[go: up one dir, main page]

JP6050043B2 - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP6050043B2
JP6050043B2 JP2012158444A JP2012158444A JP6050043B2 JP 6050043 B2 JP6050043 B2 JP 6050043B2 JP 2012158444 A JP2012158444 A JP 2012158444A JP 2012158444 A JP2012158444 A JP 2012158444A JP 6050043 B2 JP6050043 B2 JP 6050043B2
Authority
JP
Japan
Prior art keywords
constant velocity
velocity universal
universal joint
joint
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012158444A
Other languages
Japanese (ja)
Other versions
JP2014020434A (en
Inventor
雅登 福上
雅登 福上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2012158444A priority Critical patent/JP6050043B2/en
Publication of JP2014020434A publication Critical patent/JP2014020434A/en
Application granted granted Critical
Publication of JP6050043B2 publication Critical patent/JP6050043B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Steering Controls (AREA)

Description

この発明は、自動車や各種産業機械の動力伝達系で用いられる等速自在継手に関する。   The present invention relates to a constant velocity universal joint used in power transmission systems of automobiles and various industrial machines.

等速自在継手は、各種のものが知られているが、角度変位だけが可能な固定式と、軸方向変位(プランジング)も可能なしゅう動式とに大別できる。固定式等速自在継手としては、ツェッパ型、アンダーカットフリー型などがある。しゅう動式等速自在継手としては、ダブルオフセット型、クロスグルーブ型、トリポード型などがある。トリポード型を除いてトルク伝達部材としてボールを使用するボールタイプであるが、トリポード型はトルク伝達部材としてローラを使用する。   Various constant velocity universal joints are known, and can be broadly classified into a fixed type capable of only angular displacement and a sliding type capable of axial displacement (plunging). Fixed constant velocity universal joints include the Rzeppa type and the Undercut free type. Examples of the sliding type constant velocity universal joint include a double offset type, a cross groove type, and a tripod type. Except for the tripod type, the ball type uses a ball as a torque transmission member. The tripod type uses a roller as a torque transmission member.

特許文献1にはダブルドラム形等速自在継手が記載されている。ダブルドラム形等速自在継手は、一対の等速自在継手の外輪どうしを背面合わせに結合した構造で、同一軸線上に一対の等速自在継手の外輪部を形成した共通外輪を有する。これは、一対の等速自在継手を軸方向に連結している点でタンデムと呼ぶべき形態である。一対の等速自在継手の組み合わせとしては、固定式と固定式、固定式としゅう動式がある。   Patent Document 1 describes a double drum type constant velocity universal joint. The double drum type constant velocity universal joint has a structure in which the outer rings of a pair of constant velocity universal joints are coupled back to back, and has a common outer ring in which the outer ring portions of the pair of constant velocity universal joints are formed on the same axis. This is a form that should be called tandem in that a pair of constant velocity universal joints are connected in the axial direction. As a combination of a pair of constant velocity universal joints, there are a fixed type, a fixed type, a fixed type and a sliding type.

特開平7−269585号公報JP-A-7-269585

ダブルドラム形等速自在継手は、2個の等速自在継手を使用しているため高角作動が可能である。しかし、等速自在継手の本体の回転時の振れ回りを防ぐために、本体部の内輪から伸び出したシャフトをそれぞれ軸受等で支持する必要があることから、適用箇所に制限があった。しかも、軸受と等速自在継手の回転中心の芯出し作業が必要となるため、組み付けが複雑になるという問題があった。さらに、タンデムであるため必然的に軸方向寸法が長くなってしまう。   Since the double drum type constant velocity universal joint uses two constant velocity universal joints, high angle operation is possible. However, in order to prevent the swing of the main body of the constant velocity universal joint during rotation, it is necessary to support the shaft extending from the inner ring of the main body portion with a bearing or the like. Moreover, since the centering operation of the rotation center of the bearing and the constant velocity universal joint is required, there is a problem that the assembly is complicated. Furthermore, since it is a tandem, the axial dimension is inevitably long.

この発明の目的は、適用箇所を広げ、組み付けも容易で、高角作動が可能な等速自在継手を提供することにある。   An object of the present invention is to provide a constant velocity universal joint that can be applied at a wide angle and has a wide range of application, easy assembly.

この発明は、二つの等速自在継手を内外二重構造とすることによって課題を解決したものである。すなわち、この発明の等速自在継手は、作動角0の状態で第一の等速自在継手の外側に同軸状に第二の等速自在継手が位置する、内外二重構造の第一の等速自在継手と第二の等速自在継手を有し、第一の等速自在継手は、内側継手部材と、外側継手部材と、トルク伝達部材を有し、第二の等速自在継手は、内側継手部材と、外側継手部材と、トルク伝達部材を有し、第一の等速自在継手の外側継手部材と第二の等速自在継手の内側継手部材は同一部品であり、前記同一部品を第一の等速自在継手の外側継手部材の開口側に向けて押すばねを有するThe present invention solves the problem by providing two constant velocity universal joints with an internal / external double structure. That is, the constant velocity universal joint of the present invention is the first etc. of the inner / outer double structure in which the second constant velocity universal joint is coaxially located outside the first constant velocity universal joint at the operating angle of 0. The first constant velocity universal joint includes an inner joint member, an outer joint member, and a torque transmission member, and the second constant velocity universal joint includes: an inner joint member, and the outer joint member has a torque transmission member, the inner joint member and the outer joint member of the first constant velocity universal joint second constant velocity universal joint Ri same component der, the same parts Has a spring that pushes toward the opening side of the outer joint member of the first constant velocity universal joint .

