[go: up one dir, main page]

WO2025011644A1 - 液冷板及电池包 - Google Patents

液冷板及电池包 Download PDF

Info

Publication number
WO2025011644A1
WO2025011644A1 PCT/CN2024/105200 CN2024105200W WO2025011644A1 WO 2025011644 A1 WO2025011644 A1 WO 2025011644A1 CN 2024105200 W CN2024105200 W CN 2024105200W WO 2025011644 A1 WO2025011644 A1 WO 2025011644A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooling plate
cooling
channel
main channel
Prior art date
Application number
PCT/CN2024/105200
Other languages
English (en)
French (fr)
Inventor
古展彰
李定鹏
谢耀
郜旭辉
Original Assignee
惠州亿纬锂能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州亿纬锂能股份有限公司 filed Critical 惠州亿纬锂能股份有限公司
Publication of WO2025011644A1 publication Critical patent/WO2025011644A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a liquid cooling plate and a battery pack.
  • battery packs generally adopt a cooling method in which a liquid cooling plate is arranged at the bottom of the battery module. External coolant circulates through the flow channels distributed in the liquid cooling plate to cool the battery module.
  • the flow channel width of the liquid cooling plate is reduced in areas with lower battery module temperatures, which increases the flow resistance of the coolant, reduces the flow rate of the coolant and the flow channel area, thereby reducing the cooling effect in areas with lower temperatures.
  • variable-width flow channel causes uneven flow distribution of the coolant in various areas of the liquid cooling plate, thereby reducing the cooling efficiency of the liquid cooling plate.
  • the present application provides a liquid cooling plate.
  • the liquid cooling plate is divided into at least two cooling zones from front to back along a first direction, and a branch flow channel is provided in each cooling zone; a liquid inlet main channel and a liquid outlet main channel connected to each other are provided in the liquid cooling plate, and a liquid inlet connected to the liquid inlet main channel and a liquid outlet connected to the liquid outlet main channel are provided at the front end of the liquid cooling plate along the first direction, and the widths of the liquid inlet main channel, the liquid outlet main channel and the branch flow channel are equal;
  • the branch flow channels in at least two cooling zones are arranged in parallel between the liquid inlet main channel and the liquid outlet main channel; the length of the branch flow channels from front to back along the first direction gradually decreases so that the sum of the resistance along the flow of the coolant through the liquid inlet main channel, the branch flow channels in each cooling zone and the liquid outlet main channel is equal.
  • the present application also provides a battery pack, which includes a battery module and the above-mentioned liquid cooling plate, wherein the liquid cooling plate is arranged at the bottom of the battery module.
  • the liquid inlet main channel and liquid outlet main channel of the liquid cooling plate provided by the present application are set to be equal in width to the branch channel in each cooling zone, so as to avoid reducing the channel area of the cooling zone and ensure the cooling efficiency of the liquid cooling plate.
  • the length of multiple branch channels along the first direction from front to back gradually decreases, so that the branch channels closer to the liquid inlet and the liquid outlet have longer lengths, increasing the resistance along the branch channels, so that the sum of the resistance along the coolant through the liquid inlet main channel, each branch channel, and the liquid outlet main channel is the same, so as to ensure that the coolant flows at a uniform speed in each branch channel, so that each cooling zone has a coolant flow corresponding to its cooling area, achieving a balanced flow distribution of the coolant and ensuring the uniform temperature of the battery module.
  • the battery pack provided in the present application includes the above-mentioned liquid cooling plate, which achieves a balanced flow distribution of the cooling liquid and ensures the uniform temperature of the battery module.
  • FIG1 is a front view of the internal structure of a battery pack provided in an embodiment of the present application.
  • FIG2 is a bottom view of the internal structure of a battery pack provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the internal structure of the liquid cooling plate provided in an embodiment of the present application.
  • Liquid cooling plate 20. Battery module; 21. Battery cell; 30. Liquid inlet pipe; 40. Liquid outlet pipe;
