[go: up one dir, main page]

WO2024250833A1 - 一种旋转式永磁电动悬浮装置和永磁电动悬浮方法 - Google Patents

一种旋转式永磁电动悬浮装置和永磁电动悬浮方法 Download PDF

Info

Publication number
WO2024250833A1
WO2024250833A1 PCT/CN2024/087295 CN2024087295W WO2024250833A1 WO 2024250833 A1 WO2024250833 A1 WO 2024250833A1 CN 2024087295 W CN2024087295 W CN 2024087295W WO 2024250833 A1 WO2024250833 A1 WO 2024250833A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive system
permanent magnet
magnetic
magnetic wheel
suspension
Prior art date
Application number
PCT/CN2024/087295
Other languages
English (en)
French (fr)
Inventor
邓自刚
丁镇涛
池茂儒
李明明
聂三淳
马亚东
李凯文
Original Assignee
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南交通大学 filed Critical 西南交通大学
Priority to US18/768,201 priority Critical patent/US12214671B2/en
Publication of WO2024250833A1 publication Critical patent/WO2024250833A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Definitions

  • the present invention relates to the field of magnetic suspension technology, in particular to a rotary permanent magnet electric suspension device and a permanent magnet electric suspension method.
  • the existing permanent magnet electric suspension wheel technology uses a ring-shaped Halbach permanent magnet array, which rotates around the central axis at a certain speed to generate a radial periodic rotating magnetic field, and generates a repulsive force through electromagnetic induction with the conductor.
  • the radial component of the repulsive force can be used as a suspension force to realize the permanent magnet electric suspension function;
  • the tangential component of the repulsive force can be used as a propulsion force for non-adhesive drive between the wheel and the conductor. Therefore, the permanent magnet electric suspension wheel technology can realize the integrated functions of suspension and drive, and as a non-contact power transmission device, it has important theoretical research significance and potential application value.
  • the existing permanent magnet electric suspension wheel technology usually uses a single-axis rotating motor as the driving source, and drives the magnetic wheel to rotate through an intermediate transmission mechanism or coupling.
  • the axial size of the system is large, and the assembly is easily restricted.
  • the power system structure is complex, the dynamic performance is poor, the efficiency is low, and it is not easy to control.
  • the purpose of the present invention is to provide a rotary permanent magnet electric suspension device to improve the above problems.
  • the technical solution adopted by the present invention is as follows:
  • the present application provides a rotary permanent magnet electric suspension device, including a suspension system, wherein the suspension system is axially symmetrically provided with a drive system, and an isolation layer is further provided between the suspension system and the drive system;
  • the suspension system comprises a magnetic wheel, a non-magnetic good conductor and a bracket for electromagnetic induction with the magnetic wheel.
  • the bracket and the magnetic wheel are both circular rings.
  • the magnetic wheel is sleeved on the outer circumference of the bracket.
  • the driving system drives the magnetic wheel to rotate through electromagnetic induction.
  • the rotation of the magnetic wheel and the non-magnetic good conductor generate a suspension force through electromagnetic induction.
  • the magnetic wheel is composed of an annular permanent magnet array, and the permanent magnets adopt radial magnetization law and tangential magnetization law to form four pairs of poles.
  • the suspension system is also provided with a shaft and a bearing for supporting the bracket, the bracket is a rim structure, and the bracket is connected to the shaft through the bearing.
  • the drive system includes a rotor component, a winding, a stator component and an end cover arranged in sequence, the rotor component, the winding and the stator component are all circular rings, and the rotor component includes a magnetic conductive layer and a conductive layer, and the magnetic conductive layer is located on the side where the isolation layer is located.
  • the isolation layer, magnetic conductive layer and conductive layer are all sleeved on the bearing and connected to the bearing; the winding, stator component and end cover are all sleeved on the shaft and fixedly connected to the shaft.
  • the stator component includes a stator yoke portion and a stator tooth portion, the stator component is fixedly connected to the shaft via an end cover, and an air gap exists between the stator component and the conductive layer.
  • the number of slots per phase and pole of the stator component is 2/5, and the slot pole is 24 slots and 20 poles;
  • the winding is a centralized three-phase winding, and is wound in a double-layer form on the stator teeth;
  • the winding The pitch is 1 slot and the fundamental wave winding coefficient is 0.933.
  • a speed control unit also includes a speed control unit, a signal acquisition unit, a power supply unit and an inverter circuit unit;
  • the speed control unit is electrically connected to the inverter circuit unit and transmits a PWM signal to the inverter circuit unit;
  • the power supply unit is loaded at both ends of the inverter circuit unit to provide power for the inverter circuit unit;
  • the inverter circuit unit is electrically connected to the drive system and inputs three-phase AC excitation to the drive system;
  • the signal acquisition unit is used to collect the rotation speed, suspension force, propulsion force and three-phase AC excitation of the magnetic wheel.
  • the speed control unit includes a speed loop, a current loop, a flux loop, a coordinate transformation module, a flux calculation module and a slip calculation module, and the speed control unit outputs a PWM signal through a space vector pulse width modulation method.
  • the method also provides a permanent magnet electric suspension method, comprising the rotary permanent magnet electric suspension device, wherein the drive systems symmetrically arranged in the axial direction of the suspension system are respectively a front drive system and a rear drive system;
  • the speed control unit outputs a PWM signal to the inverter circuit unit
