WO2025017870A1 - Power conversion device and air-conditioning device - Google Patents
Power conversion device and air-conditioning device Download PDFInfo
- Publication number
- WO2025017870A1 WO2025017870A1 PCT/JP2023/026425 JP2023026425W WO2025017870A1 WO 2025017870 A1 WO2025017870 A1 WO 2025017870A1 JP 2023026425 W JP2023026425 W JP 2023026425W WO 2025017870 A1 WO2025017870 A1 WO 2025017870A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- switching
- period
- voltage
- inverter
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 52
- 238000004378 air conditioning Methods 0.000 title description 12
- 238000012937 correction Methods 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 49
- 230000007704 transition Effects 0.000 claims description 32
- 239000000725 suspension Substances 0.000 claims description 24
- 239000003507 refrigerant Substances 0.000 claims description 8
- 238000013459 approach Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 2
- 238000007664 blowing Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 42
- 238000003780 insertion Methods 0.000 description 34
- 230000037431 insertion Effects 0.000 description 34
- 230000006870 function Effects 0.000 description 24
- 230000008859 change Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 11
- 238000009429 electrical wiring Methods 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- This disclosure relates to a power conversion device and an air conditioning device equipped with an inverter that converts DC power into AC power and supplies it to a three-phase load.
- Pulse Width Modulation (PWM) drive is generally used as the drive method for each switching element provided in the inverter.
- Common modulation methods for sine wave modulation using PWM include “three-phase modulation” and “two-phase modulation.” When using three-phase modulation and two-phase modulation together, three-phase modulation is generally used, and when it is desired to reduce switching losses, it is common to switch from three-phase modulation to two-phase modulation.
- An inverter has legs consisting of upper and lower elements (hereinafter referred to as "upper and lower elements") connected in series.
- the drive signal for driving the upper and lower elements of the inverter has a period called dead time during which the upper and lower elements are simultaneously turned off to prevent a leg short circuit caused by the upper and lower elements being turned on at the same time.
- the dead time corresponds to a disturbance voltage. For this reason, for example, if the three-phase load is a motor, the dead time can cause ripples in the motor current and motor torque, which can have an adverse effect on noise and vibration.
- non-patent document 1 discloses a technique for reducing ripples in the motor current and motor torque by superimposing a correction voltage on the voltage command for each phase based on the DC bus voltage, motor current, and carrier frequency used to generate the drive signal. This correction is called dead-time correction.
- Patent Document 1 discloses a control method for an inverter circuit in a three-phase voltage-type inverter that obtains three-phase AC voltage from a DC power source, in which a bottom-attached two-phase modulation method or a top-attached two-phase modulation method that reduces the maximum value of leakage current in the low-speed range according to the rotation speed, and a top-attached two-phase modulation method that ensures speed stability in the high-speed range are selected.
- the bottom-attached two-phase modulation method is a modulation method in which the voltage amplitude command for each phase is set to the minimum value every 120 degrees, which is 1/3 of one electrical angle cycle, and the bottom element of the top and bottom elements of the inverter is maintained in the on state for a period of 120 degrees.
- the top-attached two-phase modulation method is a modulation method in which the positive and negative of the bottom-attached two-phase modulation method is reversed, that is, a modulation method in which the top element of the top and bottom elements of the inverter is maintained in the on state for a period of 120 degrees.
- the top-and-bottom-attached two-phase modulation method is a method in which both bottom-attached two-phase modulation and top-attached two-phase modulation are alternately performed every 60 degrees within one electrical angle cycle.
- the present disclosure has been made in consideration of the above, and aims to obtain a power conversion device that can sufficiently suppress ripples in the motor current and motor torque even when a drive method that combines three-phase modulation and two-phase modulation is adopted.
- the power conversion device includes an inverter that converts DC power into AC power and supplies it to a three-phase load, and a control unit that generates switching signals for a plurality of three-phase switching elements provided in the inverter and outputs the switching signals to the inverter.
- the control unit performs two-phase modulation that sequentially suspends the switching operation of the switching elements of one of the three phases, and inserts a three-phase modulation period in which all three phases are subjected to switching operation at least one of immediately before and after the timing at which the phase in which the switching operation is suspended transitions from a switching period to a switching suspend period based on the current flowing in and out of the inverter when performing the two-phase modulation, and at least one of immediately before and after the timing at which the phase in which the switching operation is suspended transitions from a switching suspend period to a switching period.
- the power conversion device disclosed herein has the advantage that ripples in the motor current and motor torque can be sufficiently suppressed even when a drive method that combines three-phase modulation and two-phase modulation is adopted.
- FIG. 1 is a diagram for explaining a basic configuration and basic functions of a power conversion device according to a first embodiment.
- FIG. 2 is a diagram showing another example of a configuration having the basic functions of the power conversion device shown in FIG. 1;
- FIG. 2 is a diagram showing yet another example of a configuration having the basic functions of the power conversion device shown in FIG.
- FIG. 1 is a block diagram for explaining a basic function related to generation of a switching signal in a control unit according to a first embodiment;
- FIG. 1 is a diagram for explaining problems in the prior art.
- FIG. 10 is a diagram for explaining a second three-phase voltage modulated wave generated inside the control unit according to the first embodiment;
- FIG. 1 is a diagram showing an example of a characteristic table referenced within a control unit according to the first embodiment
- FIG. 13 is a diagram showing a relationship between a u-phase Td correction value generated inside the control unit according to the first embodiment and a u-phase current.
- FIG. 1 is a diagram for explaining the relationship between first, second, and third three-phase voltage modulated waves generated inside a control unit according to the first embodiment;
- FIG. 1 is a diagram for explaining a method for setting a shift amount in the first embodiment;
- FIG. 10 is a diagram for explaining another method for setting the shift amount in the first embodiment;
- FIG. 12 is a block diagram of a control unit that realizes the modulation method selection control described with reference to FIG. 10 and FIG. 11.
- FIG. 11 is a block diagram of a control unit that realizes the modulation method selection control described with reference to FIG. 10 and FIG. 11.
- FIG. 1 is a diagram showing an example of waveforms of a phase current and a q-axis current in a conventional two-phase modulation
- FIG. 1 is a diagram showing an example of waveforms of a phase current and a q-axis current when the power conversion device according to the first embodiment is used
- FIG. 1 is a first diagram for explaining a three-phase modulation insertion period inserted by control according to a second embodiment
- FIG. 2 is a second diagram illustrating a three-phase modulation insertion period inserted by the control according to the second embodiment
- FIG. 1 is a first diagram for explaining a three-phase modulation insertion period inserted by control according to a third embodiment
- FIG. 2 is a second diagram illustrating a three-phase modulation insertion period inserted by the control according to the third embodiment
- FIG. 13 is a diagram for explaining a three-phase modulation insertion period inserted by control according to the fourth embodiment
- FIG. 13 is a diagram showing a configuration example of an air conditioning device according to a sixth embodiment.
- FIG. 13 is a diagram showing an example of a hardware configuration for implementing the functions of a control unit in the first to fifth embodiments.
- FIG. 13 is a diagram showing another example of a hardware configuration for implementing the functions of the control unit in the first to fifth embodiments.
- Fig. 1 is a diagram for explaining a basic configuration and basic functions of a power conversion device 100 according to a first embodiment.
- the power conversion device 100 is connected between a commercial power source 1 and a motor 5.
- the commercial power source 1 is an example of an AC power source.
- the motor 5 is a three-phase motor mounted on a three-phase load.
- a compressor that compresses a refrigerant, a fan that blows air to a heat exchanger that exchanges heat with the refrigerant, and the like correspond to the three-phase load.
- the power conversion device 100 includes a converter 2, an inverter 3, and a control unit 4.
- the converter 2 rectifies the power supply voltage applied from the commercial power supply 1 and outputs it to the inverter 3. If the converter 2 has a boost function, the converter 2 outputs a boosted voltage obtained by boosting the power supply voltage to the inverter 3. In other words, the converter 2 rectifies the power supply voltage applied from the commercial power supply 1, and also performs the operation of boosting the power supply voltage if necessary.
- the inverter 3 is connected to the output terminal of the converter 2 by electrical wiring 6a and 6b.
- the electrical wiring 6a and 6b are also called DC busbars.
- the electrical wiring 6a is a DC busbar on the high potential side
- the electrical wiring 6b is a DC busbar on the low potential side.
- the inverter 3 has switching elements 31a, 31b, 31c, 32a, 32b, and 32c with freewheel diodes connected in inverse parallel.
- the switching elements 31a to 31c are the upper elements described above, and the switching elements 32a to 32c are the lower elements described above.
- the switching elements 31a to 31c and 32a to 32c are turned on or off under the control of the control unit 4, and the inverter 3 converts the DC power output from the converter 2 into AC power having the desired amplitude and phase and supplies it to the motor 5. Note that FIG.
- switching elements 31a to 31c and 32a to 32c are IGBTs (Insulated Gate Bipolar Transistors), but MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) may be used instead of IGBTs.
- MOSFETs Metal Oxide Semiconductor Field Effect Transistors
- parasitic diodes are built in, so in some cases a configuration is used in which the diodes are not connected in inverse parallel.
- the inverter 3 also has shunt resistors 33a, 33b, and 33c for detecting the current flowing through each phase of the inverter 3.
- the shunt resistor 33a is connected between the switching element 32a, which is the lower element, and the low-potential side electrical wiring 6b.
- the shunt resistors 33b and 33c are connected in a similar manner.
- the detection values of the shunt resistors 33a to 33c are input to the control unit 4.
- the control unit 4 calculates the voltage detected by the shunt resistors 33a to 33c and converts it into a current to obtain the current flowing through each phase of the inverter 3. Once the current flowing through each phase of the inverter 3 has been obtained, the three-phase output current output from the inverter 3 to the motor 5 can also be obtained.
- the control unit 4 also receives the detected value of the bus voltage Vdc from the converter 2.
- the bus voltage Vdc is the voltage between the electrical wiring 6a and 6b, which are DC buses.
- the bus voltage Vdc may be the voltage across a smoothing capacitor (not shown in FIG. 1) that smoothes the output voltage of the converter 2.
- the control unit 4 generates switching signals for the three-phase switching elements 31a-31c, 32a-32c provided in the inverter 3 based on the current flowing through each phase of the inverter 3 and the bus voltage Vdc, and outputs the signals to the inverter 3.
- the on and off operations of the switching elements 31a-31c, 32a-32c are controlled by the switching signals.
- FIG. 2 is a diagram showing another example configuration having the basic functions of the power conversion device 100 shown in FIG. 1.
- FIG. 1 shows a configuration known as a three-shunt system
- FIG. 2 shows a configuration known as a one-shunt system.
- the current flowing through each phase of inverter 3 is detected based on the timing at which switching elements 31a-31c, 32a-32c are turned on or off.
- the method of detecting the current flowing through each phase of inverter 3 based on the detection value of shunt resistor 34 is well known, and further explanation will be omitted here.
- FIG. 3 is a diagram showing yet another example configuration having the basic functions of the power conversion device 100 shown in FIG. 1.
- the shunt resistors 33a to 33c have been removed, and current detectors 35a and 35b have been inserted into the electrical wiring 7 connecting the inverter 3 and the motor 5.
- Each of the current detectors 35a and 35b detects the current of one phase of the three-phase output current that is the output current of the inverter 3.
- the detection values of the current detectors 35a and 35b are input to the control unit 4.
- the control unit 4 calculates the current of the remaining one phase based on the detection values of the currents of any two phases detected by the current detectors 35a and 35b.
- Typical current detectors 35a and 35b include an ACCT (Alternating Current Transformer) that can detect only AC components, and a DCCT (Direct Current Transformer) that can detect both DC and AC components, but any detector that can detect three-phase output current may be used.
- ACCT Alternating Current Transformer
- DCCT Direct Current Transformer
- FIG. 4 is a block diagram for explaining the basic functions related to generation of a switching signal in the control unit 4 according to the first embodiment.
- the control unit 4 according to the first embodiment generates a switching signal by using three-phase modulation and two-phase modulation in combination, and for implementing this control, the control unit 4 has an internal functional block as shown in FIG. 4.
- the control unit 4 includes a modulation method selection unit 41, a modulated wave generation unit 42, a Td correction unit 43, a PWM modulation unit 44, and a Td addition unit 45. Note that "Td" in the Td correction unit 43 and the Td addition unit 45 means dead time.
- the modulated wave generating unit 42 When a positive modulation factor command Vk and a voltage phase ⁇ are given, the modulated wave generating unit 42 generates first three-phase voltage modulated waves Vu1 * , Vv1 * , Vw1 * as shown in the following equation (1).
- Vw1 * Vk ⁇ cos( ⁇ -4/3 ⁇ ) ...(1)
- the first three-phase voltage modulated waves Vu1 * , Vv1 * , Vw1 * essentially correspond to the desired voltages to be output from the inverter 3, and are generated based on voltage commands output from a higher-level control system (not shown).
- the voltage phase ⁇ is the phase of the three-phase output voltage, which is the output voltage of the inverter 3, and is the phase when the rotation of the motor 5 is viewed in terms of electrical angle.
- the modulation method selection unit 41 selects and instructs a modulation method based on the modulation factor command Vk and the voltage phase ⁇ .
- the modulation wave generation unit 42 outputs the first three-phase voltage modulation waves Vu1 * , Vv1 * , Vw1 * as the second three-phase voltage modulation waves Vu2 * , Vv2 * , Vw2 * .
- the modulation wave generation unit 42 generates the second three-phase voltage modulation waves Vu2 * , Vv2 * , Vw2 * shown in the following formula (2) and outputs them to the Td correction unit 43.
- Vu2 * Vu1 * -Vcom
- Vv2 * Vv1 * -Vcom
- Vw2 * Vw1 * -Vcom ...(2)
- Vcom is a three-phase common signal.
- the second three-phase voltage modulation waves Vu2 * , Vv2 * , Vw2 * are generated by subtracting the same value of the three-phase common signal Vcom from the first three-phase voltage modulation waves Vu1 * , Vv1 * , Vw1 *, so that the line voltage value between each phase is maintained.
- the three-phase common signal Vcom can be calculated, for example, by the following formula (3).
- Vcom min(Vu1 * ,Vv1 * ,Vw1 * )+1...(3)
- min(Vu1 * , Vv1 * , Vw1 * ) is a function for obtaining the minimum value among the first three-phase voltage modulated waves Vu1 * , Vv1 * , Vw1 * .
- the Td correction unit 43 generates third three-phase voltage modulated waves Vu3 * , Vv3 * , Vw3 * by correcting the second three-phase voltage modulated waves Vu2*, Vv2*, Vw2* based on the three-phase output currents iu , iv, iw , the bus voltage Vdc, and the carrier frequency fc .
- the Td correction unit 43 is implemented with a current characteristic when the dead time Td is regarded as a disturbance voltage.
- the Td correction unit 43 corrects the second three-phase voltage modulated waves Vu2 * , Vv2 * , Vw2 * by referring to the current characteristic according to the values of the three-phase output currents iu, iv, iw.
- the PWM modulation unit 44 internally generates a carrier signal of the commanded carrier frequency fc, compares the third three-phase voltage modulation waves Vu3*, Vv3 * , Vw3 * with the carrier signal, and generates a switching signal SW1 based on the magnitude relationship between the carrier signal and the third three-phase voltage modulation waves Vu3 * , Vv3*, Vw3*.
- This switching signal SW1 is a signal before the dead time Td is added.
- the Td addition unit 45 generates a switching signal SW by adding the dead time Td to the switching signal SW1, and outputs the switching signal SW to the inverter 3.
- Figure 5 is a diagram for explaining the problems of the conventional technology.
- the operating waveforms in Figure 5 are those during two-phase modulation, and the solid line, dashed line, and thick dashed line represent the u-phase voltage modulated wave Vu2 * , the v-phase voltage modulated wave Vv2 *, and the w-phase voltage modulated wave Vw2 *, respectively.
- the thick solid line represents the u-phase current iu of the three-phase output currents iu, iv, and iw.
- the horizontal axis represents the electrical angle phase angle
- the vertical axis represents the voltage value of each modulated wave or the current value of the u-phase current iu.
- the voltage value on the vertical axis is normalized to ⁇ 1, and the value on the vertical axis corresponds to the modulation factor.
- Period Xa is the three-phase modulation period immediately before the u-phase switching pause period Yu during which two-phase modulation is performed.
- Period Xb is the three-phase modulation period immediately after the u-phase switching pause period Yu during which two-phase modulation is performed.
- the minimum pulse width is set to protect the switching elements 31a to 31c, 32a to 32c and to ensure the current detection function.
- the portion surrounded by the u-phase voltage modulated wave Vu2 * and the rectangular frames in the periods Xa and Xb is hatched.
- the size of the area of the hatched portion represents the voltage manipulation margin for Td correction.
- the larger the area of the hatched portion the larger the voltage manipulation margin.
- the voltage manipulation margin can be increased by expanding the periods Xa and Xb, such a method does not solve the problem. This is because, as the u-phase switching pause period Yu approaches, the difference between the u-phase voltage modulated wave Vu2 * and the first limiter value Limit1 becomes smaller, and the voltage manipulation margin becomes rapidly smaller, making it difficult to perform Td correction sufficiently.
- the period immediately before and after the u-phase switching pause period Yu is a period in which there is a voltage control error that makes it impossible to perform Td correction sufficiently.
- there is no switching operation during the u-phase switching pause period Yu and therefore no voltage control error exists. Therefore, at the timing when the period Xa switches to the u-phase switching pause period Yu, and when the u-phase switching pause period Yu switches to the period Xb, the voltage control error changes in a step-like manner, causing current ripples and torque ripples.
- a method for calculating the second three-phase voltage modulated waves Vu2*, Vv2 * , Vw2 * is improved so as to reduce the voltage control error near the boundary between the period Xa and the u-phase switching suspension period Yu and near the boundary between the u-phase switching suspension period Yu and the period Xb .
- the specific calculation method is as follows.
- the three-phase common signal Vcom is generated using the following equation (4) instead of the above equation (3).
- Vcom min(Vu1 * , Vv1 * , Vw1 * ) +(1- ⁇ duty)( ⁇ duty>0)...(4)
- ⁇ duty is the amount of shift for shifting the first limiter value Limit1 in the voltage direction.
- the second three-phase voltage modulation waves Vu2 * , Vv2 * , and Vw2 * are calculated by substituting the three-phase common signal Vcom according to the above formula (4) into the above formula (2).
- the above formula (2) is rewritten as formula (5).
- Vu2 * Vu1 * -Vcom
- Vv2 * Vv1 * -Vcom
- Vw2 * Vw1 * -Vcom ... (5) (Repost)
- FIG. 6 is a diagram for explaining the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * generated inside the control unit 4 according to the first embodiment.