  • Cooling area 2. Branch flow channel; 3. Main liquid inlet channel; 4. Main liquid outlet channel; 5. Liquid inlet; 6. Liquid outlet; 7. Cooling group.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • a first feature being “above” or “below” a second feature may include the first and second features being in direct contact, or may include the first and second features being in contact not directly but through another feature between them.
  • a first feature being “above”, “above” and “above” a second feature includes the first feature being directly above and obliquely above the second feature, and the first feature having a higher horizontal height than the second feature.
  • a first feature being “below”, “below” and “below” a second feature includes the first feature being directly below and obliquely below the second feature, and the first feature having a lower horizontal height than the second feature.
  • the terms “upper”, “lower”, “left”, “right”, “front”, “rear” and other directions or positional relationships are based on the directions or positional relationships shown in the drawings, and are for the convenience of description and simplification of operation, rather than indicating or implying that the device or element referred to must have a specific direction, be constructed and operate in a specific direction, and therefore cannot be understood as limiting the present application.
  • the terms “first” and “second” are used to distinguish in the description and have no special meaning.
  • this embodiment provides a battery pack, which includes a liquid cooling plate 10 and a battery module 20 .
  • the liquid cooling plate 10 is disposed at the bottom of the battery module 20 to cool the battery module 20 .
  • the battery module 20 includes a plurality of cells arranged side by side, and the cells are square cells.
  • the battery module 20 is in an array structure of two rows and multiple columns, and the length direction of the cells is the left-right direction in FIG. 2 , and the width direction of the cells is the first direction (the front-back direction in FIG. 2 ).
  • the number and arrangement of the cells of the battery module 20 can also be flexibly adjusted, and are not specifically limited here.
  • cross beams and longitudinal beams are installed between the frames inside the battery pack in a cross-shaped arrangement.
  • the liquid cooling plate 10 is installed on the bottom guard plate below the frame.
  • the cross beams and longitudinal beams divide the space above the liquid cooling plate 10 into four areas.
  • the four battery modules 20 are respectively installed in the four areas above the liquid cooling plate 10. In the front-to-back direction, the two battery modules 20 at the front end and the two battery modules 20 at the rear end have the same number of cells.
  • the liquid cooling plate 10 also includes a liquid inlet pipe 30 and a liquid outlet pipe 40.
  • One end of the liquid inlet pipe 30 is connected to the liquid inlet 5 of the inner cavity of the liquid cooling plate 10, and one end of the liquid outlet pipe 40 is connected to the liquid outlet 6 of the inner cavity of the liquid cooling plate 10.
  • the other ends of the liquid inlet pipe 30 and the liquid outlet pipe 40 are both connected to an external cold source.
  • the coolant in the cold source flows into the inner cavity of the liquid cooling plate 10 through the liquid inlet pipe 30, flows into the liquid outlet pipe 40 from the liquid outlet 6 after cooling the battery module 20, and finally flows back to the cold source.
  • the liquid inlet 5 and the liquid outlet 6 of the liquid cooling plate 10 are both located at the front end of the liquid cooling plate 10 along the front-to-back direction.
  • the flow channel width of the existing liquid cooling plate is reduced in the area where the temperature of the battery module 20 is relatively low, which increases the flow resistance of the coolant, reduces the flow rate of the coolant and the flow channel area, and reduces the cooling effect of the area with relatively low temperature.
  • the above-mentioned design of widening the flow channel makes the flow distribution of the coolant in various areas of the liquid cooling plate uneven, reducing the cooling efficiency of the liquid cooling plate.
  • the liquid cooling plate 10 of this embodiment is divided into at least two cooling zones 1 from front to back along the first direction, and a branch flow channel 2 is provided in each cooling zone 1.