二つの等速自在継手を使用して内外二重構造とすることで、従来適用できなかった高作動角域への適用が可能になる。
すでに述べたとおり、固定式等速自在継手は、角度は大きく取れる(50°程度)が軸方向にしゅう動できない。しゅう動式等速自在継手は軸方向にしゅう動できるが角度が大きく取れない。この発明によれば、たとえば、内側に位置する第一の等速自在継手をしゅう動式、外側に位置する第二の等速自在継手を固定式とすることで、角度が大きく取れ、かつ、軸方向にしゅう動できる構造となる。
By using two constant velocity universal joints to form an internal / external double structure, it is possible to apply to a high operating angle range that could not be applied conventionally.
As already described, the fixed type constant velocity universal joint can take a large angle (about 50 °) but cannot slide in the axial direction. Sliding type constant velocity universal joints can slide in the axial direction but cannot take a large angle. According to this invention, for example, the first constant velocity universal joint located on the inner side is a sliding type, and the second constant velocity universal joint located on the outer side is a fixed type. The structure can slide in the axial direction.

この発明によれば、ダブルドラム形と同等の高角度作動が可能である。すなわち、第一の等速自在継手と第二の等速自在継手を内外二重構造にしたことにより、その作動角は第一の等速自在継手の作動角と第二の等速自在継手の作動角の複合したものとなる。しかも、ダブルドラム形に比べて軸方向寸法が小さい。また、シャフトを軸受等で支持する必要がないため適用箇所の制限が少なく、組み付けが容易である。
この発明は二つの等速自在継手を使用した内外二重構造を基本とするものであるが、三重以上の構造とすることも可能であり、そうすることによってさらに大きな作動角を取り得る等速自在継手を提供することができる。
According to the present invention, high angle operation equivalent to the double drum type is possible. That is, since the first constant velocity universal joint and the second constant velocity universal joint have an internal / external double structure, the operating angle of the first constant velocity universal joint is the same as that of the second constant velocity universal joint. This is a composite of operating angles. Moreover, the axial dimension is smaller than that of the double drum type. Further, since there is no need to support the shaft with a bearing or the like, there are few restrictions on the application location, and assembly is easy.
The present invention is based on an internal / external double structure using two constant velocity universal joints, but it is also possible to have a triple structure or more, and by doing so, a constant speed that can take a larger operating angle. A universal joint can be provided.

この発明の実施例を示す等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the constant velocity universal joint which shows the Example of this invention. 図1の等速自在継手が最大作動角をとった状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the constant velocity universal joint of FIG. 1 took the maximum operating angle. 図1の等速自在継手における共通リングの正面図である。It is a front view of the common ring in the constant velocity universal joint of FIG. 別の実施例を示す等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the constant velocity universal joint which shows another Example. さらに別の実施例を示す等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the constant velocity universal joint which shows another Example.

以下、この発明の実施の形態を添付図面に従って説明する。
図1に示す等速自在継手は一対の等速自在継手J1、J2の複合体であって、図1のように作動角が0の状態では、第一の等速自在継手J1の外側に同軸状に第二の等速自在継手J2が位置している。図1において、符号O1は第一の等速自在継手J1のジョイントセンタを示し、符号O2は第二の等速自在継手J2のジョイントセンタを示す。ここでは第一の等速自在継手J1はしゅう動式、第二の等速自在継手J2は固定式である。より詳しく述べるならば、第一の等速自在継手J1はダブルオフセット型等速自在継手、第二の等速自在継手J2はツェッパ型等速自在継手である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The constant velocity universal joint shown in FIG. 1 is a composite of a pair of constant velocity universal joints J1 and J2, and is coaxial with the outside of the first constant velocity universal joint J1 when the operating angle is 0 as shown in FIG. The second constant velocity universal joint J2 is located in a shape. In FIG. 1, symbol O1 indicates the joint center of the first constant velocity universal joint J1, and symbol O2 indicates the joint center of the second constant velocity universal joint J2. Here, the first constant velocity universal joint J1 is a sliding type, and the second constant velocity universal joint J2 is a fixed type. More specifically, the first constant velocity universal joint J1 is a double offset type constant velocity universal joint, and the second constant velocity universal joint J2 is a Rzeppa type constant velocity universal joint.