- FIG. 6 shows the waveforms of the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * for one electrical angle period.
- the shift amount ⁇ duty is set to ⁇ duty>0
- the limiter value shifted in the voltage direction by the shift amount ⁇ duty is denoted as "Limit2" and called the "second limiter value”.
- There is a relationship of "Limit2 Limit1+ ⁇ duty" between the first limiter value Limit1, the second limiter value Limit2, and the shift amount ⁇ duty. The appropriate range of ⁇ duty will be described later.
- the Td corrector 43 generates the third three-phase voltage modulated waves Vu3 * , Vv3 * , Vw3 * by using the following equation (6).
- Vtd_u, Vtd_v, and Vtd_w are the Td correction values for the u, v, and w phases.
- These u-phase Td correction value Vtd_u, v-phase Td correction value Vtd_v, and w-phase Td correction value Vtd_w can be calculated by referring to a characteristics table such as that shown in FIG. 7.
- FIG. 7 is a diagram showing an example of a characteristics table referred to within the control unit 4 according to the first embodiment.
- the horizontal axis of FIG. 7 indicates the absolute values of the instantaneous values of the three-phase output currents iu, iv, and iw, and the vertical axis indicates the absolute value
- the Td correction unit 43 uses the absolute values of the instantaneous values of the three-phase output currents iu, iv, and iw as arguments, and refers to the characteristic table in FIG. 7 to determine the absolute value
- Vtd_u
- Vtd_v
- Vtd_w
- sign(iu) is a function that obtains the sign of the instantaneous value of the u-phase current iu, and takes on one of the values "1", "0", or "-1". The same is true for sign(iv) and sign(iw).
- the three-phase output currents iu, iv, and iw can be obtained in any of the power conversion devices 100 shown in Figures 1 to 5.
- FIG. 8 is a diagram showing the relationship between the u-phase Td correction value Vtd_u generated inside the control unit 4 according to the first embodiment and the u-phase current iu.
- the u-phase Td correction value Vtd_u is indicated by a solid line
- the u-phase current iu is indicated by a dashed line.
- the correction direction of the u-phase Td correction value Vtd_u is reversed depending on the sign of the instantaneous value of the u-phase current iu.
- the other v-phase Td correction value Vtd_v and w-phase Td correction value Vtd_w have a similar relationship.
- FIG. 9 is a diagram for explaining the relationship between the first, second, and third three-phase voltage modulation waves generated inside the control unit 4 according to the first embodiment.
- the same waveforms and elements as those in FIG. 5 and FIG. 6 are denoted by the same reference numerals.
- FIG. 9 shows only the u-phase voltage modulated waves Vu1 * , Vu3 * of the first three-phase voltage modulated waves Vu1 * , Vv1 * , Vw1 * and the third three-phase voltage modulated waves Vu3 * , Vv3*, Vw3 * .
- FIG. 9 shows that periods Xa and Xb are respectively set to periods Xa' and Xb'. Also, in FIG. 9, the u-phase switching pause period Yu is set to u-phase switching pause period Yu'.
- the u-phase switching pause period Yu' is shorter than the u-phase switching pause period Yu.
- the period Xa shown in FIG. 5 includes only the period immediately before the timing when the u-phase switching operation transitions from the switching period to the switching pause period, while the period Xa' shown in FIG. 9 also includes the period immediately after the timing when the u-phase switching operation transitions from the switching period to the switching pause period.
- the period Xb shown in FIG. 5 includes only the period immediately after the timing when the u-phase switching operation transitions from the switching pause period to the switching period, while the period Xb' shown in FIG.
- the u-phase voltage modulated wave Vu3 * is superimposed with the u-phase Td correction value Vtd_u on the u-phase voltage modulated wave Vu2 * .
- the u-phase Td correction value Vtd_u is a voltage corresponding to the absolute value of the instantaneous value of the three-phase output currents iu, iv, and iw (in the case of the u-phase, the u-phase current iu).
- the u-phase voltage modulated wave Vu3 * changes up and down across -1 with a gentle slope.
- the period during which the u-phase voltage modulated wave Vu3 * falls below the first limiter value Limit1 is the period during which no switching operation occurs in the u-phase.
- the steps Xa' and Xb' according to embodiment 1 shown in FIG. 9 it is possible to appropriately perform Td correction. Also, in the periods Xa' and Xb' according to embodiment 1, the step-like change in the voltage control error can be reduced at the timing of the transition from period Xa to u-phase switching pause period Yu, and from u-phase switching pause period Yu to period Xb, making it possible to suppress current ripple and torque ripple.
- a three-phase modulation period in which all three phases are subjected to switching operation is inserted immediately before and after the timing when the phase in which the switching operation is suspended during the implementation of two-phase modulation transitions from the switching period to the switching suspension period. Also, a three-phase modulation period in which all three phases are subjected to switching operation is inserted immediately before and after the timing when the phase in which the switching operation is suspended during the implementation of two-phase modulation transitions from the switching suspension period to the switching period.
- and maximum value Vtd_peak of the Td correction value Vtd_u have the characteristic of fluctuating according to the magnitude of the u-phase current iu. Therefore, setting the shift amount ⁇ duty based on the above formula (8) is equivalent to setting it according to the effective value of the motor current output from the inverter 3 to the motor 5. For this reason, the shift amount ⁇ duty may be set as shown in the following formula (9).
- FIG. 10 is a diagram provided for explaining the method for setting the shift amount ⁇ duty in embodiment 1.
- the upper part of Figure 10 shows the change characteristics of the motor current effective value according to the rotation speed. Therefore, as shown in the lower part of Figure 10, it is desirable to set the shift amount ⁇ duty according to the change characteristics of the motor current effective value. Since rotation speed is generally less prone to sudden changes than current, setting the shift amount ⁇ duty according to the rotation speed has the advantage of allowing Td correction to be performed stably.
- FIG. 11 is a diagram illustrating another method for setting the shift amount ⁇ duty in the first embodiment.
- the change characteristic of the effective motor current shown in the upper part of FIG. 11 is similar to the characteristic shown in the upper part of FIG. 10.
- the shift amount ⁇ duty is set according to the change characteristic of the effective motor current, but the characteristic for determining the set value may be switched depending on the range of the rotation speed.
- the range of the rotation speed is set as a low speed range from zero speed to the first speed, a medium speed range from the first speed to the second speed, and a high speed range from the second speed and above including the maximum rotation speed.
- the low-speed range where the rotation speed is low, is an operating condition that is often used when starting up the inverter 3, and the voltage applied to the motor 5 is also low. For this reason, in this low-speed range, it is desirable to always use three-phase modulation in order to eliminate as much as possible the disturbance voltage that accompanies switching between two-phase modulation and three-phase modulation. Therefore, as shown in Figure 11, the shift amount ⁇ duty is set to a large value of at least about 0.5. If the shift amount ⁇ duty is set to such a value, it becomes possible to set it so that no switching pause period is inserted, regardless of what Td correction value Vtd is superimposed.
- the shift amount ⁇ duty is set to zero. Setting the shift amount ⁇ duty to zero results in a control operation equivalent to conventional two-phase modulation, making it possible to increase the operating efficiency of the inverter 3 through reduced switching loss.
- the curve is connected with an exponentially decreasing characteristic so that the change in the shift amount ⁇ duty between the low speed range and the high speed range is smooth.
- FIG. 11 is only one example, and any curve can be used as long as the change in the shift amount ⁇ duty is smooth, even a straight line.
- FIG. 12 is a block diagram of the control unit 4 that realizes the modulation method selection control described with reference to FIG. 10 and FIG. 11.
- FIG. 12 components that are the same as or equivalent to those in FIG. 4 are indicated by the same reference numerals.
- the modulation method selection unit 41 is replaced with a modulation method selection unit 41A.
- the motor current effective value Irms or the rotation speed Rrot is further input to the modulation method selection unit 41A from a higher-level control system (not shown).
- the modulation method selection unit 41A is added with a function of calculating a shift amount ⁇ duty based on the motor current effective value Irms or the rotation speed Rrot.
- the modulation method selection unit 41A sets the shift amount ⁇ duty in accordance with the change characteristic of the motor current effective value Irms and outputs it to the modulated wave generation unit 42, as described with reference to FIG. 10, for example.
- the modulation method selection unit 41A determines the rotation speed region from the rotation speed Rrot, sets the shift amount ⁇ duty according to the rotation speed region, and outputs it to the modulation wave generation unit 42.
- the modulation wave generation unit 42 generates second three-phase voltage modulation waves Vu2 * , Vv2 * , Vw2 * in accordance with an instruction from the modulation method selection unit 41A. Note that, although not shown in Fig. 12, the Td correction values Vtd_u, Vtd_v, and Vtd_w of each phase calculated by the Td correction unit 43 may be reflected in the calculation of the shift amount ⁇ duty performed by the modulation method selection unit 41A.
- FIG. 13 is a diagram showing an example of the waveforms of the phase current and the q-axis current by the conventional two-phase modulation.
- FIG. 14 is a diagram showing an example of the waveforms of the phase current and the q-axis current when the power conversion device 100 according to the first embodiment is used. In each figure, the phase current is shown on the upper side, and the q-axis current is shown on the lower side.
- the phase current is the current of any one of the three-phase output currents iu, iv, and iw.
- the q-axis current is a current component that contributes to the motor torque when the phase current is converted into a rotating orthogonal coordinate.
- Figure 14 shows that the distortion of the phase current is suppressed, and the pulsation at three times the frequency is also suppressed. Therefore, by using the power conversion device 100 according to embodiment 1, the current ripple can be suppressed. This makes it possible to suppress the torque ripple generated in the motor 5, and also to suppress the noise caused by the torque ripple. Furthermore, by using the power conversion device 100 according to embodiment 1, the current ripple can be suppressed, and therefore the losses in the wiring resistance and winding resistance caused by the current ripple can be suppressed.
- the power conversion device includes an inverter that converts DC power into AC power and supplies it to a three-phase load, and a control unit that generates switching signals for a plurality of switching elements of three phases provided in the inverter and outputs the switching signals to the inverter.
- the control unit performs two-phase modulation to sequentially suspend the switching operation of the switching elements of one of the three phases, and inserts a three-phase modulation period in which all three phases are switched on immediately before and after the timing when the phase in which the switching operation is suspended during the two-phase modulation transitions from a switching period to a switching suspend period, and immediately before and after the timing when the phase in which the switching operation is suspended transitions from a switching suspend period to a switching period, based on the current flowing in and out of the inverter.
- This control makes it possible to reduce step-like changes in the voltage control error at the timing of transition from the switching period to the switching suspend period and from the switching suspend period to the switching period. This makes it possible to sufficiently suppress ripples in the motor current and motor torque even when a drive method that uses both three-phase modulation and two-phase modulation is adopted.
- the control unit In the power conversion device configured as described above, the control unit generates a first three-phase voltage modulated wave based on a voltage command output from a higher-level control system, and calculates a three-phase common signal for setting a switching pause period while maintaining a line voltage value for the generated first three-phase voltage modulated wave.
- the control unit also calculates a second three-phase voltage modulated wave by superimposing the three-phase common signal on the first three-phase voltage modulated wave.
- the control unit generates a switching signal for the second three-phase voltage modulated wave based on a third three-phase voltage modulated wave in which an error caused by a dead time imparted to the switching signal is corrected.
- the three-phase common signal can be calculated based on a first difference, which is the difference between a first three-phase voltage modulated wave of a value close to a predetermined first limiter value among the first three-phase voltage modulated waves and the first limiter value.
- the three-phase common signal can be calculated based on the second difference, which is the difference between the first three-phase voltage modulation wave close to the first limiter value and the second limiter value whose absolute value is smaller than the first limiter value.
- this third difference can be determined based on at least one of the effective value of the three-phase output current, which is the output current of the inverter, or the voltage-current phase difference, which is the phase difference between the three-phase output voltage, which is the output voltage of the inverter, and the three-phase output current.
- the control unit may perform three-phase modulation without performing two-phase modulation under operating conditions where the rotation speed of the motor is below a predetermined threshold.
- the control unit may not insert a three-phase modulation period under operating conditions where the rotation speed of the motor exceeds a predetermined threshold.
- the control unit may determine the value of the third difference based on the value of the disturbance voltage caused by the dead time under operating conditions where the rotation speed of the motor is below a predetermined threshold, thereby making each phase switch for the entire period of the three-phase modulation period.
- the control unit may not insert a three-phase modulation period for the entire period of the three-phase modulation period by setting the third difference to zero under operating conditions where the rotation speed of the motor exceeds a predetermined threshold.
- Embodiment 2 The magnitude of the disturbance voltage caused by the dead time Td and the Td correction value Vtd, which is the correction voltage value thereof, are generated according to the magnitude of the instantaneous value of the three-phase output currents iu, iv, and iw, as described above.
- the positive and negative polarities of the disturbance voltage and the Td correction value Vtd depend on the polarities of the three-phase output currents iu, iv, and iw
- the remaining margin of the modulation wave operation width also depends on the magnitude and polarity of the three-phase output currents iu, iv, and iw.
- the instantaneous values of the three-phase output currents iu, iv, iw are large, and under conditions in which the polarity of the second three-phase voltage modulated waves Vu2 * , Vv2 * , Vw2 * and the polarity of the Td correction value Vtd, which is its correction voltage value, are the same, the remaining margin of the modulated wave operating range becomes small, and the risk of residual disturbance voltage due to insufficient Td correction increases.
- two-phase modulation and three-phase modulation are switched multiple times within the period of electrical phase angle 0 to 360 degrees. In this way, by switching from two-phase modulation to three-phase modulation in the switching period immediately before or after the switching pause period of two-phase modulation, a voltage operation margin is provided for the three-phase voltage modulation wave.
- control unit 4 switches between two-phase modulation and three-phase modulation multiple times within a period of electrical phase angle 0 to 360 degrees based on at least one of the voltage-current phase difference, the current values of the three-phase output currents iu, iv, iw, the Td correction value Vtd, and the modulation rate.
- a period of three-phase modulation is inserted immediately before or after the switching timing, depending on at least one of the current-voltage phase difference, the current values of the three-phase output currents iu, iv, iw, and the Td correction value Vtd.
- the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * may be moved away from the first limiter value Limit1 so that the modulation factor operation corresponding to the Td correction value Vtd can be performed.
- the three-phase modulation insertion period X3in is set based on at least one of the voltage-current phase difference, the current values of the three-phase output currents iu, iv, and iw, the Td correction value Vtd, and the modulation rate, and in the three-phase modulation insertion period X3in, the three-phase common signal Vcom is given as shown in the following formula (10).
- FIGS. 15 and 16 are first and second diagrams for explaining the three-phase modulation insertion period X3in that is inserted by the control according to the second embodiment.
- the same waveforms and elements as those in FIG. 9 are denoted by the same reference numerals.
- Fig. 15 and Fig. 16 in order to avoid complication, only the u-phase voltage modulated wave Vu1 * and the u-phase current iu are shown for the first three-phase voltage modulated wave Vu1* , Vv1 * , Vw1 * and the three-phase output currents iu, iv, iw.
- Fig. 15 shows an example in which the u-phase current iu is ahead of the u-phase voltage modulated wave Vu1 * in phase
- Fig. 16 shows an example in which the u-phase current iu is behind the u-phase voltage modulated wave Vu1 * in phase.
- the three-phase modulation insertion period X3in is shown by a rectangular frame of thick solid lines.
- the periods Xa' and Xb' are provided before and after the u-phase switching pause period Yu in the conventional two-phase modulation so that a suitable voltage operation margin can be obtained.
- the periods Xa' and Xb' shown in FIG. 9 are basically equal in phase angle width.
- the three-phase modulation may be switched to the two-phase modulation at that timing.
- the three-phase modulation is switched to the two-phase modulation at the timing of the zero crossing, so the relationship between the period Xa'' and the period Xb'' is Xa''>Xb''.
- the widths of the periods Xa'', Xb'' and Xa''', Xb''', which are the width of the three-phase modulation insertion period X3in, may be changed according to the Td correction value Vtd in addition to the voltage-current phase difference described above.
- the Td correction value Vtd depends on the magnitude of the current values of the three-phase output currents iu, iv, iw. When the current values of the three-phase output currents iu, iv, iw are small, the operating margin of the modulated wave may be small. Therefore, the widths of the periods Xa'', Xb'', Xa''', Xb''' can be shortened accordingly.
- the widths of the periods Xa'', Xb'', Xa''', and Xb''' can be shortened accordingly.
- the timing of switching may be controlled based on the widths of the periods Xa'', Xb'', Xa''', and Xb''', i.e., the width of the three-phase modulation insertion period X3in.
- the control unit controls the occurrence timing and the occurrence period length of the three-phase modulation period based on at least one of the current value of the three-phase output current of the inverter, the phase difference between the three-phase output voltage and the three-phase output current of the inverter, the voltage correction value for correcting the error caused by the dead time, and the modulation rate of the three-phase output voltage.
- This control makes it possible to eliminate unnecessary voltage operation margin and set the truly necessary width of the three-phase modulation insertion period. This makes it possible to shorten the period in which the three-phase modulation is inserted as much as possible, and to maintain the effect of suppressing switching losses, which is an inherent advantage of two-phase modulation.
- Embodiment 3 a three-phase modulation period in which all three phases are switched is inserted immediately before and after the timing when the phase in which the switching operation is suspended during the implementation of the two-phase modulation transitions from the switching period to the switching suspension period, and immediately before and after the timing when the phase in which the switching operation is suspended transitions from the switching suspension period to the switching period.
- the width of the three-phase modulation insertion period X3in can be further narrowed compared to the first and second embodiments.
- this embodiment will be described with reference to FIG. 17 and FIG. 18.
- FIGS. 17 and 18 are first and second diagrams for explaining the three-phase modulation insertion period X3in that is inserted by the control according to the third embodiment.
- FIG. 17 and FIG. 18 the same waveforms and elements as those in FIG. 15 and FIG. 16 are denoted by the same reference numerals.
- Fig. 17 and Fig. 18 in order to avoid complexity, only the u-phase voltage modulated wave Vu1 * and the u-phase current iu are shown for the first three-phase voltage modulated wave Vu1* , Vv1 * , Vw1 * and the three-phase output currents iu, iv, iw.
- Fig. 17 shows an example in which the u-phase current iu is ahead of the u-phase voltage modulated wave Vu1 * in phase
- Fig. 18 shows an example in which the u-phase current iu is behind the u-phase voltage modulated wave Vu1 * in phase.
- the three-phase modulation insertion period X3in is shown by a rectangular frame of a thick solid line.
