[go: up one dir, main page]

WO2024250173A1 - 一种碳纤维用耐高温水性上浆剂及其制备方法和应用 - Google Patents

一种碳纤维用耐高温水性上浆剂及其制备方法和应用 Download PDF

Info

Publication number
WO2024250173A1
WO2024250173A1 PCT/CN2023/098595 CN2023098595W WO2024250173A1 WO 2024250173 A1 WO2024250173 A1 WO 2024250173A1 CN 2023098595 W CN2023098595 W CN 2023098595W WO 2024250173 A1 WO2024250173 A1 WO 2024250173A1
Authority
WO
WIPO (PCT)
Prior art keywords
sizing agent
epoxy resin
sizing
water
solution
Prior art date
Application number
PCT/CN2023/098595
Other languages
English (en)
French (fr)
Inventor
杨士勇
洪伟杰
袁莉莉
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to PCT/CN2023/098595 priority Critical patent/WO2024250173A1/zh
Priority to CN202380011372.1A priority patent/CN117280090A/zh
Publication of WO2024250173A1 publication Critical patent/WO2024250173A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/11Compounds containing epoxy groups or precursors thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/256Sulfonated compounds esters thereof, e.g. sultones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/262Sulfated compounds thiosulfates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/467Compounds containing quaternary nitrogen atoms derived from polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • the invention relates to the field of materials, and in particular to a high-temperature resistant water-based sizing agent for carbon fiber and a preparation method and application thereof.
  • polyacrylonitrile carbon fiber is an ideal reinforcement for composite materials, with high specific strength and specific modulus.
  • carbon fiber has the characteristics of electrical conductivity, thermal conductivity, high temperature resistance, and corrosion resistance, and has important application value in aerospace, transportation, energy, medical and sports goods.
  • Carbon fiber needs to be surface treated in practical applications. Because carbon fiber is a brittle material, it is easy to produce fuzz and single filament breakage due to mechanical friction during subsequent weaving and processing. The fiber strength is reduced, which also leads to a decrease and stagnation in production and processing efficiency. In the process of preparing carbon fiber prepreg, the presence of fuzz also makes it difficult for the matrix resin to fully impregnate the carbon fiber, resulting in a large porosity of the prepared composite material, which affects the performance of the composite material.
  • the surface of the carbon fiber is sizing treated to form a protective film on the surface of the carbon fiber, thereby improving the bundling and wear resistance of the carbon fiber bundle and reducing the amount of fiber fuzzing. At the same time, the slurry can constitute the interface layer of the composite material, increase the interfacial bonding effect of the composite material, and improve the performance of the composite material.
  • CN100999867A uses a mixture of thermoplastic polyimide and glycidyl ether to prepare an emulsion-type sizing agent.
  • the sizing agent has good stability, and the carbon fiber has good wear resistance and strong interfacial bonding with bismaleimide resin after sizing.
  • JP2014125688 also uses a mixture of polyimide with hydroxyl or carboxyl groups and epoxy resins such as bisphenol A glycidyl ether and phenolic glycidyl ether to prepare a solvent-based sizing agent. After sizing, the carbon fiber has less thermal weight loss and high interfacial bonding with the matrix resin.
  • CN107022901A mixes polyamide-imide with epoxy resin to prepare a water-based carbon fiber sizing agent.
  • the sizing agent is suitable for the preparation of carbon fiber composite materials with high-temperature resistant resins such as polyetheretherketone, polyimide, and polyphenylene sulfide as the matrix resin.
  • the epoxy resin used in these sizing agents accounts for about 50% of the main slurry, and a large proportion of the slurry still degrades before 200°C, which fails to meet the processing and use requirements of high-temperature resistant composite materials such as polyimide and polyetheretherketone.
  • the present invention provides a high temperature resistant water-based sizing agent for carbon fiber and a preparation method and application thereof.
  • the water-based sizing agent of the present invention has low cost, good temperature resistance, and can withstand a processing temperature of thermosetting polyimide resin>350°C.
  • the present invention first provides an aqueous sizing agent, comprising a main sizing material and a functional additive;
  • the main slurry is a water-soluble polyamic acid salt
  • the functional additive is a water-soluble surfactant or an epoxy resin
  • the mass of the functional additive accounts for 0-10% of the total mass of the main slurry and the functional additive; specifically, it may be 1%-10%.
  • the above-mentioned aqueous sizing agent also includes water;
  • the solid content of the aqueous sizing agent is 0.5 wt% to 2 wt%, and can be specifically 1 wt%.
  • the solid content in the aqueous sizing agent refers to the percentage of the sum of the mass of the main slurry and the functional additives in the total mass of the sizing agent solution.
  • the aqueous sizing agent further includes a cosolvent, specifically triethylamine, which is used to help dissolve the main slurry; the mass ratio of water to triethylamine is 40 to 50:1, specifically 45 to 50:1.
  • a cosolvent specifically triethylamine
  • the mass of the surfactant accounts for 1% to 10% of the total mass of the main slurry and the surfactant; specifically, it can be 1% or 9%;
  • the aqueous sizing agent further comprises an emulsifier; the mass of the epoxy resin accounts for 2.5% to 10% of the total mass of the main slurry and the epoxy resin; specifically, it may be 2.5%, 5%, 7.5% or 10%;
  • the mass ratio of the epoxy resin to the emulsifier is 8:3 to 8:5;
  • the emulsifier is at least one of sodium dodecyl sulfonate, sodium dodecyl sulfate and sodium dodecylbenzene sulfonate.
  • the water-soluble surfactant is at least one of the penetrant JFC-1, the cationic surfactant 31524 (cationic surfactant propylene bis (tetradecyl dimethyl ammonium chloride)) and polyethylene glycol monooleate;
  • the polyethylene glycol monooleate is polyethylene glycol 400 monooleate (PEG400MO) and/or polyethylene glycol 600 monooleate (PEG600MO);
  • the epoxy resin is at least one of E44 epoxy resin, E51 epoxy resin, AFG90 epoxy resin, AG80 epoxy resin and pentaerythritol tetraglycidyl ether.
  • the water-soluble polyamic acid salt is prepared by a method comprising the following steps: under nitrogen protection, an aromatic diamine is dissolved in a protonic non-polar solvent, and a dianhydride is slowly added to carry out a condensation reaction to obtain a polyamic acid solution; then the polyamic acid solution and a salt-forming agent are mixed to obtain the polyamic acid salt solution; the polyamic acid salt solution is poured into a precipitant to precipitate a polyamic acid salt solid, and the solid is dried to obtain the water-soluble polyamic acid salt.
  • the polycondensation reaction is carried out under nitrogen protection and ice bath conditions; the polycondensation reaction time is 10 to 18 hours;
  • the precipitant is acetone
  • the drying temperature is 30 to 80°C;
  • aromatic diamines are 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-bis[4-(4-aminophenoxyphenyl)]propane, 2,2'-bis[3-(3-aminobenzoyl)-4-hydroxyphenyl]hexafluoroisopropyl and 2,2-bis(3- at least one of amino-4-hydroxyphenyl)hexafluoropropane;
  • the protic non-polar solvent is at least one of N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone and dimethyl sulfoxide;
  • the dianhydride is at least one of 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 2,3,3',4'-diphenyl ether tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 4,4'-(4,4'-isopropyldiphenoxy)bis(phthalic anhydride);
  • the salt-forming agent is at least one of dimethylethanolamine, ethanolamine, triethylamine and triethanolamine;
  • the molar ratio of the aromatic diamine to the dianhydride is 1:1;
  • the total mass of the aromatic diamine and the dianhydride accounts for 20% to 30% of the total mass of the aromatic diamine, the protic non-polar solvent and the dianhydride; specifically, it may be 30%;
  • the molar ratio of the salt-forming agent to the dianhydride is 2 to 4:1, and can be specifically 4:1.
