量化構造および第7の軽量化構造を説明するための部分断面図であり、 図10は、実施形態1の駆動輪用軸受装置の第8の軽量化構造を説明するための直進時における軸方向断面図であり、 図11は、図10の一部を拡大して示す断面図であり、 図12は、実施形態1の駆動輪用軸受装置の第8の軽量化構造を説明するための左旋回時における軸方向断面図であり、 図13は、図12の一部を拡大して示す断面図であり、 図14は、図11または図13において外側ジョイント部材の筒状部の周方向断面の一部を示す断面図であり、 図15は、図13において外側ジョイント部材の筒状部の周方向断面の一部を示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is an axial cross-sectional view of a driving wheel bearing device according to a first embodiment; FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1; FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1; FIG. 4 is a cross-sectional view showing a contact state between an outer guide groove provided on an inner surface of a cylindrical portion of an outer joint member shown in FIG. 1 and a first ball; FIG. 5 is a partial cross-sectional view for explaining a first weight-saving structure of the driving wheel bearing device of the first embodiment; FIG. 6 is a partial cross-sectional view for explaining a second weight-saving structure of the driving wheel bearing device of the first embodiment; FIG. 7 is a partial cross-sectional view for explaining a third weight-saving structure and a fourth weight-saving structure of the driving wheel bearing device of the first embodiment; FIG. 8 is a partial cross-sectional view for explaining a fifth weight-saving structure of the driving wheel bearing device of the first embodiment; FIG. 9 is a partial cross-sectional view for explaining a sixth weight-saving structure and a seventh weight-saving structure of the driving wheel bearing device of the first embodiment; FIG. 10 is an axial cross-sectional view illustrating an eighth weight-saving structure of the driving wheel bearing device according to the first embodiment when the vehicle moves straight ahead; FIG. 11 is an enlarged cross-sectional view of a portion of FIG. 10; FIG. 12 is an axial cross-sectional view illustrating an eighth weight-saving structure of the driving wheel bearing device according to the first embodiment when turning left; FIG. 13 is an enlarged cross-sectional view of a portion of FIG. 12; FIG. 14 is a cross-sectional view showing a part of a circumferential cross section of a cylindrical portion of an outer joint member in FIG. 11 or FIG. 13 ; 15 is a cross-sectional view showing a part of a circumferential cross section of the cylindrical portion of the outer joint member in FIG. 13. FIG.

 以下、上述の態様の一実施形態について図面を参照しつつ説明する。 Below, one embodiment of the above aspect will be described with reference to the drawings.

 なお、本形態を説明するための図面では、特にことわらない限り、駆動輪用軸受装置およびその構成要素の軸方向をX方向とし、径方向をY方向とし、周方向をZ方向とし、軸回り方向をD方向とする。 In the drawings used to explain this embodiment, unless otherwise specified, the axial direction of the drive wheel bearing device and its components is the X direction, the radial direction is the Y direction, the circumferential direction is the Z direction, and the direction around the axis is the D direction.

(実施形態1)
1.駆動輪用軸受装置1の全体構成
 図1に示されるように、実施形態1の駆動輪用軸受装置(以下、単に「軸受装置」と称する。)1は、等速自在継手(等速ジョイント)1aと転がり軸受1bとが一体化された構造を有する。この軸受装置1は、電動モータまたは内燃機関を駆動源とする車両に搭載され、駆動源で発生するトルクを車輪3に伝達するとともに、車輪3を回転可能に支持する。
(Embodiment 1)
1, the driving wheel bearing device 1 of the first embodiment (hereinafter simply referred to as the "bearing device") has a structure in which a constant velocity universal joint 1a and a rolling bearing 1b are integrated. This bearing device 1 is mounted on a vehicle driven by an electric motor or an internal combustion engine, and transmits torque generated by the drive source to the wheel 3 and supports the wheel 3 for rotation.

 等速自在継手1aは、外側ジョイント部材30と、内側ジョイント部材41と、複数の第3転動体である複数の第3ボール50と、保持器51を含む複数の構成要素によって構成されている。等速自在継手1aは、ジョイント中心固定式であって、複数の第3ボール50をトルク伝達部材とする継手である。転がり軸受1bは、外輪10と、ハブ20と、外側ジョイント部材30と、複数の第1転動体である複数の第1ボール60と、複数の第2転動体である複数の第2ボール70を含む複数の構成要素によって構成されている。 The constant velocity universal joint 1a is composed of multiple components including an outer joint member 30, an inner joint member 41, multiple third balls 50 which are multiple third rolling bodies, and a retainer 51. The constant velocity universal joint 1a is a joint with a fixed joint center, and the multiple third balls 50 serve as torque transmission members. The rolling bearing 1b is composed of multiple components including an outer ring 10, a hub 20, an outer joint member 30, multiple first balls 60 which are multiple first rolling bodies, and multiple second balls 70 which are multiple second rolling bodies.

 外輪10は、略円筒状に形成されている。この外輪10の内周面には、軸方向Xに間隔をあけて2列となるように形成された環状の軌道面11,12が設けられている。軌道面11は、複数の第1ボール60のための軌道面である。軌道面12は、複数の第2ボール70のための軌道面である。外輪10は、ボルト(図示省略)によって車体側部材2に固定される。車体側部材2は、例えば、「ナックル」と称される部材である。 The outer ring 10 is formed in a substantially cylindrical shape. The inner peripheral surface of the outer ring 10 is provided with annular raceway surfaces 11, 12 formed in two rows spaced apart in the axial direction X. The raceway surface 11 is a raceway surface for a plurality of first balls 60. The raceway surface 12 is a raceway surface for a plurality of second balls 70. The outer ring 10 is fixed to the vehicle body member 2 by bolts (not shown). The vehicle body member 2 is, for example, a member called a "knuckle."

 ハブ20は、環状に形成されている。ハブ20の内周には外側ジョイント部材30の連結部35が挿入されている。ハブ20には複数のボルト22が固定されており、このハブ20に複数のボルト22を介して駆動輪となる車輪3が取り付けられる。 The hub 20 is formed in an annular shape. The connecting portion 35 of the outer joint member 30 is inserted into the inner circumference of the hub 20. A number of bolts 22 are fixed to the hub 20, and the wheels 3, which serve as drive wheels, are attached to the hub 20 via the bolts 22.

2.外側ジョイント部材30の構造
 外側ジョイント部材30は、等速自在継手1aのアウターレースと称される部材である。この外側ジョイント部材30は、有底筒状の筒状部(ジョイント部)31と、ハブ20にトルク伝達可能に連結される連結部35と、を有する。筒状部31と連結部35が一体化されている。
2. Structure of the outer joint member 30 The outer joint member 30 is a member called an outer race of the constant velocity universal joint 1a. The outer joint member 30 has a cylindrical portion (joint portion) 31 having a bottom and a connecting portion 35 that is connected to the hub 20 so as to be capable of transmitting torque. The cylindrical portion 31 and the connecting portion 35 are integrated together.