- the three-phase modulation insertion period X3in is set only immediately before the timing when the phase for which the switching operation is suspended transitions from the switching period to the switching suspension period, and only immediately before the timing when the phase for which the switching operation is suspended transitions from the switching suspension period to the switching period. Also, in the example of FIG. 18, the three-phase modulation insertion period X3in is set only immediately after the timing when the phase for which the switching operation is suspended transitions from the switching period to the switching suspension period, and only immediately after the timing when the phase for which the switching operation is suspended transitions from the switching suspension period to the switching period.
- the three-phase modulation insertion period X3in is set only immediately before the timing of the transition between the switching period and the switching suspension period, and when the three-phase output currents iu, iv, and iw are in phase with respect to the three-phase output voltage, the three-phase modulation insertion period X3in is set only immediately after the timing of the transition between the switching period and the switching suspension period.
- the three-phase modulation insertion period X3in is inserted only immediately before the timing of the change between the switching period and the switching pause period, but this does not prevent the three-phase modulation insertion period X3in from being set immediately after the change.
- the three-phase modulation insertion period X3in is set only immediately after the timing of the change between the switching period and the switching pause period, but this does not prevent the three-phase modulation insertion period X3in from being set immediately before the change.
- the insertion period of the three-phase modulation can be limited, so that the switching loss can be suppressed while suppressing the current ripple and the torque ripple. In other words, by using the power conversion device according to the third embodiment, it is possible to suppress both the current ripple and the torque ripple and the switching loss.
- the control unit performs two-phase modulation to sequentially suspend the switching operation of the switching elements of one of the three phases, and inserts a three-phase modulation period in which all three phases are switched on at least one of immediately before and after the timing when the phase in which the switching operation is suspended transitions from a switching period to a switching suspension period based on the current flowing in and out of the inverter when performing the two-phase modulation, and at least one of immediately before and after the timing when the phase in which the switching operation is suspended transitions from a switching suspension period to a switching period.
- This control makes it possible to limit the insertion period of the three-phase modulation. This makes it possible to achieve both suppression of current ripple and torque ripple and suppression of switching loss.
- Embodiment 4 In order to maintain the line voltage of the three-phase inverter output, it is necessary to shift the modulated waves of all phases in the same direction, and this shifting operation causes the neutral point potential of the motor 5 to fluctuate. Fluctuations in the neutral point potential have an adverse effect of accelerating the progression of motor shaft electrolytic corrosion, so it is undesirable for the neutral point potential to fluctuate. Therefore, in the fourth embodiment, the fluctuations in the neutral point potential are suppressed while ensuring the accuracy of the Td correction.
- the control according to the fourth embodiment will be described below with reference to FIG. 19.
- FIG. 19 is a diagram for explaining the three-phase modulation insertion period X3in inserted by the control according to the fourth embodiment.
- the three-phase modulation insertion period X3in is shown in a rectangular frame of thick solid lines.
- a three-phase modulation insertion period X3in with an equal phase angle width ⁇ is set before and after the phase angle of 120 degrees at which the u-phase switching pause period Yu in conventional two-phase modulation begins.
- a three-phase modulation insertion period X3in with a predetermined equal phase angle width ⁇ is set before and after the phase angle of 240 degrees at which the u-phase switching pause period Yu in conventional two-phase modulation ends.
- FIG. 19 shows an example of insertion for the u-phase switching pause period Yu, but similar insertion is also performed for the switching pause periods of the v and w phases.
- phase angle widths of the three-phase modulation periods inserted immediately before and after the start of the switching suspension period and immediately before and after the end of the switching suspension period are equal for all four, making it possible to suppress fluctuations in the neutral point potential while ensuring the accuracy of the Td correction.
- three-phase modulation periods of equal phase angle width are inserted at four locations, immediately before and after the start of the switching pause period and immediately before and after the end of the switching pause period, so that it is possible to suppress fluctuations in the neutral point potential while ensuring the accuracy of the Td correction. This makes it possible to suppress the progression of motor shaft electrolytic corrosion while ensuring the accuracy of the Td correction.
- the Td correction value Vtd described in the first embodiment is a voltage corresponding to the magnitude and polarity of the three-phase output current, as shown in Fig. 7 and Fig. 8. Therefore, the closer the phase of the three-phase voltage modulated wave and the phase of the Td correction value Vtd, which is synonymous with the phase of the three-phase output current, the more the symmetry of the three-phase voltage modulated wave is maintained. In order to more suitably suppress the fluctuation of the neutral point potential, a voltage command is generated so that the load power factor becomes 1 with respect to the three-phase output current.
- the method described in Japanese Patent Application Laid-Open No. 10-243700 can be used.
- the motor 5, which is a three-phase load is, for example, a surface permanent magnet type motor
- a method based on a known vector control may be used.
- the three-phase output currents iu, iv, and iw detected by the method of FIG. 1 are coordinate-converted into dq-axis currents Id and Iq on an orthogonal coordinate system that rotates in synchronization with the rotor of the motor 5, and a d-axis current command Id * and a q-axis current command Iq * are generated.
- a voltage command for each axis is generated based on the difference between the dq-axis current commands Id * and Iq * and the coordinate-converted detected current values Id and Iq in each of the d and q axes.
- the d-axis current command Id * is given zero, and the d-axis current Id is controlled to be zero, so that the load power factor can be controlled to 1 more accurately. Therefore, if the motor 5 is a surface permanent magnet type motor, the load power factor can be suitably controlled to 1 by using this type of vector control.
- the control unit controls the load power factor to approach 1 according to the three-phase output current, which is the output current of the inverter.
- the load power factor By controlling the load power factor to approach 1, the phase difference between each phase in the three-phase output current and the three-phase output voltage approaches zero, so that the switching pause period due to two-phase modulation coincides with the period in which each phase current is large. Since the switching loss reduction effect has the property of being approximately proportional to the magnitude of the three-phase output current, in addition to the effects described in the first to fourth embodiments, the switching loss reduction effect can be enhanced.
- the load power factor can be strictly controlled to 1 by controlling the d-axis current command to zero, so that the switching loss reduction effect can be further enhanced.
- Embodiment 6. 20 is a diagram showing a configuration example of an air conditioning apparatus 200 according to embodiment 6.
- the air conditioning apparatus 200 according to embodiment 6 includes the power conversion apparatus 100 described in embodiments 1 to 5, a compressor 50, a fan motor 5b, a fan 52 driven by the fan motor 5b, and a refrigeration cycle 110.
- the compressor 50 includes a compressor motor 5a and a compression element 51 that compresses the refrigerant.
- the compressor motor 5a is the drive source of the compressor 50.
- the power conversion device 100 has two inverters (not shown) that supply power to the compressor motor 5a, which is the drive source for the compressor 50, and the fan motor 5b, which is the drive source for the fan 52. At least one of the two inverters is the inverter 3 described in the first to fifth embodiments.
- the purpose of the converter 2 described in the first to fifth embodiments is to output a rectified voltage, and it may be common to the two inverters 3, or may be provided separately for each of the two inverters 3.
- a refrigerant circuit is formed by a compressor 50, a four-way valve 121, a heat source side heat exchanger 122, a load side heat exchanger 132, and an expansion device 131.
- the compressor 50 compresses the refrigerant, the heat source side heat exchanger 122 and the load side heat exchanger 132 exchange heat of the refrigerant, and a fan 52 blows air to the heat source side heat exchanger 122.
- FIG. 20 shows a configuration in which the four-way valve 121 and the heat source side heat exchanger 122 are provided in the outdoor unit 120, and the expansion device 131 and the load side heat exchanger 132 are provided in the indoor unit 130. Note that the configuration in FIG. 20 is an example, and the air conditioning device 200 according to the sixth embodiment is not limited to the configuration in FIG. 20.
- the current ripple of at least one of the compressor motor 5a, which is the driving source of the compressor 50, and the fan motor 5b, which is the driving source of the fan 52, is suppressed, and therefore the torque ripple generated by the motor is suppressed.
- Fig. 21 is a diagram showing an example of a hardware configuration for realizing the functions of the control unit 4 in embodiments 1 to 5.
- Fig. 22 is a diagram showing another example of a hardware configuration for realizing the functions of the control unit 4 in embodiments 1 to 5.
- the configuration can include a processor 300 that performs calculations, a memory 302 that stores programs read by the processor 300, and an interface 304 that inputs and outputs signals, as shown in FIG. 21.
- Processor 300 is an example of a computing means.
- Processor 300 may be a computing means called a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
- Examples of memory 302 include non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM), magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Discs).
- Memory 302 stores a program that executes the functions of control unit 4 in embodiments 1 to 5.
- Processor 300 receives and transmits necessary information via interface 304, executes the program stored in memory 302, and refers to the table stored in memory 302, thereby performing the above-mentioned processing.
- the results of calculations by processor 300 can be stored in memory 302.
- the processing circuit 303 shown in FIG. 22 can be used.
- the processing circuit 303 can be a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these.
- Information input to the processing circuit 303 and information output from the processing circuit 303 can be exchanged via an interface 304.
- control unit 4 may be performed by the processing circuit 303, and other processing that is not performed by the processing circuit 303 may be performed by the processor 300 and memory 302.
- the number of phases of the commercial power supply 1, which is an AC power supply may be either single-phase or three-phase.
- the commercial power supply 1 and converter 2 operate as DC power supply sources that supply DC power to the inverter 3, but a DC power supply such as a battery may be used instead of the commercial power supply 1 and converter 2.
- the modulation factor command Vk and voltage phase ⁇ input to the control unit 4 are generated based on current feedback control including vector control, which is well known in a higher-level control system, or feedforward control.
- the explanation is based on the assumption that a bottom-attached two-phase modulation method is used, but the same can be achieved by using a top-attached two-phase modulation method in which the upper limit value is set to "1" and attached to the upper limit value side.
- 1 Commercial power supply 2 Converter, 3 Inverter, 4 Control unit, 5 Motor, 5a Compressor motor, 5b Fan motor, 6a, 6b, 7 Electrical wiring, 31a-31c, 32a-32c Switching elements, 33a-33c, 34 Shunt resistor, 35a, 35b Current detector, 41, 41A Modulation method selection unit, 42 Modulation wave generation unit, 43 Td correction unit, 44 PW M modulation section, 45 Td addition section, 50 compressor, 51 compression element, 52 fan, 100 power conversion device, 110 refrigeration cycle, 120 outdoor unit, 121 four-way valve, 122 heat source side heat exchanger, 130 indoor unit, 131 expansion device, 132 load side heat exchanger, 200 air conditioning device, 300 processor, 302 memory, 303 processing circuit, 304 interface.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
本開示は、直流電力を交流電力に変換して三相負荷に供給するインバータを備える電力変換装置及び空気調和装置に関する。 This disclosure relates to a power conversion device and an air conditioning device equipped with an inverter that converts DC power into AC power and supplies it to a three-phase load.
インバータに具備される各スイッチング素子に対する駆動方式としては、PWM(Pulse Width Modulation:パルス幅変調)駆動が一般的に用いられる。PWMによる正弦波変調の一般的な変調方式には、「三相変調」と「二相変調」とがある。三相変調と二相変調とを併用する場合、基本的には三相変調を使用し、スイッチング損失を減らしたいときに、三相変調から二相変調に切り替えることがよく行われる。 Pulse Width Modulation (PWM) drive is generally used as the drive method for each switching element provided in the inverter. Common modulation methods for sine wave modulation using PWM include "three-phase modulation" and "two-phase modulation." When using three-phase modulation and two-phase modulation together, three-phase modulation is generally used, and when it is desired to reduce switching losses, it is common to switch from three-phase modulation to two-phase modulation.
インバータは、直列接続される上側素子及び下側素子(以下、適宜「上下素子」と呼ぶ)からなるレグを備えている。インバータの上下素子を駆動するための駆動信号には、上下素子が同時にオンになることで生起するレグ短絡を防止するため、上下素子を同時にオフとするデッドタイムと呼ばれる期間が設けられている。一方、デッドタイムは、三相負荷から見ると外乱電圧に相当する。このため、例えば三相負荷がモータである場合、デッドタイムの影響でモータ電流及びモータトルクにリプルが発生し、騒音又は振動に悪影響を及ぼすことがある。 An inverter has legs consisting of upper and lower elements (hereinafter referred to as "upper and lower elements") connected in series. The drive signal for driving the upper and lower elements of the inverter has a period called dead time during which the upper and lower elements are simultaneously turned off to prevent a leg short circuit caused by the upper and lower elements being turned on at the same time. On the other hand, from the perspective of a three-phase load, the dead time corresponds to a disturbance voltage. For this reason, for example, if the three-phase load is a motor, the dead time can cause ripples in the motor current and motor torque, which can have an adverse effect on noise and vibration.
この悪影響を防止するため、下記非特許文献1には、直流母線電圧、モータ電流、及び駆動信号の生成に用いるキャリア周波数に基づいて、各相の電圧指令に補正電圧を重畳することでモータ電流及びモータトルクのリプルを低減する技術が開示されている。この補正は、デッドタイム補正と呼ばれる。
To prevent this adverse effect, the following
下記特許文献1には、直流電源から三相の交流電圧を得る三相電圧形インバータにおいて、回転速度に応じて低速域では漏れ電流の最大値を低減させる下張りつけ二相変調方式もしくは上張りつけ二相変調方式を選択し、高速域では速度安定性を確保する上下張りつけ二相変調方式を選択するインバータ回路の制御方法が開示されている。下張りつけ二相変調方式は、電気角1周期の1/3である120度毎に各相の電圧振幅指令を最低値にして、インバータの上下素子のうちの下素子を120度の期間オン状態を維持する変調方式である。上張りつけ二相変調方式は、下張りつけ二相変調方式の正負を反転させた変調方式、即ちインバータの上下素子のうちの上素子を120度の期間オン状態を維持する変調方式である。上下張りつけ二相変調方式は、下張りつけ二相変調と上張りつけ二相変調との両方を電気角1周期内で60度毎に交互に実施する方式である。
三相変調を行う場合、各相の電圧指令に補正電圧を重畳するデッドタイム補正が行われる。一方、二相変調を行う場合、スイッチング動作が休止するスイッチング休止期間は、デッドタイム補正が行われない。従って、三相変調と二相変調とを併用する場合、二相変調が行われるスイッチング休止期間の直前及び直後における三相変調期間では、スイッチング素子の保護のため、或いは電流検出機能の確保のための最小パルス幅制約の影響を受け、電圧重畳のための余裕度である電圧操作余裕が小さく、所望のデッドタイム補正が困難になる。このため、モータ電流及びモータトルクのリプルを充分に抑制できないという課題があった。 When performing three-phase modulation, dead-time correction is performed in which a correction voltage is superimposed on the voltage command for each phase. On the other hand, when performing two-phase modulation, dead-time correction is not performed during switching pause periods when switching operation is paused. Therefore, when using three-phase modulation and two-phase modulation together, during the three-phase modulation periods immediately before and after the switching pause periods in which two-phase modulation is performed, the voltage operation margin, which is the margin for voltage superimposition, is small due to the influence of minimum pulse width constraints for protecting the switching elements or for ensuring the current detection function, making it difficult to perform the desired dead-time correction. This has resulted in the problem that ripples in the motor current and motor torque cannot be sufficiently suppressed.
本開示は、上記に鑑みてなされたものであって、三相変調と二相変調とを併用する駆動方式を採用した場合であっても、モータ電流及びモータトルクのリプルを充分に抑制できる電力変換装置を得ることを目的とする。 The present disclosure has been made in consideration of the above, and aims to obtain a power conversion device that can sufficiently suppress ripples in the motor current and motor torque even when a drive method that combines three-phase modulation and two-phase modulation is adopted.
上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、直流電力を交流電力に変換して三相負荷に供給するインバータと、インバータに具備される三相の複数のスイッチング素子に対するスイッチング信号を生成してインバータに出力する制御部とを備える。制御部は、三相のうちの1つの相のスイッチング素子のスイッチング動作を順番に休止させる二相変調を実施すると共に、インバータに流出入する電流に基づいて、二相変調の実施の際にスイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直前及び直後のうちの少なくとも1つ、並びにスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直前及び直後のうちの少なくとも1つに、三相共にスイッチング動作させる三相変調期間を挿入する。 In order to solve the above problems and achieve the objective, the power conversion device according to the present disclosure includes an inverter that converts DC power into AC power and supplies it to a three-phase load, and a control unit that generates switching signals for a plurality of three-phase switching elements provided in the inverter and outputs the switching signals to the inverter. The control unit performs two-phase modulation that sequentially suspends the switching operation of the switching elements of one of the three phases, and inserts a three-phase modulation period in which all three phases are subjected to switching operation at least one of immediately before and after the timing at which the phase in which the switching operation is suspended transitions from a switching period to a switching suspend period based on the current flowing in and out of the inverter when performing the two-phase modulation, and at least one of immediately before and after the timing at which the phase in which the switching operation is suspended transitions from a switching suspend period to a switching period.
本開示に係る電力変換装置によれば、三相変調と二相変調とを併用する駆動方式を採用した場合であっても、モータ電流及びモータトルクのリプルを充分に抑制できるという効果を奏する。 The power conversion device disclosed herein has the advantage that ripples in the motor current and motor torque can be sufficiently suppressed even when a drive method that combines three-phase modulation and two-phase modulation is adopted.
以下に添付図面を参照し、本開示の実施の形態に係る電力変換装置及び空気調和装置について詳細に説明する。 The power conversion device and air conditioning device according to the embodiment of the present disclosure will be described in detail below with reference to the attached drawings.
実施の形態1.