  • a connected liquid inlet main channel 3 and a liquid outlet main channel 4 are also provided in the liquid cooling plate 10, and the widths of the liquid inlet main channel 3, the liquid outlet main channel 4 and the branch flow channel 2 are equal.
  • a liquid inlet 5 connected to the liquid inlet main channel 3 and a liquid outlet 6 connected to the liquid outlet main channel 4 are provided at the front end of the liquid cooling plate 10 along the first direction.
  • the branch flow channels 2 in at least two cooling zones 1 are arranged in parallel between the liquid inlet main channel 3 and the liquid outlet main channel 4. The length of the branch flow channel 2 from front to back along the first direction gradually decreases so that the sum of the resistance along the way of the coolant flowing through the liquid inlet main channel 3, the branch flow channels 2 in each cooling zone 1 and the liquid outlet main channel 4 is equal.
  • liquid inlet main channel 3 and the liquid outlet main channel 4 of the liquid cooling plate 10 are set to be equal in width to the branch channel 2 in each cooling zone 1, so as to avoid reducing the channel area of the cooling zone 1 and ensure the cooling efficiency of the liquid cooling plate 10.
  • the lengths of the multiple branch channels 2 along the first direction from front to back gradually decrease, that is, the closer the branch channel 2 is to the liquid inlet 5 and the liquid outlet 6, the longer the length is, which increases the resistance along the branch channel 2, so that the sum of the resistance along the coolant through the liquid inlet main channel 3, each branch channel 2, and the liquid outlet main channel 4 is the same, so as to ensure that the coolant flows at a uniform speed in each branch channel 2, so that each cooling zone 1 has a coolant flow corresponding to its cooling area, realizing a balanced flow distribution of the coolant and ensuring the uniform temperature of the battery module 20.
  • each group has a plurality of battery modules 20 arranged at intervals along the front-back direction.
  • the liquid cooling plate 10 is divided into at least two cooling groups 7 along the left-right direction, each cooling group 7 includes a liquid inlet main channel 3 and a liquid outlet main channel 4, and the cooling group 7 is divided into at least two cooling zones 1 from front to back along the first direction, and the cooling zones 1 of each cooling group 7 cool down the battery modules 20 of the same group respectively.
  • Two adjacent cooling groups 7 share a liquid outlet main channel 4, which simplifies the main channel structure in the liquid cooling plate 10. Since the liquid inlet main channels 3 of multiple cooling groups 7 are arranged in parallel, the flow resistance of the coolant is reduced, and the smooth flow of the coolant in each liquid inlet main channel 3 is achieved, which is beneficial to improve the cooling efficiency of the liquid cooling plate 10.
  • the battery pack of this embodiment has at least two groups of battery modules 20 symmetrically distributed along the left-right direction, and each group has at least two battery modules 20 spaced apart along the front-back direction.
  • the liquid cooling plate 10 is provided with at least two cooling groups 7 along the left-right direction, and the liquid inlet main channels 3 of at least two cooling groups 7 are arranged in parallel, and the liquid inlet main channels 3 of at least two cooling groups 7 share a liquid outlet main channel 4.
  • the coolant flows into the liquid inlet main channels 3 on both sides of the liquid cooling plate 10, and then flows out from the liquid outlet main channel 4 in the middle of the liquid cooling plate 10.
  • the flow distribution of the left and right cooling zones 1 is consistent, and the cooling effect is consistent.
  • the following takes the cooling zone 1 located on the left side of the liquid cooling plate 10 as an example.
  • the distance that the coolant flows into the branch channel 2 near the liquid inlet 5 and the liquid outlet 6 is shorter, and the resistance along the way is relatively small; while the distance that the coolant flows into the branch channel 2 far away from the liquid inlet 5 and the liquid outlet 6 is longer, and the resistance along the way is relatively large.
  • the lengths of at least two cooling zones 1 along the first direction gradually decrease from front to back, that is, the branch flow channel 2 in the cooling zone 1 close to the liquid inlet 5 and the liquid outlet 6 (the front end in the front-to-back direction) is longer in the front-to-back direction and has a greater resistance along the way; while the branch flow channel 2 in the cooling zone 1 far from the liquid inlet 5 and the liquid outlet 6 (the front end in the front-to-back direction) is shorter in the front-to-back direction and has a smaller resistance along the way, so that the sum of the resistances along the way of the coolant flowing through the liquid inlet main channel 3, the branch flow channel 2 in each cooling zone 1 and the liquid outlet main channel 4 is approximately equal.