 外側ジョイント部材30の筒状部31は、底面を有するカップ状に形成されている。筒状部31とハブ20は、嵌合部36において軸方向Xの圧入によって互いに嵌り合う。このとき、嵌合部36にはハブ20と外側ジョイント部材30との位置決めができる程度の隙間が形成されていても良い。筒状部31は、内部空間31aと、ハブ20に軸方向Xに突き当たる突き当て面31bと、を有する。突き当て面31bは、筒状部31に設けられた第1内側軌道面33と、ハブ20に設けられた第2内側軌道面21と、の間の中間位置に形成されている。すなわち、突き当て面31bを隔てて、この突き当て面31bよりもシャフト40側に第1内側軌道面33が配置されており、この突き当て面31bよりも車輪3側に第2内側軌道面21が配置されている。したがって、突き当て面31bを通る仮想平面(図示省略)を間に挟んで、軸方向Xの一方側に第1ボール60が配置され、軸方向Xの他方側に第2ボール70が配置される。また、突き当て面31bは、内部空間31aと径方向Yに重なるように、すなわち内部空間31aの軸方向Xの範囲に位置するように、配置されている。突き当て面31bをこのように配置すれば、外側ジョイント部材30の連結部35の軸方向Xの寸法を短く抑えるのに効果がある。 The cylindrical portion 31 of the outer joint member 30 is formed in a cup shape having a bottom surface. The cylindrical portion 31 and the hub 20 are fitted together at the fitting portion 36 by pressing in the axial direction X. At this time, a gap may be formed in the fitting portion 36 to allow the hub 20 and the outer joint member 30 to be positioned. The cylindrical portion 31 has an internal space 31a and an abutment surface 31b that abuts against the hub 20 in the axial direction X. The abutment surface 31b is formed at an intermediate position between the first inner raceway surface 33 provided on the cylindrical portion 31 and the second inner raceway surface 21 provided on the hub 20. In other words, the first inner raceway surface 33 is disposed on the shaft 40 side of the abutment surface 31b, and the second inner raceway surface 21 is disposed on the wheel 3 side of the abutment surface 31b. Therefore, the first ball 60 is disposed on one side in the axial direction X, and the second ball 70 is disposed on the other side in the axial direction X, with a virtual plane (not shown) passing through the abutment surface 31b in between. The abutment surface 31b is disposed so as to overlap with the internal space 31a in the radial direction Y, that is, so as to be located within the axial direction X range of the internal space 31a. Arranging the abutment surface 31b in this manner is effective in keeping the axial direction X dimension of the connecting portion 35 of the outer joint member 30 short.

 外側ジョイント部材30の筒状部31の径方向Yの内面には、複数の第3ボール50を軸方向Xに沿ってガイドする複数の外側ガイド溝32が設けられている。複数の外側ガイド溝32は、筒状部31の周方向Zに等間隔に形成されている。第1内側軌道面33は、複数の第1ボール60を周方向Zにガイドするために、外側ジョイント部材30の筒状部31の径方向Yの外面に内部空間31aと重なるように設けられている。第1内側軌道面33は、筒状部31の周方向Zに環状に形成されている。 The inner surface in the radial direction Y of the cylindrical portion 31 of the outer joint member 30 is provided with a plurality of outer guide grooves 32 that guide the plurality of third balls 50 along the axial direction X. The plurality of outer guide grooves 32 are formed at equal intervals in the circumferential direction Z of the cylindrical portion 31. The first inner raceway surface 33 is provided on the outer surface in the radial direction Y of the cylindrical portion 31 of the outer joint member 30 so as to overlap with the internal space 31a in order to guide the plurality of first balls 60 in the circumferential direction Z. The first inner raceway surface 33 is formed in an annular shape in the circumferential direction Z of the cylindrical portion 31.

 外側ジョイント部材30の連結部35は、所謂「スプライン嵌合(スプライン孔または穴の内周面に設けられる凹溝にスプライン軸の外周面に設けられる凸歯が係合する構造)」によって、ハブ20に係合しており、外側ジョイント部材30とハブ20とをトルク伝達可能に連結している。また、連結部35は、ボルト23によってハブ20に軸方向相対移動不能に締結固定されている。ボルト23の頭部23がハブ20に当接し、ボルト23の頭部23aから延びる軸部23bに設けられた雄ネジが、連結部35の凹部35aに設けられた雌ネジに螺合することで外側ジョイント部材30とハブ20が締結固定されている。 The connecting portion 35 of the outer joint member 30 engages with the hub 20 by what is called "spline fitting (a structure in which concave grooves on the inner circumferential surface of a splined hole or bore engage with convex teeth on the outer circumferential surface of a splined shaft)" and connects the outer joint member 30 and the hub 20 in a manner that allows torque transmission. The connecting portion 35 is also fastened and fixed to the hub 20 by a bolt 23 so that it cannot move relative to the hub in the axial direction. The head 23 of the bolt 23 abuts against the hub 20, and the male thread on the shaft portion 23 b extending from the head 23 a of the bolt 23 screws into the female thread on the recess 35 a of the connecting portion 35, thereby fastening and fixing the outer joint member 30 and the hub 20.

3.内側ジョイント部材41の構造
 内側ジョイント部材41は、環状に形成されており、車両の駆動源(電動モータまたは内燃機関)に接続されるシャフト40の外周に固定されている。内側ジョイント部材41は、外側ジョイント部材30の筒状部31の内部空間31aに収容されている。内側ジョイント部材41は、所定のジョイント中心点Pを中心に外側ジョイント部材30に対して斜動可能である。本形態では、外側ジョイント部材30の中心軸線L1と内側ジョイント部材41の中心軸線L2とのなす角度がジョイント角となる。なお、図1には、ジョイント角がゼロ度である状態が示されている。
3. Structure of the inner joint member 41 The inner joint member 41 is formed in an annular shape and is fixed to the outer periphery of the shaft 40 connected to the drive source (electric motor or internal combustion engine) of the vehicle. The inner joint member 41 is accommodated in the internal space 31a of the cylindrical portion 31 of the outer joint member 30. The inner joint member 41 is capable of tilting relative to the outer joint member 30 around a predetermined joint center point P. In this embodiment, the angle between the central axis L1 of the outer joint member 30 and the central axis L2 of the inner joint member 41 is the joint angle. Note that FIG. 1 shows a state in which the joint angle is zero degrees.

4.第3ボール50の構造
 複数の第3ボール50は、同一形状の球体である。複数の第3ボール50は、外側ジョイント部材30の筒状部31の内部空間31aに収容されている。複数の第3ボール50は、外側ジョイント部材30の筒状部31と内側ジョイント部材41とをトルク伝達可能に連結する機能を有する。1つの外側ガイド溝32に1つの第3ボール50がガイドされる。外側ガイド溝32および第3ボール50の数は、6つ、または8つである。
4. Structure of the third ball 50 The third balls 50 are spheres of the same shape. The third balls 50 are housed in the internal space 31a of the cylindrical portion 31 of the outer joint member 30. The third balls 50 have a function of connecting the cylindrical portion 31 of the outer joint member 30 and the inner joint member 41 in a manner enabling torque transmission. One third ball 50 is guided by one outer guide groove 32. The number of the outer guide grooves 32 and the third balls 50 is six or eight.