図1は、実施の形態1に係る電力変換装置100の基本構成及び基本機能の説明に供する図である。図1において、電力変換装置100は、商用電源1とモータ5との間に接続されている。商用電源1は、交流電源の一例である。モータ5は、三相負荷に搭載される三相モータである。電力変換装置100が空気調和装置に搭載される場合、冷媒を圧縮する圧縮機、及び冷媒の熱交換を行う熱交換器へ風を送るファンなどが三相負荷に該当する。
Fig. 1 is a diagram for explaining a basic configuration and basic functions of a
電力変換装置100は、コンバータ2と、インバータ3と、制御部4とを備える。コンバータ2は、商用電源1から印加される電源電圧を整流してインバータ3に出力する。コンバータ2が昇圧機能を有する場合、コンバータ2は、電源電圧を昇圧した昇圧電圧をインバータ3に出力する。即ち、コンバータ2は、商用電源1から印加される電源電圧を整流すると共に、要すれば当該電源電圧を昇圧する動作を行う。
The
インバータ3は、電気配線6a,6bによってコンバータ2の出力端に接続される。電気配線6a,6bは、直流母線とも呼ばれる。電気配線6aは高電位側の直流母線であり、電気配線6bは低電位側の直流母線である。
The
インバータ3は、還流ダイオードが逆並列に接続されるスイッチング素子31a,31b,31c,32a,32b,32cを有する。インバータ3において、スイッチング素子31a~31cが前述した上素子であり、スイッチング素子32a~32cが前述した下素子である。インバータ3は、制御部4の制御によってスイッチング素子31a~31c,32a~32cがオン動作又はオフ動作し、コンバータ2から出力される直流電力を所望の振幅及び位相を有する交流電力に変換して、モータ5に供給する。なお、図1では、スイッチング素子31a~31c,32a~32cがIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)である場合を示しているが、IGBTに代えてMOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属酸化物半導体電界効果トランジスタ)を用いてもよい。なお、MOSFETの場合、構造上、寄生ダイオードが内蔵された構成となっているので、ダイオードが逆並列に接続されない構成が採用される場合もある。
The
また、インバータ3は、インバータ3の各相に流れる電流を検出するためのシャント抵抗33a,33b,33cを有する。シャント抵抗33aは、下素子であるスイッチング素子32aと低電位側の電気配線6bとの間に接続される。シャント抵抗33b,33cも同様に接続される。シャント抵抗33a~33cの検出値は、制御部4に入力される。制御部4は、シャント抵抗33a~33cで検出される電圧を演算によって電流に換算することでインバータ3の各相に流れる電流を求める。インバータ3の各相に流れる電流が求められれば、インバータ3からモータ5へ出力される三相出力電流も求められる。
The
制御部4には、コンバータ2から母線電圧Vdcの検出値も入力される。母線電圧Vdcは、直流母線である電気配線6a,6b間の電圧である。母線電圧Vdcは、コンバータ2の出力電圧を平滑する図1では図示しない平滑コンデンサの両端電圧でもよい。
The
制御部4は、インバータ3の各相に流れる電流及び母線電圧Vdcに基づいて、インバータ3に具備される三相のスイッチング素子31a~31c,32a~32cに対するスイッチング信号を生成してインバータ3に出力する。スイッチング素子31a~31c,32a~32cは、スイッチング信号によってオン動作及びオフ動作が制御される。
The
また、電力変換装置100において、図1の基本構成に示す各部の構成及び配置は一例であり、各部の構成及び配置は図1で示される例に限定されない。実施の形態1に係る電力変換装置100は、例えば図2のように構成されていてもよい。図2は、図1に示す電力変換装置100の基本機能を具備する別の構成例を示す図である。
Furthermore, in the
図2では、シャント抵抗33a~33cが削除される一方で、電気配線6bにシャント抵抗34が挿入されている。図1は3シャント方式と呼ばれる構成であるのに対し、図2は1シャント方式と呼ばれる構成である。1シャント方式の場合、スイッチング素子31a~31c,32a~32cがオン又はオフするタイミングに基づいて、インバータ3の各相に流れる電流が検出される。なお、1シャント方式において、シャント抵抗34の検出値に基づいてインバータ3の各相に流れる電流を検出する手法は公知であり、ここでの更なる説明は割愛する。
In FIG. 2,
また、実施の形態1に係る電力変換装置100は、例えば図3のように構成されていてもよい。図3は、図1に示す電力変換装置100の基本機能を具備する更に別の構成例を示す図である。
The
図3では、シャント抵抗33a~33cが削除される一方で、インバータ3とモータ5とを接続する電気配線7に電流検出器35a,35bが挿入されている。電流検出器35a,35bは、各々がインバータ3の出力電流である三相出力電流のうちの1相分の電流を検出する。電流検出器35a,35bの各検出値は、制御部4に入力される。制御部4は、電流検出器35a,35bによって検出された何れか2相の電流の検出値に基づいて、残りの1相の電流を演算によって求める。
In FIG. 3, the
電流検出器35a,35bとしては、交流成分のみを検出可能なACCT(Alternating Current Current Transformer)、直流成分及び交流成分の双方を検出可能なDCCT(Direct Current Current Transformer)などが代表的であるが、三相出力電流が検出可能なものであれば、どのようなものを用いてもよい。
Typical
図4は、実施の形態1に係る制御部4におけるスイッチング信号の生成に係る基本機能の説明に供するブロック図である。実施の形態1に係る制御部4は、三相変調と二相変調とを併用してスイッチング信号を生成するが、この制御の実施に関し、制御部4の内部には、図4に示すような機能ブロックが構成される。具体的に、制御部4は、変調方式選択部41と、変調波生成部42と、Td補正部43と、PWM変調部44と、Td付加部45とを備える。なお、Td補正部43及びTd付加部45における“Td”は、デッドタイムを意味している。
FIG. 4 is a block diagram for explaining the basic functions related to generation of a switching signal in the
正値である変調率指令Vkと電圧位相θとが与えられると、変調波生成部42は、以下の(1)式に示される第1の三相電圧変調波Vu1*,Vv1*,Vw1*を生成する。
When a positive modulation factor command Vk and a voltage phase θ are given, the modulated
Vu1*=Vk×cosθ
Vv1*=Vk×cos(θ-2/3π)
Vw1*=Vk×cos(θ-4/3π)
…(1)
Vu1 * =Vk×cosθ
Vv1 * =Vk×cos(θ-2/3π)
Vw1 * =Vk×cos(θ-4/3π)
…(1)
第1の三相電圧変調波Vu1*,Vv1*,Vw1*は、本来、インバータ3から出力したい所望の電圧に相当し、図示しない上位の制御系から出力される電圧指令に基づいて生成される。電圧位相θは、インバータ3の出力電圧である三相出力電圧の位相であり、モータ5の回転を電気角で見たときの位相である。
The first three-phase voltage modulated waves Vu1 * , Vv1 * , Vw1 * essentially correspond to the desired voltages to be output from the
変調方式選択部41は、変調率指令Vk及び電圧位相θに基づいて、変調方式を選択して指示する。変調波生成部42は、三相変調を指示された場合には、第1の三相電圧変調波Vu1*,Vv1*,Vw1*を第2の三相電圧変調波Vu2*,Vv2*,Vw2*として出力する。また、変調波生成部42は、二相変調を指示された場合には、以下の(2)式に示される第2の三相電圧変調波Vu2*,Vv2*,Vw2*を生成してTd補正部43に出力する。
The modulation method selection unit 41 selects and instructs a modulation method based on the modulation factor command Vk and the voltage phase θ. When three-phase modulation is instructed, the modulation
Vu2*=Vu1*-Vcom
Vv2*=Vv1*-Vcom
Vw2*=Vw1*-Vcom
…(2)
Vu2 * =Vu1 * -Vcom
Vv2 * =Vv1 * -Vcom
Vw2 * =Vw1 * -Vcom
…(2)
上記(2)式において、Vcomは三相共通信号である。上記(2)式に示されるように、第2の三相電圧変調波Vu2*,Vv2*,Vw2*は、第1の三相電圧変調波Vu1*,Vv1*,Vw1*から同じ値の三相共通信号Vcomを減じることで生成されるので、各相間の線間電圧値は維持される。また、特許文献1に示される下張りつけ二相変調を実施する場合、三相共通信号Vcomは、例えば、以下の(3)式で算出することができる。
In the above formula (2), Vcom is a three-phase common signal. As shown in the above formula (2), the second three-phase voltage modulation waves Vu2 * , Vv2 * , Vw2 * are generated by subtracting the same value of the three-phase common signal Vcom from the first three-phase voltage modulation waves Vu1 * , Vv1 * , Vw1 *, so that the line voltage value between each phase is maintained. In addition, when performing the under-attached two-phase modulation shown in
Vcom=min(Vu1*,Vv1*,Vw1*)+1 …(3) Vcom=min(Vu1 * ,Vv1 * ,Vw1 * )+1...(3)
上記(3)式において、min(Vu1*,Vv1*,Vw1*)は、第1の三相電圧変調波Vu1*,Vv1*,Vw1*のうちの最小値を得る関数である。 In the above formula (3), min(Vu1 * , Vv1 * , Vw1 * ) is a function for obtaining the minimum value among the first three-phase voltage modulated waves Vu1 * , Vv1 * , Vw1 * .
Td補正部43は、三相出力電流iu,iv,iw、母線電圧Vdc及びキャリア周波数fcに基づいて第2の三相電圧変調波Vu2*,Vv2*,Vw2*を補正した第3の三相電圧変調波Vu3*,Vv3*,Vw3*を生成する。Td補正部43には、デッドタイムTdを外乱電圧と見たときの対電流特性が実装されている。Td補正部43は、三相出力電流iu,iv,iwの値に応じた対電流特性を参照して第2の三相電圧変調波Vu2*,Vv2*,Vw2*を補正する。
The
PWM変調部44は、指令されたキャリア周波数fcのキャリア信号を内部で生成し、第3の三相電圧変調波Vu3*,Vv3*,Vw3*とキャリア信号とを比較し、その大小関係に基づいてスイッチング信号SW1を生成する。このスイッチング信号SW1は、デッドタイムTdが付加される前の信号である。Td付加部45は、スイッチング信号SW1にデッドタイムTdを付加したスイッチング信号SWを生成してインバータ3に出力する。
The PWM modulation unit 44 internally generates a carrier signal of the commanded carrier frequency fc, compares the third three-phase voltage modulation waves Vu3*, Vv3 * , Vw3 * with the carrier signal, and generates a switching signal SW1 based on the magnitude relationship between the carrier signal and the third three-phase voltage modulation waves Vu3 * , Vv3*, Vw3*. This switching signal SW1 is a signal before the dead time Td is added. The
次に、従来技術の課題について説明する。図5は、従来技術の課題の説明に供する図である。図5の動作波形は二相変調時のものであり、実線、破線及び太破線は、それぞれu相電圧変調波Vu2*、v相電圧変調波Vv2*及びw相電圧変調波Vw2*を表している。また、太実線は、三相出力電流iu,iv,iwのうちのu相電流iuを表している。横軸は電気角位相角を示し、縦軸は各変調波の電圧値又はu相電流iuの電流値を示している。縦軸の電圧値は±1で正規化されており、縦軸の値は変調率に相当する。後述する図6,8,9,15-19も同様である。 Next, the problems of the conventional technology will be described. Figure 5 is a diagram for explaining the problems of the conventional technology. The operating waveforms in Figure 5 are those during two-phase modulation, and the solid line, dashed line, and thick dashed line represent the u-phase voltage modulated wave Vu2 * , the v-phase voltage modulated wave Vv2 *, and the w-phase voltage modulated wave Vw2 *, respectively. The thick solid line represents the u-phase current iu of the three-phase output currents iu, iv, and iw. The horizontal axis represents the electrical angle phase angle, and the vertical axis represents the voltage value of each modulated wave or the current value of the u-phase current iu. The voltage value on the vertical axis is normalized to ±1, and the value on the vertical axis corresponds to the modulation factor. The same applies to Figures 6, 8, 9, and 15-19 described later.
図5の例では、電気角位相角が120~240[度]の範囲において、u相電圧変調波Vu2*が第1のリミッタ値Limit1に達しているので、u相のスイッチング動作が休止している。図5では、この電気角位相角の範囲を“Yu”で表している。なお、本稿では、二相変調の実施の際にスイッチング動作を休止させる電気角位相角の範囲を「スイッチング休止期間」と呼び、スイッチング休止期間以外、即ちスイッチング動作を休止させない電気角位相角の範囲を「スイッチング期間」と呼ぶ。このスイッチング期間は、三相変調が実施される三相変調期間である。 In the example of Fig. 5, when the electrical angle phase angle is in the range of 120 to 240 degrees, the u-phase voltage modulation wave Vu2 * reaches the first limiter value Limit1, so the switching operation of the u-phase is paused. In Fig. 5, this range of electrical angle phase angles is represented by "Yu". In this paper, the range of electrical angle phase angles in which the switching operation is paused when two-phase modulation is performed is called the "switching pause period", and the period other than the switching pause period, i.e., the range of electrical angle phase angles in which the switching operation is not paused, is called the "switching period". This switching period is the three-phase modulation period in which three-phase modulation is performed.
図5において、太破線の矩形枠で示した期間Xa,Xbに着目する。期間Xaは、二相変調が行われるu相スイッチング休止期間Yuの直前における三相変調期間である。期間Xbは、二相変調が行われるu相スイッチング休止期間Yuの直後における三相変調期間である。[発明が解決しようとする課題]の項でも説明したように、スイッチング信号SWを生成する際には、最小パルス幅という制約がある。最小パルス幅は、スイッチング素子31a~31c,32a~32cの保護のためであり、また電流検出機能の確保のために設定される。
In FIG. 5, attention is focused on periods Xa and Xb indicated by the thick dashed rectangular frames. Period Xa is the three-phase modulation period immediately before the u-phase switching pause period Yu during which two-phase modulation is performed. Period Xb is the three-phase modulation period immediately after the u-phase switching pause period Yu during which two-phase modulation is performed. As explained in the section [Problem to be solved by the invention], there is a minimum pulse width constraint when generating the switching signal SW. The minimum pulse width is set to protect the
図5では、u相電圧変調波Vu2*と期間Xa,Xbにおける矩形枠とに囲まれる部分にハッチングを付している。ハッチング部の面積の大きさは、Td補正のための電圧操作余裕を表している。ハッチング部の面積が大きい程、電圧操作余裕が大きいことを意味する。期間Xa,Xbを拡げれば電圧操作余裕が大きくなるが、そのような手法では問題の解決にはならない。というのも、u相スイッチング休止期間Yuに近づけば近づく程、u相電圧変調波Vu2*と第1のリミッタ値Limit1との差分が小さくなり、電圧操作余裕が急激に小さくなるので、Td補正を十分に行うことが困難になるためである。従って、u相スイッチング休止期間Yuの直前及び直後の期間は、Td補正を十分に行うことができない電圧制御誤差が存在する期間となる。一方、u相スイッチング休止期間Yuは、スイッチング動作がなくTd補正が行われないので、電圧制御誤差が存在しない。従って、期間Xaからu相スイッチング休止期間Yu、及びu相スイッチング休止期間Yuから期間Xbの切り替わりのタイミングでは、電圧制御誤差がステップ状に変化することとなり、電流リプル及びトルクリプルの発生の原因となっていた。 In FIG. 5, the portion surrounded by the u-phase voltage modulated wave Vu2 * and the rectangular frames in the periods Xa and Xb is hatched. The size of the area of the hatched portion represents the voltage manipulation margin for Td correction. The larger the area of the hatched portion, the larger the voltage manipulation margin. Although the voltage manipulation margin can be increased by expanding the periods Xa and Xb, such a method does not solve the problem. This is because, as the u-phase switching pause period Yu approaches, the difference between the u-phase voltage modulated wave Vu2 * and the first limiter value Limit1 becomes smaller, and the voltage manipulation margin becomes rapidly smaller, making it difficult to perform Td correction sufficiently. Therefore, the period immediately before and after the u-phase switching pause period Yu is a period in which there is a voltage control error that makes it impossible to perform Td correction sufficiently. On the other hand, there is no switching operation during the u-phase switching pause period Yu, and therefore no voltage control error exists. Therefore, at the timing when the period Xa switches to the u-phase switching pause period Yu, and when the u-phase switching pause period Yu switches to the period Xb, the voltage control error changes in a step-like manner, causing current ripples and torque ripples.
そこで、実施の形態1では、期間Xaとu相スイッチング休止期間Yuとの境界付近、及びu相スイッチング休止期間Yuと期間Xbとの境界付近における電圧制御誤差が小さくなるように、第2の三相電圧変調波Vu2*,Vv2*,Vw2*の算出方法に工夫を加える。具体的な算出方法は、以下の通りである。 Therefore, in the first embodiment, a method for calculating the second three-phase voltage modulated waves Vu2*, Vv2 * , Vw2 * is improved so as to reduce the voltage control error near the boundary between the period Xa and the u-phase switching suspension period Yu and near the boundary between the u-phase switching suspension period Yu and the period Xb . The specific calculation method is as follows.
まず、三相共通信号Vcomは、上記(3)式に代えて、以下の(4)式を用いて生成する。 First, the three-phase common signal Vcom is generated using the following equation (4) instead of the above equation (3).
Vcom=min(Vu1*,Vv1*,Vw1*)
+(1-Δduty)(Δduty>0) …(4)
Vcom=min(Vu1 * , Vv1 * , Vw1 * )
+(1-Δduty)(Δduty>0)…(4)
上記(4)式において、Δdutyは第1のリミッタ値Limit1を電圧方向にシフトするためのシフト量である。第2の三相電圧変調波Vu2*,Vv2*,Vw2*は、上記(4)式による三相共通信号Vcomを上記(2)式に代入することで算出する。説明の便宜のため、上記(2)式を(5)式として再掲する。 In the above formula (4), Δduty is the amount of shift for shifting the first limiter value Limit1 in the voltage direction. The second three-phase voltage modulation waves Vu2 * , Vv2 * , and Vw2 * are calculated by substituting the three-phase common signal Vcom according to the above formula (4) into the above formula (2). For convenience of explanation, the above formula (2) is rewritten as formula (5).