  • branch channel 2 is a curved channel, and the length direction of the branch channel 2 is parallel to the first direction.
  • the branch channel of the present embodiment is an S-shaped channel, and a battery module 20 is installed above each cooling zone 1.
  • the length direction of the battery cell of the battery module 20 is perpendicular to the length direction of the branch channel 2, so that at least one branch channel 2 is distributed at the bottom of each battery cell.
  • the S-shaped branch channel 2 has an upstream high-temperature channel and a downstream low-temperature channel, which ensures uniform heat dissipation of the battery cell.
  • the branch channel can also be a curved channel of other shapes, which is not specifically limited here.
  • the cooling group 7 of this embodiment has three cooling zones 1.
  • the cooling zone 1 at the front end of the first direction is provided with at least two parallel multi-S-shaped flow channels, and the remaining cooling zones 1 are respectively provided with at least four parallel single S-shaped flow channels.
  • the multi-S-shaped flow channel includes at least two branch flow channels 2 connected in series, and the single S-shaped flow channel includes a branch flow channel 2.
  • a battery module 20 is installed above a cooling zone 1 at the front end of the first direction, and a battery module 20 is installed above the two cooling zones 1 at the rear end of the first direction.
  • the cooling zone 1 at the front end of the front and rear directions is provided with two parallel multi-S-shaped flow channels, and the remaining cooling zones 1 are respectively provided with four parallel single S-shaped flow channels.
  • the double S-shaped flow channel increases the flow distance of the coolant in the double S-shaped flow channel, increases the resistance along the way, and balances the flow distribution of the coolant in each cooling zone 1.
  • three, five or more than six branch flow channels 2 can also be arranged in parallel in each cooling zone 1, which is not specifically limited here, and it is only necessary to ensure that each cooling zone 1 is evenly covered with branch flow channels 2 and the flow distribution is balanced.
  • the depth of the liquid inlet main channel 3 is equal to the depth of the liquid outlet main channel 4, and the depths of both are greater than the depth of the branch channel 2. Since the flow rate of the coolant in the liquid inlet main channel 3 and the liquid outlet main channel 4 is large and the flow velocity is fast, the flow resistance of the liquid inlet main channel 3 and the liquid outlet main channel 4 is reduced by increasing the depth.
  • the branch channels 2 in each cooling zone 1 are arranged in parallel, and the depth of the branch channels 2 is set to be lower than the depth of the liquid inlet main channel 3 and the liquid outlet main channel 4 to increase the flow velocity of the coolant and improve the cooling efficiency of the liquid cooling plate 10.
  • the depth of the branch flow channel 2 gradually decreases from front to back along the first direction.
  • the branch flow channels 2 near the front end have a relatively large resistance along the way
  • the branch flow channels 2 near the rear end have a relatively small resistance along the way, thereby further adjusting the resistance along the way of each branch flow channel 2, so that the flow distribution of the coolant in each cooling zone 1 is more balanced.
  • the depth of the main inlet channel 3 and the main outlet channel 4 is 3.5 mm to 4.5 mm
  • the depth of the branch channel 2 is 2 mm to 3 mm.
  • the depth of the main inlet channel 3 and the main outlet channel 4 can be 3.5 mm, 3.8 mm, 4 mm, 4.2 mm or 4.5 mm, etc.
  • the depth of the branch channel 2 can be 2 mm, 2.2 mm, 2.5 mm, 2.8 mm or 3 mm, etc.
  • the depths of the liquid inlet main channel 3 and the liquid outlet main channel 4 may be 3.5 mm, and the depths of the three branch channels 2 in the cooling zone 1 distributed from front to back may be 3 mm, 2.8 mm, and 2.6 mm, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种液冷板及电池包。液冷板沿第一方向由前向后划分出至少两个冷却区,每个冷却区内均开设分支流道;液冷板内设有进液主流道和出液主流道,液冷板沿第一方向的前端开设有进液口和出液口,进液主流道、出液主流道与分支流道的宽度相等,沿第一方向由前向后的分支流道的长度逐渐变小。