  • the water-based sizing agent of the invention has good heat resistance, and the 5% thermal decomposition temperature of the slurry in air atmosphere is 410-491°C.
  • the present invention also provides a method for preparing the above-mentioned aqueous sizing agent, which is method (1) or method (2):
  • the method (I) comprises the following steps: when the functional additive is a water-soluble surfactant, mixing the main slurry, triethylamine and water to prepare a polyamic acid salt aqueous solution; then adding the water-soluble surfactant to obtain the aqueous sizing agent;
  • the method (ii) comprises the following steps: when the functional additive is an epoxy resin, the main slurry, triethylamine and water are mixed to prepare a polyamic acid salt aqueous solution; then an emulsifier is added to form a homogeneous aqueous solution; the epoxy resin is dissolved in a low-boiling point organic solvent to prepare an epoxy resin organic solution; and the epoxy resin organic solution is added dropwise to the homogeneous aqueous solution under stirring, and stirring is continued to obtain the aqueous sizing agent.
  • the water-soluble surfactant is added under the condition of a stirring rate of 200 to 300 r/min;
  • the low boiling point organic solvent is at least one of acetone, dichloromethane and ethyl acetate;
  • the mass percentage concentration of the epoxy resin is 6% to 10%, and can be specifically 8%;
  • the stirring speed is 12000-18000 r/min
  • the stirring time is 1 to 2 hours
  • the dropping speed of the epoxy resin organic solution is 1-2 mL/min.
  • the present invention further provides application of the aqueous sizing agent in carbon fiber surface modification.
  • the aqueous sizing agent is attached to the carbon fiber for modification by an impregnation method; specifically, the impregnation time is 10 to 30 seconds; after impregnation, the carbon fiber is heated by a hot roller and dried at 80 to 180° C. for 100 to 150 seconds.
  • the solid content of the aqueous sizing agent is 0.5-2wt%; if the solid content of the sizing agent is less than 0.5wt%, the sizing effect is poor and the carbon fiber is prone to produce hair; if the solid content of the sizing agent exceeds 2wt%, the carbon fiber is too hard, affecting the processing performance.
  • FIG1 is a schematic diagram of the sizing and drying process of carbon fiber.
  • Fig. 2 is a schematic diagram of a method for determining the drape value of a carbon fiber bundle; in the figure, 1 is a fixing belt; 2 is a carbon fiber bundle; 3 is a 100 g weight; 4 is a base; 5 is a carbon fiber bundle; 6 is a fixing belt; L is a horizontal distance between the end of the carbon fiber bundle and the base.
  • Figure 3 is a schematic diagram of the test of carbon fiber fuzzing amount; in the figure, 1 is an unwinding device; 2 is a guide ring; 3 is a guide rod; 4 is a guiding and yarn spreading device; 5 is a height difference; 6 is a fuzz collecting material; 7 is a loading block; 8 is a height adjustment device; and 9 is a winding device.
  • the carbon fiber used is GW800G-12K carbon fiber produced by Weihai Tuozhan Fiber Co., Ltd.
  • the method for sizing the carbon fiber and testing the performance after treatment is as follows:
  • the evaluation method of sizing rate is to first take 1.0-1.5g of carbon fiber material and accurately weigh its weight (W i ), then use 400-450mL of N-methylpyrrolidone to Soxhlet extract the carbon fiber for 4 hours, and then rinse and soak it with acetone. Place the sample in an oven at 110°C for drying, and then measure the weight of the dried carbon fiber (W f ).
  • the sizing amount is calculated according to the following formula.
  • the test method for carbon fiber fuzzing is based on GB/T 41956-2022. As shown in Figure 3, carbon fiber is After passing through four guide rods at a speed of 15 m/min, it passes through two polyurethane foams, with a 100 g loading block on top of the sponge, and the running length is set to 50 m. The mass of the hair collected on the polyurethane foam is weighed, and the experiment is repeated three times for each sample, and the average value is taken.
  • Thermogravimetric analysis was performed in accordance with GB/T 27761-2011.
  • the sizing agent slurry was tested using a thermogravimetric analyzer, and the 5% thermal weight loss temperature was obtained based on the thermal weight loss curve.
  • the sizing liquid in this embodiment is used for sizing carbon fibers on a carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber was evaluated, as shown in Table 1. As shown in Table 1, the percentage of carbon fiber sizing is 0.77%, the 5% thermal decomposition temperature under nitrogen atmosphere is 491°C, the carbon fiber drape value is 74mm, and the fuzz is 52.7mg/50m.
  • the 1wt% sizing solution obtained in Example 1 was used to prepare a modified polyimide sizing solution. 8000g of sizing solution was taken and 3.33g of sodium dodecyl sulfate was dissolved in the sizing solution. 8.89g of E44 epoxy resin (6101 resin, Nantong Xingchen Synthetic Materials Co., Ltd.) was dissolved in 102.24g of dichloromethane. The sizing solution was stirred at a rate of 18000r/min using a homogenizer. The E44 epoxy resin solution was added dropwise to the sizing solution at a rate of 1-2mL/min.
  • the aqueous emulsion sizing agent in this embodiment is used to sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sized fiber is evaluated, as shown in Table 2. Since the sizing agent contains a surfactant, the wettability of the sizing agent is improved, and the carbon fiber sizing content is increased to 1.02%.
  • the lower 5% thermal decomposition temperature is 450°C, the processability of carbon fiber is relatively poor, the drape value is 80mm, and the fuzzing amount is 86.4mg/50m.
  • the 1wt% sizing solution obtained in Example 1 was used to prepare a modified polyimide sizing solution. 8000g of sizing solution was taken and 3.33g of sodium dodecyl sulfate was dissolved in the sizing solution. 8.89g of E51 epoxy resin (0164 resin, Nantong Xingchen Synthetic Materials Co., Ltd.) was dissolved in 102.24g of dichloromethane. The sizing solution was stirred at a rate of 18000r/min using a homogenizer. The E51 epoxy resin solution was added dropwise to the sizing solution at a rate of 1-2mL/min.
  • the aqueous emulsion sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 3.
  • the carbon fiber sizing content is 1.02%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 420°C
  • the carbon fiber drape value is 75mm
  • the fiber fuzz is 108.0mg/50m.
  • the 1wt% sizing solution obtained in Example 1 was used to prepare a modified polyimide sizing solution. 8000g of sizing solution was taken and 3.33g of sodium dodecyl sulfate was dissolved in the sizing solution. 8.89g of pentaerythritol tetraglycidyl ether (PB10597, Guangdong Wengjiang Chemical Reagent Co., Ltd.) was dissolved in 102.24g of ethyl acetate. The sizing solution was stirred at a rate of 18000r/min using a homogenizer.