Vu2*=Vu1*-Vcom
Vv2*=Vv1*-Vcom
Vw2*=Vw1*-Vcom
…(5)(再掲)
Vu2 * =Vu1 * -Vcom
Vv2 * =Vv1 * -Vcom
Vw2 * =Vw1 * -Vcom
… (5) (Repost)
図6は、実施の形態1に係る制御部4の内部で生成される第2の三相電圧変調波Vu2*,Vv2*,Vw2*の説明に供する図である。図6には、第2の三相電圧変調波Vu2*,Vv2*,Vw2*の電気角1周期分の波形が示されている。シフト量Δdutyは、Δduty>0としているため、リミットされる下限値が“-1”(=Limit1)から、+Δdutyだけ電圧のプラス方向にシフトされている。本稿では、シフト量Δdutyによって電圧方向にシフトされたリミッタ値を「Limit2」と表記し、「第2のリミッタ値」と呼ぶ。第1のリミッタ値Limit1、第2のリミッタ値Limit2及びシフト量Δdutyとの間には、“Limit2=Limit1+Δduty”の関係がある。Δdutyの適切な範囲については後述する。
FIG. 6 is a diagram for explaining the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * generated inside the
また、実施の形態1において、Td補正部43は、以下の(6)式を用いて第3の三相電圧変調波Vu3*,Vv3*,Vw3*を生成する。
Moreover, in the first embodiment, the
Vu3*=Vu2*+Vtd_u
Vv3*=Vv2*+Vtd_v
Vw3*=Vw2*+Vtd_w
…(6)
Vu3 * =Vu2 * +Vtd_u
Vv3 * =Vv2 * +Vtd_v
Vw3 * =Vw2 * +Vtd_w
…(6)
上記(6)式において、Vtd_u,Vtd_v,Vtd_wは、uvw各相におけるTd補正値である。これらのu相Td補正値Vtd_u、v相Td補正値Vtd_v及びw相Td補正値Vtd_wは、図7に示すような特性テーブルを参照することで算出できる。図7は、実施の形態1に係る制御部4の内部で参照される特性テーブルの例を示す図である。図7の横軸は三相出力電流iu,iv,iwの瞬時値の絶対値を示し、縦軸はTd補正値Vtdの絶対値|Vtd|を示している。
In the above formula (6), Vtd_u, Vtd_v, and Vtd_w are the Td correction values for the u, v, and w phases. These u-phase Td correction value Vtd_u, v-phase Td correction value Vtd_v, and w-phase Td correction value Vtd_w can be calculated by referring to a characteristics table such as that shown in FIG. 7. FIG. 7 is a diagram showing an example of a characteristics table referred to within the
Td補正部43は、三相出力電流iu,iv,iwの瞬時値の絶対値を引数として、図7の特性テーブルを参照してTd補正値Vtdの絶対値|Vtd|を求める。更に、Td補正部43は、以下の(7)式を用いて、Td補正値Vtd_u,Vtd_v,Vtd_wを生成する。
The
Vtd_u=|Vtd|×sign(iu)
Vtd_v=|Vtd|×sign(iv)
Vtd_w=|Vtd|×sign(iw)
…(7)
Vtd_u=|Vtd|×sign(iu)
Vtd_v=|Vtd|×sign(iv)
Vtd_w=|Vtd|×sign(iw)
…(7)
上記(7)式において、sign(iu)は、u相電流iuの瞬時値の符号を得る関数であり、“1”、“0”、“-1”のうちの何れかの値をとる。sign(iv),sign(iw)も同様である。三相出力電流iu,iv,iwは、図1から5に示した電力変換装置100のうちの何れにおいても得ることができる。
In the above equation (7), sign(iu) is a function that obtains the sign of the instantaneous value of the u-phase current iu, and takes on one of the values "1", "0", or "-1". The same is true for sign(iv) and sign(iw). The three-phase output currents iu, iv, and iw can be obtained in any of the
図8は、実施の形態1に係る制御部4の内部で生成されるu相Td補正値Vtd_uとu相電流iuとの関係性を示す図である。図8では、u相Td補正値Vtd_uを実線で示し、u相電流iuを破線で示している。図8に示すように、u相Td補正値Vtd_uは、u相電流iuの瞬時値の符号によって、補正の方向が反転する。他のv相Td補正値Vtd_v及びw相Td補正値Vtd_wも同様な関係性を有している。
FIG. 8 is a diagram showing the relationship between the u-phase Td correction value Vtd_u generated inside the
図9は、実施の形態1に係る制御部4の内部で生成される第1、第2及び第3の三相電圧変調波間の関係性の説明に供する図である。図9において、図5及び図6と同一の波形及び同一の要素については、同一の符号を付して示している。
FIG. 9 is a diagram for explaining the relationship between the first, second, and third three-phase voltage modulation waves generated inside the
図9では、煩雑さを避けるため、第1の三相電圧変調波Vu1*,Vv1*,Vw1*及び第3の三相電圧変調波Vu3*,Vv3*,Vw3*については、u相電圧変調波Vu1*,Vu3*のみを示している。 In order to avoid complexity, FIG. 9 shows only the u-phase voltage modulated waves Vu1 * , Vu3 * of the first three-phase voltage modulated waves Vu1 * , Vv1 * , Vw1 * and the third three-phase voltage modulated waves Vu3 * , Vv3*, Vw3 * .
図9を図5との比較で説明すると、図9では、期間Xa,Xbがそれぞれ期間Xa',Xb'とされている。また、図9では、u相スイッチング休止期間Yuがu相スイッチング休止期間Yu'とされている。 In comparison with FIG. 5, FIG. 9 shows that periods Xa and Xb are respectively set to periods Xa' and Xb'. Also, in FIG. 9, the u-phase switching pause period Yu is set to u-phase switching pause period Yu'.
u相スイッチング休止期間Yuとu相スイッチング休止期間Yu'とを比較すると、u相スイッチング休止期間Yu'は、u相スイッチング休止期間Yuよりも短くなっている。この理由は、図5に示す期間Xaには、u相のスイッチング動作がスイッチング期間からスイッチング休止期間に移行するタイミングの直前の期間のみが含まれるのに対し、図9に示す期間Xa'には、u相のスイッチング動作がスイッチング期間からスイッチング休止期間に移行するタイミングの直後の期間も含まれるからである。同様に、図5に示す期間Xbには、u相のスイッチング動作がスイッチング休止期間からスイッチング期間に移行するタイミングの直後の期間のみが含まれるのに対し、図9に示す期間Xb'には、u相のスイッチング動作がスイッチング休止期間からスイッチング期間に移行するタイミングの直前の期間も含まれるからである。これらにより、u相スイッチング休止期間Yuとu相スイッチング休止期間Yu'との間には、Yu'<Yuの関係が成立する。 Comparing the u-phase switching pause period Yu and the u-phase switching pause period Yu', the u-phase switching pause period Yu' is shorter than the u-phase switching pause period Yu. This is because the period Xa shown in FIG. 5 includes only the period immediately before the timing when the u-phase switching operation transitions from the switching period to the switching pause period, while the period Xa' shown in FIG. 9 also includes the period immediately after the timing when the u-phase switching operation transitions from the switching period to the switching pause period. Similarly, the period Xb shown in FIG. 5 includes only the period immediately after the timing when the u-phase switching operation transitions from the switching pause period to the switching period, while the period Xb' shown in FIG. 9 also includes the period immediately before the timing when the u-phase switching operation transitions from the switching pause period to the switching period. As a result, the relationship Yu'<Yu is established between the u-phase switching pause period Yu and the u-phase switching pause period Yu'.
上記の(6)式に示されるように、u相電圧変調波Vu3*には、u相電圧変調波Vu2*に対してu相Td補正値Vtd_uが重畳される。u相Td補正値Vtd_uは、図7に示されるように、三相出力電流iu,iv,iw(u相の場合はu相電流iu)の瞬時値の絶対値に応じた電圧である。このため、u相電圧変調波Vu2*が下限値である第2のリミッタ値Limit2以下となる区間にu相Td補正値Vtd_uが重畳されたu相電圧変調波Vu3*の波形は、図9に示されるように緩やかに底を打つような波形となる。シフト量Δdutyの大きさを、u相Td補正値Vtd_uの大きさに応じて適切に設定することにより、u相電圧変調波Vu3*は、緩やかな傾きで-1を跨いで上下変化する。そして、u相電圧変調波Vu3*が第1のリミッタ値Limit1を下回る期間は、u相にスイッチング動作が発生しない期間となる。 As shown in the above formula (6), the u-phase voltage modulated wave Vu3 * is superimposed with the u-phase Td correction value Vtd_u on the u-phase voltage modulated wave Vu2 * . As shown in FIG. 7, the u-phase Td correction value Vtd_u is a voltage corresponding to the absolute value of the instantaneous value of the three-phase output currents iu, iv, and iw (in the case of the u-phase, the u-phase current iu). Therefore, the waveform of the u-phase voltage modulated wave Vu3 * in which the u-phase Td correction value Vtd_u is superimposed in the section in which the u-phase voltage modulated wave Vu2 * is equal to or less than the second limiter value Limit2, which is the lower limit, becomes a waveform that gently hits the bottom as shown in FIG. 9. By appropriately setting the magnitude of the shift amount Δduty according to the magnitude of the u-phase Td correction value Vtd_u, the u-phase voltage modulated wave Vu3 * changes up and down across -1 with a gentle slope. The period during which the u-phase voltage modulated wave Vu3 * falls below the first limiter value Limit1 is the period during which no switching operation occurs in the u-phase.
よって、図9に示す、実施の形態1による期間Xa',Xb'では、Td補正を適切に実施することが可能となる。また、実施の形態1による期間Xa',Xb'では、期間Xaからu相スイッチング休止期間Yu、及びu相スイッチング休止期間Yuから期間Xbの切り替わりのタイミングにおいて、電圧制御誤差のステップ状の変化を小さくすることができるので、電流リプル及びトルクリプルの抑制が可能となる。
Therefore, in the periods Xa' and Xb' according to
なお、図9は、u相について記述しているが、他のv,w相についても同様に記述できる。u,v,w相の電圧及び電流の波形は、互いの位相角差が120[度]シフトされた対称性を維持した波形であり、同様な説明ができることは言うまでもない。以降の説明もu相についてのみ示す。 Note that while Figure 9 describes the u-phase, the same description can be applied to the other v and w-phases. The voltage and current waveforms of the u, v, and w-phases are symmetrical with the phase angle difference shifted by 120 degrees, and it goes without saying that the same description can be applied. The following description will also only be given for the u-phase.
以上の説明から明らかなように、実施の形態1に係る電力変換装置によれば、二相変調の実施の際にスイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直前及び直後において、三相共にスイッチング動作させる三相変調期間が挿入される。また、二相変調の実施によってスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直前及び直後において、三相共にスイッチング動作させる三相変調期間が挿入される。
As is clear from the above explanation, according to the power conversion device of
次に、シフト量Δdutyの適切な設定手法について説明する。まず、三相変調と二相変調とを併用する制御において、スイッチング期間及びスイッチング休止期間が相互に切り替わるタイミングでの電圧制御誤差の変化を小さくするためには、図9のように、Td補正後のu相電圧変調波Vu3*が緩やかに第1のリミッタ値Limit1を下回ることが好適である。ここで、上記(6)式に示されるように、u相電圧変調波Vu2*,Vu3*には、Vu3*=Vu2*+Vtd_uの関係があるため、シフト量Δdutyは、Td補正値Vtd_uとの関係で定めることが望ましい。よって、運転条件におけるTd補正値Vtd_uの絶対値|Vtd_u|の最大値をVtd_peakとするとき、シフト量Δdutyは、以下の(8)式を満たすように設定する。 Next, an appropriate setting method of the shift amount Δduty will be described. First, in the control using three-phase modulation and two-phase modulation in combination, in order to reduce the change in the voltage control error at the timing when the switching period and the switching pause period are switched to each other, it is preferable that the u-phase voltage modulation wave Vu3 * after the Td correction gradually falls below the first limiter value Limit1 as shown in FIG. 9. Here, as shown in the above formula (6), the u-phase voltage modulation waves Vu2 * and Vu3 * have a relationship of Vu3 * =Vu2 * +Vtd_u, so it is desirable to determine the shift amount Δduty in relation to the Td correction value Vtd_u. Therefore, when the maximum value of the absolute value |Vtd_u| of the Td correction value Vtd_u under the operating condition is Vtd_peak, the shift amount Δduty is set to satisfy the following formula (8).
Vtd_peak×0.3<Δduty<Vtd_peak×0.7
…(8)
Vtd_peak×0.3<Δduty<Vtd_peak×0.7
…(8)
また、図7に示したように、Td補正値Vtd_uの絶対値|Vtd_u|及び最大値Vtd_peakは、u相電流iuの大きさに応じて変動する特性を有している。従って、上記(8)式に基づくシフト量Δdutyの設定は、インバータ3からモータ5へ出力されるモータ電流の実効値に応じて設定することと等価である。このため、シフト量Δdutyは、以下の(9)式のように設定してもよい。
Also, as shown in FIG. 7, the absolute value |Vtd_u| and maximum value Vtd_peak of the Td correction value Vtd_u have the characteristic of fluctuating according to the magnitude of the u-phase current iu. Therefore, setting the shift amount Δduty based on the above formula (8) is equivalent to setting it according to the effective value of the motor current output from the
Δduty=Ktd_I×(モータ電流実効値) …(9)
但し、Ktd_I:比例係数
Δduty=Ktd_I×(motor current effective value) (9)
where Ktd_I is the proportionality coefficient
また、モータ5がファン又は圧縮機のような流体負荷を駆動するモータの場合、負荷トルクは、モータ5の回転速度の2乗に概ね比例した大きさとなる。このため、これらのファン又は圧縮機を駆動するときのモータ電流実効値は、回転速度の増加に伴って増加する特性となる。このため、三相負荷がファン又は圧縮機のような流体負荷の場合、上記(9)式のように、シフト量Δdutyをモータ電流依存特性として求める代わりに、回転速度の特性として記述を変換することで求めることが可能である。具体的な概念を図10に示す。図10は、実施の形態1におけるシフト量Δdutyの設定手法の説明に供する図である。
Furthermore, when the motor 5 is a motor that drives a fluid load such as a fan or a compressor, the load torque is roughly proportional to the square of the rotation speed of the motor 5. Therefore, the effective motor current value when driving these fans or compressors has a characteristic that increases with an increase in rotation speed. Therefore, when the three-phase load is a fluid load such as a fan or a compressor, instead of calculating the shift amount Δduty as a motor current-dependent characteristic as in the above formula (9), it is possible to calculate it by converting the description as a rotation speed characteristic. A specific concept is shown in FIG. 10. FIG. 10 is a diagram provided for explaining the method for setting the shift amount Δduty in
図10の上段側には、回転速度に応じたモータ電流実効値の変化特性が示されている。従って、図10の下段側に示されるように、モータ電流実効値の変化特性に合わせてシフト量Δdutyを設定することが望ましい実施態様となる。一般的に、電流よりも回転速度の方が急変しにくいという性質があるため、回転速度に応じてシフト量Δdutyを設定することとすれば、Td補正を安定的に実施できるというメリットが得られる。 The upper part of Figure 10 shows the change characteristics of the motor current effective value according to the rotation speed. Therefore, as shown in the lower part of Figure 10, it is desirable to set the shift amount Δduty according to the change characteristics of the motor current effective value. Since rotation speed is generally less prone to sudden changes than current, setting the shift amount Δduty according to the rotation speed has the advantage of allowing Td correction to be performed stably.
また、図11は、実施の形態1におけるシフト量Δdutyの他の設定手法の説明に供する図である。図11の上段側に示すモータ電流実効値の変化特性は、図10の上段側に示した特性と同様である。図10では、モータ電流実効値の変化特性に合わせてシフト量Δdutyを設定していたが、回転速度の領域に応じて、設定値を決める特性を切り替えてもよい。図11の下段側に示す例では、回転速度の領域として、速度ゼロから第1速度までが低速域、第1速度から第2速度までが中速域、最高回転数を含む第2速度以上が高速域に設定されている。 FIG. 11 is a diagram illustrating another method for setting the shift amount Δduty in the first embodiment. The change characteristic of the effective motor current shown in the upper part of FIG. 11 is similar to the characteristic shown in the upper part of FIG. 10. In FIG. 10, the shift amount Δduty is set according to the change characteristic of the effective motor current, but the characteristic for determining the set value may be switched depending on the range of the rotation speed. In the example shown in the lower part of FIG. 11, the range of the rotation speed is set as a low speed range from zero speed to the first speed, a medium speed range from the first speed to the second speed, and a high speed range from the second speed and above including the maximum rotation speed.
回転速度が低い低速域は、インバータ3を起動する際に多用される運転条件であり、且つ、モータ5への印加電圧が小さい。このため、この低速域では、二相変調と三相変調との切り替えに伴う外乱電圧を極力排除するため、常時三相変調とすることが望まれる。そこで、図11のように、シフト量Δdutyを小さくとも0.5程度までの大きめの値に設定する。シフト量Δdutyをこのような値に設定すれば、いかなるTd補正値Vtdが重畳されても、スイッチング休止期間を挿入させない設定が可能となる。
The low-speed range, where the rotation speed is low, is an operating condition that is often used when starting up the
また、回転速度が高い高速域は、モータの誘起電圧が高く、デッドタイムTdに起因する外乱電圧の影響が小さい。このため、従来の二相変調としても電流リプル及びトルクリプルの影響が小さくなる。また、三相変調期間を少なくして、スイッチングロスの低減を図る方が望ましい。そこで、図11のように、シフト量Δdutyをゼロに設定する。シフト量Δdutyをゼロに設定すれば、従来の二相変調と等価な制御動作となり、スイッチングロスの低減を通じてインバータ3の運転効率を高めることが可能となる。
Furthermore, in the high speed range where the rotation speed is high, the induced voltage of the motor is high and the effect of the disturbance voltage caused by the dead time Td is small. Therefore, the effect of the current ripple and torque ripple is small even with conventional two-phase modulation. It is also desirable to reduce the three-phase modulation period to reduce switching loss. Therefore, as shown in Figure 11, the shift amount Δduty is set to zero. Setting the shift amount Δduty to zero results in a control operation equivalent to conventional two-phase modulation, making it possible to increase the operating efficiency of the
また、回転速度が中程度の中速域では、低速域と高速域との間でシフト量Δdutyの変化が滑らかになるように、指数関数的に減少するカーブの特性で繋げている。なお、図11は一例であり、シフト量Δdutyの変化が滑らかになるものであれば、どのようなカーブでもよく、直線であってもよい。 Furthermore, in the medium speed range where the rotation speed is medium, the curve is connected with an exponentially decreasing characteristic so that the change in the shift amount Δduty between the low speed range and the high speed range is smooth. Note that FIG. 11 is only one example, and any curve can be used as long as the change in the shift amount Δduty is smooth, even a straight line.