Description

液冷板及电池包
本申请要求在2023年7月12日提交中国专利局、申请号为202310853501.3的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,具体涉及一种液冷板及电池包。
背景技术
目前,电池包普遍采用电池模组底部布置液冷板的冷却方式,外部的冷却液循环流过液冷板内分布的流道,以实现对电池模组的冷却降温。
为了保证电池模组的均温性,在电池模组温度较低的区域,液冷板的流道宽度变小,增大了冷却液的流阻,减少了冷却液的流量和流道面积,以降低温度较低区域的冷却效果。
发明概述
变宽流道的设计方案使得冷却液在液冷板的各个区域的流量分布不均,降低了液冷板的冷却效率。
本申请提供了一种液冷板。液冷板沿第一方向由前向后划分出至少两个冷却区,每个冷却区内均开设分支流道;液冷板内设有相连通的进液主流道和出液主流道,液冷板沿第一方向的前端开设有连通进液主流道的进液口和连通出液主流道的出液口,进液主流道、出液主流道与分支流道的宽度相等;
至少两个冷却区内的分支流道并联设置于进液主流道与出液主流道之间;沿第一方向由前向后的分支流道的长度逐渐变小,以使冷却液流过进液主流道、每个冷却区内的分支流道和出液主流道的沿程阻力之和相等。
本申请还提供一种电池包。电池包包括电池模组和上述的液冷板,液冷板设于电池模组的底部。
有益效果
本申请提供的液冷板的进液主流道、出液主流道与每个冷却区内的分支流道等宽设置,避免减少冷却区的流道面积,保证了液冷板的冷却效率。多个沿第一方向由前向后的分支流道的长度逐渐变小,使得离进液口和出液口的距离越近的分支流道的长度越长,增加了分支流道的沿程阻力,使得冷却液通过进液主流道、每个分支流道、出液主流道的沿程阻力之和相同,以保证冷却液在各个分支流道内匀速流道,从而使得每个冷却区具有与其冷却面积相对应流量的冷却液,实现了冷却液的均衡流量分布,保证了电池模组的均温性。
本申请提供的电池包包括上述的液冷板,实现了冷却液的均衡流量分布,保证了电池模组的均温性。
附图说明
图1是本申请实施例提供的电池包内部结构的主视图;
图2是本申请实施例提供的电池包内部结构的仰视图;
图3是本申请实施例提供的液冷板的内部结构示意图。
附图标记说明:
10、液冷板;20、电池模组;21、电芯;30、进液管;40、出液管;
1、冷却区;2、分支流道;3、进液主流道;4、出液主流道;5、进液口;6、出液口;7、冷却组。
本发明的实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”、“前”、“后”等方位或位置关系为基于附图所示的方位或位置关系,是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”用于在描述上加以区分,并没有特殊的含义。
如图1和图2所示,本实施例提出了一种电池包,该电池包包括液冷板10和电池模组20,液冷板10设于电池模组20的底部,以对电池模组20进行冷却降温。
具体地,电池模组20包括多个并排设置的电芯,电芯为方形电芯。电池模组20呈两行多列的阵列结构,且电芯的长度方向为图2中的左右方向,电芯的宽度方向为第一方向(图2中前后方向)。在其它实施例中,电池模组20的电芯的数量和排布方式还可灵活调整,在此不作具体限定。
如图1和图2所示,电池包内部的边框之间安装有呈十字交叉布置的横梁和纵梁,液冷板10安装于边框下方的底护板上,横梁和纵梁将液冷板10的上方空间分隔成四个区域,四个电池模组20分别安装于液冷板10上方的四个区域内。在前后方向上,前端的两个电池模组20与后端的两个电池模组20分别具有相同数量的电芯。
如图2所示,液冷板10还包括进液管30和出液管40,进液管30的一端与液冷板10内腔的进液口5连通,出液管40的一端与液冷板10内腔的出液口6连通,进液管30和出液管40的另一端均与外部的冷源连通。冷源内的冷却液通过进液管30流入液冷板10的内腔,经过对电池模组20冷却降温后再从出液口6流入出液管40,最后回流至冷源内。需要注意的是,液冷板10的进液口5与出液口6均位于液冷板10沿前后方向的前端。
为了保证电池模组20的均温性,在电池模组20温度较低的区域,现有的液冷板的流道宽度变小,增大了冷却液的流阻,减少了冷却液的流量和流道面积,以降低温度较低区域的冷却效果。上述变宽流道的设计方案使得冷却液在液冷板的各个区域的流量分布不均,降低了液冷板的冷却效率。
为解决上述问题,如图1~图3所示,本实施例的液冷板10沿第一方向由前向后划分出至少两个冷却区1,每个冷却区1内均开设分支流道2。液冷板10内还设有相连通的进液主流道3和出液主流道4,进液主流道3、出液主流道4与分支流道2的宽度相等。液冷板10沿第一方向的前端开设有连通进液主流道3的进液口5和连通出液主流道4的出液口6。至少两个冷却区1内的分支流道2并联设置于进液主流道3与出液主流道4之间。沿第一方向由前向后的分支流道2的长度逐渐变小,以使冷却液流过进液主流道3、每个冷却区1内的分支流道2和出液主流道4的沿程阻力之和相等。