第一の等速自在継手J1は、内側継手部材としての内輪10と、外側継手部材としての外輪20と、トルク伝達部材としてのボール30と、ボール30を保持するためのケージ32とからなり、内輪10をシャフト18にトルク伝達可能に結合してある。   The first constant velocity universal joint J1 includes an inner ring 10 as an inner joint member, an outer ring 20 as an outer joint member, a ball 30 as a torque transmission member, and a cage 32 for holding the ball 30. The inner ring 10 is coupled to the shaft 18 so that torque can be transmitted.

内輪10は、その軸心部にセレーション孔12が形成してあり、このセレーション孔12でシャフト18の端部に形成したセレーション軸とトルク伝達可能に結合し、止め輪で抜け止めがしてある。セレーションに代えてスプラインその他の凹凸結合を採用することも可能で、このことは明細書を通じてあてはまる。内輪10の外周面14は球面状で、軸線方向に延びるボール溝16が円周方向に等間隔に形成してある。ボール溝16の溝底は図示するように軸線と平行で、ボール溝16の横断面は円形、楕円形またはゴシックアーチ形である。   The inner ring 10 has a serration hole 12 formed in the axial center thereof. The serration hole 12 is coupled to the serration shaft formed at the end of the shaft 18 so as to be able to transmit torque, and is prevented by a retaining ring. . Splines or other concavo-convex connections may be employed instead of serrations, and this is true throughout the specification. The outer peripheral surface 14 of the inner ring 10 is spherical, and ball grooves 16 extending in the axial direction are formed at equal intervals in the circumferential direction. The groove bottom of the ball groove 16 is parallel to the axis as shown in the figure, and the cross section of the ball groove 16 is circular, elliptical or Gothic arched.

外輪20は円筒形状の内周面22を有し、その内周面22に、軸線方向に延びるボール溝24が円周方向に等間隔に形成してある。ボール溝24の溝底は図示するように軸線と平行で、ボール溝24の横断面は円形、楕円形またはゴシックアーチ形である。外輪20の内周面22の両端付近に環状溝26が形成してあり、その環状溝26にサークリップ28が装着してある。サークリップ28は等速自在継手の取付取外し時や軸方向に荷重がかかった際、ボール30を含む第一の等速自在継手J1がボール溝24から脱落することを防止する役割を果たす。   The outer ring 20 has a cylindrical inner peripheral surface 22, and ball grooves 24 extending in the axial direction are formed at equal intervals in the circumferential direction on the inner peripheral surface 22. The groove bottom of the ball groove 24 is parallel to the axis as shown in the figure, and the cross section of the ball groove 24 is circular, elliptical or Gothic arched. An annular groove 26 is formed near both ends of the inner peripheral surface 22 of the outer ring 20, and a circlip 28 is attached to the annular groove 26. The circlip 28 serves to prevent the first constant velocity universal joint J1 including the ball 30 from falling out of the ball groove 24 when the constant velocity universal joint is attached / detached or when a load is applied in the axial direction.

内輪10のボール溝16と外輪20のボール溝24は対をなし、各対のボール溝16、24間に1個ずつ、ボール30が介在させてある。各ボール30はケージ32の円周方向に所定間隔で形成したポケット34に収容され、ケージ32によってすべてのボール30が同一平面に保持される。ケージ32は内輪10と外輪20との間に介在し、球面状内周面36で内輪10の球面状外周面12と球面接触し、球面状外周面38で外輪20の円筒状内周面22と線接触する。ケージ32の球面状内周面36の曲率中心はジョイントセンタO1から図1の右側にオフセットした軸線上の位置にあり、球面状外周面38の曲率中心はジョイントセンタO1から図1の左側にオフセットした軸線上の位置にある。   The ball groove 16 of the inner ring 10 and the ball groove 24 of the outer ring 20 form a pair, and one ball 30 is interposed between each pair of ball grooves 16 and 24. Each ball 30 is accommodated in a pocket 34 formed at a predetermined interval in the circumferential direction of the cage 32, and all the balls 30 are held on the same plane by the cage 32. The cage 32 is interposed between the inner ring 10 and the outer ring 20, and is in spherical contact with the spherical outer peripheral surface 12 of the inner ring 10 at the spherical inner peripheral surface 36, and the cylindrical inner peripheral surface 22 of the outer ring 20 at the spherical outer peripheral surface 38. Line contact with The center of curvature of the spherical inner peripheral surface 36 of the cage 32 is located on the axis offset from the joint center O1 to the right in FIG. 1, and the center of curvature of the spherical outer peripheral surface 38 is offset from the joint center O1 to the left in FIG. In the position on the axis.

第一の等速自在継手J1は、内輪10と外輪20との間で角度変位が可能であり、かつ、軸方向変位(プランジング)が可能である。上述のサークリップ28によって最大プランジング量が定まる。第一の等速自在継手J1(ダブルオフセット型等速自在継手)のその他の構成や機能は周知のとおりであるため詳細な説明は省略する。   The first constant velocity universal joint J1 can be angularly displaced between the inner ring 10 and the outer ring 20, and can be displaced in the axial direction (plunging). The maximum plunging amount is determined by the circlip 28 described above. Since the other configurations and functions of the first constant velocity universal joint J1 (double offset type constant velocity universal joint) are well known, detailed description thereof will be omitted.