図12は、図10及び図11を参照して説明した変調方式選択制御を実現する制御部4のブロック図である。図12において、図4と同一又は同等の構成要素については、同一の符号を付して示している。図12を図4との比較で説明すると、図12では、変調方式選択部41が変調方式選択部41Aに置き替えられている。変調方式選択部41Aには、変調率指令Vk及び電圧位相θに加え、更に図示しない上位の制御系からモータ電流実効値Irms又は回転速度Rrotが入力される。変調方式選択部41Aには、変調方式選択部41の機能に加え、モータ電流実効値Irms又は回転速度Rrotに基づいてシフト量Δdutyを算出する機能が加わる。変調方式選択部41Aは、例えば図10を参照して説明したように、モータ電流実効値Irmsの変化特性に合わせてシフト量Δdutyを設定して変調波生成部42に出力する。或いは、変調方式選択部41Aは、例えば図11を参照して説明したように、回転速度Rrotから回転速度の領域を判断し、回転速度の領域に応じてシフト量Δdutyを設定して変調波生成部42に出力する。変調波生成部42は、変調方式選択部41Aの指示に従って第2の三相電圧変調波Vu2*,Vv2*,Vw2*を生成する。なお、図12には示されていないが、Td補正部43で算出される各相のTd補正値Vtd_u,Vtd_v,Vtd_wを変調方式選択部41Aで行うシフト量Δdutyの演算に反映させてもよい。
FIG. 12 is a block diagram of the
図13は、従来の二相変調による相電流及びq軸電流の波形の例を示す図である。図14は、実施の形態1に係る電力変換装置100を用いたときの相電流及びq軸電流の波形の例を示す図である。各図においては、上段側に相電流を示し、下段側にq軸電流を示している。相電流は、三相出力電流iu,iv,iwのうちの何れか1つの任意の相の電流である。q軸電流は、相電流を回転直交座標に変換した際のモータトルクに寄与する電流成分である。図13及び図14の波形は、デッドタイムTdに起因する外乱電圧の影響、及び二相変調におけるスイッチング期間とスイッチング休止期間との切り替わりの影響を把握するため、敢えて電流制御系の応答を低めに設定しつつ、インバータ3の出力周波数を電気角50Hzの一定周波数で駆動した結果である。モータ5に発生するトルクリプルが大きい程、q軸電流の脈動も大きくなる。
13 is a diagram showing an example of the waveforms of the phase current and the q-axis current by the conventional two-phase modulation. FIG. 14 is a diagram showing an example of the waveforms of the phase current and the q-axis current when the
図13は、シフト量Δduty=0とした場合の動作波形を示しており、相電流は歪み、q軸電流には、電気角50Hzの3倍の周波数の脈動が見られる。一方、図14を見ると、相電流の歪は抑制され、3倍の周波数の脈動も抑制されている。従って、実施の形態1に係る電力変換装置100を用いれば、電流リプルが抑制できる。これにより、モータ5に発生するトルクリプルを抑制することができ、トルクリプルに起因する騒音も抑制することができる。また、実施の形態1に係る電力変換装置100を用いれば、電流リプルが抑制できるので、電流リプルに起因する、配線抵抗及び巻線抵抗での損失を抑制することができる。
Figure 13 shows the operating waveforms when the shift amount Δduty = 0, where the phase current is distorted and the q-axis current exhibits pulsation at three times the electrical angle of 50 Hz. On the other hand, Figure 14 shows that the distortion of the phase current is suppressed, and the pulsation at three times the frequency is also suppressed. Therefore, by using the
以上説明したように、実施の形態1に係る電力変換装置は、直流電力を交流電力に変換して三相負荷に供給するインバータと、インバータに具備される三相の複数のスイッチング素子に対するスイッチング信号を生成してインバータに出力する制御部とを備える。制御部は、三相のうちの1つの相のスイッチング素子のスイッチング動作を順番に休止させる二相変調を実施すると共に、インバータに流出入する電流に基づいて、二相変調の実施の際にスイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直前及び直後、並びにスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直前及び直後に、三相共にスイッチング動作させる三相変調期間を挿入する。この制御により、スイッチング期間からスイッチング休止期間、及びスイッチング休止期間からスイッチング期間の切り替わりのタイミングにおいて、電圧制御誤差のステップ状の変化を小さくすることができる。これにより、三相変調と二相変調とを併用する駆動方式を採用した場合であっても、モータ電流及びモータトルクのリプルを充分に抑制することが可能となる。 As described above, the power conversion device according to the first embodiment includes an inverter that converts DC power into AC power and supplies it to a three-phase load, and a control unit that generates switching signals for a plurality of switching elements of three phases provided in the inverter and outputs the switching signals to the inverter. The control unit performs two-phase modulation to sequentially suspend the switching operation of the switching elements of one of the three phases, and inserts a three-phase modulation period in which all three phases are switched on immediately before and after the timing when the phase in which the switching operation is suspended during the two-phase modulation transitions from a switching period to a switching suspend period, and immediately before and after the timing when the phase in which the switching operation is suspended transitions from a switching suspend period to a switching period, based on the current flowing in and out of the inverter. This control makes it possible to reduce step-like changes in the voltage control error at the timing of transition from the switching period to the switching suspend period and from the switching suspend period to the switching period. This makes it possible to sufficiently suppress ripples in the motor current and motor torque even when a drive method that uses both three-phase modulation and two-phase modulation is adopted.
上記のように構成された電力変換装置において、制御部は、上位の制御系から出力される電圧指令に基づいて第1の三相電圧変調波を生成し、生成した第1の三相電圧変調波に対し、線間電圧値を維持しながらスイッチング休止期間を設定するための三相共通信号を算出する。また、制御部は、第1の三相電圧変調波に三相共通信号を重畳することで第2の三相電圧変調波を算出する。更に、制御部は、第2の三相電圧変調波に対して、スイッチング信号に付与されるデッドタイムに起因する誤差を補正した第3の三相電圧変調波に基づいてスイッチング信号を生成する。三相共通信号は、第1の三相電圧変調波のうち、予め定められた第1のリミッタ値に近い値の第1の三相電圧変調波と当該第1のリミッタ値との差分である第1差分に基づいて算出することができる。そして、三相変調期間を挿入する処理を実施する際には、第1のリミッタ値に近い値の第1の三相電圧変調波と第1のリミッタ値より絶対値が小さい第2のリミッタ値との差分である第2差分に基づいて三相共通信号を算出することができる。第1のリミッタ値と第2のリミッタ値との差分を第3差分とするとき、この第3差分は、インバータの出力電流である三相出力電流の実効値、又は、インバータの出力電圧である三相出力電圧と三相出力電流との位相差である電圧電流位相差のうちの少なくとも1つに基づいて決定することができる。 In the power conversion device configured as described above, the control unit generates a first three-phase voltage modulated wave based on a voltage command output from a higher-level control system, and calculates a three-phase common signal for setting a switching pause period while maintaining a line voltage value for the generated first three-phase voltage modulated wave. The control unit also calculates a second three-phase voltage modulated wave by superimposing the three-phase common signal on the first three-phase voltage modulated wave. Furthermore, the control unit generates a switching signal for the second three-phase voltage modulated wave based on a third three-phase voltage modulated wave in which an error caused by a dead time imparted to the switching signal is corrected. The three-phase common signal can be calculated based on a first difference, which is the difference between a first three-phase voltage modulated wave of a value close to a predetermined first limiter value among the first three-phase voltage modulated waves and the first limiter value. When performing the process of inserting the three-phase modulation period, the three-phase common signal can be calculated based on the second difference, which is the difference between the first three-phase voltage modulation wave close to the first limiter value and the second limiter value whose absolute value is smaller than the first limiter value. When the difference between the first limiter value and the second limiter value is set as the third difference, this third difference can be determined based on at least one of the effective value of the three-phase output current, which is the output current of the inverter, or the voltage-current phase difference, which is the phase difference between the three-phase output voltage, which is the output voltage of the inverter, and the three-phase output current.
三相負荷がモータであるとき、制御部は、モータの回転速度が予め定められた閾値を下回る運転条件下では、二相変調を実施せずに三相変調を実施するようにしてもよい。一方、モータの回転速度が予め定められた閾値を上回る運転条件下では、三相変調期間を挿入しないようにしてもよい。また、制御部は、モータの回転速度が予め定められた閾値を下回る運転条件下では、第3差分の値をデッドタイムに起因する外乱電圧の値に基づいて決定することで、各相共に全期間スイッチングする三相変調期間としてもよい。また、制御部は、モータの回転速度が予め定められた閾値を上回る運転条件下では、第3差分をゼロとすることで、全期間、三相変調期間を挿入しないようにしてもよい。 When the three-phase load is a motor, the control unit may perform three-phase modulation without performing two-phase modulation under operating conditions where the rotation speed of the motor is below a predetermined threshold. On the other hand, the control unit may not insert a three-phase modulation period under operating conditions where the rotation speed of the motor exceeds a predetermined threshold. Furthermore, the control unit may determine the value of the third difference based on the value of the disturbance voltage caused by the dead time under operating conditions where the rotation speed of the motor is below a predetermined threshold, thereby making each phase switch for the entire period of the three-phase modulation period. Furthermore, the control unit may not insert a three-phase modulation period for the entire period of the three-phase modulation period by setting the third difference to zero under operating conditions where the rotation speed of the motor exceeds a predetermined threshold.
実施の形態2.
デッドタイムTdに起因する外乱電圧、及びその補正電圧値であるTd補正値Vtdの大きさは、前述のように三相出力電流iu,iv,iwの瞬時値の大きさに応じて発生する。また、外乱電圧、及びTd補正値Vtdの正負の極性は、三相出力電流iu,iv,iwの極性に依存することから、変調波操作幅の残存余裕も三相出力電流iu,iv,iwの大きさと極性とに依存する。従って、第2の三相電圧変調波Vu2*,Vv2*,Vw2*の下限値である第1のリミッタ値Limit1の近くでは、三相出力電流iu,iv,iwの瞬時値が大きく、且つ第2の三相電圧変調波Vu2*,Vv2*,Vw2*の極性と、その補正電圧値であるTd補正値Vtdの極性とが同じ条件下では、変調波操作幅の残存余裕が小さくなり、Td補正不足による外乱電圧の残存リスクが高くなる。
Embodiment 2.
The magnitude of the disturbance voltage caused by the dead time Td and the Td correction value Vtd, which is the correction voltage value thereof, are generated according to the magnitude of the instantaneous value of the three-phase output currents iu, iv, and iw, as described above. In addition, since the positive and negative polarities of the disturbance voltage and the Td correction value Vtd depend on the polarities of the three-phase output currents iu, iv, and iw, the remaining margin of the modulation wave operation width also depends on the magnitude and polarity of the three-phase output currents iu, iv, and iw. Therefore, near the first limiter value Limit1, which is the lower limit value of the second three-phase voltage modulated waves Vu2 * , Vv2 * , Vw2 *, the instantaneous values of the three-phase output currents iu, iv, iw are large, and under conditions in which the polarity of the second three-phase voltage modulated waves Vu2 * , Vv2 * , Vw2 * and the polarity of the Td correction value Vtd, which is its correction voltage value, are the same, the remaining margin of the modulated wave operating range becomes small, and the risk of residual disturbance voltage due to insufficient Td correction increases.
一方、二相変調の本来のメリットであるスイッチング損失の抑制効果を保つためには、二相変調の期間をできるだけ長くすることが望ましい。これらのリスクとメリットとに鑑みて、実施の形態2においては、電気角位相角0~360[度]の期間内で複数回、二相変調と三相変調とを切り替えるようにする。これにより、二相変調のスイッチング休止期間の直前又は直後のスイッチング期間において、二相変調を三相変調に切り替えることで、三相電圧変調波に対する電圧操作余裕を設けるようにする。
On the other hand, to maintain the switching loss suppression effect, which is the original benefit of two-phase modulation, it is desirable to make the two-phase modulation period as long as possible. In consideration of these risks and benefits, in the second embodiment, two-phase modulation and three-phase modulation are switched multiple times within the period of
具体的に、制御部4は、電圧電流位相差、三相出力電流iu,iv,iwの電流値、Td補正値Vtd及び変調率のうちの少なくとも1つに基づいて、電気角位相角0~360[度]の期間内で複数回、二相変調と三相変調とを切り替える。二相変調と三相変調との切り替えに当たり、切り替えタイミングの直前又は直後において、電流電圧位相差、三相出力電流iu,iv,iwの電流値及びTd補正値Vtdの少なくとも一つに応じて三相変調の期間を挿入する。
Specifically, the
図5において、スイッチング期間中にも関わらず第2の三相電圧変調波Vu2*,Vv2*,Vw2*が下限値である第1のリミッタ値Limit1に近い期間Xa,XbにおいてもTd補正を確実に機能させるためには、Td補正値Vtdに相当する変調率操作が行えるように、第2の三相電圧変調波Vu2*,Vv2*,Vw2*を第1のリミッタ値Limit1から離せばよい。但し、インバータ出力の線間電圧を維持するためには、第2の三相電圧変調波Vu2*,Vv2*,Vw2*が第1のリミッタ値Limit1に近い相だけでなく、全ての相の第2の三相電圧変調波Vu2*,Vv2*,Vw2*を、上方向にシフトする必要がある。このようなシフト操作を行えば、全ての相の第2の三相電圧変調波Vu2*,Vv2*,Vw2*の何れも第1のリミッタ値Limit1を下回ることはなくなり、「下張りつき」をした相が無くなる。このことは、三相共にスイッチング動作をする三相変調の期間が挿入されることと同義である。二相変調本来のメリットであるスイッチング損失の抑制効果を保つためには、三相変調を挿入する期間を極力短くすることが望ましい。このため、期間Xa,Xbにおいて、第2の三相電圧変調波Vu2*,Vv2*,Vw2*に対する電圧操作余裕が十分に得られる位相角条件になった場合には、即座に二相変調に戻すことが望ましい。 5, in order to ensure that the Td correction functions even during periods Xa and Xb in which the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * are close to the first limiter value Limit1, which is the lower limit value, even during the switching period, the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * may be moved away from the first limiter value Limit1 so that the modulation factor operation corresponding to the Td correction value Vtd can be performed. However, in order to maintain the line voltage of the inverter output, it is necessary to shift upward not only the phase in which the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * are close to the first limiter value Limit1, but also the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * of all phases. By performing such a shift operation, none of the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * of all phases will fall below the first limiter value Limit1, and there will be no phases that are "stuck below". This is equivalent to inserting a period of three-phase modulation in which all three phases perform switching operations. In order to maintain the effect of suppressing switching loss, which is the original advantage of two-phase modulation, it is desirable to shorten the period in which three-phase modulation is inserted as much as possible. For this reason, when the phase angle condition is reached in which a sufficient voltage operation margin is obtained for the second three-phase voltage modulated waves Vu2 * , Vv2 * , and Vw2 * in the periods Xa and Xb, it is desirable to immediately return to two-phase modulation.
上記のように、最低限の変調波操作幅の確保と、最低限の三相変調期間の挿入とを意図し、三相変調挿入期間X3inを、電圧電流位相差、三相出力電流iu,iv,iwの電流値、Td補正値Vtd及び変調率のうちの少なくとも1つに基づいて設定し、当該三相変調挿入期間X3inにおいて、三相共通信号Vcomを以下の(10)式のように与える。 As described above, in order to ensure a minimum modulation wave operation width and to insert a minimum three-phase modulation period, the three-phase modulation insertion period X3in is set based on at least one of the voltage-current phase difference, the current values of the three-phase output currents iu, iv, and iw, the Td correction value Vtd, and the modulation rate, and in the three-phase modulation insertion period X3in, the three-phase common signal Vcom is given as shown in the following formula (10).
(三相変調挿入期間)
Vcom=min(Vu1*,Vv1*,Vw1*)+(1-Δduty)
(三相変調挿入期間以外)
Vcom=min(Vu1*,Vv1*,Vw1*)+1
…(10)
(Three-phase modulation insertion period)
Vcom=min(Vu1 * , Vv1 * , Vw1 * )+(1-Δduty)
(Except for the three-phase modulation insertion period)
Vcom=min(Vu1 * , Vv1 * , Vw1 * )+1
…(10)
図15及び図16は、実施の形態2に係る制御によって挿入される三相変調挿入期間X3inの説明に供する第1及び第2の図である。図15及び図16において、図9と同一の波形及び同一の要素については、同一の符号を付して示している。 FIGS. 15 and 16 are first and second diagrams for explaining the three-phase modulation insertion period X3in that is inserted by the control according to the second embodiment. In FIGS. 15 and 16, the same waveforms and elements as those in FIG. 9 are denoted by the same reference numerals.
図15及び図16では、煩雑さを避けるため、第1の三相電圧変調波Vu1*,Vv1*,Vw1*及び三相出力電流iu,iv,iwについては、u相電圧変調波Vu1*及びu相電流iuのみを示している。図15は、u相電流iuがu相電圧変調波Vu1*に対して位相が進んでいる場合の例であり、図16は、u相電流iuがu相電圧変調波Vu1*に対して位相が遅れている場合の例である。図15及び図16では、三相変調挿入期間X3inを太実線の矩形枠で示している。 In Fig. 15 and Fig. 16, in order to avoid complication, only the u-phase voltage modulated wave Vu1 * and the u-phase current iu are shown for the first three-phase voltage modulated wave Vu1* , Vv1 * , Vw1 * and the three-phase output currents iu, iv, iw. Fig. 15 shows an example in which the u-phase current iu is ahead of the u-phase voltage modulated wave Vu1 * in phase, and Fig. 16 shows an example in which the u-phase current iu is behind the u-phase voltage modulated wave Vu1 * in phase. In Fig. 15 and Fig. 16, the three-phase modulation insertion period X3in is shown by a rectangular frame of thick solid lines.
実施の形態1では、従来の二相変調におけるu相スイッチング休止期間Yuの前後に適度な電圧操作余裕が得られるように期間Xa',Xb'を設けていた。図9の説明では特に触れていないが、図9で示した期間Xa',Xb'は、基本的には等しい位相角幅である。一方、実施の形態2において、図15の例の場合、太破線の矩形枠で示されている期間Xa'',Xb''は、必ずしもXa''=Xb''とはならない。図15のように、u相電流iuがu相電圧変調波Vu1*に対して位相が進んでいる場合、u相電流iuのゼロクロスのタイミングではu相Td補正値Vtd_uの極性が反転するので、ゼロクロス以降は電圧操作余裕を設ける必要性がなくなる。このため、そのタイミングで三相変調から二相変調に切り替えてもよい。図15の例では、ゼロクロスのタイミングで三相変調から二相変調に切り替えているので、期間Xa''と期間Xb''との関係は、Xa''>Xb''となっている。 In the first embodiment, the periods Xa' and Xb' are provided before and after the u-phase switching pause period Yu in the conventional two-phase modulation so that a suitable voltage operation margin can be obtained. Although not particularly mentioned in the explanation of FIG. 9, the periods Xa' and Xb' shown in FIG. 9 are basically equal in phase angle width. On the other hand, in the example of FIG. 15 in the second embodiment, the periods Xa'' and Xb'' shown in the thick dashed rectangular frame do not necessarily satisfy Xa''=Xb''. As shown in FIG. 15, when the u-phase current iu is ahead of the u-phase voltage modulation wave Vu1 * in phase, the polarity of the u-phase Td correction value Vtd_u is inverted at the timing of the zero crossing of the u-phase current iu, so there is no need to provide a voltage operation margin after the zero crossing. Therefore, the three-phase modulation may be switched to the two-phase modulation at that timing. In the example of FIG. 15, the three-phase modulation is switched to the two-phase modulation at the timing of the zero crossing, so the relationship between the period Xa'' and the period Xb'' is Xa''>Xb''.