  • the pentaerythritol tetraglycidyl ether solution was added dropwise to the sizing solution at a rate of 1-2mL/min. 774.54 of deionized water was added to obtain a modified sizing solution with a solid content of 1wt%. Then, stirring was continued at 18000r/min for 1 hour to obtain a uniform modified aqueous emulsion sizing agent with a mass ratio of the main slurry to the epoxy resin of 90/10.
  • the aqueous emulsion sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 4.
  • the carbon fiber sizing content is 0.98%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 410°C
  • the carbon fiber drape value is 42mm
  • the fiber fuzz is 91.3mg/50m.
  • the 1wt% sizing solution obtained in Example 1 was used to prepare a modified polyimide sizing solution. 8000g of sizing solution was taken, and 1.11g of sodium dodecyl sulfate and 4.45g of sodium dodecylbenzene sulfonate were dissolved in the sizing solution. 8.89g of AG80 epoxy resin (Shanghai Huayi Resin Co., Ltd.) was dissolved in 102.24g of acetone. The sizing solution was stirred at a rate of 18000r/min using a homogenizer. The AG80 epoxy resin solution was added dropwise to the sizing solution at a rate of 1-2mL/min.
  • the aqueous emulsion sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 5.
  • the carbon fiber sizing content is 1.05%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 435°C
  • the carbon fiber drape value is 96mm
  • the fiber fuzz is 31.1mg/50m.
  • the 1wt% sizing solution obtained in Example 1 was used to prepare a modified polyimide sizing solution. 8000g of sizing solution was taken and 3.33g of sodium dodecyl sulfate was dissolved in the sizing solution. 8.89g of AFG90 epoxy resin (Shenzhen Jiadida New Materials Co., Ltd.) was dissolved in 102.24g of acetone. The sizing solution was stirred at a rate of 18000r/min using a homogenizer. The AFG90 epoxy resin solution was added dropwise to the sizing solution at a rate of 1-2mL/min. 774.54 of deionized water was added to obtain a modified sizing solution with a solid content of 1wt%. Then, stirring was continued at 18000r/min for 1 hour to obtain a uniform modified aqueous emulsion sizing agent with a mass ratio of the main slurry to the epoxy resin of 90/10.
  • the aqueous emulsion sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 6.
  • the carbon fiber sizing content is 1.20%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 466°C
  • the carbon fiber drape value is 140mm
  • the fiber fuzz is 30.1mg/50m.
  • Example 2 Prepare a modified polyimide sizing solution with the 1wt% sizing solution obtained in Example 1. Take 8000g of the sizing solution and dissolve 2.43g of sodium dodecyl sulfate in the sizing solution. Dissolve 6.49g of AFG90 epoxy resin in 74.64g of acetone. Stir the sizing solution at a rate of 18000r/min using a homogenizer. Add the AFG90 epoxy resin solution dropwise to the sizing solution at a rate of 1-2mL/min. Add 565.44g of deionized water to obtain a modified sizing solution with a solid content of 1wt%. Then, continue stirring at 18000r/min. The stirring was continued for 1 hour to obtain a uniform modified aqueous emulsion sizing agent, wherein the mass ratio of the main slurry to the epoxy resin was 92.5/7.5.
  • the aqueous emulsion sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 7.
  • the carbon fiber sizing content is 1.10%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 473°C
  • the carbon fiber drape value is 132mm
  • the fiber fuzz is 31.9mg/50m.
  • the 1wt% sizing solution obtained in Example 1 is used to prepare a modified polyimide sizing solution. Take 8000g of the sizing solution and dissolve 1.58g of sodium dodecyl sulfate in the sizing solution. Dissolve 4.21g of AFG90 epoxy resin in 48.42g of acetone. Stir the above sizing solution at a rate of 18000r/min using a homogenizer. Add the AFG90 epoxy resin solution dropwise to the above sizing solution at a rate of 1-2mL/min. Add 371g of deionized water to obtain a modified sizing solution with a solid content of 1wt%. Then, continue stirring at 18000r/min for 1 hour to obtain a uniform modified water-emulsion sizing agent with a mass ratio of the main sizing material to the epoxy resin of 95/5.
  • the emulsion sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 8.
  • the carbon fiber sizing content is 1.12%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 480°C
  • the carbon fiber drape value is 156mm
  • the fiber fuzz is 35.2mg/50m.
  • the 1wt% sizing solution obtained in Example 1 was used to prepare a modified polyimide sizing solution. Take 8000g of the sizing solution and dissolve 0.77g of sodium dodecyl sulfate in the sizing solution. Dissolve 2.05g of AFG90 epoxy resin in 23.58g of acetone. Stir the sizing solution at a rate of 18000r/min using a homogenizer. Add the AFG90 epoxy resin solution dropwise to the sizing solution at a rate of 1-2mL/min. Add 180.65g of deionized water to obtain a modified sizing solution with a solid content of 1wt%. Then, continue stirring at 18000r/min for 1 hour to obtain a uniform modified water-emulsion sizing agent with a mass ratio of the main slurry to the epoxy resin of 97.5/2.5.
  • the aqueous emulsion sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 9.
  • the carbon fiber sizing content is 1.16%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 482°C
  • the carbon fiber drape value is 144mm
  • the fiber fuzz is 31.1mg/50m.
  • the 1wt% sizing solution obtained in Example 1 was used to prepare a modified polyimide sizing solution. 8000g of the sizing solution was taken, 0.8g of alkylphenol polyoxyethylene ether (penetrant JFC-1, Hai'an Petrochemical Plant, Jiangsuzhou) was added to the sizing solution at a stirring rate of 200-300r/min, and 79.2g of deionized water was added and stirred until completely dissolved to form a uniform modified sizing agent, and the mass ratio of the main sizing material to the aqueous surfactant was 100/1.
  • alkylphenol polyoxyethylene ether penetrant JFC-1, Hai'an Petrochemical Plant, Jiangsuzhou
  • the modified sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 10.
  • the carbon fiber sizing content is 1.22%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 447°C
  • the carbon fiber drape value is 150mm
  • the fiber fuzz is 24.8mg/50m.
  • the modified polyimide sizing solution was prepared with the 1wt% sizing solution obtained in Example 1. 8000g of the sizing solution was taken, 8g of the cationic surfactant propylene bis(tetradecyl dimethyl ammonium chloride) (emulsifier 31524, Zhengzhou Yihe Fine Chemicals Co., Ltd.) was added to the sizing solution at a stirring rate of 200-300r/min, and 792g of deionized water was added and stirred until completely dissolved to form a uniform modified sizing agent, and the mass ratio of the main sizing material to the aqueous surfactant was 10/1.
  • the modified sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 11.
  • the carbon fiber sizing content is 1.06%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 476°C
  • the carbon fiber drape value is 23mm
  • the fiber fuzz is 41.3mg/50m.
  • the modified polyimide sizing solution was prepared with 1 wt% sizing solution obtained in Example 1. 8000 g of the sizing solution was taken, 8 g of polyethylene glycol 400 monooleate (PEG400MO, Hai'an Petrochemical Plant, Jiangsuzhou) was added to the sizing solution at a stirring rate of 200 to 300 r/min, and 792 g of deionized water was added and stirred until completely dissolved to form a uniform modified sizing agent, and the mass ratio of the main sizing material to the aqueous surfactant was 10/1.
  • PEG400MO polyethylene glycol 400 monooleate
  • the modified sizing agent in this embodiment is used to sizing carbon fiber on a carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 12.