在本实施例中,液冷板10的进液主流道3、出液主流道4与每个冷却区1内的分支流道2等宽设置,避免减少冷却区1的流道面积,保证了液冷板10的冷却效率。多个沿第一方向由前向后的分支流道2的长度逐渐变小,即离进液口5和出液口6距离越近的分支流道2的长度越长,增加了分支流道2的沿程阻力,使得冷却液通过进液主流道3、每个分支流道2、出液主流道4的沿程阻力之和相同,以保证冷却液在各个分支流道2内匀速流道,从而使得每个冷却区1具有与其冷却面积相对应流量的冷却液,实现了冷却液的均衡流量分布,保证了电池模组20的均温性。
当至少两组电池模组20沿左右方向间隔设置于液冷板10上,每组具有多个沿前后方向间隔布置的电池模组20。对应地,液冷板10沿左右方向划分出至少两个冷却组7,每个冷却组7包括进液主流道3和出液主流道4,且冷却组7沿第一方向由前向后划分出至少两个冷却区1,每个冷却组7的冷却区1分别对同一组的电池模组20进行冷却降温。相邻两个冷却组7共用一个出液主流道4,简化了液冷板10内的主流道结构。由于多个冷却组7的进液主流道3并联设置,减少了冷却液的流阻,实现了冷却液在各个进液主流道3的顺畅流动,有利于提高液冷板10的冷却效率。
如图2和图3所示,本实施例的电池包具有至少两组沿左右方向对称分布的电池模组20,且每组具有至少两个沿前后方向间隔设置的电池模组20。液冷板10沿左右方向设置有至少两个冷却组7,至少两个冷却组7的进液主流道3并联设置,且至少两个冷却组7的进液主流道3共用一个出液主流道4,冷却液从液冷板10两侧的进液主流道3流入,再从液冷板10中间的出液主流道4流出,左右两组冷却区1的流量分配一致,冷却效果一致。以下以位于液冷板10左侧的冷却区1举例说明。
需要说明的是,冷却液流入靠近进液口5和出液口6位置的分支流道2的路程较短,沿程阻力相对较小;而冷却液流入远离进液口5和出液口6位置的分支流道2的路程较长,沿程阻力相对较大。
如图3所示,至少两个冷却区1沿第一方向由前向后的长度逐渐变小,即靠近进液口5和出液口6位置的(前后方向的前端)冷却区1内的分支流道2沿前后方向的长度更长,其沿程阻力更大;而远离进液口5和出液口6位置的(前后方向的前端)冷却区1内的分支流道2沿前后方向的长度较短,其沿程阻力较小,使得冷却液流过进液主流道3、每个冷却区1内的分支流道2和出液主流道4的沿程阻力之和大致相等。
在一些实施例中,每个冷却区1内沿左右方向设有至少两个分支流道2。分支流道2为弯折流道,且分支流道2的长度方向与第一方向平行。具体地,本实施例的分支流道为S形流道,每个冷却区1的上方安装有电池模组20,电池模组20的电芯的长度方向与分支流道2的长度方向相垂直,使得每个电芯底部至少分布有一个分支流道2。S形的分支流道2具有上游的高温流道和下游的低温流道,保证了电芯的均匀散热。在其他实施例中,分支流道还可以为其他形状的弯折流道,在此不作具体限定。
如图3所示,本实施例的冷却组7具有是三个冷却区1,位于第一方向最前端的冷却区1内设有至少两个并联的多S形流道,其余冷却区1分别设有至少四个并联的单S形流道。多S形流道包括至少两个串联的分支流道2,单S形流道包括一个分支流道2。具体地,位于第一方向前端的一个冷却区1的上方安装有一个电池模组20,位于第一方向后端的两个冷却区1的上方安装有一个电池模组20。位于前后方向最前端的冷却区1内设有两个并联的多S形流道,其余冷却区1分别设有四个并联的单S形流道。双S形流道增加了冷却液在双S形流道的流动路程,提高沿程阻力,均衡每个冷却区1内冷却液的流量分布。在其它实施例中,每个冷却区1内还可以并联设置有三个、五个或六个以上的分支流道2,在此不作具体限定,只需保证每个冷却区1内均匀布满分支流道2且均衡流量分布即可。
在一些实施例中,进液主流道3的深度与出液主流道4的深度相等,且两者的深度均大于分支流道2的深度。由于进液主流道3与出液主流道4内的冷却液的流量较大且流速较快,通过增大深度的方式降低了进液主流道3与出液主流道4的流阻。每个冷却区1内的分支流道2并联设置,将分支流道2深度设置为低于进液主流道3和出液主流道4的深度,以增大冷却液的流速,提高液冷板10的冷却效率。
在另一些实施例中,沿第一方向由前向后的分支流道2的深度逐渐变小。通过将各个冷却区1内的分支流道2设置成不同的深度,使得靠近前端的分支流道2的沿程阻力相对较大,靠近后端的分支流道2的沿程阻力相对较小,从而进一步调节各个分支流道2的沿程阻力大小,使得各个冷却区1内冷却液的流量分布更加均衡。
具体地,进液主流道3与出液主流道4的深度为3.5mm~4.5mm,分支流道2的深度为2mm~3mm。例如,进液主流道3与出液主流道4的深度可以为3.5mm、3.8mm、4mm、4.2mm或4.5mm等。而分支流道2的深度可以为2mm、2.2mm、2.5mm、2.8mm或3mm等。
本实施例的进液主流道3与出液主流道4的深度可以为3.5mm,而三个由前向后分布的冷却区1内的分支流道2的深度分别可以为3mm、2.8mm、2.6mm。