一方、図16のように、u相電流iuがu相電圧変調波Vu1*に対して位相が遅れている場合、u相電流iuのゼロクロスのタイミングではu相Td補正値Vtd_uの極性が反転するので、u相電圧変調波Vu1*の極性とu相Td補正値Vtd_uの極性とが同じとなり、電圧操作余裕が小さくなる。このため、u相電流iuのゼロクロスのタイミングにおいて、二相変調から三相変調に切り替えることが望ましい。ゼロクロスのタイミングで二相変調から三相変調に切り替えている図16の例では、期間Xa'''と期間Xb'''との関係が、Xa'''<Xb'''となっている。 On the other hand, when the u-phase current iu lags in phase with respect to the u-phase voltage modulated wave Vu1 * as shown in Fig. 16, the polarity of the u-phase Td correction value Vtd_u is inverted at the zero crossing timing of the u-phase current iu, so that the polarity of the u-phase voltage modulated wave Vu1 * and the polarity of the u-phase Td correction value Vtd_u become the same, and the voltage operation margin becomes small. For this reason, it is desirable to switch from two-phase modulation to three-phase modulation at the zero crossing timing of the u-phase current iu. In the example of Fig. 16 where two-phase modulation is switched to three-phase modulation at the zero crossing timing, the relationship between the period Xa''' and the period Xb''' is Xa'''<Xb'''.
また、三相変調挿入期間X3inの幅である期間Xa'',Xb''及び期間Xa''',Xb'''の幅は、先述の電圧電流位相差以外に、Td補正値Vtdに応じて変更してもよい。Td補正値Vtdは三相出力電流iu,iv,iwの電流値の大きさに依存する。三相出力電流iu,iv,iwの電流値が小さいとき、変調波の操作余裕は小さくてもよい。このため、その分、期間Xa'',Xb'',Xa''',Xb'''の幅を短くすることができる。 Furthermore, the widths of the periods Xa'', Xb'' and Xa''', Xb''', which are the width of the three-phase modulation insertion period X3in, may be changed according to the Td correction value Vtd in addition to the voltage-current phase difference described above. The Td correction value Vtd depends on the magnitude of the current values of the three-phase output currents iu, iv, iw. When the current values of the three-phase output currents iu, iv, iw are small, the operating margin of the modulated wave may be small. Therefore, the widths of the periods Xa'', Xb'', Xa''', Xb''' can be shortened accordingly.
また、電圧操作余裕は、変調率が小さい程大きくなる。このため、その分、期間Xa'',Xb'',Xa''',Xb'''の幅を短くすることができる。また、二相変調と三相変調との切り替えに際し、切り替えのタイミングを、期間Xa'',Xb'',Xa''',Xb'''の幅、即ち三相変調挿入期間X3inの幅に基づいて制御してもよい。 Furthermore, the smaller the modulation rate, the larger the voltage manipulation margin. Therefore, the widths of the periods Xa'', Xb'', Xa''', and Xb''' can be shortened accordingly. Furthermore, when switching between two-phase modulation and three-phase modulation, the timing of switching may be controlled based on the widths of the periods Xa'', Xb'', Xa''', and Xb''', i.e., the width of the three-phase modulation insertion period X3in.
以上説明したように、実施の形態2に係る電力変換装置によれば、制御部は、インバータの三相出力電流の電流値、インバータの三相出力電圧と三相出力電流との間の位相差、デッドタイムに起因する誤差を補正するための電圧補正値、及び三相出力電圧の変調率のうちの少なくとも1つに基づいて、三相変調期間の発生タイミング及び発生期間長を制御する。この制御により、余分な電圧操作余裕を排除して、真に必要な三相変調挿入期間の幅を設定することができる。これにより、三相変調を挿入する期間を極力短くすることができ、二相変調本来のメリットであるスイッチング損失の抑制効果を維持することが可能となる。 As described above, according to the power conversion device of the second embodiment, the control unit controls the occurrence timing and the occurrence period length of the three-phase modulation period based on at least one of the current value of the three-phase output current of the inverter, the phase difference between the three-phase output voltage and the three-phase output current of the inverter, the voltage correction value for correcting the error caused by the dead time, and the modulation rate of the three-phase output voltage. This control makes it possible to eliminate unnecessary voltage operation margin and set the truly necessary width of the three-phase modulation insertion period. This makes it possible to shorten the period in which the three-phase modulation is inserted as much as possible, and to maintain the effect of suppressing switching losses, which is an inherent advantage of two-phase modulation.
実施の形態3.
実施の形態1,2では、二相変調の実施の際にスイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直前及び直後、並びにスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直前及び直後に、三相共にスイッチング動作させる三相変調期間を挿入していた。一方、例えば、電流振幅が小さい運転条件又は用途では、デッドタイムTdに起因する外乱電圧の影響が小さいので、電圧操作余裕が小さい期間が残存しても電流リプルの発生が小さい。このため、実施の形態1,2よりも、三相変調挿入期間X3inの幅を更に小さくすることができる。実施の形態3では、この実施態様について図17及び図18を参照して説明する。
In the first and second embodiments, a three-phase modulation period in which all three phases are switched is inserted immediately before and after the timing when the phase in which the switching operation is suspended during the implementation of the two-phase modulation transitions from the switching period to the switching suspension period, and immediately before and after the timing when the phase in which the switching operation is suspended transitions from the switching suspension period to the switching period. On the other hand, for example, in operating conditions or applications in which the current amplitude is small, the influence of the disturbance voltage caused by the dead time Td is small, so that even if a period in which the voltage operation margin is small remains, the occurrence of current ripple is small. Therefore, the width of the three-phase modulation insertion period X3in can be further narrowed compared to the first and second embodiments. In the third embodiment, this embodiment will be described with reference to FIG. 17 and FIG. 18.
図17及び図18は、実施の形態3に係る制御によって挿入される三相変調挿入期間X3inの説明に供する第1及び第2の図である。図17及び図18において、図15及び図16と同一の波形及び同一の要素については、同一の符号を付して示している。 FIGS. 17 and 18 are first and second diagrams for explaining the three-phase modulation insertion period X3in that is inserted by the control according to the third embodiment. In FIG. 17 and FIG. 18, the same waveforms and elements as those in FIG. 15 and FIG. 16 are denoted by the same reference numerals.
図17及び図18では、煩雑さを避けるため、第1の三相電圧変調波Vu1*,Vv1*,Vw1*及び三相出力電流iu,iv,iwについては、u相電圧変調波Vu1*及びu相電流iuのみを示している。図17は、u相電流iuがu相電圧変調波Vu1*に対して位相が進んでいる場合の例であり、図18は、u相電流iuがu相電圧変調波Vu1*に対して位相が遅れている場合の例である。図17及び図18では、三相変調挿入期間X3inを太実線の矩形枠で示している。 In Fig. 17 and Fig. 18, in order to avoid complexity, only the u-phase voltage modulated wave Vu1 * and the u-phase current iu are shown for the first three-phase voltage modulated wave Vu1* , Vv1 * , Vw1 * and the three-phase output currents iu, iv, iw. Fig. 17 shows an example in which the u-phase current iu is ahead of the u-phase voltage modulated wave Vu1 * in phase, and Fig. 18 shows an example in which the u-phase current iu is behind the u-phase voltage modulated wave Vu1 * in phase. In Fig. 17 and Fig. 18, the three-phase modulation insertion period X3in is shown by a rectangular frame of a thick solid line.
図17の例では、スイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直前のみ、及びスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直前のみに三相変調挿入期間X3inが設定されている。また、図18の例では、スイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直後のみ、及びスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直後のみに三相変調挿入期間X3inが設定されている。即ち、三相出力電流iu,iv,iwが三相出力電圧に対して位相が進んでいる場合には、スイッチング期間とスイッチング休止期間との切り替わりのタイミングの直前のみに三相変調挿入期間X3inが設定され、三相出力電流iu,iv,iwが三相出力電圧に対して位相が遅れている場合には、スイッチング期間とスイッチング休止期間との切り替わりのタイミングの直後のみに三相変調挿入期間X3inが設定される実施態様となる。 In the example of FIG. 17, the three-phase modulation insertion period X3in is set only immediately before the timing when the phase for which the switching operation is suspended transitions from the switching period to the switching suspension period, and only immediately before the timing when the phase for which the switching operation is suspended transitions from the switching suspension period to the switching period. Also, in the example of FIG. 18, the three-phase modulation insertion period X3in is set only immediately after the timing when the phase for which the switching operation is suspended transitions from the switching period to the switching suspension period, and only immediately after the timing when the phase for which the switching operation is suspended transitions from the switching suspension period to the switching period. In other words, when the three-phase output currents iu, iv, and iw are in phase with respect to the three-phase output voltage, the three-phase modulation insertion period X3in is set only immediately before the timing of the transition between the switching period and the switching suspension period, and when the three-phase output currents iu, iv, and iw are in phase with respect to the three-phase output voltage, the three-phase modulation insertion period X3in is set only immediately after the timing of the transition between the switching period and the switching suspension period.
なお、図17の例では、スイッチング期間とスイッチング休止期間との切り替わりのタイミングの直前のみに三相変調挿入期間X3inが挿入されているが、切り替わりのタイミングの直後に三相変調挿入期間X3inが設定されることを妨げるものではない。また、図18の例では、スイッチング期間とスイッチング休止期間との切り替わりのタイミングの直後のみに三相変調挿入期間X3inが設定されているが、切り替わりのタイミングの直前に三相変調挿入期間X3inが設定されることを妨げるものではない。実施の形態3の制御によれば、三相変調の挿入期間を局限できるので、電流リプル及びトルクリプルを抑制しながら、スイッチング損失を抑制することができる。即ち、実施の形態3に係る電力変換装置を用いれば、電流リプル及びトルクリプルの抑制と、スイッチング損失の抑制との両立を図ることが可能となる。 In the example of FIG. 17, the three-phase modulation insertion period X3in is inserted only immediately before the timing of the change between the switching period and the switching pause period, but this does not prevent the three-phase modulation insertion period X3in from being set immediately after the change. In the example of FIG. 18, the three-phase modulation insertion period X3in is set only immediately after the timing of the change between the switching period and the switching pause period, but this does not prevent the three-phase modulation insertion period X3in from being set immediately before the change. According to the control of the third embodiment, the insertion period of the three-phase modulation can be limited, so that the switching loss can be suppressed while suppressing the current ripple and the torque ripple. In other words, by using the power conversion device according to the third embodiment, it is possible to suppress both the current ripple and the torque ripple and the switching loss.
以上説明したように、実施の形態3に係る電力変換装置によれば、制御部は、三相のうちの1つの相のスイッチング素子のスイッチング動作を順番に休止させる二相変調を実施すると共に、インバータに流出入する電流に基づいて、二相変調の実施の際にスイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直前及び直後のうちの少なくとも1つ、並びにスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直前及び直後のうちの少なくとも1つに、三相共にスイッチング動作させる三相変調期間を挿入する。この制御により、三相変調の挿入期間を局限することができる。これにより、電流リプル及びトルクリプルの抑制と、スイッチング損失の抑制との両立を図ることが可能となる。 As described above, according to the power conversion device of the third embodiment, the control unit performs two-phase modulation to sequentially suspend the switching operation of the switching elements of one of the three phases, and inserts a three-phase modulation period in which all three phases are switched on at least one of immediately before and after the timing when the phase in which the switching operation is suspended transitions from a switching period to a switching suspension period based on the current flowing in and out of the inverter when performing the two-phase modulation, and at least one of immediately before and after the timing when the phase in which the switching operation is suspended transitions from a switching suspension period to a switching period. This control makes it possible to limit the insertion period of the three-phase modulation. This makes it possible to achieve both suppression of current ripple and torque ripple and suppression of switching loss.
実施の形態4.
三相インバータ出力の線間電圧を維持するためには、全ての相の変調波を、同方向にシフトする必要があり、このシフト操作によりモータ5の中性点電位が変動する。中性点電位の変動は、モータ軸電食の進行を速めるといった悪影響があるため、中性点電位が変動するのは好ましくない。そこで、実施の形態4では、Td補正の精度を確保しつつ、中性点電位の変動を抑制するようにする。以下、実施の形態4に係る制御について図19を参照して説明する。図19は、実施の形態4に係る制御によって挿入される三相変調挿入期間X3inの説明に供する図である。
In order to maintain the line voltage of the three-phase inverter output, it is necessary to shift the modulated waves of all phases in the same direction, and this shifting operation causes the neutral point potential of the motor 5 to fluctuate. Fluctuations in the neutral point potential have an adverse effect of accelerating the progression of motor shaft electrolytic corrosion, so it is undesirable for the neutral point potential to fluctuate. Therefore, in the fourth embodiment, the fluctuations in the neutral point potential are suppressed while ensuring the accuracy of the Td correction. The control according to the fourth embodiment will be described below with reference to FIG. 19. FIG. 19 is a diagram for explaining the three-phase modulation insertion period X3in inserted by the control according to the fourth embodiment.
図19では、煩雑さを避けるため、三相出力電流については、u相電流iuのみを示している。また、図19では、三相変調挿入期間X3inを太実線の矩形枠で示している。図19では、三相変調挿入期間X3inに対称性を持たせるため、従来の二相変調におけるu相スイッチング休止期間Yuが始まる位相角120[度]の前後に、等しい位相角幅Δθ、即ち位相角幅2Δθの三相変調挿入期間X3inが設定されている。同様に、従来の二相変調におけるu相スイッチング休止期間Yuが終わる位相角240[度]の前後に、予め定められた等しい位相角幅Δθ、即ち位相角幅2Δθの三相変調挿入期間X3inが設定されている。図19は、u相スイッチング休止期間Yuに関する挿入例であるが、v,w相のスイッチング休止期間に対しても同様に挿入される。従って、uvw各相で見ると、スイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直前及び直後、並びにスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直前及び直後において、三相共にスイッチング動作させる互いに等しい三相変調期間が挿入される。実施の形態4の制御によれば、スイッチング休止期間が始まるタイミングの直前及び直後、並びにスイッチング休止期間が終わるタイミングの直前及び直後に挿入される三相変調期間の位相角幅が4者で等しいので、Td補正の精度を確保しながら、中性点電位の変動を抑制することが可能となる。
19, to avoid complication, only the u-phase current iu is shown for the three-phase output current. Also, in FIG. 19, the three-phase modulation insertion period X3in is shown in a rectangular frame of thick solid lines. In FIG. 19, in order to provide symmetry to the three-phase modulation insertion period X3in, a three-phase modulation insertion period X3in with an equal phase angle width Δθ, i.e., a phase angle width of 2Δθ, is set before and after the phase angle of 120 degrees at which the u-phase switching pause period Yu in conventional two-phase modulation begins. Similarly, a three-phase modulation insertion period X3in with a predetermined equal phase angle width Δθ, i.e., a phase angle width of 2Δθ, is set before and after the phase angle of 240 degrees at which the u-phase switching pause period Yu in conventional two-phase modulation ends. FIG. 19 shows an example of insertion for the u-phase switching pause period Yu, but similar insertion is also performed for the switching pause periods of the v and w phases. Therefore, for each uvw phase, equal three-phase modulation periods are inserted in which all three phases are switched immediately before and after the phase in which switching operation is suspended transitions from the switching period to the switching suspension period, and immediately before and after the phase in which switching operation is suspended transitions from the switching suspension period to the switching period. According to the control of
以上説明したように、実施の形態4に係る電力変換装置によれば、スイッチング休止期間が始まるタイミングの直前及び直後、並びにスイッチング休止期間が終わるタイミングの直前及び直後の4箇所に互いに等しい位相角幅の三相変調期間が挿入されるので、Td補正の精度を確保しながら、中性点電位の変動を抑制することができる。これにり、Td補正の精度を確保しながら、モータ軸電食の進行を抑制することが可能となる。
As described above, according to the power conversion device of
実施の形態5.
実施の形態1で説明したTd補正値Vtdは、図7及び図8に示されるように、三相出力電流の大きさ及び極性に応じた電圧である。このため、三相電圧変調波の位相と、三相出力電流の位相と同義のTd補正値Vtdの位相とが同位相に近づく程、三相電圧変調波の対称性が保たれるようになる。中性点電位の変動の抑制をより好適に行うには、三相出力電流に対して負荷力率が1となるように電圧指令を生成する。
Embodiment 5.
The Td correction value Vtd described in the first embodiment is a voltage corresponding to the magnitude and polarity of the three-phase output current, as shown in Fig. 7 and Fig. 8. Therefore, the closer the phase of the three-phase voltage modulated wave and the phase of the Td correction value Vtd, which is synonymous with the phase of the three-phase output current, the more the symmetry of the three-phase voltage modulated wave is maintained. In order to more suitably suppress the fluctuation of the neutral point potential, a voltage command is generated so that the load power factor becomes 1 with respect to the three-phase output current.
負荷力率を1に制御する方法としては、例えば特開平10-243700号公報に記載されている方法を利用できる。また、三相負荷であるモータ5が、例えば表面磁石型モータの場合、周知のベクトル制御に基づく方法でもよい。具体的には、図1の方法で検出した三相出力電流iu,iv,iwをモータ5の回転子に同期して回転する直交座標上のdq軸電流Id,Iqに座標変換して、d軸電流指令Id*とq軸電流指令Iq*とを生成する。更に、dq各軸においてdq軸電流指令Id*,Iq*と座標変換した検出電流値Id,Iqとの差分に基づいて各軸の電圧指令を生成する。その際、d軸電流指令Id*にゼロを与え、d軸電流Idがゼロとなるように制御することで、より正確に負荷力率を1に制御することができる。従って、モータ5が表面磁石型モータであれば、この種のベクトル制御を用いることで、好適に負荷力率を1に制御することができる。 As a method for controlling the load power factor to 1, for example, the method described in Japanese Patent Application Laid-Open No. 10-243700 can be used. In addition, when the motor 5, which is a three-phase load, is, for example, a surface permanent magnet type motor, a method based on a known vector control may be used. Specifically, the three-phase output currents iu, iv, and iw detected by the method of FIG. 1 are coordinate-converted into dq-axis currents Id and Iq on an orthogonal coordinate system that rotates in synchronization with the rotor of the motor 5, and a d-axis current command Id * and a q-axis current command Iq * are generated. Furthermore, a voltage command for each axis is generated based on the difference between the dq-axis current commands Id * and Iq * and the coordinate-converted detected current values Id and Iq in each of the d and q axes. At that time, the d-axis current command Id * is given zero, and the d-axis current Id is controlled to be zero, so that the load power factor can be controlled to 1 more accurately. Therefore, if the motor 5 is a surface permanent magnet type motor, the load power factor can be suitably controlled to 1 by using this type of vector control.