  • the inverter circuit unit converts the DC excitation into a three-phase AC excitation according to the PWM signal, and passes the three-phase AC excitation into the front-end drive system and the back-end drive system;
  • the front-end drive system After the front-end drive system is supplied with three-phase AC excitation, a torque of the front-end drive system around the shaft is generated, and the magnetic wheel, the bracket, the isolation layer and the rotor components of the front-end drive system are driven to rotate together in a non-contact manner;
  • the signal acquisition unit detects the real-time rotation speed, three-phase AC excitation, propulsion force and suspension force of the magnetic wheel in real time, and feeds back to the speed control unit.
  • the present invention changes the driving form of the rotating motor to the magnetic wheel in the traditional rotating permanent magnet electric suspension system, and integrates the rotating motor and the magnetic wheel into an integrated design, which can reduce the axial length of the system, save assembly space, optimize the system layout, and conform to the development trend of integration and lightweight.
  • the drive system of the present invention adopts a bilaterally symmetrical layout, which can improve the utilization of space and structure and improve the output capacity of the system; the axial forces of the system offset each other, and the bearing forces are balanced, ensuring the reliable operation of the system.
  • FIG1 is an overall exploded view of a rotary permanent magnet electric suspension device
  • FIG2 is a schematic diagram of the structure of the drive system
  • FIG3 is a schematic diagram of the assembly of a rotary permanent magnet electric suspension device
  • Figure 4 is a schematic diagram of winding grouping
  • FIG5 is a schematic diagram of the magnetic field distribution generated by the magnetic wheel
  • FIG6 is a schematic diagram of the operation of the rotary permanent magnet electric suspension device
  • FIG. 7 is a working circuit diagram of a rotary permanent magnet electric device.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • this embodiment provides a rotary permanent magnet electric suspension device, including a suspension system 2, wherein a drive system 1 is axially symmetrically arranged on the suspension system 2, and an isolation layer 3 is further arranged between the suspension system 2 and the drive system 1;
  • the suspension system 2 includes a magnetic wheel 21, a non-magnetic good conductor 22 that is electromagnetically induced by the magnetic wheel 21, and a bracket 23.
  • the bracket 23 and the magnetic wheel 21 are both circular rings.
  • the magnetic wheel 21 is sleeved on the outer circumference of the bracket 23.
  • the suspension system 2 generates magnetic induction lines to drive the magnetic wheel 21 to rotate.
  • the suspension system 2 is axially symmetrically provided with the drive system 1, the utilization rate of space and structure can be improved.
  • the two drive systems 1 working simultaneously can improve the output capacity of the system.
  • the axial forces of the system offset each other, the bearing forces are balanced, which can ensure the reliable operation of the system.
  • the driving system 1 generates electromagnetic thrust after being powered on, directly driving the suspension system 2 to rotate and interact with the non-magnetic good conductor 22 to generate suspension force FL and propulsion force FT .
  • the isolation layer 3 is an annular structure and is installed on both sides of the magnetic wheel 21 to prevent the rotor component 11 of the drive system 1 from directly contacting the suspension system 2 .
  • the magnetic wheel 21 is composed of an annular Halbach permanent magnet array, and the permanent magnet adopts radial magnetization law and tangential magnetization law to form four pairs of poles.
  • the outer surface of the magnetic wheel 21 is wrapped with a nylon sleeve or rubber to prevent the magnetic wheel 21 from being bumped or damaged.
  • the suspension system 2 is further provided with a shaft 24 and a bearing 25 for supporting the bracket 23 .
  • the bracket 23 is a rim structure, and the bracket 23 is connected to the shaft 24 through the bearing 25 .
  • the bracket 23 is in the form of a rim structure, the outer edge is used to mount the magnetic wheel 21, and the inner side is supported by the bearing 25 and connected to the shaft 24; the bracket 23 is made of aluminum alloy material.
  • the isolation layer 3 is sleeved on the outer edge of the bearing 25 .
  • the drive system 1 includes a rotor component 11, a winding 12, a stator component 13 and an end cover 14 arranged in sequence, the rotor component 11, the winding 12 and the stator component 13 are all circular rings, and the rotor component 11 includes a magnetic conductive layer 111 and a conductive layer 112, and the magnetic conductive layer 111 is located on the side where the isolation layer 3 is located.
  • the conductive layer 112 is made of copper or aluminum; the magnetic conductive layer 111 is made of steel;
  • the isolation layer 3 , the magnetic conductive layer 111 and the conductive layer 112 are all sleeved on the bearing 25 and fixedly connected to the bearing 25 ; the winding 12 , the stator component 13 and the end cover 14 are all sleeved on the shaft 24 and connected to the shaft 24 .
  • the stator component 13 includes a stator yoke and a stator tooth.
  • the stator component 13 is fixedly connected to the shaft 24 via the end cover 14 , and an air gap exists between the stator component 13 and the conductive layer 112 .
  • the air gap size g 1-2 mm;
  • the winding 12 is a centralized three-phase winding, which is three groups A, B, and C, and is wound on the stator teeth in a double-layer form;
  • the use of a centralized three-phase winding can effectively reduce the length of the winding end, that is, reduce losses, costs and installation space, and can improve the sinusoidality of the magnetic field and reduce output fluctuations.
  • a speed control unit 4 a signal acquisition unit 5, a power supply unit 6 and an inverter circuit unit 7;
  • the speed control unit 4 is electrically connected to the inverter circuit unit 7 and transmits a PWM signal to the inverter circuit unit 7;
  • the power supply unit 6 is loaded at both ends of the inverter circuit unit 7 to provide power for the inverter circuit unit 7;