Claims (15)

  1. 一种液冷板(10),所述液冷板(10)沿第一方向由前向后划分出至少两个冷却区(1),每个所述冷却区(1)内均开设分支流道(2);所述液冷板(10)内设有相连通的进液主流道(3)和出液主流道(4),所述液冷板(10)沿所述第一方向的前端开设有连通所述进液主流道(3)的进液口(5)和连通所述出液主流道(4)的出液口(6),所述进液主流道(3)、所述出液主流道(4)与所述分支流道(2)的宽度相等;
    至少两个所述冷却区(1)内的所述分支流道(2)并联设置于所述进液主流道(3)与所述出液主流道(4)之间;沿所述第一方向由前向后的所述分支流道(2)的长度逐渐变小,以使冷却液流过所述进液主流道(3)、每个所述冷却区(1)内的所述分支流道(2)和所述出液主流道(4)的沿程阻力之和相等。
  2. 根据权利要求1所述的液冷板(10),其中,每个所述冷却区(1)内沿垂直于所述第一方向的方向设有至少两个所述分支流道(2);所述分支流道(2)为弯折流道,且所述分支流道(2)的长度方向与所述第一方向平行。
  3. 根据权利要求2所述的液冷板(10),其中,所述分支流道(2)为S形流道。
  4. 根据权利要求2所述的液冷板(10),其中,位于所述第一方向的最前端的所述冷却区(1)内设有至少两个并联的多S形流道,其余所述冷却区(1)分别设有至少四个并联的单S形流道,所述多S形流道包括至少两个串联的所述分支流道(2),所述单S形流道包括一个所述分支流道(2)。
  5. 根据权利要求2所述的液冷板(10),其中,每个所述冷却区(1)的上方能够安装有电池模组(20),所述电池模组(20)的电芯(21)的长度方向与所述分支流道(2)的长度方向相垂直。
  6. 根据权利要求5所述的液冷板(10),其中,所述液冷板(10)划分出三个所述冷却区(1),位于所述第一方向前端的一个所述冷却区(1)的上方安装有一个所述电池模组(20),位于所述第一方向后端的两个所述冷却区(1)的上方安装有一个所述电池模组(20)。
  7. 根据权利要求1~6中任一项所述的液冷板(10),其中,所述液冷板(10)沿垂直于所述第一方向的方向设置有至少两个冷却组(7),每个所述冷却组(7)均包括所述进液主流道(3)和所述出液主流道(4),且每个冷却组(7)沿所述第一方向由前向后划分出至少两个所述冷却区(1),多个所述冷却组(7)的所述进液主流道(3)并联设置,相邻两个所述冷却组(7)共用一个所述出液主流道(4)。
  8. 根据权利要求1~6中任一项所述的液冷板(10),其中,所述进液主流道(3)的深度与所述出液主流道(4)的深度相等,且两者的深度均大于所述分支流道(2)的深度。
  9. 根据权利要求8所述的液冷板(10),其中,沿所述第一方向由前向后的所述分支流道(2)的深度逐渐变小。
  10. 根据权利要求9所述的液冷板(10),其中,所述进液主流道(3)与所述出液主流道(4)的深度为3.5mm~4.5mm,所述分支流道(2)的深度为2mm~3mm。
  11. 根据权利要求1~10中任一项所述的液冷板(10),所述液冷板(10)还包括进液管(30)和出液管(40),所述进液管(30)的一端与所述液冷板(10)内腔的进液口(5)连通,所述进液管(30)的另一端设置为与外部的冷源连通;所述出液管(40)的一端与所述液冷板(10)内腔的出液口(6)连通,所述出液管(40)的另一端设置为与外部的冷源连通。
  12. 一种电池包,包括电池模组(20)和权利要求1~11中任一项所述的液冷板(10),所述液冷板(10)设于所述电池模组(20)的底部。
  13. 根据权利要求12所述的电池包,其中,所述电池包包括至少两组沿垂直于所述第一方向的方向对称分布的所述电池模组(20),且每组包括至少两个沿所述第一方向间隔设置的所述电池模组(20);所述液冷板(10)沿垂直于所述第一方向的方向设置有至少两个冷却组(7),至少两个所述冷却组(7)的进液主流道(3)并联设置,且至少两个所述冷却组(7)共用一个出液主流道(4)。
  14. 根据权利要求12所述的电池包,其中,所述电池模组(20)包括多个并排设置的电芯(21),所述电芯(21)的长度方向与所述液冷板(10)中分支流道(2)的长度方向垂直。
  15. 根据权利要求14所述的电池包,其中,所述电池模组(20)中每个电芯(21)底部至少分布有一个所述分支流道(2)。
PCT/CN2024/105200 2023-07-12 2024-07-12 液冷板及电池包 WO2025011644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310853501.3A CN116742196A (zh) 2023-07-12 2023-07-12 液冷板及电池包
CN202310853501.3 2023-07-12