以上説明したように、実施の形態5に係る電力変換装置によれば、制御部は、インバータの出力電流である三相出力電流に応じて、負荷力率が1に近づくように制御する。負荷力率が1に近づくように制御することで、三相出力電流と三相出力電圧とにおける各相の位相差がゼロに近づくので、二相変調によるスイッチング休止期間と各相電流が大きくなる期間とが一致する。スイッチング損失の低減効果は三相出力電流の大きさに略比例するという性質を有しているので、実施の形態1から4において説明した効果に加え、スイッチング損失の低減効果を高めることができる。更に、三相負荷が表面磁石型モータの場合、d軸電流指令をゼロに制御することで、負荷力率を厳密に1に制御できるので、スイッチング損失の低減効果を更に高めることができる。 As described above, according to the power conversion device of the fifth embodiment, the control unit controls the load power factor to approach 1 according to the three-phase output current, which is the output current of the inverter. By controlling the load power factor to approach 1, the phase difference between each phase in the three-phase output current and the three-phase output voltage approaches zero, so that the switching pause period due to two-phase modulation coincides with the period in which each phase current is large. Since the switching loss reduction effect has the property of being approximately proportional to the magnitude of the three-phase output current, in addition to the effects described in the first to fourth embodiments, the switching loss reduction effect can be enhanced. Furthermore, when the three-phase load is a surface magnet type motor, the load power factor can be strictly controlled to 1 by controlling the d-axis current command to zero, so that the switching loss reduction effect can be further enhanced.
実施の形態6.
図20は、実施の形態6に係る空気調和装置200の構成例を示す図である。実施の形態6に係る空気調和装置200は、実施の形態1から5で説明した電力変換装置100と、圧縮機50と、ファンモータ5bと、ファンモータ5bを駆動源とするファン52と、冷凍サイクル110とを備える。圧縮機50は、圧縮機モータ5aと、冷媒を圧縮する圧縮要素51とを備える。圧縮機モータ5aは、圧縮機50の駆動源である。
Embodiment 6.
20 is a diagram showing a configuration example of an
電力変換装置100は、圧縮機50の駆動源である圧縮機モータ5a、ファン52の駆動源であるファンモータ5bの各々に対して電力を供給する図示しないインバータを2台有している。2台のインバータのうちの少なくとも1台は、実施の形態1から5で説明したインバータ3が適用される。なお、実施の形態1から5で説明したコンバータ2は、整流された電圧を出力することが目的であり、2台のインバータ3に対して共通でもよく、或いは2台のインバータ3ごとに個別に備えられていてもよい。
The
冷凍サイクル110では、圧縮機50と、四方弁121と、熱源側熱交換器122と、負荷側熱交換器132と、膨張装置131とによって冷媒回路が構成される。圧縮機50は冷媒を圧縮し、熱源側熱交換器122及び負荷側熱交換器132は冷媒の熱交換を行い、ファン52は熱源側熱交換器122に風を送る。冷凍サイクル110の構成要素に関し、図20では、四方弁121と熱源側熱交換器122とが室外機120に設けられ、膨張装置131と負荷側熱交換器132とが室内機130に設けられる構成を示している。なお、図20の構成は一例であり、実施の形態6に係る空気調和装置200は、図20の構成に限定されない。
In the refrigeration cycle 110, a refrigerant circuit is formed by a
実施の形態6に係る空気調和装置200に対して、実施の形態1から5に係る電力変換装置100のうちの何れかを適用すれば、実施の形態1から5で説明した何れかの効果を享受することができる。具体的には、圧縮機50の駆動源である圧縮機モータ5a及びファン52の駆動源であるファンモータ5bのうちの少なくとも1つのモータの電流リプルが抑制されるので、当該モータが発するトルクリプルが抑制される。これにより、トルクリプルに起因する空気調和装置200の騒音を抑制でき、電流リプルに起因する損失も抑制できるので、空気調和装置200の性能を向上させることが可能となる。
By applying any of the
最後に、上述した制御部4の機能を実現するためのハードウェア構成について、図21及び図22の図面を参照して説明する。図21は、実施の形態1から5における制御部4の機能を実現するハードウェア構成の一例を示す図である。図22は、実施の形態1から5における制御部4の機能を実現するハードウェア構成の他の例を示す図である。
Finally, the hardware configuration for realizing the above-mentioned functions of the
実施の形態1から5における制御部4の機能の一部又は全部を実現する場合には、図21に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。
When realizing some or all of the functions of the
プロセッサ300は、演算手段の一例である。プロセッサ300は、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)と称される演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。
メモリ302には、実施の形態1から5における制御部4の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。
また、実施の形態1から5における制御部4の機能の一部を実現する場合には、図22に示す処理回路303を用いることもできる。処理回路303は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路303に入力する情報、及び処理回路303から出力する情報は、インタフェース304を介して授受することができる。
In addition, when implementing part of the functions of the
なお、制御部4における一部の処理を処理回路303で実施し、処理回路303で実施しない処理をプロセッサ300及びメモリ302で実施してもよい。
In addition, some of the processing in the
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, or the embodiments may be combined with each other. In addition, parts of the configurations may be omitted or modified without departing from the spirit of the invention.
例えば、図1から図3において、交流電源である商用電源1の相数は単相又は三相の何れでもよい。インバータ3に対し、商用電源1及びコンバータ2は直流電力を供給する直流電力供給源として動作するが、商用電源1及びコンバータ2に代えて、バッテリなどの直流電源を用いてもよい。また、図2において、制御部4に入力される変調率指令Vk及び電圧位相θは、上位の制御系において周知のベクトル制御を含む電流フィードバック制御、又はフィードフォワード制御に基づいて生成される。また、実施の形態1から5では、下張りつけ二相変調方式を前提として説明したが、上限値を“1”として上限値側に張りつける上張りつけ二相変調方式を用いても同様に実現できる。
For example, in Figs. 1 to 3, the number of phases of the
1 商用電源、2 コンバータ、3 インバータ、4 制御部、5 モータ、5a 圧縮機モータ、5b ファンモータ、6a,6b,7 電気配線、31a~31c,32a~32c スイッチング素子、33a~33c,34 シャント抵抗、35a,35b 電流検出器、41,41A 変調方式選択部、42 変調波生成部、43 Td補正部、44 PWM変調部、45 Td付加部、50 圧縮機、51 圧縮要素、52 ファン、100 電力変換装置、110 冷凍サイクル、120 室外機、121 四方弁、122 熱源側熱交換器、130 室内機、131 膨張装置、132 負荷側熱交換器、200 空気調和装置、300 プロセッサ、302 メモリ、303 処理回路、304 インタフェース。 1 Commercial power supply, 2 Converter, 3 Inverter, 4 Control unit, 5 Motor, 5a Compressor motor, 5b Fan motor, 6a, 6b, 7 Electrical wiring, 31a-31c, 32a-32c Switching elements, 33a-33c, 34 Shunt resistor, 35a, 35b Current detector, 41, 41A Modulation method selection unit, 42 Modulation wave generation unit, 43 Td correction unit, 44 PW M modulation section, 45 Td addition section, 50 compressor, 51 compression element, 52 fan, 100 power conversion device, 110 refrigeration cycle, 120 outdoor unit, 121 four-way valve, 122 heat source side heat exchanger, 130 indoor unit, 131 expansion device, 132 load side heat exchanger, 200 air conditioning device, 300 processor, 302 memory, 303 processing circuit, 304 interface.
Claims (16)
前記インバータに具備される三相の複数のスイッチング素子に対するスイッチング信号を生成して前記インバータに出力する制御部と、
を備え、
前記制御部は、三相のうちの1つの相のスイッチング素子のスイッチング動作を順番に休止させる二相変調を実施すると共に、前記インバータに流出入する電流に基づいて、前記二相変調の実施の際にスイッチング動作を休止させる相がスイッチング期間からスイッチング休止期間に移行するタイミングの直前及び直後のうちの少なくとも1つ、並びにスイッチング動作を休止させた相がスイッチング休止期間からスイッチング期間に移行するタイミングの直前及び直後のうちの少なくとも1つに、三相共にスイッチング動作させる三相変調期間を挿入する
電力変換装置。 An inverter that converts DC power into AC power and supplies it to a three-phase load;
a control unit that generates switching signals for a plurality of three-phase switching elements provided in the inverter and outputs the switching signals to the inverter;
Equipped with
The control unit performs two-phase modulation to sequentially suspend switching operations of switching elements of one of three phases, and inserts a three-phase modulation period in which all three phases are subjected to switching operations at least one of immediately before and after a timing at which a phase in which switching operation is suspended during the two-phase modulation transitions from a switching period to a switching suspension period and at least one of immediately before and after a timing at which a phase in which switching operation is suspended transitions from a switching suspension period to a switching period, based on a current flowing in and out of the inverter.
請求項1に記載の電力変換装置。 2. The power conversion device according to claim 1, wherein, when a three-phase output current that is an output current of the inverter is in phase with a three-phase output voltage that is an output voltage of the inverter, the control unit inserts the three-phase modulation period immediately after a timing at which a phase in which switching operation is suspended transitions from a switching period to a switching pause period and immediately after a timing at which a phase in which switching operation is suspended transitions from a switching pause period to a switching period.
請求項1に記載の電力変換装置。 2. The power conversion device according to claim 1, wherein, when a three-phase output current that is an output current of the inverter lags in phase with a three-phase output voltage that is an output voltage of the inverter, the control unit inserts the three-phase modulation period immediately before a timing at which a phase in which switching operation is suspended transitions from a switching period to a switching suspension period and immediately before a timing at which a phase in which switching operation is suspended transitions from a switching suspension period to a switching period.
請求項1に記載の電力変換装置。 2. The power conversion device according to claim 1, wherein the control unit performs two-phase modulation in which switching operations of switching elements of one of three phases are suspended in sequence, and inserts three-phase modulation periods in which all three phases are subjected to switching operations immediately before and after a timing at which a phase in which switching operations are suspended during the two-phase modulation transitions from a switching period to a switching suspension period, and immediately before and after a timing at which a phase in which switching operations are suspended transitions from a switching suspension period to a switching period, based on a current flowing in and out of the inverter.
請求項4に記載の電力変換装置。 5. The power conversion device according to claim 4, wherein the control unit controls a generation timing and a generation period length of the three-phase modulation period based on at least one of a current value of a three-phase output current of the inverter, a phase difference between a three-phase output voltage of the inverter and the three-phase output current, a voltage correction value for correcting an error caused by a dead time, and a modulation factor of the three-phase output voltage.
請求項4に記載の電力変換装置。 The power conversion device according to claim 4 , wherein three-phase modulation periods having equal phase angle widths are inserted at four locations, immediately before and immediately after the timing at which the switching pause period starts, and immediately before and immediately after the timing at which the switching pause period ends.
請求項1から6の何れか1項に記載の電力変換装置。 7. The power conversion device according to claim 1, wherein the control unit generates a first three-phase voltage modulated wave based on a voltage command output from a higher-level control system, calculates a three-phase common signal for setting the switching pause period while maintaining a line voltage value for the generated first three-phase voltage modulated wave, calculates a second three-phase voltage modulated wave by superimposing the three-phase common signal on the first three-phase voltage modulated wave, and further generates the switching signal based on a third three-phase voltage modulated wave obtained by correcting an error caused by a dead time imparted to the switching signal for the second three-phase voltage modulated wave.
請求項7に記載の電力変換装置。 8. The power conversion device according to claim 7, wherein the control unit calculates the three-phase common signal based on a first difference that is a difference between a first three-phase voltage modulated wave having a value close to a predetermined first limiter value among the first three-phase voltage modulated waves and the first limiter value, and when performing the process of inserting the three-phase modulation period, calculates the three-phase common signal based on a second difference that is a difference between a first three-phase voltage modulated wave having a value close to the first limiter value and a second limiter value having an absolute value smaller than the first limiter value.
請求項8に記載の電力変換装置。 9. The power conversion device according to claim 8, wherein a third difference which is a difference between the first limiter value and the second limiter value is determined based on at least one of an effective value of a three-phase output current which is an output current of the inverter, or a phase difference between a three-phase output voltage which is an output voltage of the inverter and the three-phase output current.
前記制御部は、前記モータの回転速度が予め定められた閾値を下回る運転条件下では、前記二相変調を実施せずに三相変調を実施する
請求項1から9の何れか1項に記載の電力変換装置。 the three-phase load is a motor;
The power conversion device according to claim 1 , wherein the control unit performs three-phase modulation instead of two-phase modulation under an operating condition in which a rotation speed of the motor is lower than a predetermined threshold value.
前記制御部は、前記モータの回転速度が予め定められた閾値を下回る運転条件下では、前記第3差分の値を前記デッドタイムに起因する外乱電圧の値に基づいて決定することで、各相共に全期間スイッチングする三相変調期間とする
請求項9に記載の電力変換装置。 the three-phase load is a motor;
10. The power conversion device according to claim 9, wherein, under an operating condition in which a rotational speed of the motor is below a predetermined threshold, the control unit determines a value of the third difference based on a value of a disturbance voltage caused by the dead time, thereby setting a three-phase modulation period in which each phase is switched for an entire period.
前記制御部は、前記モータの回転速度が予め定められた閾値を上回る運転条件下では、前記三相変調期間を挿入しない
請求項1から11の何れか1項に記載の電力変換装置。 the three-phase load is a motor;
The power conversion device according to claim 1 , wherein the control unit does not insert the three-phase modulation period under an operating condition in which a rotation speed of the motor exceeds a predetermined threshold value.
前記制御部は、前記モータの回転速度が予め定められた閾値を上回る運転条件下では、前記第3差分をゼロとすることで、全期間、三相変調期間を挿入しない
請求項9又は11に記載の電力変換装置。 the three-phase load is a motor;
The power conversion device according to claim 9 or 11, wherein the control unit, under an operating condition in which a rotation speed of the motor exceeds a predetermined threshold, does not insert a three-phase modulation period for the entire period by setting the third difference to zero.
請求項1から13の何れか1項に記載の電力変換装置。 The power conversion device according to claim 1 , wherein the control unit controls the load power factor to approach 1 in accordance with the output current of the inverter.
前記制御部は、前記インバータの出力電流に基づいたベクトル制御によって負荷力率が1となる電流指令を生成する
請求項14に記載の電力変換装置。 the three-phase load is a surface permanent magnet motor,
The power conversion device according to claim 14 , wherein the control unit generates a current command that makes a load power factor 1 by vector control based on an output current of the inverter.
冷媒を圧縮する圧縮機と、
前記冷媒の熱交換を行う熱交換器と、
前記熱交換器へ風を送るファンと、
前記圧縮機を駆動するモータ及び前記ファンを駆動するモータのうちの少なくとも1つを前記電力変換装置によって駆動する
空気調和装置。 A power conversion device according to any one of claims 1 to 15;
A compressor that compresses a refrigerant;
A heat exchanger for exchanging heat of the refrigerant;
A fan for blowing air into the heat exchanger;
At least one of a motor that drives the compressor and a motor that drives the fan is driven by the power conversion device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/026425 WO2025017870A1 (en) | 2023-07-19 | 2023-07-19 | Power conversion device and air-conditioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/026425 WO2025017870A1 (en) | 2023-07-19 | 2023-07-19 | Power conversion device and air-conditioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025017870A1 true WO2025017870A1 (en) | 2025-01-23 |
Family
ID=94281312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/026425 WO2025017870A1 (en) | 2023-07-19 | 2023-07-19 | Power conversion device and air-conditioning device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025017870A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09149660A (en) * | 1995-11-27 | 1997-06-06 | Toshiba Corp | Controller for pwm control inverter |
WO2005057771A1 (en) * | 2003-12-15 | 2005-06-23 | Matsushita Electric Industrial Co., Ltd. | Motor drive device |
JP2013162529A (en) * | 2012-02-01 | 2013-08-19 | Fanuc Ltd | Motor drive pwm rectifier having modulation scheme selector |
JP2017184535A (en) * | 2016-03-31 | 2017-10-05 | アイシン・エィ・ダブリュ株式会社 | Inverter controller |
-
2023
- 2023-07-19 WO PCT/JP2023/026425 patent/WO2025017870A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09149660A (en) * | 1995-11-27 | 1997-06-06 | Toshiba Corp | Controller for pwm control inverter |
WO2005057771A1 (en) * | 2003-12-15 | 2005-06-23 | Matsushita Electric Industrial Co., Ltd. | Motor drive device |
JP2013162529A (en) * | 2012-02-01 | 2013-08-19 | Fanuc Ltd | Motor drive pwm rectifier having modulation scheme selector |
JP2017184535A (en) * | 2016-03-31 | 2017-10-05 | アイシン・エィ・ダブリュ株式会社 | Inverter controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3971979B2 (en) | Air conditioner | |
US11139771B2 (en) | Control device and control method for AC motor and AC motor drive system | |
US9287820B2 (en) | Motor control device and air conditioner | |
JP5718474B2 (en) | Power conversion device, electric motor drive device, and air conditioner | |
WO2013080610A1 (en) | Power converter, electric motor drive device, and air conditioner | |
JP6368664B2 (en) | Active filter, motor driving apparatus using the same, and refrigeration apparatus | |
WO2016035216A1 (en) | Power conversion device and motor drive device, fan, and compressor each provided with same, and air-conditioning machine, refrigerator, and freezing machine each provided with fan and/or compressor | |
KR101514391B1 (en) | Vector controller and motor controller using the same, air-conditioner | |
JP2002247876A (en) | Inverter device, compressor controlling device, freezer and air conditioner controlling device, motor controlling method, compressor, freezer and air conditioner | |
JP5078925B2 (en) | Electric motor drive device and equipment | |
US20230318489A1 (en) | Power converter, motor driver, and refrigeration cycle applied equipment | |
JP2014138526A (en) | Inverter control apparatus, and compressor equipped with the same | |
JP7332382B2 (en) | Inverter device | |
WO2025017870A1 (en) | Power conversion device and air-conditioning device | |
JP7361222B2 (en) | open winding motor drive | |
JP3490600B2 (en) | Pulse width modulation method for power converter | |
JP4591049B2 (en) | AC / AC direct converter motor controller | |
WO2024105859A1 (en) | Inverter control device, motor driving device, blower, and air conditioner | |
JP2009254124A (en) | Brushless dc motor controller | |
JP7523693B2 (en) | Control unit of power converter and power conversion device | |
JP7361948B2 (en) | Electric motor drive equipment, refrigeration cycle equipment, and air conditioners | |
JP6695028B2 (en) | Rectifier circuit device | |
CN104009692A (en) | Motor control device and air conditioner using the motor control device | |
JP7527485B2 (en) | Inverter control device and inverter control method | |
WO2024042594A1 (en) | Rotary machine control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23945873 Country of ref document: EP Kind code of ref document: A1 |