第二の等速自在継手J2は、内側継手部材としての内輪40と、外側継手部材としての外輪50と、トルク伝達部材としてのボール60と、ボール60を保持するためのケージ62とからなり、外輪50を図示しない回転軸にトルク伝達可能に結合する。   The second constant velocity universal joint J2 includes an inner ring 40 as an inner joint member, an outer ring 50 as an outer joint member, a ball 60 as a torque transmission member, and a cage 62 for holding the ball 60. The outer ring 50 is coupled to a rotating shaft (not shown) so that torque can be transmitted.

内輪40は球面状の外周面42を有し、その外周面42に、軸線方向に延びるボール溝44が円周方向に等間隔に形成してある。ボール溝44の溝底は図示するように円弧状で、その曲率中心はジョイントセンタO2から外輪50の反開口側(図1では左側)にオフセットした軸線上の位置にある。ボール溝44の横断面は円形、楕円形、またはゴシックアーチ形状である。内輪40の端面に円板46がボルト48で固定してある。円板46は後に述べる圧縮コイルばね70の一方のばね座を提供するためのものである。   The inner ring 40 has a spherical outer peripheral surface 42, and ball grooves 44 extending in the axial direction are formed on the outer peripheral surface 42 at equal intervals in the circumferential direction. The groove bottom of the ball groove 44 has an arc shape as shown in the drawing, and the center of curvature is located on the axis offset from the joint center O2 to the opposite side of the outer ring 50 (left side in FIG. 1). The cross section of the ball groove 44 is circular, elliptical, or Gothic arched. A disc 46 is fixed to the end face of the inner ring 40 with bolts 48. The disc 46 is provided to provide one spring seat of a compression coil spring 70 described later.

外輪50は軸方向の一方(図1では右側)に向かって開口した凹部52を有し、その凹部52の内周面54は球面状である。凹部52の内周面54には、軸線方向に延びる円弧状のボール溝56が円周方向に等間隔に形成してある。ボール溝56の溝底は図示するように円弧状で、その曲率中心はジョイントセンタO2から外輪50の開口側(図1では右側)にオフセットした軸線上の位置にある。ボール溝56の横断面は円形、楕円形、またはゴシックアーチ形状である。凹部52の反開口側の壁面すなわち底面58は、縦断面(図1)で見て楕円形状である。   The outer ring 50 has a recess 52 that opens toward one side in the axial direction (right side in FIG. 1), and the inner peripheral surface 54 of the recess 52 is spherical. Arc-shaped ball grooves 56 extending in the axial direction are formed at equal intervals in the circumferential direction on the inner peripheral surface 54 of the recess 52. The groove bottom of the ball groove 56 has an arc shape as shown in the drawing, and the center of curvature is located on the axis offset from the joint center O2 to the opening side of the outer ring 50 (right side in FIG. 1). The cross section of the ball groove 56 is circular, elliptical, or Gothic arched. The wall surface, that is, the bottom surface 58 on the side opposite to the opening of the recess 52 has an elliptical shape when viewed in the longitudinal section (FIG. 1).

内輪40のボール溝44と外輪50のボール溝56は対をなし、各対のボール溝44、56間に1個ずつ、ボール60が介在させてある。各ボール60はケージ62の円周方向に所定間隔で形成したポケット64に収容され、ケージ62によってすべてのボール60が同一平面に保持される。ケージ62は内輪40と外輪50との間に介在し、球面状内周面66で内輪40の球面状外周面42と球面接触し、球面状外周面68で外輪50の球面状内周面54と球面接触する。   The ball groove 44 of the inner ring 40 and the ball groove 56 of the outer ring 50 make a pair, and one ball 60 is interposed between each pair of ball grooves 44 and 56. Each ball 60 is accommodated in a pocket 64 formed at a predetermined interval in the circumferential direction of the cage 62, and all the balls 60 are held on the same plane by the cage 62. The cage 62 is interposed between the inner ring 40 and the outer ring 50, and is in spherical contact with the spherical outer peripheral surface 42 of the inner ring 40 at the spherical inner peripheral surface 66, and the spherical inner peripheral surface 54 of the outer ring 50 at the spherical outer peripheral surface 68. And spherical contact.

第二の等速自在継手J2は、内輪40と外輪50との間で、ジョイントセンタO2を中心とする角度変位が可能である。第二の等速自在継手J2(ツェッパ型等速自在継手)のその他の構成や機能は周知のとおりであるため詳細な説明は省略する。   The second constant velocity universal joint J2 can be angularly displaced between the inner ring 40 and the outer ring 50 around the joint center O2. Since the other configurations and functions of the second constant velocity universal joint J2 (Zepper type constant velocity universal joint) are well known, detailed description thereof will be omitted.