  • the inverter circuit unit 7 is electrically connected to the drive system 1 and inputs three-phase AC excitation to the drive system 1;
  • the signal acquisition unit 5 is used to acquire the rotation speed, suspension force, propulsion force and three-phase AC excitation of the magnetic wheel 21 .
  • the inverter circuit unit 7 adopts a two-level voltage type inverter; the inverter is composed of 3 groups (6 in total) of IGBT switches; the conduction modes of the IGBT switches in the same group are opposite, and when one IGBT switch in the same group is turned on, the other needs to be turned off;
  • the power supply unit 6 adopts a DC terminal voltage Udc, which is loaded on both ends of the inverter; the inverter circuit controls the on-off of the IGBT switch according to the PWM signal, and converts the DC excitation into AC excitation i a , i b , i c ;
  • the signal acquisition unit 5 is used to collect the rotation speed of the magnetic wheel 21, the suspension force and propulsion force it receives, and the AC excitation signals i a , i b , i c , etc.;
  • the speed control unit 4 includes a speed loop, a current loop, a flux loop, a coordinate transformation module, a flux calculation module and a slip calculation module.
  • the speed control unit 4 outputs a PWM signal through a space vector pulse width modulation method (SVPWM).
  • SVPWM space vector pulse width modulation method
  • the power supply unit 6 and the speed control unit 4 adopt a speed closed-loop control strategy. It can meet the real-time operation requirements of magnetic wheel uniform speed, acceleration, deceleration and braking, and has good dynamic performance and ability to resist external interference.
  • the device can be reasonably equipped with the suspension system and the drive system along the axial direction to form a multi-layer structure.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a permanent magnet electric suspension method wherein the drive system 1 symmetrically arranged in the axial direction of the suspension system 2 is a front drive system and a rear drive system, respectively, including:
  • the speed control unit 4 outputs a PWM signal to the inverter circuit unit 7; the speed control unit 4 implements the following process: the three-phase current excitation i a , i b , i c is monitored and collected by the signal acquisition unit 5, and the excitation current i sd and the torque current i sq are obtained through the coordinate conversion module (abc to dq), and the excitation current i sd and the torque current i sq are respectively obtained through the flux calculation module and the slip calculation module to obtain the rotor flux.
  • the PI controller outputs the excitation current reference signal i sdref ;
  • the speed n is monitored and collected by the signal acquisition unit 5, and is calculated and added to the slip signal ⁇ s to obtain the synchronous angular frequency signal ⁇ e for coordinate change;
  • the speed n is compared with the speed reference signal n ref , and the PI controller outputs the torque current reference signal i sqref ;
  • the excitation current i sd and the torque current i sq are respectively compared with the excitation current reference signal i sdref and the torque current reference signal i sqref
  • the PI controller outputs the voltage signals u sdref and u sqref ;
  • the voltage signals u sdref and u sqref are obtained by the coordinate conversion module (dq to abc) to obtain the voltage signals u sdref and
  • the inverter circuit unit 7 converts the DC excitation into a three-phase AC excitation according to the PWM signal. Excitation, and passing the three-phase AC excitation into the front-end drive system and the rear-end drive system;
  • the inverter circuit unit 7 controls the IGBT to be turned on and off, and three-phase current excitation i a , i b , i c is passed to the windings 12 of the front-end drive system and the rear-end drive system;
  • the winding 12 generates magnetic induction lines after being supplied with three-phase AC excitation i a , i b , i c , and forms a closed loop and a traveling wave magnetic field inside the front-end drive system;
  • the conductive layer 112 of the front-end drive system interacts with the traveling wave magnetic field to generate an electromagnetic thrust along the moving direction of the traveling wave magnetic field, thereby forming a torque of the front-end drive system around the shaft 24 .
  • the closed loop is composed of the stator teeth of the front-end drive system, an air gap, a conductive layer 112, a magnetic conductive layer 111, a conductive layer 112, an air gap, adjacent teeth of the stator teeth, a stator yoke, and a stator tooth.
  • the working principle of the rear-end drive system is the same as that of the front-end drive system, which will not be described in detail here.
  • the magnetic wheel 21 generates a magnetic field during its rotation, and the non-magnetic good conductor 22 interacts with each other to generate a suspension force FL and a propulsion force FT .
  • the signal acquisition unit 5 detects the real-time rotation speed n of the magnetic wheel 21 , the three-phase AC excitation ia , ib , ic , the suspension force FL and the propulsion force F in real time, and feeds back to the speed control unit 4 .
  • the drive motor and the magnetic wheel are integrated to significantly reduce the axial size of the system; the magnetic wheel can realize non-contact rotation operation, which can eliminate the intermediate transmission mechanism between the rotating motor and the magnetic wheel in the traditional rotating permanent magnet electric suspension system, simplify the system structure, and improve the dynamic response characteristics of the system.
  • the winding of the drive system adopts a centralized winding, which is easy to wind, can effectively reduce the length of the winding end, and reduce the copper loss of the winding.
  • the rotation operation of the suspension system 2 adopts a ring-shaped induction drive, which has the characteristics of direct drive, high operation reliability, low cost, and easy manufacturing and maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本发明提供了一种旋转式永磁电动悬浮装置和永磁电动悬浮方法,涉及磁悬浮技术领域,包括悬浮系统,所述悬浮系统的轴向对称设置有驱动系统,且悬浮系统和驱动系统之间还设置有隔离层;所述悬浮系统包括磁轮、与磁轮电磁感应的无磁良导体和支架,所述支架和磁轮均为圆环,所述磁轮套设在支架的外圆周,所述驱动系统通过电磁感应直接驱动磁轮旋转。所述磁轮由环形永磁体阵列构成,所述永磁体采用径向充磁规律和切向充磁规律形成四对极。本发明用于解决现有永磁电动悬浮轮技术通常以单轴旋转电机为驱动源,通过中间传动机构或联轴器与磁轮连接,实现磁轮旋转运行,所构成的动力系统结构复杂,空间占用率大,动态性能差,不易于控制等技术问题。