  • the carbon fiber sizing content is 1.07%, 5% thermal decomposition temperature under nitrogen atmosphere is 483°C, carbon fiber drape value is 232mm, and fiber fuzzing amount is 35.9mg/50m.
  • the modified polyimide sizing solution was prepared with 1 wt% sizing solution obtained in Example 1. 8000 g of the sizing solution was taken, 8 g of polyethylene glycol 600 monooleate (PEG600MO, Hai'an Petrochemical Plant, Jiangsuzhou) was added to the sizing solution at a stirring rate of 200 to 300 r/min, and 792 g of deionized water was added and stirred until completely dissolved to form a uniform modified sizing agent, and the mass ratio of the main sizing material to the aqueous surfactant was 100/1.
  • PEG600MO polyethylene glycol 600 monooleate
  • the modified sizing agent in this embodiment is used for sizing the carbon fiber on the carbon fiber production line, and then heated and dried.
  • the processability of the sizing fiber is evaluated, as shown in Table 13.
  • the carbon fiber sizing content is 1.04%
  • the 5% thermal decomposition temperature under nitrogen atmosphere is 439°C
  • the carbon fiber drape value is 94mm
  • the fiber fuzz is 36.3mg/50m.
  • the carbon fibers sized with the aqueous sizing agent of the present invention have good bundling, smoothness and flexibility; the sized carbon fibers have the advantages of good wear resistance and low fuzzing; at the same time, the sized carbon fibers have good temperature resistance and can withstand a processing temperature of thermosetting polyimide resins greater than 350° C., thereby preparing high-performance polyimide composite materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种碳纤维用耐高温水性上浆剂及其制备方法和应用,属于材料领域,该水性上浆剂包括主浆料和功能性添加剂;所述主浆料为水溶性的聚酰胺酸盐;所述功能性添加剂为水溶性表面活性剂或环氧树脂;所述功能性添加剂的质量占所述主浆料和功能性添加剂总质量的0~10%。采用所述水性上浆剂上浆后的碳纤维具有耐磨性好和不易起毛的优点;同时上浆后的碳纤维具有良好的耐温性,能够耐受热固性聚酰亚胺树脂>350℃的加工温度,能够制备高性能聚酰亚胺复合材料。

Description

一种碳纤维用耐高温水性上浆剂及其制备方法和应用 技术领域
本发明涉及材料领域,具体涉及的是一种碳纤维用耐高温水性上浆剂及其制备方法和应用。
背景技术
聚丙烯腈碳纤维作为无机高分子特种纤维,是复合材料的理想增强体,比强度和比模量高。同时碳纤维具有导电、导热、耐高温、耐腐蚀等特点,在航空航天、交通运输、能源、医疗及体育用品等领域有重要的应用价值。
碳纤维在实际应用中需要对其进行表面处理。因为碳纤维是脆性材料,后续编织及加工过程中碳纤维经机械摩擦容易产生毛丝和单丝断裂现象,纤维强度降低的同时也导致生产加工效率的下降和停滞。制备碳纤维预浸料过程中,毛丝的存在也使得基体树脂难以充分浸润碳纤维,导致制备的复合材料孔隙率大,影响复合材料的使用性能。通常,对碳纤维表面进行上浆处理,在碳纤维表面形成保护膜,提升碳纤维丝束的集束性和耐磨性,降低纤维起毛量。同时浆料能够构成复合材料的界面层,增加复合材料的界面粘接作用,提升复合材料的性能。
传统碳纤维上浆剂以环氧树脂、聚氨酯作为上浆剂浆料,上浆的碳纤维主要应用于低温使用的环氧树脂复合材料。但是应用于聚酰亚胺、聚醚醚酮等耐高温复合材料,传统浆料容易在高的加工温度(>300℃)和高使用温度下发生降解,影响复合材料的截面粘接,从而降低复合材料在高温下的力学性能。近年来,研究人员开始关注适用于耐高温碳纤维复合材料的上浆剂的研制。CN100999867A使用热塑性聚酰亚胺和缩水甘油醚的混合物配置乳液型上浆剂,上浆剂稳定性好,上浆后碳纤维耐磨性好与双马来酰亚胺树脂界面粘接性强。但是JP2014125688同样使用带羟基或羧基的聚酰亚胺和双酚A缩水甘油醚、酚醛缩水甘油醚等环氧树脂混合配制溶剂型上浆剂。上浆后碳纤维热失重少,与基体树脂界面粘接性能高。CN107022901A则将聚酰胺酰亚胺与环氧树脂混合制备水基碳纤维上浆剂。该上浆剂适用于以聚醚醚酮、聚酰亚胺、聚苯硫醚等耐高温树脂为基体树脂的碳纤维复合材料的制备。但是这些上浆剂所用环氧树脂占主浆料约50%,在200℃前浆料仍有较大比例的降解,未能满足聚酰亚胺、聚醚醚酮等耐高温复合材料的加工及使用需求。
发明公开
本发明提供了一种碳纤维用耐高温水性上浆剂及其制备方法和应用,本发明的水性上浆剂成本低,具有良好的耐温性,能够耐受热固性聚酰亚胺树脂>350℃的加工温度。
本发明首先提供了一种水性上浆剂,包括主浆料和功能性添加剂;
所述主浆料为水溶性的聚酰胺酸盐;
所述功能性添加剂为水溶性表面活性剂或环氧树脂;
所述功能性添加剂的质量占所述主浆料和功能性添加剂总质量的0~10%;具体可为1%~10%。
上述的水性上浆剂还包括水;
所述水性上浆剂中的固含量为0.5wt%~2wt%;具体可为1wt%。
所述水性上浆剂中的固含量指的是所述主浆料和功能性添加剂的质量之和占上浆剂溶液总质量的百分数。
上述的水性上浆剂还包括助溶剂,具体可为三乙胺,用于帮助主浆料溶解;所述水与三乙胺的质量比为40~50:1,具体可为45~50:1。
上述的水性上浆剂,当所述功能性添加剂为水溶性表面活性剂时,所述表面活性剂的质量占所述主浆料和表面活性剂总质量的1%~10%;具体可为1%或9%;
当所述功能性添加剂为环氧树脂时,所述水性上浆剂还包括乳化剂;所述环氧树脂的质量占所述主浆料和环氧树脂总质量的2.5%~10%;具体可为2.5%、5%、7.5%或10%;
所述环氧树脂与所述乳化剂的质量比为8:3~8:5;
具体的,所述乳化剂为十二烷基磺酸钠、十二烷基硫酸钠和十二烷基苯磺酸钠中的至少一种。
上述的水性上浆剂中,所述水溶性表面活性剂为渗透剂JFC-1、阳离子表面活性剂31524(阳离子表面活性剂丙撑基双(十四烷基二甲基氯化铵))和聚乙二醇单油酸酯中的至少一种;
所述聚乙二醇单油酸酯为聚乙二醇400单油酸酯(PEG400MO)和/或聚乙二醇600单油酸酯(PEG600MO);