Publications (1)

Publication Number Publication Date
WO2025011644A1 true WO2025011644A1 (zh) 2025-01-16

Family

ID=87916971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/105200 WO2025011644A1 (zh) 2023-07-12 2024-07-12 液冷板及电池包

Country Status (2)

Country Link
CN (1) CN116742196A (zh)
WO (1) WO2025011644A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742196A (zh) * 2023-07-12 2023-09-12 惠州亿纬锂能股份有限公司 液冷板及电池包
CN117936975A (zh) * 2023-12-29 2024-04-26 浙江吉利控股集团有限公司 电池组件及具有其的车辆
CN117936998A (zh) * 2023-12-29 2024-04-26 浙江吉利控股集团有限公司 换热板、电池组件及具有其的车辆
CN119170937A (zh) * 2024-05-16 2024-12-20 晶科储能科技有限公司 应用于电池包的箱体、电池包及储能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215816032U (zh) * 2021-08-04 2022-02-11 广州智鹏制造有限公司 液冷机构及电池包
CN114927793A (zh) * 2022-05-30 2022-08-19 欣旺达电动汽车电池有限公司 液冷板及电池包
CN115377563A (zh) * 2022-09-28 2022-11-22 湖北亿纬动力有限公司 换热板及电池包
CN116207407A (zh) * 2022-12-16 2023-06-02 湖北亿纬动力有限公司 一种递增式液冷流道设计方法、流道系统及电池包
CN116742196A (zh) * 2023-07-12 2023-09-12 惠州亿纬锂能股份有限公司 液冷板及电池包
CN220439711U (zh) * 2023-07-12 2024-02-02 惠州亿纬锂能股份有限公司 液冷板及电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215816032U (zh) * 2021-08-04 2022-02-11 广州智鹏制造有限公司 液冷机构及电池包
CN114927793A (zh) * 2022-05-30 2022-08-19 欣旺达电动汽车电池有限公司 液冷板及电池包
CN115377563A (zh) * 2022-09-28 2022-11-22 湖北亿纬动力有限公司 换热板及电池包
CN116207407A (zh) * 2022-12-16 2023-06-02 湖北亿纬动力有限公司 一种递增式液冷流道设计方法、流道系统及电池包
CN116742196A (zh) * 2023-07-12 2023-09-12 惠州亿纬锂能股份有限公司 液冷板及电池包
CN220439711U (zh) * 2023-07-12 2024-02-02 惠州亿纬锂能股份有限公司 液冷板及电池包

Also Published As

Publication number Publication date
CN116742196A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2025011644A1 (zh) 液冷板及电池包
CN112840497B (zh) 用于车辆电池模块的蛇形逆流冷却板
CN209993695U (zh) 一种均温液冷板
CN106654450A (zh) 一种动力电池液冷成组箱
CN103281890B (zh) 一种水冷板
CN217544733U (zh) 一种液冷板总成及具有其的电池包
CN118174133B (zh) 散热块及散热装置
CN110247133B (zh) 一种动力电池模组用冷却板及液冷循环系统
CN218123549U (zh) 一种液冷板及电池包
CN218602547U (zh) 电池包散热装置、电池包和车辆
CN116666826A (zh) 一种浸没式液冷电池包结构
CN217444499U (zh) 液冷板、冷却系统、电池以及车辆
CN217507473U (zh) 电池包
CN220439711U (zh) 液冷板及电池包
CN213878198U (zh) 动力电池模组
CN210866418U (zh) 一种水冷板及水冷式电池
US11804629B2 (en) Battery pack
CN218215502U (zh) 三面液冷装置及电池包
CN214957044U (zh) 冷却装置及电池包
CN115279111A (zh) 液冷板及散热设备
CN222106826U (zh) 一种液冷板及电池箱
CN220652116U (zh) 冷却板及电池包
CN219163520U (zh) 液冷板及电池包
CN223108987U (zh) 一种液体冷却板及动力电池热管理系统
CN222422054U (zh) 用于储能的液冷板及电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24838896

Country of ref document: EP

Kind code of ref document: A1