5.第1ボール60の構造
 図1及び図2に示されるように、複数の第1ボール60は、同一形状の球体である。複数の第1ボール60は、外輪10の軌道面11と外側ジョイント部材30の第1内側軌道面33との間に設けられている。複数の第1ボール60は、外輪10と外側ジョイント部材30を軸回り方向D(図1を参照)に相対回転可能に支持する機能を有する。第1ボール60の数は図2に示す20個に限定されるものではなく適宜の数に設定される。
5. Structure of the first balls 60 As shown in Fig. 1 and Fig. 2, the first balls 60 are spherical bodies of the same shape. The first balls 60 are provided between the raceway surface 11 of the outer ring 10 and the first inner raceway surface 33 of the outer joint member 30. The first balls 60 have a function of supporting the outer ring 10 and the outer joint member 30 so as to be relatively rotatable in the direction D around the axis (see Fig. 1). The number of the first balls 60 is not limited to 20 as shown in Fig. 2, but is set to an appropriate number.

6.第2ボール70の構造
 図1及び図3に示されるように、複数の第2ボール70は、同一形状の球体である。複数の第2ボール70は、外輪10の軌道面12とハブ20の第2内側軌道面21との間に設けられている。複数の第2ボール70は、外輪10とハブ20を軸回り方向D(図1を参照)に相対回転可能に支持する機能を有する。第2内側軌道面21は、複数の第2ボール70を周方向Zにガイドするために、ハブ20の径方向Yの外面に筒状部31の内部空間31aと重なるように設けられている。第2内側軌道面21は、ハブ20の周方向Zに環状に形成されている。第2ボール70の数は図3に示す20個に限定されるものではなく適宜の数に設定される。
6. Structure of the second balls 70 As shown in FIG. 1 and FIG. 3, the second balls 70 are spheres of the same shape. The second balls 70 are provided between the raceway surface 12 of the outer ring 10 and the second inner raceway surface 21 of the hub 20. The second balls 70 have a function of supporting the outer ring 10 and the hub 20 so as to be relatively rotatable in the axial direction D (see FIG. 1). The second inner raceway surface 21 is provided on the outer surface of the hub 20 in the radial direction Y so as to overlap with the internal space 31a of the cylindrical portion 31 in order to guide the second balls 70 in the circumferential direction Z. The second inner raceway surface 21 is formed in an annular shape in the circumferential direction Z of the hub 20. The number of the second balls 70 is not limited to 20 as shown in FIG. 3, but is set to an appropriate number.

 なお、第1ボール60及び第2ボール70は、球体以外にも、円筒状のローラ、針形状のニードル、円錐状のテーパードローラであっても良い。 In addition, the first ball 60 and the second ball 70 may be cylindrical rollers, needles, or conical tapered rollers, in addition to spheres.

 図4に示されるように、各第3ボール50は、周方向の二箇所の接触位置32aで外側ガイド溝32に接触する。外側ガイド溝32の二箇所の接触位置32aの間の溝底32bは、第3ボール50との間に微小隙間を形成する。隣り合う2つの外側ガイド溝32の間の面は、ジョイント内球面34により形成される。 As shown in FIG. 4, each third ball 50 contacts the outer guide groove 32 at two contact positions 32a in the circumferential direction. The groove bottom 32b between the two contact positions 32a of the outer guide groove 32 forms a small gap between the third ball 50 and the groove bottom 32b. The surface between two adjacent outer guide grooves 32 is formed by the joint inner spherical surface 34.

7.保持器51の構造
 図5に示されるように、保持器51は、複数の第3ボール50を保持するために筒状に形成されている。この保持器51は、外周面および内周面が球面状であり、外側ジョイント部材30の筒状部31に設けられたジョイント内球面34と内側ジョイント部材41に設けられたジョイント外球面42との間に挟まれて配置されている。
5 , the cage 51 is formed in a cylindrical shape to hold a plurality of third balls 50. The cage 51 has spherical outer and inner peripheral surfaces, and is disposed between the joint inner spherical surface 34 provided on the cylindrical portion 31 of the outer joint member 30 and the joint outer spherical surface 42 provided on the inner joint member 41.

8.駆動輪用軸受装置1の軽量化構造
 次に、図5~図15を参照しながら、本形態の軸受装置1で特徴的な軽量化構造について説明する。軸受装置1は、外側ジョイント部材30と複数の第1ボール60との間に別部材(例えば、「内輪」或いは「ハブ内輪」と称される部材)が介在しておらず、その分、軽量化に有利である。本形態の軸受装置1は、さらなる軽量化のために、以下の第1から第8軽量化構造を具備している。
8. Lightweight Structure of Bearing Device 1 for Driving Wheel Next, the lightweight structure characteristic of the bearing device 1 of this embodiment will be described with reference to Figures 5 to 15. The bearing device 1 does not have a separate member (such as a member called an "inner ring" or "hub inner ring") between the outer joint member 30 and the first balls 60, which is advantageous for weight reduction. The bearing device 1 of this embodiment is equipped with the following first to eighth lightweight structures to further reduce weight.

8-1.第1の軽量化構造
 図5に示されるように、第1の軽量化構造は、外側ジョイント部材30において、外側ガイド溝32の径方向Yの外側に第1内側軌道面33が外側ガイド溝32の少なくとも一部と重なるように配置された構造である。図5では、説明の便宜上、外側ガイド溝32が軸方向Xに沿って延在する領域を、ハッチングを付した領域Aとして示し、第1内側軌道面33が円弧面に沿って延在する領域を、ハッチングを付した領域Bとして示している。本形態では、外側ガイド溝32が軸方向Xに沿って延在する領域Aに対して、第1内側軌道面33が円弧面に沿って延在する領域Bが径方向Yに完全に重なり合っている。これに代えて、領域Aに対して領域Bの一部が径方向Yに重なり合っていても良い。
8-1. First lightweight structure As shown in Fig. 5, the first lightweight structure is a structure in which the first inner raceway surface 33 is disposed on the outer side of the outer guide groove 32 in the radial direction Y in the outer joint member 30 so as to overlap at least a part of the outer guide groove 32. In Fig. 5, for convenience of explanation, the region in which the outer guide groove 32 extends along the axial direction X is shown as a hatched region A, and the region in which the first inner raceway surface 33 extends along the arc surface is shown as a hatched region B. In this embodiment, the region B in which the first inner raceway surface 33 extends along the arc surface completely overlaps in the radial direction Y with the region A in which the outer guide groove 32 extends along the axial direction X. Alternatively, a part of the region B may overlap in the radial direction Y with the region A.