Description

一种旋转式永磁电动悬浮装置和永磁电动悬浮方法
相关申请的交叉引用
本申请要求于2023年06月09日提交中国专利局的申请号为202310678079.2、名称为《一种旋转式永磁电动悬浮装置和永磁电动悬浮方法》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁悬浮技术领域,具体而言,涉及一种旋转式永磁电动悬浮装置和永磁电动悬浮方法。
背景技术
现有永磁电动悬浮轮技术采用环形Halbach永磁阵列,绕中心轴以一定转速转动,产生径向周期性旋转磁场,通过与导体电磁感应产生排斥力。其中,排斥力径向分力可作为悬浮力,实现永磁电动悬浮功能;排斥力切向分力可作为推进力,用于轮与导体之间非黏着驱动。故永磁电动悬浮轮技术能够实现悬浮、驱动一体化功能,作为非接触式动力传动装置具有重要的理论研究意义和潜在的应用价值。但现有永磁电动悬浮轮技术,通常以单轴旋转电机为驱动源,通过中间传动机构或联轴器驱动磁轮旋转运行,系统的轴向尺寸较大,装配易受限制,所构成的动力系统结构复杂,动态性能差,效率低,不易于控制。
发明内容
本发明的目的在于提供一种旋转式永磁电动悬浮装置,以改善上述问题。为了实现上述目的,本发明采取的技术方案如下:
一方面,本申请提供了一种旋转式永磁电动悬浮装置,包括悬浮系统,所述悬浮系统的轴向对称设置有驱动系统,且悬浮系统和驱动系统之间还设置有隔离层;
所述悬浮系统包括磁轮、与磁轮电磁感应的无磁良导体和支架,所述支架和磁轮均为圆环,所述磁轮套设在支架的外圆周,所述驱动系统通过电磁感应驱动磁轮旋转,所述磁轮旋转与无磁良导体进行电磁感应产生悬浮力;
进一步地,所述磁轮由环形永磁体阵列构成,所述永磁体采用径向充磁规律和切向充磁规律形成四对极。
进一步地,所述悬浮系统还设置有轴和用于支承所述支架的轴承,所述支架为轮辋结构,且支架通过轴承与轴连接。
进一步地,所述驱动系统包括顺次设置的转子部件、绕组、定子部件及端盖,所述转子部件、绕组和定子部件均为圆环,且所述转子部件包括导磁层和导电层,所述导磁层位于隔离层所在的一侧。
进一步地,所述隔离层、导磁层和导电层均套设在轴承上,与轴承连接;所述绕组、定子部件和端盖均套设在轴上,与轴固定连接。
进一步地,所述定子部件包括定子轭部和定子齿部,所述定子部件通过端盖与轴固定连接,并与导电层之间存在气隙。
进一步地,所述定子部件的每相每极槽数为2/5,槽极为24槽20极;所述绕组为集中式三相绕组,并采用双层形式绕制在所述定子齿部;所述绕组 的节距为1槽,基波绕组系数为0.933。
进一步地,还包括速度控制单元、信号采集单元、供电单元和逆变电路单元;
所述速度控制单元与逆变电路单元电连接,向逆变电路单元传输PWM信号;
所述供电单元加载在逆变电路单元两端,为逆变电路单元提供电源;
所述逆变电路单元与驱动系统电连接,向驱动系统输入三相交流激励;
所述信号采集单元用于采集磁轮的转速、悬浮力、推进力以及三相交流激励。
进一步地,所述速度控制单元包括速度环、电流环、磁链环、坐标变换模块、磁链计算模块和转差计算模块,所述速度控制单元通过空间矢量脉宽调制方法输出PWM信号。
另一方面,本方法还提供了一种永磁电动悬浮方法,包括所述的旋转式永磁电动悬浮装置,对称设置在悬浮系统轴向的驱动系统分别为前端驱动系统和后端驱动系统;
所述速度控制单元向逆变电路单元输出PWM信号;
所述逆变电路单元根据所述PWM信号将直流激励转换为三相交流激励,并将所述三相交流激励通入前端驱动系统和后端驱动系统;
前端驱动系统通入三相交流激励后产生前端驱动系统绕轴的转矩,并非接触式地驱动磁轮、支架、隔离层以及前端驱动系统的转子部件共同转动;
后端驱动系统通入三相交流激励后产生后端驱动系统绕轴的转矩,并非接触式地驱动磁轮、支架、隔离层以及后端驱动系统的转子部件共同转动;
信号采集单元实时检测磁轮的实时转速、三相交流激励、推进力和悬浮力,并反馈于速度控制单元。
本发明的有益效果为:
本发明改变了传统旋转式永磁电动悬浮系统中旋转电机对磁轮的驱动形式,将旋转电机和磁轮进行一体化设计,能够减小系统的轴向长度,节省装配空间,优化系统布局,契合集成化、轻量化发展趋势。同时,本发明的驱动系统采用双边对称的布置形式,能够提高空间及结构的利用率,改善系统输出能力;系统轴向力相互抵消,轴承受力平衡,保证系统运行可靠。