第一の等速自在継手J1の外輪20と第二の等速自在継手J2の内輪40は、同一の部品であって、以下では共通リング(20/40)と呼ぶこととする。この共通リング(20/40)は、図3から分かるように、内周に第一の等速自在継手J1の外輪20の構造を有し、外周に第二の等速自在継手J2の内輪40の構造を有し、両者を兼ねている。図3は図1から共通リング(20/40)だけを取り出して示したもので、第一の等速自在継手J1が6個のボール30を使用し、第二の等速自在継手J2が12個のボール60を使用する場合を例示している。   The outer ring 20 of the first constant velocity universal joint J1 and the inner ring 40 of the second constant velocity universal joint J2 are the same parts, and are hereinafter referred to as a common ring (20/40). As can be seen from FIG. 3, the common ring (20/40) has the structure of the outer ring 20 of the first constant velocity universal joint J1 on the inner periphery, and the inner ring 40 of the second constant velocity universal joint J2 on the outer periphery. It has the structure of and serves as both. FIG. 3 shows only the common ring (20/40) extracted from FIG. 1, wherein the first constant velocity universal joint J1 uses six balls 30 and the second constant velocity universal joint J2 has 12 pieces. The case where the ball | bowl 60 is used is illustrated.

共通リング(20/40)の端面に固定した円板46と、外輪50の凹部52の底面58との間に、圧縮コイルばね70が介在させてある。圧縮コイルばね70は、共通リング(20/40)を外輪50の開口側(図1では右側)に弾性的に押す作用をし、これにより、共通リング(20/40)の振れ回りを抑制する役割を果たす。とくに、作動角が0°に戻った際のシャフト18の回転時振れ回りを抑制する手段として有効である。   A compression coil spring 70 is interposed between the disk 46 fixed to the end face of the common ring (20/40) and the bottom face 58 of the recess 52 of the outer ring 50. The compression coil spring 70 acts to elastically push the common ring (20/40) toward the opening side (the right side in FIG. 1) of the outer ring 50, thereby suppressing swinging of the common ring (20/40). Play a role. In particular, it is effective as a means for suppressing the rotation of the shaft 18 when the operating angle returns to 0 °.

さらに、圧縮コイルばね70の端部と底面58との間に、ばね座としてキャップ72が介在させてある。底面58と接する側のキャップ72の座面74は球面状である。すでに述べたように底面58は楕円形状であるため、座面74との間にくさび状のすきまが形成されている。このように、キャップ72の座面74が接触する凹部52の底面58の断面形状を楕円にすることで、圧縮コイルばね70の角度ひいては外輪50に対する共通リング(20/40)の角度が0°に戻るための反力を得ることができる。したがって、作動角γ(図2)が0°に戻った際に、外輪50に対する共通リング(20/40)の角度もほぼ0°に戻り、回転時の振れ回りを抑制できる。   Further, a cap 72 is interposed as a spring seat between the end of the compression coil spring 70 and the bottom surface 58. The seat surface 74 of the cap 72 on the side in contact with the bottom surface 58 is spherical. Since the bottom surface 58 has an elliptical shape as described above, a wedge-shaped clearance is formed between the bottom surface 58 and the seat surface 74. Thus, by making the cross-sectional shape of the bottom surface 58 of the recess 52 with which the seating surface 74 of the cap 72 comes into contact with the ellipse, the angle of the compression coil spring 70 and thus the angle of the common ring (20/40) with respect to the outer ring 50 is 0 °. The reaction force to return to can be obtained. Therefore, when the operating angle γ (FIG. 2) returns to 0 °, the angle of the common ring (20/40) with respect to the outer ring 50 also returns to approximately 0 °, and the whirling during rotation can be suppressed.

なお、中速回転以上で回転する場合には、第一の等速自在継手J1のジョイントセンタO1と第二の等速自在継手J2のジョイントセンタO2のずれ(図1に符号Aで示す)は全体の大きさにもよるが小さくすることが望ましい。   When rotating at a medium speed or higher, the displacement (indicated by reference symbol A in FIG. 1) between the joint center O1 of the first constant velocity universal joint J1 and the joint center O2 of the second constant velocity universal joint J2 is Although it depends on the overall size, it is desirable to make it small.

図2は図1の等速自在継手が最大作動角γをとった状態を示している。符号αは第一の等速自在継手J1の作動角を表し、符号βは第二の等速自在継手J2の作動角を表す。この実施例の等速自在継手は二重構造であるため角度付与時に2段階で作動する。なお、三重構造とした場合には3段階で作動する。   FIG. 2 shows a state in which the constant velocity universal joint of FIG. 1 has a maximum operating angle γ. The symbol α represents the operating angle of the first constant velocity universal joint J1, and the symbol β represents the operating angle of the second constant velocity universal joint J2. Since the constant velocity universal joint of this embodiment has a double structure, it operates in two stages when an angle is given. In the case of a triple structure, it operates in three stages.