 第1の軽量化構造によれば、従来構造に比べて、外側ガイド溝32と第1内側軌道面33を軸方向Xに近づけた幅狭構造を実現することができる。この場合、外側ジョイント部材30の連結部35の軸方向Xの寸法を短くすることができる。これにより、軸受装置1を軽量化することが可能になる。 The first lightweight structure makes it possible to realize a narrower structure in which the outer guide groove 32 and the first inner raceway surface 33 are closer to the axial direction X than in the conventional structure. In this case, the dimension of the connecting portion 35 of the outer joint member 30 in the axial direction X can be shortened. This makes it possible to reduce the weight of the bearing device 1.

8-2.第2の軽量化構造
 図6に示されるように、第2の軽量化構造は、外側ジョイント部材30において、外側ガイド溝32の接線L3に垂直な垂直線L4上に第1内側軌道面33が配置された構造である。接線L3は、典型的には、外側ガイド溝32の溝底32b(図4を参照)における接線とされる。また、この接線L3は、外側ガイド溝32の接触位置32a(図4を参照)の軌跡に対する接線であっても良く、或いは、第3ボール50の中心の軌跡に対する接線であっても良い。
6, the second lightweight structure is a structure in which, in the outer joint member 30, the first inner raceway surface 33 is disposed on a vertical line L4 perpendicular to the tangent line L3 of the outer guide groove 32. The tangent line L3 is typically a tangent line at the groove bottom 32b (see FIG. 4) of the outer guide groove 32. In addition, this tangent line L3 may be a tangent line to the path of the contact position 32a (see FIG. 4) of the outer guide groove 32, or may be a tangent line to the path of the center of the third ball 50.

 第2の軽量化構造によれば、第1の軽量化構造の場合と同様に、外側ジョイント部材30の連結部35の軸方向Xの寸法を短くできるため、軸受装置1を軽量化することが可能になる。 As with the first lightweight structure, the second lightweight structure allows the axial dimension of the connecting portion 35 of the outer joint member 30 to be shortened, making it possible to reduce the weight of the bearing device 1.

8-3.第3の軽量化構造
 図7に示されるように、第3の軽量化構造は、外側ジョイント部材30において、仮想直線L5と外側ジョイント部材30の中心軸線L1とのなす角度θaを60~80度とする構造である。仮想直線L5は、内側ジョイント部材41のジョイント中心点Pと第1ボール60の中心Q2を仮想的に結ぶ直線である。
7, the third lightweight structure is a structure in which the angle θa between a virtual straight line L5 and the central axis L1 of the outer joint member 30 is set to 60 to 80 degrees. The virtual straight line L5 is a straight line that virtually connects the joint center point P of the inner joint member 41 and the center Q2 of the first ball 60.

 第3の軽量化構造によれば、第1の軽量化構造の場合と同様に、外側ジョイント部材30の連結部35の軸方向Xの寸法を短くできるため、軸受装置1を軽量化することが可能になる。特に、角度θaを大きく設定するほど軸受装置1の軽量化の効果が高まる。 As with the first lightweight structure, the third lightweight structure allows the axial dimension of the connecting portion 35 of the outer joint member 30 to be shortened, making it possible to reduce the weight of the bearing device 1. In particular, the greater the angle θa is set, the greater the effect of reducing the weight of the bearing device 1.

8-4.第4の軽量化構造
 図7に示されるように、第4の軽量化構造は、外側ジョイント部材30において、ジョイント角がゼロ度である状態(図1の状態)で、仮想直線L6と外側ジョイント部材30の中心軸線L1とのなす角度θbを35~75度とする構造である。仮想直線L6は、第3ボール50の中心Q1と第1ボール60の中心Q2を仮想的に結ぶ直線である。
7, the fourth lightweight structure is a structure in which the angle θb between a virtual line L6 and the central axis L1 of the outer joint member 30 is set to 35 to 75 degrees when the joint angle is zero degrees (the state shown in FIG. 1). The virtual line L6 is a line that virtually connects the center Q1 of the third ball 50 and the center Q2 of the first ball 60.

 第4の軽量化構造によれば、第1の軽量化構造の場合と同様に、外側ジョイント部材30の連結部35の軸方向Xの寸法を短くできるため、軸受装置1を軽量化することが可能になる。特に、角度θbを大きく設定するほど軸受装置1の軽量化の効果が高まる。 As with the first lightweight structure, the fourth lightweight structure allows the axial dimension of the connecting portion 35 of the outer joint member 30 to be shortened, making it possible to reduce the weight of the bearing device 1. In particular, the greater the angle θb is set, the greater the effect of reducing the weight of the bearing device 1.

8-5.第5の軽量化構造
 図8に示されるように、第5の軽量化構造は、ジョイント角が常用範囲にある定常状態で、第3ボール50が外側ジョイント部材30の筒状部31と接触範囲Cで接触し、第1内側軌道面33の接線L7に垂直な垂直線L8上に接触範囲Cが配置される構造である。ここでいう定常状態とは、車両の停車時や直進時をいう。接線L7は、第1内側軌道面33の第3ボール50との接触点における接線である。図8では、説明の便宜上、接触範囲Cを、ハッチングを付した領域として示している。
8-5. Fifth Lightweight Structure As shown in Fig. 8, the fifth lightweight structure is a structure in which, in a steady state where the joint angle is in a normal range, the third ball 50 contacts the cylindrical portion 31 of the outer joint member 30 in a contact area C, and the contact area C is located on a vertical line L8 perpendicular to a tangent line L7 of the first inner raceway surface 33. The steady state here refers to when the vehicle is stopped or moving straight. The tangent line L7 is a tangent line at the contact point between the first inner raceway surface 33 and the third ball 50. For convenience of explanation, the contact area C is shown as a hatched area in Fig. 8.

 第5の軽量化構造によれば、第1の軽量化構造の場合と同様に、外側ジョイント部材30の連結部35の軸方向Xの寸法を短くできるため、軸受装置1を軽量化することが可能になる。 As with the first lightweight structure, the fifth lightweight structure allows the axial dimension of the connecting portion 35 of the outer joint member 30 to be shortened, making it possible to reduce the weight of the bearing device 1.

8-6.第6の軽量化構造
 図9に示されるように、第6の軽量化構造は、仮想直線L9と外側ジョイント部材30の中心軸線L1とのなす角度θcを40~60度とする構造である。仮想直線L9は、内側ジョイント部材41のジョイント中心点Pと第2ボール70の中心Q3を仮想的に結ぶ直線である。
9, the sixth lightweight structure is a structure in which the angle θc between the imaginary line L9 and the central axis L1 of the outer joint member 30 is set to 40 to 60 degrees. The imaginary line L9 is a line that imaginarily connects the joint center point P of the inner joint member 41 and the center Q3 of the second ball 70.

 第6の軽量化構造によれば、第1の軽量化構造の場合と同様に、外側ジョイント部材30の連結部35の軸方向Xの寸法を短くできるため、軸受装置1を軽量化することが可能になる。特に、角度θcを大きく設定するほど軸受装置1の軽量化の効果が高まる。 As with the first lightweight structure, the sixth lightweight structure allows the axial dimension of the connecting portion 35 of the outer joint member 30 to be shortened, making it possible to reduce the weight of the bearing device 1. In particular, the greater the angle θc is set, the greater the effect of reducing the weight of the bearing device 1.

8-7.第7の軽量化構造
 図9に示されるように、第7の軽量化構造は、ジョイント角がゼロ度である状態(図1の状態)で、仮想直線L10と外側ジョイント部材30の中心軸線L1とのなす角度θdを15~55度とする構造である。仮想直線L10は、第3ボール50の中心Q1と第2ボール70の中心Q3を仮想的に結ぶ直線である。
9, the seventh lightweight structure is a structure in which the angle θd between a virtual line L10 and the central axis L1 of the outer joint member 30 is set to 15 to 55 degrees when the joint angle is zero degrees (the state of FIG. 1). The virtual line L10 is a line that virtually connects the center Q1 of the third ball 50 and the center Q3 of the second ball 70.

 第7の軽量化構造によれば、第1の軽量化構造の場合と同様に、外側ジョイント部材30の連結部35の軸方向Xの寸法を短くできるため、軸受装置1を軽量化することが可能になる。特に、角度θdを大きく設定するほど軸受装置1の軽量化の効果が高まる。 As with the first lightweight structure, the seventh lightweight structure allows the axial dimension of the connecting portion 35 of the outer joint member 30 to be shortened, making it possible to reduce the weight of the bearing device 1. In particular, the greater the angle θd is set, the greater the effect of reducing the weight of the bearing device 1.

8-8.第8の軽量化構造
 第8の軽量化構造は、外側ジョイント部材30の筒状部31の径方向Yの厚みを抑えることによって、軸受装置1を軽量化するための構造である。この第8の軽量化構造について、図10~図15が参照される。
The eighth weight-saving structure is a structure for reducing the thickness of the cylindrical portion 31 of the outer joint member 30 in the radial direction Y to thereby reduce the weight of the bearing device 1. For the eighth weight-saving structure, reference is made to Figs. 10 to 15.

 図10及び図11には、車輪3が右前輪である場合の直進時における軸受装置1の状態が示されている。この状態は、ジョイント角αが常用範囲の値(例えば、6度程度の値)になる定常状態であり、内側ジョイント部材41が、例えば第1位置R1に配置される。停車時も同様である。これに対して、図12及び図13には、車輪3が右前輪である場合の左旋回時における軸受装置1の状態が示されている。この状態は、ジョイント角αが常用範囲を超えた値(例えば、最大で25度程度の値)になる可変状態であり、内側ジョイント部材41が、例えば第2位置R2に配置される。 Figures 10 and 11 show the state of the bearing device 1 when traveling straight when the wheel 3 is the right front wheel. This state is a steady state in which the joint angle α is within the normal range (for example, a value of about 6 degrees), and the inner joint member 41 is located, for example, in the first position R1. The same is true when the vehicle is stopped. In contrast, Figures 12 and 13 show the state of the bearing device 1 when turning left when the wheel 3 is the right front wheel. This state is a variable state in which the joint angle α is a value outside the normal range (for example, a value of up to about 25 degrees), and the inner joint member 41 is located, for example, in the second position R2.

 図11及び図13に示されるように、第8の軽量化構造は、外側ジョイント部材30及び内側ジョイント部材41の中心軸線L1,L2を含む断面において、内側接触方向Eaと外側接触方向Ebが一致しないような条件を満足する構造である。すなわち、内側接触方向Eaと外側接触方向Ebを、三次元的に一致しないようにすることは勿論、上記断面において二次元的に見ても一致しないようにする。 As shown in Figures 11 and 13, the eighth lightweight structure is a structure that satisfies the condition that the inner contact direction Ea and the outer contact direction Eb do not coincide in a cross section including the central axes L1, L2 of the outer joint member 30 and the inner joint member 41. In other words, the inner contact direction Ea and the outer contact direction Eb are not coincident not only in three dimensions, but also when viewed two-dimensionally in the cross section.

 内側接触方向Eaは、外側ジョイント部材30の筒状部31のうちの第1内側軌道面33における第1ボール60の接触方向である。第1ボール60は、接触位置33a(図11及び図13では、略楕円形状の断面で示される領域)において第1内側軌道面33に接触角β(径方向Yの仮想直線に対する角度)で接触して、この第1内側軌道面33に対して内側接触方向Eaの荷重を入力する。接触角βは、直進時に例えば40度程度となり(図11を参照)、左旋回時に例えば52度程度となり(図13を参照)。このとき、筒状部31の第1内側軌道面33には、第1ボール60から入力される荷重に対する応力が生じる。内側接触方向Eaを第1ボール60からの荷重入力方向ということもできる。 The inner contact direction Ea is the contact direction of the first ball 60 on the first inner raceway surface 33 of the cylindrical portion 31 of the outer joint member 30. The first ball 60 contacts the first inner raceway surface 33 at a contact position 33a (the area shown by the cross section of a substantially elliptical shape in Figs. 11 and 13) at a contact angle β (angle with respect to a virtual line in the radial direction Y) and inputs a load in the inner contact direction Ea to the first inner raceway surface 33. The contact angle β is, for example, about 40 degrees when traveling straight (see Fig. 11), and about 52 degrees when turning left (see Fig. 13). At this time, stress is generated in the first inner raceway surface 33 of the cylindrical portion 31 due to the load input from the first ball 60. The inner contact direction Ea can also be called the load input direction from the first ball 60.

 また、外側接触方向Ebは、外側ジョイント部材30の筒状部31のうちの外側ガイド溝32における第3ボール50の接触方向である。第3ボール50は、ジョイント角αの場合、ジョイント中心点Pを通り中心軸線L1に垂直な面からジョイント角αの1/2であるα/2だけ傾いたジョイント中心点Pを通る直線上に、第3ボール50の中心が位置し、接触位置32a(図11及び図13では、略楕円形状の断面で示される領域)において外側ガイド溝32にα/2よりも大きい接触角γ(径方向Yの仮想直線に対する角度)で接触して、この外側ガイド溝32に対して外側接触方向Ebの荷重を入力する。このとき、筒状部31の外側ガイド溝32には、第3ボール50から入力される荷重に対する応力が生じる。外側接触方向Ebを第3ボール50からの荷重入力方向ということもできる。 The outer contact direction Eb is the contact direction of the third ball 50 in the outer guide groove 32 of the cylindrical portion 31 of the outer joint member 30. In the case of a joint angle α, the center of the third ball 50 is located on a line passing through the joint center point P and inclined by α/2, which is 1/2 of the joint angle α, from a plane passing through the joint center point P and perpendicular to the central axis L1, and the third ball 50 contacts the outer guide groove 32 at a contact angle γ (angle with respect to a virtual line in the radial direction Y) larger than α/2 at the contact position 32a (area shown by a cross section of a substantially ellipse in Figures 11 and 13), and inputs a load in the outer contact direction Eb to the outer guide groove 32. At this time, stress due to the load input from the third ball 50 is generated in the outer guide groove 32 of the cylindrical portion 31. The outer contact direction Eb can also be called the load input direction from the third ball 50.

 ここで、仮に、内側接触方向Eaと外側接触方向Ebが一致する場合には、外側ジョイント部材30の筒状部31のうち内側接触方向Eaと外側接触方向Ebが一致する部位に局所的な応力集中が起こることが想定される。この応力集中に耐えることができるように筒状部31の厚みを増やす対策を講じた場合、軸受装置1の重量が増える原因になり得る。そこで、第8の軽量化構造では、内側接触方向Eaと外側接触方向Ebが一致しないようにすることで、外側ジョイント部材30の筒状部31において上記応力集中が起こるのを抑制するようにしている。これにより、筒状部31の厚みを抑えることができ、軸受装置1を軽量化することが可能になる。 Here, if the inner contact direction Ea and the outer contact direction Eb coincide, it is assumed that local stress concentration will occur in the portion of the tubular portion 31 of the outer joint member 30 where the inner contact direction Ea and the outer contact direction Eb coincide. If measures are taken to increase the thickness of the tubular portion 31 so that it can withstand this stress concentration, this could cause the weight of the bearing device 1 to increase. Therefore, in the eighth lightweight structure, the inner contact direction Ea and the outer contact direction Eb are not made to coincide, thereby suppressing the above-mentioned stress concentration in the tubular portion 31 of the outer joint member 30. This makes it possible to reduce the thickness of the tubular portion 31 and reduce the weight of the bearing device 1.

 図11及び図13に示されるように、第1ボール60の中心から内側接触方向Eaに延びる延長線を第1延長線M1としたとき、この第1延長線M1は複数の第1ボール60の数に応じて複数形成される。ここで、第1延長線M1は、第1ボール60の中心と第1内側軌道面33における第1ボール60の接触位置33aとを直線的に結ぶ線である。また、第3ボール50の中心から外側接触方向Ebに延びる延長線を第3延長線M3としたとき、この第3延長線M3は複数の第3ボール50の数に応じて複数形成される。ここで、第3延長線M3は、第3ボール50の中心と外側ガイド溝32における第3ボール50の接触位置32aとを直線的に結ぶ線である。 11 and 13, when the extension line extending from the center of the first ball 60 in the inner contact direction Ea is defined as the first extension line M1, multiple first extension lines M1 are formed according to the number of the first balls 60. Here, the first extension line M1 is a line that linearly connects the center of the first ball 60 and the contact position 33a of the first ball 60 on the first inner raceway surface 33. Also, when the extension line extending from the center of the third ball 50 in the outer contact direction Eb is defined as the third extension line M3, multiple third extension lines M3 are formed according to the number of the third balls 50. Here, the third extension line M3 is a line that linearly connects the center of the third ball 50 and the contact position 32a of the third ball 50 on the outer guide groove 32.

 第8の軽量化構造は、複数の第1延長線M1の中に外側ガイド溝32における第3ボール50の接触位置32aを通るものが含まれる場合には、当該接触位置32aにおける第3ボール50についての第3延長線M3は第1内側軌道面33における第1ボール60の接触位置33aを通らず、且つ、複数の第3延長線M3の中に第1内側軌道面33における第1ボール60の接触位置33aを通るものが含まれる場合には、当該接触位置33aにおける第1ボール60についての第1延長線M1は外側ガイド溝32における第3ボール50の接触位置32aを通らないという条件を満足する構造であるのが好ましい。 The eighth lightweight structure is preferably a structure that satisfies the following conditions: if the multiple first extension lines M1 include one that passes through the contact position 32a of the third ball 50 in the outer guide groove 32, the third extension line M3 for the third ball 50 at that contact position 32a does not pass through the contact position 33a of the first ball 60 in the first inner raceway surface 33; and if the multiple third extension lines M3 include one that passes through the contact position 33a of the first ball 60 in the first inner raceway surface 33, the first extension line M1 for the first ball 60 at that contact position 33a does not pass through the contact position 32a of the third ball 50 in the outer guide groove 32.

 本構造について、例えば、図14に示されるように、3つの第1延長線M1の中の1つが外側ガイド溝32における第3ボール50の接触位置32aを通るが、当該接触位置32aにおける第3ボール50についての第3延長線M3は第1内側軌道面33におけるいずれの第1ボール60の接触位置33aも通らない。また、1つの第3延長線M3は、第1内側軌道面33における第1ボール60の接触位置33aを通るが、当該接触位置33aにおける第1ボール60についての第1延長線M1は外側ガイド溝32におけるいずれの第3ボール50の接触位置32aも通らない。 In this structure, for example, as shown in FIG. 14, one of the three first extension lines M1 passes through the contact position 32a of the third ball 50 in the outer guide groove 32, but the third extension line M3 for the third ball 50 at that contact position 32a does not pass through the contact position 33a of any of the first balls 60 in the first inner raceway surface 33. Also, one third extension line M3 passes through the contact position 33a of the first ball 60 in the first inner raceway surface 33, but the first extension line M1 for the first ball 60 at that contact position 33a does not pass through the contact position 32a of any of the third balls 50 in the outer guide groove 32.

 また、第8の軽量化構造は、ジョイント角αが常用範囲を超えた旋回時(図12及び図13を参照)において、複数の第1ボール60の中で第1内側軌道面に対する入力負荷が最も大きい第1ボール60についての第1延長線M1は、複数の第3ボール50のいずれの外側ガイド溝32における接触位置32aも通らないという条件を満足する構造であるのが好ましい。 Furthermore, the eighth lightweight structure is preferably a structure that satisfies the condition that, during rotation in which the joint angle α exceeds the normal range (see Figures 12 and 13), the first extension line M1 of the first ball 60 that has the greatest input load on the first inner raceway surface among the multiple first balls 60 does not pass through the contact position 32a in the outer guide groove 32 of any of the multiple third balls 50.

 本構造について、例えば、図15に示されるように、図中の上方を車両上方としたとき、3つの第1ボール60のうち最高所である第1位置S1にある第1ボール60は、第1位置S1よりも低所である第2位置S2や第3位置S3にある第1ボール60に比べて、車両側から受ける荷重Fが最も大きい。したがって、第1位置S1にある第1ボール60は、3つの第1ボール60の中で第1内側軌道面33に対する入力負荷が最も大きくなる、このとき、第1位置S1にある第1ボール60についての第1延長線M1は、複数の第3ボール50のいずれの外側ガイド溝32における接触位置32aも通らない。 In this structure, for example, as shown in FIG. 15, when the top of the figure is the top of the vehicle, the first ball 60 at the first position S1, which is the highest of the three first balls 60, receives the largest load F from the vehicle side, compared to the first balls 60 at the second position S2 and the third position S3, which are lower than the first position S1. Therefore, the first ball 60 at the first position S1 receives the largest input load on the first inner raceway surface 33 among the three first balls 60, and at this time, the first extension line M1 of the first ball 60 at the first position S1 does not pass through the contact position 32a in the outer guide groove 32 of any of the multiple third balls 50.

9.作用効果
 上述の実施形態1によれば、以下のような作用効果が得られる。
9. Effects According to the above-described first embodiment, the following effects can be obtained.

 実施形態1の軸受装置1では、複数の第1ボール60を周方向Zにガイドする第1内側軌道面33が外側ジョイント部材30の筒状部31の径方向Yの外面に設けられ、複数の第3ボール50を軸方向Xに沿ってガイドする外側ガイド溝32が外側ジョイント部材30の筒状部31の径方向Yの内面に設けられる。第1ボール60を外側ジョイント部材30の筒状部31に直に接触させる構造によれば、第1ボール60と外側ジョイント部材30との間に別部材を介在させないため、その分の軽量化が可能になる。それに加えて、軸受装置1が第1軽量化構造から第8軽量化構造を具備することによって、軸受装置1のさらなる軽量化を図ることが可能になる。 In the bearing device 1 of the first embodiment, a first inner raceway surface 33 that guides the first balls 60 in the circumferential direction Z is provided on the outer surface in the radial direction Y of the cylindrical portion 31 of the outer joint member 30, and an outer guide groove 32 that guides the third balls 50 along the axial direction X is provided on the inner surface in the radial direction Y of the cylindrical portion 31 of the outer joint member 30. According to the structure in which the first ball 60 is in direct contact with the cylindrical portion 31 of the outer joint member 30, no separate member is interposed between the first ball 60 and the outer joint member 30, and therefore the weight can be reduced accordingly. In addition, the bearing device 1 is provided with the first to eighth lightweight structures, which allows the weight of the bearing device 1 to be further reduced.

 以上のごとく、上述の実施形態1によれば、軸受装置1を軽量化することができる。その結果、軸受装置1を搭載する車両の航続距離の延長や電費または燃費の向上が可能になる。 As described above, according to the above-mentioned embodiment 1, the weight of the bearing device 1 can be reduced. As a result, it is possible to extend the driving range of a vehicle equipped with the bearing device 1 and improve the electricity consumption or fuel consumption.

10.変形態様
 本開示は、上述の形態に準拠して記述されているが、本開示は当該形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
10. Modifications Although the present disclosure has been described based on the above-mentioned embodiment, it is understood that the present disclosure is not limited to the embodiment or structure. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more than one element, or less than one element, are also within the scope and concept of the present disclosure.

 上述の形態では、軸受装置1が第1から第8軽量化構造を具備する場合について例示したが、必要に応じて、軸受装置1が第1から第8軽量化構造のうちの少なくとも1つを具備する構造を採用することができる。 In the above embodiment, the bearing device 1 is provided with the first to eighth lightweight structures, but if necessary, the bearing device 1 may be provided with at least one of the first to eighth lightweight structures.

 上述の形態では、外側ジョイント部材30の連結部35とハブ20とをスプライン嵌合によってトルク伝達可能に連結する場合について例示したが、これに代えて、スプライン嵌合以外の連結方法を採用しても良い。 In the above embodiment, the connecting portion 35 of the outer joint member 30 and the hub 20 are connected to each other so that torque can be transmitted by spline engagement, but a connecting method other than spline engagement may be used instead.

Claims (5)

 車体側部材(2)に固定される外輪(10)と、
 車輪(3)が取り付けられるハブ(20)と、
 有底筒状の筒状部(31)と、前記ハブにトルク伝達可能に連結される連結部(35)と、を有する外側ジョイント部材(30)と、
 前記外側ジョイント部材の前記筒状部に収容される内側ジョイント部材(41)と、
 前記外輪と前記外側ジョイント部材との間に設けられ、前記外輪と前記外側ジョイント部材を軸回り方向(D)に相対回転可能に支持する複数の第1転動体(60)と、
 前記外輪と前記ハブの間に設けられ、前記外輪と前記ハブを軸回り方向(D)に相対回転可能に支持する複数の第2転動体(70)と、
 前記外側ジョイント部材の前記筒状部と前記内側ジョイント部材とをトルク伝達可能に連結する複数の第3転動体(50)と、
を備え、
 前記外側ジョイント部材の前記筒状部の径方向(Y)の内面には、前記複数の第3転動体を軸方向(X)に沿ってガイドする外側ガイド溝(32)が設けられ、
 前記外側ジョイント部材の前記筒状部の径方向の外面には、前記複数の第1転動体を周方向(Z)にガイドする第1内側軌道面(33)が設けられており、
 前記外側ジョイント部材において、前記外側ガイド溝の径方向(Y)の外側に前記第1内側軌道面が前記外側ガイド溝の少なくとも一部と重なるように配置されており、或いは、前記外側ガイド溝の接線(L3)に垂直な垂直線(L4)上に前記第1内側軌道面が配置されている、駆動輪用軸受装置(1)。
An outer ring (10) fixed to a vehicle body side member (2);
a hub (20) to which the wheel (3) is attached;
an outer joint member (30) having a cylindrical portion (31) with a bottom and a connecting portion (35) connected to the hub so as to be capable of transmitting torque;
an inner joint member (41) accommodated in the cylindrical portion of the outer joint member;
a plurality of first rolling bodies (60) provided between the outer ring and the outer joint member and supporting the outer ring and the outer joint member so as to be relatively rotatable in a direction around an axis (D);
A plurality of second rolling elements (70) are provided between the outer ring and the hub and support the outer ring and the hub so as to be capable of relative rotation in a direction around the axis (D);
a plurality of third rolling bodies (50) that connect the cylindrical portion of the outer joint member and the inner joint member in a torque-transmittable manner;
Equipped with
an outer guide groove (32) that guides the third rolling elements along an axial direction (X) is provided on an inner surface in a radial direction (Y) of the cylindrical portion of the outer joint member;
a first inner raceway surface (33) that guides the first rolling elements in a circumferential direction (Z) is provided on a radial outer surface of the cylindrical portion of the outer joint member,
In the outer joint member, the first inner raceway surface is arranged radially outwardly of the outer guide groove so as to overlap at least a portion of the outer guide groove, or the first inner raceway surface is arranged on a vertical line (L4) perpendicular to a tangent line (L3) of the outer guide groove.
 前記外側ジョイント部材及び前記内側ジョイント部材の中心軸線(L1,L2)を含む断面において、前記第1内側軌道面における前記第1転動体の接触方向を内側接触方向(Ea)とし、前記外側ガイド溝における前記第3転動体の接触方向を外側接触方向(Eb)としたとき、前記内側接触方向と前記外側接触方向が一致しない、請求項1に記載の駆動輪用軸受装置。 The bearing device for a driving wheel according to claim 1, in which, in a cross section including the central axes (L1, L2) of the outer joint member and the inner joint member, when the contact direction of the first rolling body on the first inner raceway surface is defined as an inner contact direction (Ea) and the contact direction of the third rolling body on the outer guide groove is defined as an outer contact direction (Eb), the inner contact direction and the outer contact direction do not coincide.  前記第1転動体の中心から前記内側接触方向に延びる延長線を第1延長線(M1)とし、前記第3転動体の中心から前記外側接触方向に延びる延長線を第3延長線(M3)としたとき、
 複数の前記第1延長線の中に前記外側ガイド溝における前記第3転動体の接触位置(32a)を通るものが含まれる場合には、当該接触位置における前記第3転動体についての前記第3延長線は前記第1内側軌道面における前記第1転動体の接触位置(33a)を通らず、
 複数の前記第3延長線の中に前記第1内側軌道面における前記第1転動体の接触位置(33a)を通るものが含まれる場合には、当該接触位置における前記第1転動体についての前記第1延長線は前記外側ガイド溝における前記第3転動体の接触位置(32a)を通らない、請求項2に記載の駆動輪用軸受装置。
When an extension line extending from the center of the first rolling body in the inner contact direction is defined as a first extension line (M1), and an extension line extending from the center of the third rolling body in the outer contact direction is defined as a third extension line (M3),
When one of the plurality of first extension lines passes through a contact position (32a) of the third rolling body on the outer guide groove, the third extension line of the third rolling body at the contact position does not pass through a contact position (33a) of the first rolling body on the first inner raceway surface,
3. A bearing device for a driving wheel as described in claim 2, wherein, when the multiple third extension lines include one that passes through the contact position (33a) of the first rolling body on the first inner raceway surface, the first extension line for the first rolling body at that contact position does not pass through the contact position (32a) of the third rolling body on the outer guide groove.
 前記外側ジョイント部材の中心軸線(L1)と前記内側ジョイント部材の中心軸線(L2)とのなす角度であるジョイント角(α)が常用範囲を超えた旋回時において、複数の前記第1転動体の中で前記第1内側軌道面に対する入力負荷が最も大きい前記第1転動体についての前記第1延長線は、複数の前記第3転動体のいずれの前記外側ガイド溝における接触位置(32a)も通らない、請求項3に記載の駆動輪用軸受装置。 The driving wheel bearing device according to claim 3, wherein, during rotation in which the joint angle (α), which is the angle between the central axis (L1) of the outer joint member and the central axis (L2) of the inner joint member, exceeds the normal range, the first extension line of the first rolling body that has the largest input load on the first inner raceway surface among the plurality of first rolling bodies does not pass through the contact position (32a) in the outer guide groove of any of the plurality of third rolling bodies.  前記外側ジョイント部材の中心軸線(L1)と前記内側ジョイント部材の中心軸線(L2)とのなす角度であるジョイント角(α)が常用範囲にある定常状態において、前記第3転動体が前記外側ジョイント部材の前記筒状部と接触範囲(C)で接触し、前記第1内側軌道面の接線(L7)に垂直な垂直線(L8)上に前記接触範囲が配置されている、請求項1~4のいずれか一項に記載の駆動輪用軸受装置。 The bearing device for a driving wheel according to any one of claims 1 to 4, wherein in a steady state in which a joint angle (α), which is the angle between the central axis (L1) of the outer joint member and the central axis (L2) of the inner joint member, is in a normal range, the third rolling element contacts the cylindrical portion of the outer joint member in a contact range (C), and the contact range is located on a vertical line (L8) perpendicular to a tangent (L7) of the first inner raceway surface.
PCT/JP2023/041756 2023-07-21 2023-11-21 Bearing device for drive wheel WO2025022681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023119063 2023-07-21
JP2023-119063 2023-07-21

Publications (1)

Publication Number Publication Date
WO2025022681A1 true WO2025022681A1 (en) 2025-01-30

Family

ID=94374747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041756 WO2025022681A1 (en) 2023-07-21 2023-11-21 Bearing device for drive wheel

Country Status (1)

Country Link
WO (1) WO2025022681A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240412A (en) * 1989-02-16 1990-09-25 Uni Cardan Ag Uniform joint
JPH11166525A (en) * 1997-12-05 1999-06-22 Nippon Seiko Kk Rolling bearing unit for wheels
JP2003335107A (en) * 2002-05-17 2003-11-25 Koyo Seiko Co Ltd Vehicle bearing system
JP2006183750A (en) * 2004-12-27 2006-07-13 Ntn Corp Bearing device for wheel
JP2006183749A (en) * 2004-12-27 2006-07-13 Ntn Corp Bearing device for wheel
US20160319876A1 (en) * 2015-04-29 2016-11-03 Aktiebolaget Skf Assembly procedure of a bearing unit - hub flange
US20160319875A1 (en) * 2015-04-29 2016-11-03 Aktiebolaget Skf Assembly procedure of a bearing unit - hub flange

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240412A (en) * 1989-02-16 1990-09-25 Uni Cardan Ag Uniform joint
JPH11166525A (en) * 1997-12-05 1999-06-22 Nippon Seiko Kk Rolling bearing unit for wheels
JP2003335107A (en) * 2002-05-17 2003-11-25 Koyo Seiko Co Ltd Vehicle bearing system
JP2006183750A (en) * 2004-12-27 2006-07-13 Ntn Corp Bearing device for wheel
JP2006183749A (en) * 2004-12-27 2006-07-13 Ntn Corp Bearing device for wheel
US20160319876A1 (en) * 2015-04-29 2016-11-03 Aktiebolaget Skf Assembly procedure of a bearing unit - hub flange
US20160319875A1 (en) * 2015-04-29 2016-11-03 Aktiebolaget Skf Assembly procedure of a bearing unit - hub flange

Similar Documents

Publication Publication Date Title
US10208846B2 (en) Axle assembly having a drive pinion support bearing and a method of assembly
US6146022A (en) Hub unit bearing for wheel
US11124020B2 (en) Constant velocity joint assembly integrated with wheel hub unit
JP5556509B2 (en) Hub unit for vehicles
EP1125765B1 (en) Apparatus for driving wheel of automobile
US6981800B2 (en) Wheel drive unit
US11602989B2 (en) Axle assembly having an interaxle differential unit
JP2013047056A (en) Wheel supporting device
JP3902337B2 (en) Wheel bearing unit
US20130292996A1 (en) Wheel rolling bearing unit
WO2025022681A1 (en) Bearing device for drive wheel
WO2011078103A1 (en) Tripod constant-velocity universal joint
US11698123B1 (en) Axle assembly having an interaxle differential unit
JP2008256180A (en) Fixed type constant velocity universal joint and its assembling method
US20080064509A1 (en) Fixed Type Constant Velocity Universal Joint
JP2003072308A (en) Bearing system for driving wheel and its manufacturing method
JP2010127311A (en) Fixed type constant velocity universal joint and wheel bearing device using the same
JP4306909B2 (en) Wheel bearing device
JP6050043B2 (en) Constant velocity universal joint
CN101466556B (en) Bearing unit for driving wheels
JP2014009781A (en) Power transmission shaft and method of manufacturing the same
WO2025109674A1 (en) Method for manufacturing joint member
JP2024175821A (en) Wheel bearing device
JP2010025207A (en) Constant velocity universal joint
JP2009121667A (en) Sliding type constant velocity universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23945320

Country of ref document: EP

Kind code of ref document: A1