所述环氧树脂为E44环氧树脂、E51环氧树脂、AFG90环氧树脂、AG80环氧树脂和季戊四醇四缩水甘油醚中的至少一种。
上述的水性上浆剂中,所述水溶性的聚酰胺酸盐由包括如下步骤的方法制备得到:在氮气保护下,将芳香二胺溶解于质子非极性溶剂中,缓慢加入二酐,进行缩聚反应,得到聚酰胺酸溶液;然后将所述聚酰胺酸溶液和成盐剂混合,得到所述聚酰胺酸盐溶液;将所述聚酰胺酸盐溶液倒入沉淀剂中将聚酰胺酸盐固体沉淀出来,将固体干燥,得到所述水溶性的聚酰胺酸盐。
上述的水性上浆剂,所述二酐在0~35℃的条件下加入芳香二胺的溶液中;
所述缩聚反应在氮气保护及冰浴条件下进行;所述缩聚反应的时间为10~18小时;
所述沉淀剂为丙酮;
所述干燥的温度为30~80℃;
所述芳香二胺为4,4'-二氨基二苯醚、3,4'-二氨基二苯醚、2,2'-双[4-(4-氨基苯氧基苯基)]丙烷、2,2'-双[3-(3-氨基苯甲酰)-4-羟基苯基]六氟异丙基和2,2-双(3- 氨基-4-羟基苯基)六氟丙烷中的至少一种;
所述质子性非极性溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮和二甲基亚砜中的至少一种;
所述二酐为3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-二苯醚四甲酸二酐、2,3,3',4'-二苯醚四甲酸二酐、1,2,4,5-环己烷四甲酸二酐和4,4'-(4,4'-异丙基二苯氧基)双(邻苯二甲酸酐)的至少一种;
所述成盐剂为二甲基乙醇胺、乙醇胺、三乙胺和三乙醇胺的至少一种;
所述芳香二胺和二酐的摩尔比为1:1;
所述芳香二胺和二酐的总质量占所述芳香二胺、质子非极性溶剂和二酐总质量的20%~30%;具体可为30%;
所述成盐剂与二酐的摩尔比为2~4:1;具体可为4:1。
本发明的水性上浆剂具有良好的耐热性,浆料在空气气氛下5%热分解温度为410-491℃。
本发明还提供了上述水性上浆剂的制备方法,为方法(一)或方法(二):
所述方法(一)包括如下步骤:当所述功能性添加剂为水溶性表面活性剂时,将所述主浆料、三乙胺和水混合,配制聚酰胺酸盐水溶液;然后加入所述水溶性表面活性剂,得到所述水性上浆剂;
所述方法(二)包括如下步骤:当所述功能性添加剂为环氧树脂时,将所述主浆料、三乙胺和水混合,配制聚酰胺酸盐水溶液;然后加入乳化剂,形成均相水溶液;将所述环氧树脂溶解在低沸点有机溶剂中配成环氧树脂有机溶液;在搅拌的条件下将所述环氧树脂有机溶液滴加到所述均相水溶液中,继续搅拌,得到所述水性上浆剂。
上述的制备方法,方法(一)中,在搅拌速率200~300r/min的条件下加入所述水溶性表面活性剂;
方法(二)中,所述低沸点有机溶剂为丙酮、二氯甲烷和乙酸乙酯中的至少一种;
所述环氧树脂有机溶液中,所述环氧树脂的质量百分浓度为6%~10%;具体可为8%;
所述搅拌的转速为12000~18000r/min;
所述继续搅拌的时间为1~2小时;
所述环氧树脂有机溶液的滴加速度为1~2mL/min。
本发明还进一步提供了上述水性上浆剂在碳纤维表面改性中的应用。
通过浸渍方法将所述水性上浆剂附着在碳纤维上进行改性;具体的,浸渍时间为10~30s;浸渍后将碳纤维利用热辊加热的方式,在80~180℃条件下进行烘干,时间为100~150s。
所述水性上浆剂的固含量为0.5~2wt%;上浆剂固含量小于0.5wt%,上浆效果差,碳纤维易产生毛丝;上浆剂固含量超过2wt%碳纤维过硬,影响加工性能。
附图说明
图1为碳纤维的上浆及烘干处理流程示意图。
图2为碳纤维束丝悬垂值的测定方法示意图;图中,1固定带;2碳纤维束丝;3 100g砝码;4基台;5碳纤维束丝;6固定带;L碳纤维束丝末端与基台间的水平距离。
图3为碳纤维起毛量测试示意图;图中,1放卷装置;2导向环;3导向棒;4导向及展纱装置;5高度差;6毛丝收集材料;7加载块;8高度调节装置;9收卷装置。
实施发明的最佳方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。
下述实施例中,所用碳纤维为威海拓展纤维有限公司的GW800G-12K碳纤维。
下述实施例中,对碳纤维进行上浆处理和处理后性能测试的方法如下:
1、对碳纤维进行上浆处理的方法
碳纤维的上浆及烘干过程如下图1所示,碳纤维裸丝展纱后经过胶槽充分浸渍上浆剂,浸渍时长为10s。然后经过热烘箱在130℃下进行加热烘干140s,最后收卷得到上浆后的碳纤维。
2、上浆量
上浆率的评价方式先取碳纤维材料1.0~1.5g,并精确称取其重量(Wi),再用400~450mL的N-甲基吡咯烷酮对碳纤维进行索氏提取4小时后,用丙酮冲洗浸泡。将样品放置于110℃的烘箱进行干燥,然后测量干燥后碳纤维的重量(Wf)。上浆量依据以下公式计算。
3、悬垂值
剪取有效长度40cm的碳纤维束丝,按照图2中的(a)所示,一端垂直固定,另一端下挂荷重100g砝码,以校正碳纤维束的弯曲和扭曲,并静置30min。然后取下砝码,按照图2中的(b)所示,将碳纤维束丝固定在水平长方形基台上,并用固定带固定,使碳纤维束丝的长度为25cm。这时支撑体(图中未画出)将碳纤维束丝与台基保持水平。拿掉支撑体后,碳纤维束丝因自重而向下弯曲,静置2min,测定水平距离L,测3次,取平均值,得到该上浆碳纤维的悬垂值。
4、起毛量
碳纤维起毛量测试方法依据GB/T 41956-2022执行。如图3所示,碳纤维以 15m/min的速率经过4个导向棒后,再通过两枚聚氨酯泡沫,海绵上方配重100g加载块,设置运行长度50m。称取聚氨酯泡沫上收集到的毛丝质量,每个样品重复三次实验,取平均值。
5、热重分析
热重分析依据GB/T 27761-2011进行。利用热重分析仪对上浆剂浆料进行测试,并根据热失重曲线得到5%热失重温度。
实施例1
(1)聚酰胺酸盐的制备
在氮气保护下,将361.25g 2,2'-双[4-(4-氨基苯氧基苯基)]丙烷溶解在500g的N,N-二甲基乙酰胺中,在室温(25~30℃)、搅拌条件下缓慢加入197.27g 1,2,4,5-环己烷四甲酸二酐,并加入803.21g N,N-二甲基乙酰胺。然后在氮气保护及冰浴条件下,搅拌18小时进行缩聚反应,得到均一透明的聚酰胺酸溶液。然后加入356.20g三乙胺,搅拌1小时,得到聚酰胺酸盐溶液。随后用足量丙酮将聚酰胺酸盐沉淀出来。固体在30℃的条件下鼓风烘干6小时。
(2)上浆剂配制
在搅拌和40℃加热条件下,将60g的聚酰胺酸盐固体溶解在5811.88g去离子水中,并加入128.12g三乙胺帮助聚酰胺酸盐溶解。经过3~4小时的搅拌,得到固含量1wt%的均相聚酰胺酸盐溶液,即为上浆液。
本实施例中的上浆液用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。
对上浆后的纤维的加工性进行评价,见表1。由表1可知,碳纤维带浆百分含量为0.77%,氮气气氛下5%热分解温度为491℃,碳纤维悬垂值为74mm,起毛量为52.7mg/50m。
表1实施例1制备碳纤维性能
实施例2
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将3.33g十二烷基磺酸钠溶解在上浆液中。将8.89g的E44环氧树脂(6101树脂,南通星辰合成材料有限公司)溶解在102.24g的二氯甲烷中。利用均质乳化机以18000r/min的速率搅拌上述上浆液。以1~2mL/min的速率将E44环氧树脂溶液滴加到上述上浆液中。补加去离子水774.54g,得到固含量为1wt%的改性上浆液。然后,继续在18000r/min条件下继续搅拌1小时,得到均一的改性的水乳液型上浆剂,主浆料与环氧树脂质量比为90/10。
本实施例中的水乳液型上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表2。由于上浆剂中含有表面活性剂,上浆剂浸润性提升,碳纤维带浆含量提升至1.02%,氮气气氛 下5%热分解温度为450℃,碳纤维工艺性较劣化,悬垂值80mm,起毛量为86.4mg/50m。
表2实施例2制备碳纤维性能
实施例3