上述の実施例は、第一の等速自在継手J1をしゅう動式、第二の等速自在継手J2を固定式としたもので、作動角が大きく取れ、かつ、軸方向しゅう動も可能である。しゅう動式と固定式のそれぞれを利点を併せ持ち、自動車や各種産業機械用等速自在継手で高角度作動が必要な個所に適用できる。図2に示す作動角γは60°であるが、単体で使用する従来の等速自在継手は一般的に50°が限界であるので作動性能が大きく向上する。たとえば、各種農機における芝刈り機補機を歯のメンテナンス時に実施するフリップアップ機能があるが、この実施例を適用することで、継手を外さずに実施することができる。また、自動車のアクスル部にこの実施例を適用することで最小回転半径を小さくできる。   In the above-described embodiment, the first constant velocity universal joint J1 is a sliding type, and the second constant velocity universal joint J2 is a fixed type, so that a large operating angle is possible and axial sliding is also possible. is there. Both sliding type and fixed type have advantages, and can be applied to parts that require high angle operation in constant velocity universal joints for automobiles and various industrial machines. The operating angle γ shown in FIG. 2 is 60 °, but the conventional constant velocity universal joint used as a single unit generally has a limit of 50 °, so that the operating performance is greatly improved. For example, there is a flip-up function that implements a lawn mower auxiliary machine in various agricultural machines at the time of tooth maintenance. By applying this embodiment, it can be carried out without removing the joint. Further, the minimum turning radius can be reduced by applying this embodiment to the axle portion of the automobile.

次に、図4に示す実施例は、第一の等速自在継手J1の内輪10とシャフト18を一体化したものである。この場合、セレーションを廃止できるばかりでなく、シャフト18の外径dを大きくして強度を向上させることができる。   Next, in the embodiment shown in FIG. 4, the inner ring 10 and the shaft 18 of the first constant velocity universal joint J1 are integrated. In this case, not only can the serration be eliminated, but the outer diameter d of the shaft 18 can be increased to improve the strength.

図5に示す実施例は、第一の等速自在継手J1と第二の等速自在継手J2を共にしゅう動式とした例である。具体的には、第二の等速自在継手J2にもしゅう動式のダブルオフセット式等速自在継手を採用している。この場合、第一の等速自在継手J1の軸方向しゅう動可能範囲と第二の等速自在継手J2の軸方向しゅう動可能範囲が加算され、全体として軸方向のしゅう動可能範囲(プランジング量)が大きくなる。   The embodiment shown in FIG. 5 is an example in which the first constant velocity universal joint J1 and the second constant velocity universal joint J2 are both slidable. Specifically, a sliding double offset constant velocity universal joint is also used for the second constant velocity universal joint J2. In this case, the axially slidable range of the first constant velocity universal joint J1 and the axially slidable range of the second constant velocity universal joint J2 are added, and the axially slidable range (plunging as a whole) Quantity).

第一の等速自在継手J1については、すでに述べたように一対のサークリップ28でボール30の転動範囲が規制される。第二の等速自在継手J2では、ボール60の転動範囲を規制するため、外輪50の開口端部付近に環状溝を形成してサークリップを装着してある。なお、ボール60は圧縮コイルばね70によって円板46とケージ62を介して外輪50の開口側に押されているため、反開口側にはサークリップを設ける必要がない。   As for the first constant velocity universal joint J1, the rolling range of the ball 30 is regulated by the pair of circlips 28 as already described. In the second constant velocity universal joint J2, an annular groove is formed in the vicinity of the opening end of the outer ring 50 to mount a circlip in order to restrict the rolling range of the ball 60. Since the ball 60 is pushed by the compression coil spring 70 to the opening side of the outer ring 50 via the disk 46 and the cage 62, there is no need to provide a circlip on the opposite opening side.

また、第二の等速自在継手J2の外輪50をフランジ式とし、外輪50の端部に別体の球面座76を取り付けている。球面座76は、外輪50をフランジ型としたことに伴い、上述の実施例における外輪50の凹部52の底面78を提供するための部材である。このように外輪50とは別体の球面座76を採用することにより、一体物の外輪に比べて製造コストを削減することができるばかりでなく、内部部品の組付性が向上する。   Further, the outer ring 50 of the second constant velocity universal joint J <b> 2 is a flange type, and a separate spherical seat 76 is attached to the end of the outer ring 50. The spherical seat 76 is a member for providing the bottom surface 78 of the concave portion 52 of the outer ring 50 in the above-described embodiment as the outer ring 50 is of a flange type. By adopting the spherical seat 76 that is separate from the outer ring 50 as described above, not only can the manufacturing cost be reduced as compared with the one-piece outer ring, but also the ease of assembling the internal parts is improved.

また、図5の実施例では、圧縮コイルばね70の一方のばね座に相当する円板46を第二の等速自在継手J2のケージ62に取り付けている。ここではボルトを用いることなくケージ62の端部内周に形成した環状凹部に円板46をはめ込み、止め輪49で固定するようになっている。   Further, in the embodiment of FIG. 5, a disk 46 corresponding to one spring seat of the compression coil spring 70 is attached to the cage 62 of the second constant velocity universal joint J2. Here, the disc 46 is fitted into an annular recess formed in the inner periphery of the end of the cage 62 without using a bolt, and is fixed by a retaining ring 49.