本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为旋转式永磁电动悬浮装置的整体爆炸图;
图2为驱动系统的结构示意图;
图3为旋转式永磁电动悬浮装置的装配示意图;
图4为绕组分组示意图;
图5为磁轮产生的磁场分布示意图;
图6为旋转式永磁电动悬浮装置的工作示意图;
图7为旋转式永磁电动装置的工作电路图。
图中标记:
1、驱动系统;11、转子部件;111、导磁层;112、导电层;12、绕组;13、定子部件;14、端盖;2、悬浮系统;21、磁轮;22、无磁良导体;23、支架;24、轴;25、轴承;3、隔离层;4、速度控制单元;5、信号采集单元;6、供电单元;7、逆变电路单元。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例1:
如图1-3所示,本实施例提供了一种旋转式永磁电动悬浮装置,包括悬浮系统2,所述悬浮系统2的轴向对称设置有驱动系统1,且悬浮系统2和驱动系统1之间还设置有隔离层3;
所述悬浮系统2包括磁轮21、与磁轮21电磁感应的无磁良导体22和支架23,所述支架23和磁轮21均为圆环,所述磁轮21套设在支架23的外圆周,所述悬浮系统2产生磁感应线驱动磁轮21旋转。
本实施例中,由于悬浮系统2的轴向对称设置有驱动系统1,能够提高空间及结构的利用率,两个驱动系统1同时工作可改善系统的输出能力,且由于系统的轴向力相互抵消,轴承受力平衡,能够保证系统运行可靠。
本实施例中,所述驱动系统1在通电后产生电磁推力,直接驱动悬浮系统2转动与无磁良导体22相互作用产生悬浮力FL与推进力FT,所述悬浮力FL使悬浮系统2产生h1=5~20mm的悬浮高度。
所述隔离层3为环形结构,安装在所述磁轮21两侧,用于将避免驱动系统1的转子部件11与悬浮系统2直接接触。
所述无磁良导体22采用板式、栅栏或线圈形式;所述无磁良导体22可采用铜、铝材料备;所述无磁良导体22的厚度h2=6~10mm;
基于以上实施例,所述磁轮21由环形Halbach永磁体阵列构成,所述永磁体采用径向充磁规律和切向充磁规律形成四对极,优选的,所述磁轮21外表面由尼龙套或橡胶包裹,防止磁轮21出现磕碰、损坏。
基于以上实施例,所述悬浮系统2还设置有轴24和用于支承所述支架23的轴承25,所述支架23为轮辋结构,且支架23通过轴承25与轴24连接。
优选地,所述支架23采用轮辋结构形式,外沿用于安装所述磁轮21,内侧通过所述轴承25支承并与所述轴24连接;所述支架23采用铝制合金材料制备。
具体的,所述隔离层3套设在轴承25的外沿。
基于以上实施例,所述驱动系统1包括顺次设置的转子部件11、绕组12、定子部件13及端盖14,所述转子部件11、绕组12和定子部件13均为圆环,且所述转子部件11包括导磁层111和导电层112,所述导磁层111位于隔离层3所在的一侧。
优选地,所述导电层112采用铜、铝材料制备;所述导磁层111采用钢材制备;
基于以上实施例,所述隔离层3、导磁层111和导电层112均套设在轴承25上,与轴承25固定连接;所述绕组12、定子部件13和端盖14均套设在轴24上,与轴24连接。
基于以上实施例,所述定子部件13包括定子轭部和定子齿部,所述定子部件13通过端盖14与轴24固定连接,并与导电层112之间存在气隙。
优选地,所述气隙尺寸g=1~2mm;
请参阅图4,基于以上实施例,所述定子部件13的每相每极槽数q=2/5,槽极为24槽20极;所述绕组12为集中式三相绕组,分别为A、B、C三组,并采用双层形式绕制在所述定子齿部;所述绕组12的节距为y=1槽,基波绕组系数Kdp1=0.933;
本实施例中,采用集中式三相绕组可以有效降低绕组端部长度,即降低损耗和成本及安装空间,并且能够提高磁场正弦性,降低输出波动。
基于以上实施例,还包括速度控制单元4、信号采集单元5、供电单元6和逆变电路单元7;
所述速度控制单元4与逆变电路单元7电连接,向逆变电路单元7传输PWM信号;
所述供电单元6加载在逆变电路单元7两端,为逆变电路单元7提供电源;
所述逆变电路单元7与驱动系统1电连接,向驱动系统1输入三相交流激励;
所述信号采集单元5用于采集磁轮21的转速、悬浮力、推进力以及三相交流激励。
具体的,所述逆变电路单元7采用两电平电压型逆变器;所述逆变器由3组(共6个)IGBT开关构成;所述同组的IGBT开关之间的导通模式相反,当同组的IGBT一个IGBT开关导通时,另一个需断开;
具体的,所述供电单元6采用直流端电压Udc,加载在所述逆变器两端;所述逆变电路根据所述PWM信号控制所述IGBT开关通断,将直流激励转换为交流激励ia,ib,ic
所述信号采集单元5用于采集所述磁轮21的转速、所受到的悬浮力和推进力,以及所述交流激励ia,ib,ic等信号;
基于以上实施例,所述速度控制单元4包括速度环、电流环、磁链环、坐标变换模块、磁链计算模块和转差计算模块,所述速度控制单元4通过空间矢量脉宽调制方法(SVPWM)输出PWM信号。
本实施例中,所述供电单元6和速度控制单元4采用速度闭环控制策略, 能够实时满足磁轮匀速、加速、减速和制动等工况运行,具有良好的动态性能和抗外部干扰能力。
优选的,根据功率需求,本装置可以沿轴向合理加装所述悬浮系统和驱动系统,构成多层结构。
实施例2:
请参阅图5—图7,一种永磁电动悬浮方法,对称设置在悬浮系统2轴向的驱动系统1分别为前端驱动系统和后端驱动系统,包括:
所述速度控制单元4向逆变电路单元7输出PWM信号;所述速度控制单元4实现过程如下:三相电流激励ia,ib,ic由信号采集单元5监测采集,经坐标转换模块(a-b-c to d-q)得到励磁电流isd和转矩电流isq,并将所述励磁电流isd和转矩电流isq分别通过磁链计算模块和转差计算模块得到转子磁链和转差信号ωs;所述转子磁链与磁链参考信号相比较,经PI控制器,输出励磁电流参考信号isdref;转速n由信号采集单元5监测采集,经计算与所述转差信号ωs相加得到同步角频率信号ωe,用于坐标变化;所述转速n与转速参考信号nref相比较,经PI控制器,输出转矩电流参考信号isqref;所述励磁电流isd、转矩电流isq分别与所述励磁电流参考信号isdref、转矩电流参考信号isqref相比较,经PI控制器,输出电压信号usdref和usqref;所述电压信号usdref、usqref经坐标转换模块(d-q to a-b-c)得到电压信号usdref、usqref;所述电压信号usdref、usqref利用空间矢量脉宽调制技术SVPWM得到六路PWM信号;所述空间矢量脉宽调制技术SVPWM的直线端电压和调制周期分别为Udc和Tpwm
所述逆变电路单元7根据所述PWM信号将直流激励转换为三相交流激 励,并将所述三相交流激励通入前端驱动系统和后端驱动系统;
具体的,根据速度控制单元4输出的PWM信号,逆变电路单元7控制IGBT开、断,向前前端驱动系统和后端驱动系统的绕组12通入三相电流激励ia,ib,ic
前端驱动系统通入三相交流激励后产生前端驱动系统绕轴的转矩,并非接触式地驱动磁轮21、支架23、隔离层3以及前端驱动系统的转子部件11共同转动;
具体的,所述绕组12通入三相交流激励ia,ib,ic后产生磁感应线,并在前端驱动系统内部形成闭合回路和行波磁场;
前端驱动系统的导电层112与所述行波磁场相互作用,产生沿所述行波磁场移动方向的电磁推力,形成前端驱动系统绕轴24的转矩。
具体的,所述闭合回路由前端驱动系统的定子齿部、气隙、导电层112、导磁层111、导电层112、气隙、定子齿部的相邻齿部、定子轭部、定子齿部所构成。
后端驱动系统通入三相交流激励后产生后端驱动系统绕轴24的转矩,并非接触式地驱动磁轮21、支架23、隔离层3以及后端驱动系统的转子部件11共同转动;
具体的,所述后端驱动系统的工作原理与前端驱动系统相同,此处不再赘述。
所述磁轮21在转动的过程中产生磁场,所述无磁良导体22相互作用产生悬浮力FL与推进力FT,所述悬浮力FL使磁轮21产生h1=5~20mm的悬浮高度。
信号采集单元5实时检测磁轮21的实时转速n、三相交流激励ia,ib,ic、悬浮力FL与推进力F,并反馈于速度控制单元4。
本实施例中,将驱动电机与磁轮进行集成化设计,能够显著减小系统轴向尺寸;磁轮能够实现非接触旋转运行,即可省去传统旋转式永磁电动悬浮系统中旋转电机与磁轮之间的中间传动机构,简化系统结构,提高系统动态响应特性。且所述驱动系统的绕组采用集中式绕组,绕制方便,能够有效减小绕组端部长度,减低绕组铜耗。
最后,悬浮系统2的旋转运行采用环形感应驱动,具有直接驱动、运行可靠性高、造价成本低、制造和维护简便等特点。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (5)

  1. 一种旋转式永磁电动悬浮装置,其特征在于,包括悬浮系统(2),所述悬浮系统(2)的轴向对称设置有驱动系统(1),且悬浮系统(2)和驱动系统(1)之间还设置有隔离层(3);
    所述悬浮系统(2)包括磁轮(21)、与磁轮(21)电磁感应的无磁良导体(22)和支架(23),所述支架(23)和磁轮(21)均为圆环,所述磁轮(21)套设在支架(23)的外圆周,所述驱动系统(1)通过电磁感应驱动磁轮(21)旋转;
    所述悬浮系统(2)还设置有轴(24)和用于支承所述支架(23)的轴承(25),所述支架(23)为轮辋结构,且支架(23)通过轴承(25)与轴(24)连接;
    还包括速度控制单元(4)、信号采集单元(5)、供电单元(6)和逆变电路单元(7);
    所述速度控制单元(4)与逆变电路单元(7)电连接,向逆变电路单元(7)传输PWM信号;
    所述供电单元(6)加载在逆变电路单元(7)两端,为逆变电路单元(7)提供电源;
    所述逆变电路单元(7)与驱动系统(1)电连接,向驱动系统(1)输入三相交流激励;
    所述信号采集单元(5)用于采集磁轮(21)的转速、悬浮力、推进力以及三相交流激励,并反馈于速度控制单元(4);
    所述磁轮(21)由环形永磁体阵列构成,所述永磁体采用径向充磁规律和切向充磁规律形成四对极;
    所述驱动系统(1)包括顺次设置的转子部件(11)、绕组(12)、定子部件(13)及端盖(14),所述转子部件(11)、绕组(12)和定子部件(13)均为圆环,且所述转子部件(11)包括导磁层(111)和导电层(112),所述导磁层(111)位于隔离层(3)所 在的一侧;
    所述隔离层(3)、导磁层(111)和导电层(112)均套设在轴承(25)上,与轴承(25)连接;所述绕组(12)、定子部件(13)和端盖(14)均套设在轴(24)上,与轴(24)固定连接。
  2. 根据权利要求1所述的旋转式永磁电动悬浮装置,其特征在于:所述定子部件(13)包括定子轭部和定子齿部,所述定子部件(13)通过端盖(14)与轴(24)固定连接,并与导电层(112)之间存在气隙。
  3. 根据权利要求2所述的旋转式永磁电动悬浮装置,其特征在于:所述定子部件(13)的每相每极槽数为2/5,槽极为24槽20极;所述绕组(12)为集中式三相绕组,并采用双层形式绕制在所述定子齿部;所述绕组(12)的节距为1槽,基波绕组系数为0.933。
  4. 根据权利要求1所述的旋转式永磁电动悬浮装置,其特征在于:所述速度控制单元(4)包括速度环、电流环、磁链环、坐标变换模块、磁链计算模块和转差计算模块,所述速度控制单元(4)通过空间矢量脉宽调制方法输出PWM信号。
  5. 一种永磁电动悬浮方法,包括权利要求1-4任意一项所述的旋转式永磁电动悬浮装置,对称设置在悬浮系统(2)轴向的驱动系统(1)分别为前端驱动系统和后端驱动系统,其特征在于:
    所述速度控制单元(4)向逆变电路单元(7)输出PWM信号;
    所述逆变电路单元(7)根据所述PWM信号将直流激励转换为三相交流激励,并将所述三相交流激励通入前端驱动系统和后端驱动系统;
    前端驱动系统通入三相交流激励后产生前端驱动系统绕轴(12)的转矩,并非接触式地驱动磁轮(21)、支架(23)、隔离层(3)以及前端驱动系统的转子部件 (11)共同转动,包括:
    绕组(12)通入三相交流激励后产生磁感应线,并在前端驱动系统内部形成闭合回路和行波磁场;
    其中,所述闭合回路由前端驱动系统的定子齿部、气隙、导电层(112)、导磁层(111)、导电层(112)、气隙、定子齿部的相邻齿部、定子轭部、定子齿部所构成;
    后端驱动系统通入三相交流激励后产生后端驱动系统绕轴(12)的转矩,并非接触式地驱动磁轮(21)、支架(23)、隔离层(3)以及后端驱动系统的转子部件(11)共同转动;
    信号采集单元(5)实时检测磁轮(21)的实时转速、三相交流激励、推进力和悬浮力,并反馈于速度控制单元(4)。
PCT/CN2024/087295 2023-06-09 2024-04-11 一种旋转式永磁电动悬浮装置和永磁电动悬浮方法 WO2024250833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/768,201 US12214671B2 (en) 2023-06-09 2024-07-10 Rotary permanent magnet electrodynamic suspension device and permanent magnet electrodynamic suspension method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310678079.2 2023-06-09
CN202310678079.2A CN116404772B (zh) 2023-06-09 2023-06-09 一种旋转式永磁电动悬浮装置和永磁电动悬浮方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/768,201 Continuation US12214671B2 (en) 2023-06-09 2024-07-10 Rotary permanent magnet electrodynamic suspension device and permanent magnet electrodynamic suspension method using the same

Publications (1)

Publication Number Publication Date
WO2024250833A1 true WO2024250833A1 (zh) 2024-12-12

Family

ID=87020258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/087295 WO2024250833A1 (zh) 2023-06-09 2024-04-11 一种旋转式永磁电动悬浮装置和永磁电动悬浮方法

Country Status (2)

Country Link
CN (1) CN116404772B (zh)
WO (1) WO2024250833A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12214671B2 (en) 2023-06-09 2025-02-04 Southwest Jiaotong University Rotary permanent magnet electrodynamic suspension device and permanent magnet electrodynamic suspension method using the same
CN116404772B (zh) * 2023-06-09 2023-11-24 西南交通大学 一种旋转式永磁电动悬浮装置和永磁电动悬浮方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009339A1 (de) * 2005-03-01 2006-09-07 Thöne, Hermann Impuls - Magnetmotor
CN109217597A (zh) * 2018-10-22 2019-01-15 沈阳工业大学 复合励磁非晶合金轴向磁通电机
CN116404772A (zh) * 2023-06-09 2023-07-07 西南交通大学 一种旋转式永磁电动悬浮装置和永磁电动悬浮方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2468241A1 (fr) * 1979-10-16 1981-04-30 Cem Comp Electro Mec Rotor de machine electrique synchrone a poles saillants massifs
DE19541737A1 (de) * 1995-11-09 1997-05-15 Philips Patentverwaltung Axialfluß-Induktionsmotor
CN101154835A (zh) * 2006-09-25 2008-04-02 天津得鑫电机有限公司 对轴向永磁磁势控制和补偿功能的永磁电机
US8810103B2 (en) * 2007-08-14 2014-08-19 Gang Liu Conductive wire unit and generator with closed magnetic path
WO2013025499A1 (en) * 2011-08-12 2013-02-21 Carnegie Mellon University Spherical induction motor
CN104485793A (zh) * 2014-12-23 2015-04-01 湖南工程学院 一种无转子轭双定子盘式电机
CN107666232A (zh) * 2017-10-31 2018-02-06 深圳市泉胜新技术开发有限公司 一种泵用调速磁齿轮
CN111942162B (zh) * 2020-07-07 2022-09-27 西南交通大学 一种磁悬浮汽车
CN112497126B (zh) * 2020-11-26 2022-03-15 安徽大学 一种电流pid控制的电动冲击扳手

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009339A1 (de) * 2005-03-01 2006-09-07 Thöne, Hermann Impuls - Magnetmotor
CN109217597A (zh) * 2018-10-22 2019-01-15 沈阳工业大学 复合励磁非晶合金轴向磁通电机
CN116404772A (zh) * 2023-06-09 2023-07-07 西南交通大学 一种旋转式永磁电动悬浮装置和永磁电动悬浮方法

Also Published As

Publication number Publication date
CN116404772B (zh) 2023-11-24
CN116404772A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2024250833A1 (zh) 一种旋转式永磁电动悬浮装置和永磁电动悬浮方法
US6664692B1 (en) Electrical machine
CN103051138B (zh) 一种多齿磁通切换型永磁记忆电机
CN102684365A (zh) 一种采用磁悬浮开关磁阻电机的飞轮储能装置
CN202616922U (zh) 一种采用磁悬浮开关磁阻电机的飞轮储能装置
CN107171520B (zh) 轴向永磁辅助磁阻型复合转子高速电机及其控制方法
CN113067446B (zh) 一种双模块化混合励磁磁通切换电机
CN104319917A (zh) 冗余型半齿绕磁通切换电机
CN103560637A (zh) 一种高功率密度的混合励磁同步发电机
CN105576929A (zh) 一种集中绕组交流无刷电励磁起动发电机
JP2020534770A (ja) 電気機器
CN113178963A (zh) 一种径向与轴向双模块化磁通切换电机
Song et al. Comparative analysis of slotless and coreless permanent magnet synchronous machines for electric aircraft propulsion
CN108768113B (zh) 四自由度混合励磁起动/发电一体化磁悬浮开关磁阻电机
CN107508440A (zh) 一种轴向多单元定子电励磁双极性感应子电机
CN110601476A (zh) 径向磁场轴向并列复合电机
WO2025102784A1 (zh) 一种复合结构电机
CN210608875U (zh) 一种径向磁场复合型磁通切换电机
CN203104234U (zh) 双气隙混合励磁直驱开关磁阻风力发电机及其机组系统
CN108258820B (zh) 一种非重叠绕组齿槽型双转子永磁同步电机
US11509175B1 (en) Homopolar multi-core energy conversion device
CN113991895B (zh) 一种分裂齿集成绕组起动发电机
CN111262411A (zh) 具有宽电压调节范围的双谐波绕组无刷励磁直流发电机
CN206149117U (zh) 一种谐波自励恒压混合励磁永磁电机
CN210629312U (zh) 径向磁场复合型双定子电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24818369

Country of ref document: EP

Kind code of ref document: A1