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将3.33g十二烷基磺酸钠溶解在上浆液中。将8.89g的E51环氧树脂(0164树脂,南通星辰合成材料有限公司)溶解在102.24g的二氯甲烷中。利用均质乳化机以18000r/min的速率搅拌上述上浆液。以1~2mL/min的速率将E51环氧树脂溶液滴加到上述上浆液中。补加去离子水774.54g,得到固含量1wt%的改性上浆液。然后,继续在18000r/min条件下继续搅拌1小时,得到均一的改性的水乳液型上浆剂,主浆料与环氧树脂质量比为90/10。
本实施例中的水乳液型上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表3。碳纤维带浆含量为1.02%,氮气气氛下5%热分解温度为420℃,碳纤维悬垂值为75mm,纤维起毛量为108.0mg/50m。
表3实施例3制备碳纤维性能
实施例4
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将3.33g十二烷基磺酸钠溶解在上浆液中。将8.89g的季戊四醇四缩水甘油醚(PB10597,广东翁江化学试剂有限公司)溶解在102.24g的乙酸乙酯中。利用均质乳化机以18000r/min的速率搅拌上述上浆液。以1~2mL/min的速率将季戊四醇四缩水甘油醚溶液滴加到上述上浆液中。补加去离子水774.54,得到固含量1wt%的改性上浆液。然后,继续在18000r/min条件下继续搅拌1小时,得到均一的改性的水乳液型上浆剂,主浆料与环氧树脂质量比为90/10。
本实施例中的水乳液型上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表4。碳纤维带浆含量为0.98%,氮气气氛下5%热分解温度为410℃,碳纤维悬垂值为42mm,纤维起毛量为91.3mg/50m。
表4实施例4制备碳纤维性能
实施例5
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将1.11g十二烷基硫酸钠和4.45g十二烷基苯磺酸钠溶解在上浆液中。将8.89g的AG80环氧树脂(上海华谊树脂有限公司)溶解在102.24g的丙酮中。利用均质乳化机以18000r/min的速率搅拌上述上浆液。以1~2mL/min的速率将AG80环氧树脂溶液滴加到上述上浆液中。补加去离子水772.31g,得到相应固含量的改性上浆液。然后,继续在18000r/min条件下继续搅拌1小时,得到均一的改性的水乳液型上浆剂,主浆料与环氧树脂质量比为90/10。
本实施例中的水乳液型上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表5。碳纤维带浆含量为1.05%,氮气气氛下5%热分解温度为435℃,碳纤维悬垂值为96mm,纤维起毛量为31.1mg/50m。
表5实施例5制备碳纤维性能
实施例6
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将3.33g十二烷基磺酸钠溶解在上浆液中。将8.89g的AFG90环氧树脂(深圳市佳迪达新材料有限公司)溶解在102.24g的丙酮中。利用均质乳化机以18000r/min的速率搅拌上述上浆液。以1~2mL/min的速率将AFG90环氧树脂溶液滴加到上述上浆液中。补加去离子水774.54,得到固含量1wt%的改性上浆液。然后,继续在18000r/min条件下继续搅拌1小时,得到均一的改性的水乳液型上浆剂,主浆料与环氧树脂质量比为90/10。
本实施例中的水乳液型上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表6。碳纤维带浆含量为1.20%,氮气气氛下5%热分解温度为466℃,碳纤维悬垂值为140mm,纤维起毛量为30.1mg/50m。
表6实施例6制备碳纤维性能
实施例7
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将2.43g十二烷基磺酸钠溶解在上浆液中。将6.49g的AFG90环氧树脂溶解在74.64g的丙酮中。利用均质乳化机以18000r/min的速率搅拌上述上浆液。以1~2mL/min的速率将AFG90环氧树脂溶液滴加到上述上浆液中。补加去离子水565.44g,得到固含量1wt%的改性上浆液。然后,继续在18000r/min条件下 继续搅拌1小时,得到均一的改性的水乳液型上浆剂,主浆料与环氧树脂质量比为92.5/7.5。
本实施例中的水乳液型上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表7。碳纤维带浆含量为1.10%,氮气气氛下5%热分解温度为473℃,碳纤维悬垂值为132mm,纤维起毛量为31.9mg/50m。
表7实施例7制备碳纤维性能
实施例8
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将1.58g十二烷基磺酸钠溶解在上浆液中。将4.21g的AFG90环氧树脂溶解在48.42g的丙酮中。利用均质乳化机以18000r/min的速率搅拌上述上浆液。以1~2mL/min的速率将AFG90环氧树脂溶液滴加到上述上浆液中。补加去离子水371g,得到固含量1wt%的改性上浆液。然后,继续在18000r/min条件下继续搅拌1小时,得到均一的改性的水乳液型上浆剂,主浆料与环氧树脂质量比为95/5。
本实施例中的乳液型上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表8。碳纤维带浆含量为1.12%,氮气气氛下5%热分解温度为480℃,碳纤维悬垂值为156mm,纤维起毛量为35.2mg/50m。
表8实施例8制备碳纤维性能
实施例9
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将0.77g十二烷基磺酸钠溶解在上浆液中。将2.05g的AFG90环氧树脂溶解在23.58g的丙酮中。利用均质乳化机以18000r/min的速率搅拌上述上浆液。以1~2mL/min的速率将AFG90环氧树脂溶液滴加到上述上浆液中。补加去离子水180.65g,得到固含量1wt%的改性上浆液。然后,继续在18000r/min条件下继续搅拌1小时,得到均一的改性的水乳液型上浆剂,主浆料与环氧树脂质量比为97.5/2.5。
本实施例中的水乳液型上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表9。碳纤维带浆含量为1.16%,氮气气氛下5%热分解温度为482℃,碳纤维悬垂值为144mm,纤维起毛量为31.1mg/50m。
表9实施例9制备碳纤维性能
实施例10
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将0.8g烷基酚聚氧乙烯醚(渗透剂JFC-1,江苏省海安石油化工厂)在搅拌速率200~300r/min的条件下加入上浆液中,并补加79.2g去离子水,搅拌至完全溶解,形成均一的改性上浆剂,主浆料与水性表面活性剂质量比为100/1。
本实施例中的改性上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表10。碳纤维带浆含量为1.22%,氮气气氛下5%热分解温度为447℃,碳纤维悬垂值为150mm,纤维起毛量为24.8mg/50m。
表10实施例10制备碳纤维性能
实施例11
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将8g阳离子表面活性剂丙撑基双(十四烷基二甲基氯化铵)(乳化剂31524,郑州易和精细化学品有限公司)在搅拌速率200~300r/min的条件下加入上浆液中,并补加792g去离子水,搅拌至完全溶解,形成均一的改性上浆剂,主浆料与水性表面活性剂质量比为10/1。
本实施例中的改性上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表11。碳纤维带浆含量为1.06%,氮气气氛下5%热分解温度为476℃,碳纤维悬垂值为23mm,纤维起毛量为41.3mg/50m。
表11实施例11制备碳纤维性能
实施例12
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将8g聚乙二醇400单油酸酯(PEG400MO,江苏省海安石油化工厂)在搅拌速率200~300r/min的条件下加入上浆液中,并补加792g去离子水,搅拌至完全溶解,形成均一的改性上浆剂,主浆料与水性表面活性剂质量比为10/1。
本实施例中的改性上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表12。碳纤维带浆含量为 1.07%,氮气气氛下5%热分解温度为483℃,碳纤维悬垂值为232mm,纤维起毛量为35.9mg/50m。
表12实施例12制备碳纤维性能
实施例13
以实施例1得到的1wt%的上浆液,制备改性聚酰亚胺上浆液。取上浆液8000g,将8g聚乙二醇600单油酸酯(PEG600MO,江苏省海安石油化工厂)在搅拌速率200~300r/min的条件下加入上浆液中,并补加792g去离子水,搅拌至完全溶解,形成均一的改性上浆剂,主浆料与水性表面活性剂质量比为100/1。
本实施例中的改性上浆剂用于碳纤维生产线上对碳纤维进行上浆处理,然后加热烘干。对上浆后的纤维的加工性进行评价,见表13。碳纤维带浆含量为1.04%,氮气气氛下5%热分解温度为439℃,碳纤维悬垂值为94mm,纤维起毛量为36.3mg/50m。
表13实施例13制备碳纤维性能
工业应用
采用本发明的水性上浆剂上浆的碳纤维具有较好的集束性、光滑性和柔韧性;上浆后的碳纤维具有耐磨性好和不易起毛的优点;同时上浆后的碳纤维具有良好的耐温性,能够耐受热固性聚酰亚胺树脂>350℃的加工温度,制备高性能聚酰亚胺复合材料。

Claims (10)

  1. 一种水性上浆剂,包括主浆料和功能性添加剂;
    所述主浆料为水溶性的聚酰胺酸盐;
    所述功能性添加剂为水溶性表面活性剂或环氧树脂;
    所述功能性添加剂的质量占所述主浆料和功能性添加剂总质量的0~10%。
  2. 根据权利要求1所述的水性上浆剂,其特征在于:所述水性上浆剂还包括水;所述水性上浆剂中的固含量为0.5wt%~2wt%;和/或
    所述水性上浆剂还包括助溶剂,具体可为三乙胺;所述水与三乙胺的质量比可为40~50:1。
  3. 根据权利要求1或2所述的水性上浆剂,其特征在于:当所述功能性添加剂为水溶性表面活性剂时,所述表面活性剂的质量占所述主浆料和表面活性剂总质量的1%~10%;
    当所述功能性添加剂为环氧树脂时,所述水性上浆剂还包括乳化剂;所述环氧树脂的质量占所述主浆料和环氧树脂总质量的2.5%~10%;
    所述环氧树脂与所述乳化剂的质量比为8:3~8:5;
    具体的,所述乳化剂为十二烷基磺酸钠、十二烷基硫酸钠和十二烷基苯磺酸钠中的至少一种。
  4. 根据权利要求1所述的水性上浆剂,其特征在于:所述水溶性表面活性剂为渗透剂JFC-1、阳离子表面活性剂31524和聚乙二醇单油酸酯中的至少一种;
    所述环氧树脂为E44环氧树脂、E51环氧树脂、AFG90环氧树脂、AG80环氧树脂和季戊四醇四缩水甘油醚中的至少一种。
  5. 根据权利要求1所述的水性上浆剂,其特征在于:所述水溶性的聚酰胺酸盐由包括如下步骤的方法制备得到:在氮气保护下,将芳香二胺溶解于质子非极性溶剂中,缓慢加入二酐,进行缩聚反应,得到聚酰胺酸溶液;然后将所述聚酰胺酸溶液和成盐剂混合,得到所述聚酰胺酸盐溶液;将所述聚酰胺酸盐溶液倒入沉淀剂中将聚酰胺酸盐固体沉淀出来,将固体干燥,得到所述水溶性的聚酰胺酸盐。
  6. 根据权利要求5所述的水性上浆剂,其特征在于:所述二酐在0~35℃的条件下加入芳香二胺的溶液中;
    所述缩聚反应在氮气保护及冰浴条件下进行;所述缩聚反应的时间为10~18小时;
    所述芳香二胺为4,4'-二氨基二苯醚、3,4'-二氨基二苯醚、2,2'-双[4-(4-氨基苯氧基苯基)]丙烷、2,2'-双[3-(3-氨基苯甲酰)-4-羟基苯基]六氟异丙基和2,2-双(3-氨基-4-羟基苯基)六氟丙烷中的至少一种;
    所述质子性非极性溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮和二甲基亚砜中的至少一种;
    所述二酐为3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-二苯醚四甲酸二酐、2,3,3',4'-二苯醚四甲酸二酐、1,2,4,5-环己烷四甲酸二酐和4,4'-(4,4'-异丙基二苯氧基)双(邻苯二甲酸酐)的至少一种;
    所述成盐剂为二甲基乙醇胺、乙醇胺、三乙胺和三乙醇胺的至少一种;
    所述芳香二胺和二酐的摩尔比为1:1;
    所述芳香二胺和二酐的总质量占所述芳香二胺、质子非极性溶剂和二酐总质量的20%~30%;
    所述成盐剂与二酐的摩尔比为2~4:1。
  7. 权利要求1-6中任一项所述的水性上浆剂的制备方法,为方法(一)或方法(二):
    所述方法(一)包括如下步骤:当所述功能性添加剂为水溶性表面活性剂时,将所述主浆料、三乙胺和水混合,配制聚酰胺酸盐水溶液;然后加入所述水溶性表面活性剂,得到所述水性上浆剂;
    所述方法(二)包括如下步骤:当所述功能性添加剂为环氧树脂时,将所述主浆料、三乙胺和水混合,配制聚酰胺酸盐水溶液;然后加入乳化剂,形成均相水溶液;将所述环氧树脂溶解在低沸点有机溶剂中配成环氧树脂有机溶液;在搅拌的条件下将所述环氧树脂有机溶液滴加到所述均相水溶液中,继续搅拌,得到所述水性上浆剂。
  8. 根据权利要求7所述的制备方法,其特征在于:方法(一)中,在搅拌速率200~300r/min的条件下加入所述水溶性表面活性剂;
    方法(二)中,所述低沸点有机溶剂为丙酮、二氯甲烷和乙酸乙酯中的至少一种;
    所述环氧树脂有机溶液中,所述环氧树脂的质量百分浓度为6%~10%;
    所述搅拌的转速为12000~18000r/min;
    所述继续搅拌的时间为1~2小时;
    所述环氧树脂有机溶液的滴加速度为1~2mL/min。
  9. 权利要求1-6中任一项所述的水性上浆剂在碳纤维表面改性中的应用。
  10. 根据权利要求9所述的应用,其特征在于:通过浸渍方法将所述水性上浆剂附着在碳纤维上进行改性。
PCT/CN2023/098595 2023-06-06 2023-06-06 一种碳纤维用耐高温水性上浆剂及其制备方法和应用 WO2024250173A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/098595 WO2024250173A1 (zh) 2023-06-06 2023-06-06 一种碳纤维用耐高温水性上浆剂及其制备方法和应用
CN202380011372.1A CN117280090A (zh) 2023-06-06 2023-06-06 一种碳纤维用耐高温水性上浆剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/098595 WO2024250173A1 (zh) 2023-06-06 2023-06-06 一种碳纤维用耐高温水性上浆剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024250173A1 true WO2024250173A1 (zh) 2024-12-12

Family

ID=89214664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098595 WO2024250173A1 (zh) 2023-06-06 2023-06-06 一种碳纤维用耐高温水性上浆剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN117280090A (zh)
WO (1) WO2024250173A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999867A (zh) * 2006-12-20 2007-07-18 中国科学院山西煤炭化学研究所 一种耐温型炭纤维乳液上浆剂及制备方法和应用
CN103174026A (zh) * 2013-04-09 2013-06-26 中国科学院山西煤炭化学研究所 一种聚酰胺酸水性上浆剂及其制法和应用
CN105064038A (zh) * 2015-08-24 2015-11-18 江苏先诺新材料科技有限公司 一种聚酰亚胺纤维用水溶性聚酰亚胺上浆剂的制备方法及其应用
CN109265998A (zh) * 2018-09-25 2019-01-25 中国科学院宁波材料技术与工程研究所 一种碳纤维增强聚酰亚胺基复合材料的制备方法
KR20190072158A (ko) * 2017-12-15 2019-06-25 한국과학기술연구원 수용성 폴리아믹산염, 그 제조방법 및 이로부터 얻어진 폴리이미드
CN115124717A (zh) * 2022-07-13 2022-09-30 江苏海洋大学 一种面向大丝束碳纤维原丝用水溶性聚酰亚胺上浆剂的制备方法
US20220396914A1 (en) * 2021-06-03 2022-12-15 Formosa Plastics Corporation Sizing agent composition, carbon fiber material and composite material
CN116145428A (zh) * 2022-12-05 2023-05-23 东华大学 一种水溶性聚酰胺酸盐上浆剂的制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100999867A (zh) * 2006-12-20 2007-07-18 中国科学院山西煤炭化学研究所 一种耐温型炭纤维乳液上浆剂及制备方法和应用
CN103174026A (zh) * 2013-04-09 2013-06-26 中国科学院山西煤炭化学研究所 一种聚酰胺酸水性上浆剂及其制法和应用
CN105064038A (zh) * 2015-08-24 2015-11-18 江苏先诺新材料科技有限公司 一种聚酰亚胺纤维用水溶性聚酰亚胺上浆剂的制备方法及其应用
KR20190072158A (ko) * 2017-12-15 2019-06-25 한국과학기술연구원 수용성 폴리아믹산염, 그 제조방법 및 이로부터 얻어진 폴리이미드
CN109265998A (zh) * 2018-09-25 2019-01-25 中国科学院宁波材料技术与工程研究所 一种碳纤维增强聚酰亚胺基复合材料的制备方法
US20220396914A1 (en) * 2021-06-03 2022-12-15 Formosa Plastics Corporation Sizing agent composition, carbon fiber material and composite material
CN115124717A (zh) * 2022-07-13 2022-09-30 江苏海洋大学 一种面向大丝束碳纤维原丝用水溶性聚酰亚胺上浆剂的制备方法
CN116145428A (zh) * 2022-12-05 2023-05-23 东华大学 一种水溶性聚酰胺酸盐上浆剂的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUAN HAO-JIE, LU CHUN-XIANG, ZHANG SHOU-CHUN, WU GANG-PING: "Preparation and characterization of a polyimide coating on the surface of carbon fibers", NEW CARBON MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 30, no. 2, 1 April 2015 (2015-04-01), AMSTERDAM, NL , pages 115 - 121, XP093248448, ISSN: 1872-5805, DOI: 10.1016/S1872-5805(15)60179-2 *
YUAN HAOJIE; ZHANG SHOUCHUN; LU CHUNXIANG; HE SHUQING; AN FENG: "Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing", APPLIED SURFACE SCIENCE, vol. 279, 25 April 2013 (2013-04-25), pages 279 - 284, XP028560995, DOI: 10.1016/j.apsusc.2013.04.085 *

Also Published As

Publication number Publication date
CN117280090A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN108864426B (zh) 一种超低膨胀含氟聚酰亚胺薄膜及其制备方法与应用
AU2007203150B2 (en) Flexible polymer element as toughening agent in prepregs
CN100999867A (zh) 一种耐温型炭纤维乳液上浆剂及制备方法和应用
CN103174026B (zh) 一种聚酰胺酸水性上浆剂及其制法和应用
US9011739B2 (en) Methods of continuously manufacturing polymide fibers
CN107034542B (zh) 一种三步法混合亚胺化制备聚酰亚胺纤维的方法
Dai et al. Construction of dendritic structure by nano-SiO2 derivate grafted with hyperbranched polyamide in aramid fiber to simultaneously improve its mechanical and compressive properties
CA2750631A1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
CN111154260B (zh) 一种抗氧化聚酰亚胺预浸料及其制备方法
Ma et al. Improved the surface properties of carbon fiber through hyperbranched polyaryletherketone sizing
CN105713222B (zh) 一种基于分子组装的磺化聚酰亚胺/聚吡咙复合质子交换膜的制备方法
JP5516768B2 (ja) プリプレグおよび炭素繊維強化複合材料
CN102383217B (zh) 一种聚酰亚胺纤维及其制备方法
WO2024250173A1 (zh) 一种碳纤维用耐高温水性上浆剂及其制备方法和应用
Zhang et al. Self‐healing interface of carbon fiber reinforced composites using a thermally reversible sizing agent
JP5561390B2 (ja) プリプレグおよび炭素繊維強化複合材料
CN110258118B (zh) 水溶性耐温型碳纤维上胶剂及其制备方法
CN118029161A (zh) 一种基于碳纤维耐磨性提升技术的聚酰亚胺上浆剂及其制备方法和应用
CN118065142A (zh) 一种聚酰亚胺上浆的碳纤维的耐磨性提升的方法
US5840424A (en) Curable composite materials
CN110130107A (zh) 一种聚四氟乙烯纤维长丝上浆剂及其制备方法
CN115536816B (zh) 一种热固性环氧树脂形状记忆聚合物及其制备方法
CN102644128A (zh) 基于2,2-双[4-(2,4-二氨基苯氧基)苯基]六氟丙烷的聚酰亚胺纤维纺丝原液及其制备
CN114561011A (zh) 一种自乳化离子型水性聚酰胺酰亚胺及其制备方法、碳纤维上浆剂及其制备方法和应用
CN114456596A (zh) 对位芳纶复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23940063

Country of ref document: EP

Kind code of ref document: A1