図示は省略するが、第一の等速自在継手を固定式等速自在継手とし、第二の等速自在継手をしゅう動式等速自在継手としてもよい。また、第一の等速自在継手J1と第二の等速自在継手J2を共にしゅう動式としてもよい。さらに、第一の等速自在継手J1と第二の等速自在継手J2を共に固定式としてもよく、この場合、作動可能角度をさらに大きくとることができる。   Although not shown, the first constant velocity universal joint may be a fixed type constant velocity universal joint, and the second constant velocity universal joint may be a sliding type constant velocity universal joint. Further, both the first constant velocity universal joint J1 and the second constant velocity universal joint J2 may be of a sliding type. Furthermore, both the first constant velocity universal joint J1 and the second constant velocity universal joint J2 may be fixed, and in this case, the operable angle can be further increased.

以上、固定式等速自在継手としてツェッパ型を、しゅう動式等速自在継手としてダブルオフセット型を例にとって説明したが、これに限るものではなく、ツェッパ型以外の固定式等速自在継手や、ダブルオフセット型以外のしゅう動式等速自在継手を採用することももちろん可能であり、それらの組み合わせも任意である。
また、この発明は二つの等速自在継手を使用した内外二重構造を基本とするものであるが、三重以上の構造とすることも可能であり、そうすることによってさらに大きな作動角を取り得る等速自在継手を提供することができる。
As described above, the Rzeppa type is used as the fixed type constant velocity universal joint, and the double offset type is used as the sliding type constant velocity universal joint, but the present invention is not limited to this. Of course, it is possible to adopt a sliding type constant velocity universal joint other than the double offset type, and the combination thereof is also arbitrary.
In addition, the present invention is based on an internal / external double structure using two constant velocity universal joints, but it is also possible to have a triple or more structure, and thereby a larger operating angle can be obtained. A constant velocity universal joint can be provided.

J1 第一の等速自在継手
10 内輪(内側継手部材)
12 セレーション孔
14 外周面
16 ボール溝
18 シャフト
20 外輪(共通リング)
22 内周面
24 ボール溝
26 環状溝
28 サークリップ
30 ボール
32 ケージ
34 ポケット
36 内周面
38 外周面
J2 第二の等速自在継手
40 内輪(共通リング)
42 外周面
44 ボール溝
46 円板
48 ボルト
49 止め輪
50 外輪(外側継手部材)
52 凹部
54 内周面
56 ボール溝
58 底面
60 ボール
62 ケージ
64 ポケット
66 内周面
68 外周面
70 圧縮コイルばね
72 キャップ
74 座面
76 球面座
78 底面
J1 First constant velocity universal joint 10 Inner ring (inner joint member)
12 Serration hole 14 Outer peripheral surface 16 Ball groove 18 Shaft 20 Outer ring (common ring)
22 inner peripheral surface 24 ball groove 26 annular groove 28 circlip 30 ball 32 cage 34 pocket 36 inner peripheral surface 38 outer peripheral surface J2 second constant velocity universal joint 40 inner ring (common ring)
42 outer peripheral surface 44 ball groove 46 disc 48 bolt 49 retaining ring 50 outer ring (outer joint member)
52 concave portion 54 inner peripheral surface 56 ball groove 58 bottom surface 60 ball 62 cage 64 pocket 66 inner peripheral surface 68 outer peripheral surface 70 compression coil spring 72 cap 74 seating surface 76 spherical seat 78 bottom surface

Claims (9)

作動角0の状態で第一の等速自在継手の外側に同軸状に第二の等速自在継手が位置する、内外二重構造の第一の等速自在継手と第二の等速自在継手を有し、
第一の等速自在継手は、内側継手部材と、外側継手部材と、トルク伝達部材を有し、
第二の等速自在継手は、内側継手部材と、外側継手部材と、トルク伝達部材を有し、
第一の等速自在継手の外側継手部材と第二の等速自在継手の内側継手部材は同一部品であり、前記同一部品を第一の等速自在継手の外側継手部材の開口側に向けて押すばねを有する等速自在継手。
A first constant velocity universal joint and a second constant velocity universal joint having an inner / outer double structure in which a second constant velocity universal joint is coaxially positioned outside the first constant velocity universal joint in a state of an operating angle of 0. Have
The first constant velocity universal joint has an inner joint member, an outer joint member, and a torque transmission member,
The second constant velocity universal joint has an inner joint member, an outer joint member, and a torque transmission member,
An outer joint member of the first constant velocity joint and the second constant velocity universal joint of the inner joint member Ri same component der, toward the same part on the opening side of the outer joint member of the first constant velocity joint Constant velocity universal joint with a spring to push .
第一の等速自在継手をしゅう動式等速自在継手とし、第二の等速自在継手を固定式等速自在継手とした請求項1の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the first constant velocity universal joint is a sliding type constant velocity universal joint, and the second constant velocity universal joint is a fixed type constant velocity universal joint. 第一の等速自在継手を固定式等速自在継手とし、第二の等速自在継手をしゅう動式等速自在継手とした請求項1の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the first constant velocity universal joint is a fixed type constant velocity universal joint, and the second constant velocity universal joint is a sliding type constant velocity universal joint. 第一の等速自在継手および第二の等速自在継手をしゅう動式等速自在継手とした請求項1の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the first constant velocity universal joint and the second constant velocity universal joint are sliding type constant velocity universal joints. 第一の等速自在継手および第二の等速自在継手を固定式等速自在継手とした請求項1の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the first constant velocity universal joint and the second constant velocity universal joint are fixed constant velocity universal joints. 第二の等速自在継手の外側継手部材と前記同一部品との間に圧縮コイルばねを配置した請求項の等速自在継手。 The constant velocity universal joint according to claim 1 , wherein a compression coil spring is disposed between the outer joint member of the second constant velocity universal joint and the same component. 第二の等速自在継手の外側継手部材と前記第二の等速自在継手のケージとの間に圧縮コイルばねを配置した請求項の等速自在継手。 The constant velocity universal joint according to claim 1 , wherein a compression coil spring is disposed between an outer joint member of the second constant velocity universal joint and a cage of the second constant velocity universal joint. 第二の等速自在継手の外側継手部材に別体の球面座を取り付けた請求項1〜7のいずれか1項の等速自在継手。 The constant velocity universal joint according to any one of claims 1 to 7 , wherein a separate spherical seat is attached to the outer joint member of the second constant velocity universal joint. 第一の等速自在継手の内側継手部材とシャフトを同一部品とした請求項1〜8のいずれか1項の等速自在継手。 The constant velocity universal joint according to any one of claims 1 to 8 , wherein the inner joint member of the first constant velocity universal joint and the shaft are the same part.
JP2012158444A 2012-07-17 2012-07-17 Constant velocity universal joint Expired - Fee Related JP6050043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158444A JP6050043B2 (en) 2012-07-17 2012-07-17 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158444A JP6050043B2 (en) 2012-07-17 2012-07-17 Constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2014020434A JP2014020434A (en) 2014-02-03
JP6050043B2 true JP6050043B2 (en) 2016-12-21

Family

ID=50195589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158444A Expired - Fee Related JP6050043B2 (en) 2012-07-17 2012-07-17 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP6050043B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996839B2 (en) * 2016-09-28 2022-01-17 Ntn株式会社 Sliding constant velocity universal joint
CN107676398A (en) * 2017-11-01 2018-02-09 镇江索达联轴器有限公司 Adjustable ball shaft coupling arranged side by side

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3170002D1 (en) * 1980-10-03 1985-05-23 Spicer Hardy Ltd Constant velocity ratio universal joint
DE3739867A1 (en) * 1987-11-25 1989-06-08 Uni Cardan Ag CV DRIVE JOINT
JP2006097758A (en) * 2004-09-29 2006-04-13 Ntn Corp Constant velocity joint
JP5132876B2 (en) * 2005-10-24 2013-01-30 Ntn株式会社 Composite type constant velocity universal joint
JP2008215556A (en) * 2007-03-06 2008-09-18 Ntn Corp Constant velocity universal joint
JP2011069404A (en) * 2009-09-24 2011-04-07 Ntn Corp Fixed type constant velocity universal joint

Also Published As

Publication number Publication date
JP2014020434A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
EP2530346B1 (en) Sliding ball type constant velocity joint for vehicle
KR20160097237A (en) Coupling
CN105257692B (en) Flanged hub bearing unit
JP7143400B2 (en) Centrifugal wedge clutch
JP6050043B2 (en) Constant velocity universal joint
US20170335896A1 (en) Accessory assembly of a turbine engine
US20130257005A1 (en) Compact wheel end with coupler
US20080258539A1 (en) Wheel end with coupler
JP2007247848A (en) Cross groove type constant velocity universal joint
JP2008256180A (en) Fixed type constant velocity universal joint and its assembling method
KR101696907B1 (en) Wheel bearing and manufacturing method of the same
JP5133206B2 (en) Sliding constant velocity universal joint and manufacturing method thereof
KR101411617B1 (en) Wheel bearing having hub and inner ring
JP2001246903A (en) Hub unit
WO2007049512A1 (en) Compound constant velocity universal joint
JP5372364B2 (en) Tripod type constant velocity universal joint
JP3736571B2 (en) Rolling bearing unit for driving wheel and method for manufacturing driving unit for wheel
JP2020051542A (en) Drive shaft
JP2011069404A (en) Fixed type constant velocity universal joint
JP5726694B2 (en) Constant velocity joint
JP2013083281A (en) Cross shaft joint and manufacturing method of the same
JP2007078081A (en) Sliding type constant velocity universal joint and its manufacturing method
JP2010112439A (en) Sliding type constant velocity universal joint and method of manufacturing the same
CN107061530A (en) Slidingtype tripod constant velocity universal joint and its roller unit
KR101728031B1 (en) Wheel bearing and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees