[go: up one dir, main page]

WO2024247025A1 - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2024247025A1
WO2024247025A1 PCT/JP2023/019866 JP2023019866W WO2024247025A1 WO 2024247025 A1 WO2024247025 A1 WO 2024247025A1 JP 2023019866 W JP2023019866 W JP 2023019866W WO 2024247025 A1 WO2024247025 A1 WO 2024247025A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
layer
gold
plating
substrate
Prior art date
Application number
PCT/JP2023/019866
Other languages
French (fr)
Japanese (ja)
Inventor
亮 奥畑
弘一郎 西澤
智之 森田
智明 徳久
寿和 清水
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023556766A priority Critical patent/JP7378693B1/en
Priority to PCT/JP2023/019866 priority patent/WO2024247025A1/en
Publication of WO2024247025A1 publication Critical patent/WO2024247025A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/061Manufacture or treatment of FETs having Schottky gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/80FETs having rectifying junction gate electrodes
    • H10D30/87FETs having Schottky gate electrodes, e.g. metal-semiconductor FETs [MESFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge

Definitions

  • This application relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • Cu copper
  • Via filling with copper plating is performed by electrolytic plating, which requires precise control of the plating solution composition, applied voltage waveform, solution agitation, etc. (see, for example, Patent Document 1).
  • a diffusion barrier layer must be formed on the inner wall of the via (see, for example, Patent Document 2).
  • JP 2014-095104 A (paragraphs 0042 to 0050, Table 1)
  • JP2013-532903A (paragraph 0039, FIG. 13)
  • Cu via filling by electrolytic plating requires precise control of the plating process (composition of plating solution, applied voltage waveform, agitation of solution), which poses problems of excessive equipment investment and increased costs for process management.
  • the diffusion barrier layer requires materials such as conductive metal nitrides, which have a complex formation process and are difficult to handle, which again poses problems of excessive equipment investment and increased costs for process management.
  • This application discloses technology to solve the problems described above, and aims to provide a semiconductor device with good electrical connection and heat dissipation in the thickness direction at low cost.
  • the semiconductor device disclosed in this application is characterized by comprising a substrate of a semiconductor material, a solid via having an opening on the other side of the substrate, a first plating layer of gold covering the inner wall of a cylindrical hole having the wiring member as its bottom surface and having a recess recessed from the opening side toward the bottom surface, and a second plating layer of copper, silver, nickel, tin, or gold having a larger crystal grain size than the first plating layer, filling the recess.
  • the method of manufacturing a semiconductor device disclosed in this application is characterized by including the steps of forming a wiring member on one side of a substrate made of a semiconductor material, forming a cylindrical hole that opens on the other side of the substrate and has the wiring member as its bottom, forming a first plating layer of gold by electroless plating so as to cover the inner wall of the cylindrical hole and form a recess that is recessed from the opening side toward the bottom, and forming a second plating layer of copper, silver, nickel, tin, or gold by electrolytic plating so as to fill the recess.
  • the semiconductor device or semiconductor device manufacturing method disclosed in this application does not require excessively large equipment and forms a gold coating layer on the inner wall of the via in a simple process, making it possible to obtain a semiconductor device with good electrical connection and heat dissipation in the thickness direction at low cost.
  • FIG. 4 is an end view for explaining a configuration of a via of the semiconductor device according to the first embodiment
  • FIG. 1 is an end view for explaining a configuration of a semiconductor device according to a first embodiment
  • 1 is a flowchart for explaining a method of manufacturing a semiconductor device according to a first embodiment.
  • 1 is an end view during a via filling process for explaining the configuration of a covering layer of a via in the semiconductor device according to the first embodiment
  • FIG. 1A to 1C are diagrams showing cross-sectional SEM images during a via filling process in the semiconductor device according to the first embodiment
  • 5A to 5C are schematic end views showing stages during formation of a covering layer in via filling of the semiconductor device according to the first embodiment.
  • FIG. 13 is an end view for explaining a configuration of a via of a semiconductor device according to a modified example of the first embodiment
  • FIG. 11 is an end view for explaining a configuration of a via of a semiconductor device according to a comparative example.
  • FIG. 11A and 11B are diagrams showing cross-sectional SEM images during a via filling process in a semiconductor device according to a comparative example.
  • 13 is an end view for explaining a configuration before a filling layer is formed in via filling of a semiconductor device according to a second embodiment.
  • FIG. 10 is a flowchart for explaining a method of manufacturing a semiconductor device according to a second embodiment.
  • FIG. 11 is an end view for explaining a configuration of a via of a semiconductor device according to a second embodiment.
  • FIG. 13 is an end view for explaining a configuration of a via of a semiconductor device according to a third embodiment.
  • FIG. 13 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the third embodiment.
  • FIG. 13 is an end view for explaining a configuration of a via of a semiconductor device according to a fourth embodiment.
  • FIG. 13 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the fourth embodiment.
  • FIG. 13 is an end view for explaining a configuration of a via of a semiconductor device according to a fifth embodiment.
  • FIG. 13 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the fifth embodiment.
  • FIG. 13 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the fifth embodiment.
  • FIG. 23 is an end view for explaining the configuration of a via of a semiconductor device according to a sixth embodiment.
  • FIG. 23 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the sixth embodiment.
  • FIG. 23 is an end view for explaining a configuration of a via of a semiconductor device according to a seventh embodiment.
  • FIG. 23 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the seventh embodiment.
  • Embodiment 1. 1 to 9 are for explaining the semiconductor device according to the first embodiment and the manufacturing method of the semiconductor device, and FIG. 1 is an end view corresponding to the line A-A in FIG. 2 described later for explaining the configuration of the via of the semiconductor device, and FIG. 2 is an end view for explaining the configuration of the semiconductor device.
  • FIG. 3 is a flow chart for explaining the manufacturing method of the semiconductor device, and FIG. 4 is an end view corresponding to FIG. 1 before forming the filling layer and forming the coating layer during the via filling process for explaining the configuration of the coating layer of the via of the semiconductor device, and FIG. 5 is a cross-sectional SEM image at the stage of forming the coating layer similar to FIG. 4 in the via filling process.
  • FIG. 6 is an end view schematic diagram showing the state at each stage during the formation of the coating layer in the via filling of the semiconductor device according to the first embodiment.
  • FIG. 7 is an end view corresponding to FIG. 4 at the stage where a coating layer has been formed to explain the configuration of the via of the semiconductor device according to the modified example.
  • FIG. 8 is an end view at the stage where a coating layer has been formed to explain the configuration of the via of the semiconductor device according to the comparative example
  • FIG. 9 is a cross-sectional SEM image at the stage where a coating layer similar to that of FIG. 8 has been formed in the via filling process.
  • the semiconductor device 10 is assumed to be, for example, a semiconductor device called a high electron mobility transistor (HEMT).
  • HEMT high electron mobility transistor
  • Figures 1 and 2 a case will be described in which a via 10v is formed from the back surface directly below the source electrode 3s on the front surface (the upper surface in the figure).
  • the via 10v shown in Figure 1 is a detailed view of the via 10v formed directly below the source electrode 3s in Figure 2, but the via 10v does not necessarily have to be directly below the source electrode 3s, and may be located directly below a conductor layer (wiring member) formed on the front surface, including the wiring pattern.
  • a conductor layer wiring member
  • the semiconductor device 10 there is an epitaxial growth layer 2 on a silicon carbide (SiC) substrate 1, and there are a source electrode 3s, a drain electrode 3d, and a gate electrode 3g (collectively, surface electrodes 3) on top of that.
  • the via 10v is formed directly below the source electrode 3s, with the source electrode 3s serving as an etching stop layer.
  • a gallium nitride (GaN) HEMT on a silicon carbide substrate 1 is described as an example, but the present invention is not limited to this.
  • the same effect can be obtained with other semiconductor substrates, such as compound semiconductors such as indium phosphide (InP), gallium nitride, and germanium silicide (SiGe), and silicon (Si)-based semiconductors.
  • compound semiconductors such as indium phosphide (InP), gallium nitride, and germanium silicide (SiGe), and silicon (Si)-based semiconductors.
  • Au gold
  • the coating layer 42 of the via 10v is formed on the seed layer 41, and is therefore not dependent on the element type of the substrate 1.
  • step S100 epitaxial growth, metal film and insulating film formation, and transfer patterning are repeatedly performed in a wafer process on the surface (upper surface in Figs. 1 and 2) of a substrate 1 made of SiC single crystal, to form an electric circuit on the surface (step S100).
  • the wafer process is performed on a disk-shaped substrate having a diameter of 4 to 8 inches and a thickness of 0.35 mm or 0.5 mm.
  • an epitaxial growth layer 2 is formed on a substrate 1.
  • a laminated structure is generally formed in which an aluminum gallium nitride (AlGaN) layer is laminated on a gallium nitride layer.
  • AlGaN aluminum gallium nitride
  • a source electrode 3s, a drain electrode 3d, and a gate electrode 3g are formed.
  • a laminated structure such as titanium/aluminum/gold (Ti/Al/Au) or titanium/aluminum/nickel/gold (Ti/Al/Ni/Au) is used.
  • a laminated structure such as titanium/platinum/gold (Ti/Pt/Au) is used.
  • the source electrode 3s, the drain electrode 3d, and the gate electrode 3g are protected with an insulating film 9 made of, for example, silicon nitride (SiN).
  • an insulating film 9 made of, for example, silicon nitride (SiN).
  • the gate electrode 3g portion may be opened by dry etching to form the gate electrode 3g, and the whole may be protected again with the insulating film 9.
  • electrodes for wiring may be further attached.
  • electrolytic gold plating or the like is used for the electrodes for wiring.
  • a wax material is used to attach the front side of the wafer to a support substrate for processing the back side (the lower surface in Figures 1 and 2).
  • a tape material may be used instead of the wax material.
  • the thickness of the wax material is, for example, 20 ⁇ m.
  • the back side of the wafer is ground and polished while still attached to the support substrate.
  • the substrate thickness is thinned to 50 ⁇ m. By thinning the substrate, the heat dissipation and high frequency characteristics of the device are improved.
  • the via processing process (steps S200 to S230) is performed.
  • a resist material is applied using a spin coater, and then the resist is removed only from the processed area using transfer and development patterning.
  • the substrate is etched using ICP (Inductively Coupled Plasma) dry etching to form a through hole for the via 10v (step S200).
  • ICP Inductively Coupled Plasma
  • the applied resist material is removed by immersion in a stripping solution.
  • a semiconductor back surface can be obtained with the inner surface of the through hole, which becomes the via 10v in the substrate 1, exposed.
  • Smaller vias 10v are advantageous because they provide greater freedom in layout, but if they are too small, the etching process for forming the through holes will not proceed and they will not be able to penetrate the substrate 1.
  • they can be formed in a cylindrical shape with a diameter of 50 ⁇ m.
  • the aspect ratio (via depth/via diameter) of the via 10v (through hole) is 1, but this can vary depending on the substrate thickness and via shape, and can range from 1 to 5.
  • a seed layer 41 is formed to cover the inner wall of the formed through hole (step S210).
  • the seed layer 41 is formed, for example, by stacking a 200 nm thick gold layer on a 50 nm thick titanium layer in contact with the substrate 1.
  • the titanium layer is a film inserted to improve adhesion between the gold layer, which is the main component of the seed layer 41, and the substrate 1.
  • Titanium nitride, tantalum (Ta), tungsten (W), chromium (Cr), etc. may be used instead of titanium.
  • a platinum layer may also be inserted between the titanium layer and the gold layer. In that case, for example, the titanium layer may be 50 nm thick, the platinum layer may be 50 nm thick, and the gold layer may be 200 nm thick.
  • An insulating film layer may also be inserted between the substrate 1 and the seed layer 41.
  • the electroless plating reaction begins when the surface of the seed layer 41 is made into a gold layer.
  • gold silver (Ag), copper (Cu), palladium (Pd), platinum, nickel, ruthenium (Ru), tin (Sn), etc. may also be used.
  • the electroless plating reaction can be initiated by adding a step of immersing the surface in a pretreatment solution containing catalytic metal ions as a pretreatment for electroless plating, thereby adding a catalyst.
  • a pretreatment solution containing catalytic metal ions as a pretreatment for electroless plating
  • the gold which is the deposited metal, itself acts as a catalyst, so the reaction continues and a gold plating film can be obtained (autocatalytic electroless plating).
  • the seed layer 41 is interposed between the substrate 1 and the gold coating layer 42, and therefore does not need to function as a barrier layer to prevent copper diffusion as was feared in Patent Document 2. Therefore, there is no need to use materials that are difficult to handle and require complex formation processes, such as conductive metal nitrides such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), and titanium aluminum nitride (TiAlN).
  • conductive metal nitrides such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), and titanium aluminum nitride (TiAlN).
  • the seed layer 41 is covered by electroless gold plating to form a gold coating layer 42 having a recess 42d that opens to the back side (step S220).
  • the figure shows an example of forming a conical recess 42d whose cross section passing through the axial center of the through hole is V-shaped.
  • the formation of the conical recess 42d can be achieved by adjusting the additive in the electroless gold plating solution within an appropriate range. Note that this additive has the effect of suppressing plating deposition on the opening side (lower side in the figure) and preferentially depositing gold from the bottom surface (upper side in the figure) and inner peripheral surface of the seed layer 41.
  • the above-mentioned method allows the formation of a coating layer 42 having a conical recess 42d.
  • the thickness t42 (see Figure 4) from the bottom of the via to the apex of the cone (bottom 42b of recess 42d) is at least 1/4 of the via height Hv.
  • the depth Dd of recess 42d is less than 4/3 of the via height Hv.
  • the via height Hv is drawn as the dimension obtained by subtracting the thickness of the seed layer 41 from the thickness of the substrate 1 including the epitaxial growth layer 2, but the thickness of the seed layer 41 is negligibly thin compared to the thickness of the substrate 1. Thinner than the substrate 1. Therefore, the sum of the thickness of the substrate 1 and the thickness of the epitaxial growth layer 2 is defined as the above-mentioned via height Hv.
  • the thickness t42 is 1/2 or less of the via height Hv. If the thickness t42 is made thicker than 1/2 of the via height Hv, the amount of additive in the plating solution will be reduced, increasing the risk of the via opening being blocked as shown in FIG. 9. Also, because the amount of additive is small, the thickness of the coating layer 42 on the back surface of the wafer will be too thick.
  • the vertical growth of the plating can be suppressed by the additive. Therefore, as shown in FIG. 6, once the plating has grown through stages 1, 2, and 3 to a thickness t42 determined by the amount of additive added, the gold plating will not grow even if the wafer is subsequently immersed in an electroless plating solution for, for example, two hours (from stage 3 to stage 4). Therefore, a coating layer 42 having recesses 42d with the same uniform thickness t42 can be formed in each of the multiple through holes in the substrate surface.
  • the recesses 42d shown in FIG. 1 are filled by electrolytic plating to form a gold filling layer 43 with a larger crystal grain size than the coating layer 42 formed by electroless plating (step S230).
  • This forms a solid via 10v whose through hole is filled completely with gold.
  • it is advisable to apply a pulse voltage.
  • a depression will occur in the opening end of the via 10v (the lower surface in the figure), i.e., the filling layer 43, reflecting the recesses 42d in the coating layer 42, but the presence or absence of this depression and its shape are not important.
  • the via 10v is completely filled with the filling layer 43 formed by electrolytic plating, improving high frequency characteristics and heat dissipation. If the gold film thickness on the back surface (lower part in the figure) of the wafer becomes too thick due to the complete filling of the via 10v, etching can be carried out until the desired film thickness is reached.
  • argon (Ar) ion milling is used for dry etching
  • iodine (I)-based wet etching is used for wet etching.
  • the support substrate is peeled off from the wafer.
  • the support substrate and wafer are heated to 100°C on a hot plate for at least one minute to melt the wax material, and then slid parallel to the wafer surface to peel them off.
  • the wafer is then immersed in acetone heated to 50°C for 10 minutes to remove the wax material from the surface (step S300). At this time, the higher the temperature and the longer the immersion time, the better the removability.
  • the recess 42d of the coating layer 42 does not necessarily have to have a V-shaped (conical) cross-sectional shape as shown in Fig. 4, but may have a curved recessed shape as shown in the modified example of Fig. 7. It is sufficient that the opening width Wd of the recess 42d of the coating layer 42 is formed so as to decrease toward the bottom 42b, and the bottom 42b does not have to be pointed.
  • the opening width Wd of the recess 42dC of the coating layer 42C must not be an overhang shape having a portion that becomes larger toward the bottom 42bC. If electrolytic plating is performed to form the filling layer 43C in this state, the opening of the recess 42dC will be blocked, and a gap will be generated inside the via. If no additive is used, the recess 42dC will have an overhang shape as shown in FIG. 9, the via opening will be blocked first, and a void 4v will be generated.
  • the parts corresponding to the embodiment are distinguished by adding "C" to the end of the reference numeral.
  • the inside of the via 10v can be completely filled without any voids with a gold filling layer 43 formed by electrolytic plating and having a larger crystal grain size than the coating layer 42.
  • the inductor component of the via 10v is reduced, improving high frequency characteristics. Furthermore, an improvement of about 10% in heat dissipation is expected compared to hollow via structures, for example (R. Baskaran, Allen W. Hanson, CS MANTECH Conference (USA), May 18th-21st, 2015 "Simulation of the Impact of Through-Substrate Vias on the Thermal Resistance of Compound Semiconductor Devices”). Furthermore, because the coating layer 42 is made of gold, there is no concern about reduced electrical reliability due to copper contamination.
  • Embodiment 2 In the above-mentioned first embodiment, an example in which a portion covered with a coating layer remains on the rear surface of the wafer has been described. In the second embodiment, an example in which the coating layer is removed from the rear surface of the wafer will be described.
  • FIGS. 10 to 12 are used to explain the semiconductor device and the manufacturing method of the semiconductor device according to the second embodiment
  • FIG. 10 is a flow chart for explaining the manufacturing method of the semiconductor device.
  • FIG. 11 is an end view corresponding to FIG. 3 used to explain the configuration after the formation of the covering layer and before the formation of the filling layer in via filling of the semiconductor device
  • FIG. 12 is an end view corresponding to FIG. 1 used to explain the configuration of the via. Note that the same reference numerals are used for the same parts as in the first embodiment, and the description of the same parts is omitted, and FIG. 2 and FIG. 4 used in the first embodiment are used.
  • step S220V the formation of the coating layer 42
  • step S220V the formation of the gold coating layer 42 having the recess 42d opening on the back side as described in Fig. 4 of the first embodiment, so as to cover the back surface of the wafer.
  • step S220V a process of adjusting the coverage by removing the layer of the coating layer 42 and the seed layer 41 precipitated on the front surface (back surface of the wafer) by etching is added.
  • Dry etching or wet etching is used for the etching.
  • dry etching for example, argon ion milling is used.
  • dry etching titanium, gold, and platinum can be etched at the same time.
  • wet etching the chemical used is changed depending on the target layer to be removed. For example, an iodine-based chemical is used for gold, and for titanium, buffered hydrofluoric acid (BHF) or a mixture of ammonia (NH 3 ) and hydrogen peroxide (H 2 O 2 ) is used.
  • BHF buffered hydrofluoric acid
  • NH 3 ammonia
  • H 2 O 2 hydrogen peroxide
  • the seed layer 41 does not necessarily have to be etched.
  • the flat area on the backside of the wafer can have the surface of the gold base of the seed layer 41 (titanium and platinum in this example). Because a thicker layer of gold is deposited inside the through-holes than on the flat area, the surface is mainly gold.
  • a metal film 44 is formed on the coating layer 42 and the back surface of the wafer by sputtering as shown in FIG. 12 (step S225).
  • a titanium layer with a thickness of 50 nm and a gold layer with a thickness of 200 nm are used.
  • a filling layer 43 is formed by electrolytic gold plating to fill the recess 42d (step S230). Again, if the thickness of the filling layer 43 becomes too thick, etching may be performed until the desired thickness is reached. For dry etching, for example, argon ion milling or the like is used, and for wet etching, for example, iodine-based wet etching or the like is used.
  • the film thickness on the flat part of the back surface of the wafer becomes as thick as, for example, about 5 ⁇ m
  • the internal stress of the plating film becomes high, causing wafer warping and chip warping.
  • the plating film on the flat portion on the back surface of the wafer is etched back to reduce the gold thickness on the flat portion, thereby improving the above-mentioned problem.
  • the gold on the flat portion is removed, and if left as is, the electrical resistance of the flat portion increases, which interferes with the power supply in the next electrolytic plating process. Therefore, by forming the metal film 44 by sputtering or vapor deposition, it is possible to ensure the uniformity of the film and the filling characteristics in the via 10v in the electrolytic plating in the process of forming the filling layer 43 (step S230), in the same way as reconstructing the seed layer 41.
  • Embodiment 3 In the above-mentioned first and second embodiments, the manufacturing method and the crystal grain size are different, but the filling layer is made of the same gold as the covering layer. In the present embodiment 3, an example in which the filling layer is made of copper will be described.
  • FIG. 13 and 14 are intended to explain a semiconductor device according to the third embodiment and a method for manufacturing the semiconductor device, with FIG. 13 being an end view corresponding to FIG. 1 used to explain the configuration of the vias in the semiconductor device, and FIG. 14 being an end view corresponding to FIG. 13 to explain the configuration of the vias in the semiconductor device according to a modified example. Note that parts similar to those in the first embodiment are given the same reference numerals, and explanations of similar parts are omitted, with reference to FIGS. 2 to 4 used in the first embodiment.
  • the configuration of the coating layer 42 and the manufacturing method thereof are the same as those in the first embodiment.
  • the step of forming the filling layer 53 is performed by electrolytic plating, but the copper filling layer 53 is formed by electrolytic plating of copper (electrolytic copper plating) as shown in FIG. 13.
  • the inside of the via 10v can be completely filled without gaps together with the copper filling layer 53 formed by electrolytic plating.
  • the filling layer 53 is made of copper, CMP polishing can be performed without using special chemicals, making it easier to flatten the surface.
  • electrolytic plating additives that are more effective for filling vias have been developed for copper plating than for gold plating, making it easier to fill the recess 42d.
  • the inductor component of the via 10v is reduced, improving the high frequency characteristics.
  • the gold coating layer 42 acts as a copper diffusion barrier in addition to the conductive nitride film shown in Patent Document 2, improving the reliability of the device.
  • copper has better electrical and thermal conductivity than gold, so the device characteristics (electrical characteristics, high frequency characteristics, thermal characteristics) are improved compared to when the filler 4 is made of gold alone.
  • the back surface of the wafer can be easily planarized, allowing three-dimensional device design in which the next layer is stacked on top of the planarized layer.
  • Embodiment 4 In the above-described third embodiment, an example was described in which the filling layer in the semiconductor device of the first embodiment is made of copper. In the fourth embodiment, an example is described in which the filling layer in the semiconductor device of the second embodiment is made of copper.
  • FIG. 15 and 16 are intended to explain the semiconductor device and the method of manufacturing the semiconductor device according to the fourth embodiment, with FIG. 15 being an end view corresponding to FIG. 12 used to explain the second embodiment and intended to explain the via configuration of the semiconductor device, and FIG. 16 being an end view corresponding to FIG. 15 and intended to explain the via configuration of the semiconductor device according to the modified example. Note that parts similar to those in the first and second embodiments are given the same reference numerals, and explanations of similar parts are omitted, with reference to FIGS. 2 and 4 used in the first embodiment and FIGS. 10 and 11 used in the second embodiment.
  • the configuration of the coating layer 42 and the manufacturing method thereof are the same as those in the second embodiment.
  • the step of forming the filling layer 53 is performed by electrolytic plating, but the copper filling layer 53 is formed by electrolytic plating of copper (electrolytic copper plating) as shown in FIG. 15.
  • the inside of the via 10v can be completely filled without gaps together with the copper filling layer 53 formed by electrolytic plating.
  • the filling layer 53 is made of copper, CMP polishing can be performed without using special chemicals, making it easier to flatten the surface.
  • electrolytic plating additives that are more effective for filling vias have been developed for copper plating than for gold plating, making it easier to fill the recess 42d.
  • the inductor component of the via 10v is reduced, improving the high frequency characteristics.
  • the gold coating layer 42 acts as a copper diffusion barrier in addition to the conductive nitride film, improving the reliability of the device.
  • copper has better electrical and thermal conductivity than gold, so the device characteristics (electrical characteristics, high frequency characteristics, thermal characteristics) are improved compared to when the filler 4 is made of gold alone.
  • the back surface of the wafer can be easily planarized, allowing three-dimensional device design in which the next layer is stacked on top of the planarized layer.
  • Embodiment 5 In the above-described third and fourth embodiments, examples were described in which the composition of the filling layer was changed from gold to copper in comparison with the first and second embodiments. In the present fifth embodiment, an example will be described in which the composition of the filling layer is changed from gold to silver.
  • FIG. 17 and 18 are intended to explain the semiconductor device and the manufacturing method of the semiconductor device according to the fifth embodiment, with FIG. 17 being an end view corresponding to FIG. 1 used in the description of the first embodiment and illustrating the via configuration of the semiconductor device, and FIG. 18 being an end view corresponding to FIG. 12 used in the description of the second embodiment and illustrating the via configuration of the semiconductor device according to the modified example. Note that parts similar to those in the first and second embodiments are given the same reference numerals, and descriptions of similar parts are omitted, and FIG. 2 to FIG. 4 used in the first embodiment and FIG. 10 and FIG. 11 used in the second embodiment are used.
  • the configuration of the coating layer 42 and the manufacturing method thereof are the same as those in the first embodiment.
  • the step of forming the filling layer 63 involves electrolytic plating, but the filling layer 63 is formed of silver by electrolytic plating (electrolytic silver plating) as shown in FIG. 17.
  • the configuration of coating layer 42 and the manufacturing method thereof are the same as those in embodiment 2.
  • the step of forming filling layer 63 is performed by electrolytic plating, but by electrolytic plating of silver (electrolytic silver plating), to form filling layer 63 of silver, as shown in FIG.
  • a coating layer 42 having a recess 42d that tapers toward the bottom 42b is formed by electroless plating, and together with the silver filling layer 63 formed by electrolytic plating, the inside of the via 10v can be completely filled without gaps. Furthermore, in the fifth embodiment, since the filling layer 63 is made of silver, there is no need to worry about copper contamination as in the first and second embodiments, and there is no concern about a decrease in electrical reliability.
  • silver has better electrical and thermal conductivity than gold or copper, so the inductor component of via 10v is lower and the device characteristics (electrical characteristics, high frequency characteristics, thermal characteristics) are improved compared to when the filler 4 is made of gold alone or when the filler layer is made of copper.
  • Embodiment 6 In the above-mentioned embodiment 5, an example was described in which the composition of the filling layer was changed from gold to silver in comparison with embodiments 1 and 2. In the present embodiment 6, an example will be described in which the composition of the filling layer is changed from gold to nickel.
  • FIG. 19 and 20 are intended to explain the semiconductor device and the method of manufacturing the semiconductor device according to the sixth embodiment, with FIG. 19 being an end view corresponding to FIG. 1 used in the explanation of the first embodiment and illustrating the via configuration of the semiconductor device, and FIG. 20 being an end view corresponding to FIG. 12 used in the explanation of the second embodiment and illustrating the via configuration of the semiconductor device according to the modified example.
  • FIG. 2 to FIG. 4 used in the first embodiment and FIG. 10 and FIG. 11 used in the second embodiment are used.
  • the configuration of the coating layer 42 and the manufacturing method thereof are the same as in the first embodiment.
  • the step of forming the filling layer 73 is performed by electrolytic plating, but the nickel (Ni) filling layer 73 is formed by electrolytic plating (electrolytic nickel plating) as shown in FIG. 19.
  • the configuration of coating layer 42 and its manufacturing method are the same as those in the embodiment 2.
  • the step of forming filling layer 73 is performed by electrolytic plating, but by electrolytic plating of nickel (electrolytic nickel plating), to form nickel filling layer 73 as shown in FIG.
  • the inside of the via 10v can be completely filled without gaps with the silver filling layer 63 formed by electrolytic plating. Therefore, compared to the hollow case, it is expected that the high frequency characteristics will be improved by suppressing the heat dissipation and inductor components. Furthermore, in the sixth embodiment, since the filling layer 73 is made of nickel, there is no need to worry about copper contamination as in the first and second embodiments, and there is no concern about a decrease in electrical reliability.
  • the back surface of the high frequency device is die-bonded with gold-tin (AuSn) solder, silver-tin (SnAg) solder, etc., but when die-bonding to a gold or copper surface with solder, a thick alloy layer is formed at the interface, leading to poor conductivity, poor adhesion, and deterioration of thermal properties.
  • AuSn gold-tin
  • SnAg silver-tin
  • the nickel that constitutes the filling layer 73 at the gold and solder interface acts as a barrier layer, preventing these deteriorations in properties.
  • Embodiment 7 In the above-mentioned fifth and sixth embodiments, examples were described in which the composition of the filling layer was changed from gold to silver and nickel, as compared with the first and second embodiments. In the seventh embodiment, an example will be described in which the composition of the filling layer is changed from gold to tin.
  • FIG. 21 and 22 are intended to explain the semiconductor device and the method of manufacturing the semiconductor device according to the seventh embodiment, with FIG. 21 being an end view corresponding to FIG. 1 used in the explanation of the first embodiment and illustrating the via configuration of the semiconductor device, and FIG. 22 being an end view corresponding to FIG. 12 used in the explanation of the second embodiment and illustrating the via configuration of the semiconductor device according to the modified example. Note that parts similar to those in the first and second embodiments are given the same reference numerals, and explanations of similar parts are omitted, and FIG. 2 to FIG. 4 used in the first embodiment and FIG. 10 and FIG. 11 used in the second embodiment are used.
  • the configuration of the coating layer 42 and the manufacturing method thereof are the same as in the first embodiment.
  • the step of forming the filling layer 83 is performed by electrolytic plating, but the tin filling layer 83 is formed by electrolytic plating of tin (electrolytic tin plating) as shown in FIG. 21.
  • the configuration of coating layer 42 and the manufacturing method thereof are the same as those in the embodiment 2.
  • the step of forming filling layer 83 is performed by electrolytic plating, but by electrolytic plating of tin (electrolytic tin plating), to form tin filling layer 83 as shown in FIG.
  • the inside of the via 10v can be completely filled without gaps with the tin filling layer 83 formed by electrolytic plating. Therefore, compared to the hollow case, it is expected that the high frequency characteristics will be improved by suppressing the heat dissipation and inductor components. Furthermore, in the seventh embodiment, since the filling layer 83 is made of tin, there is no need to worry about copper contamination as in the first and second embodiments, and there is no concern about a decrease in electrical reliability.
  • the backside of the high frequency device is die-bonded using gold-tin (AuSn) solder, silver-tin (SnAg) solder, etc., but this eliminates the need to apply solder.
  • AuSn gold-tin
  • SnAg silver-tin
  • the semiconductor device 10 of the present application includes a substrate 1 made of a semiconductor material, a wiring member formed on one surface (the upper surface in the figure) of the substrate 1, a first plating layer (coating layer 42) made of gold that opens on the other surface of the substrate 1 and covers the inner wall of a cylindrical hole with the wiring member (surface electrode 3) as its bottom surface, and has a recess 42d recessed from the opening side toward the bottom surface, and a solid via 10v that has a second plating layer (filling layer 43, 53, 63, 73, 83) made of copper, silver, nickel, tin, or gold with a crystal grain size larger than that of the first plating layer (coating layer 42) that fills the recess 42d.
  • the recess 42d is configured to widen from the bottom surface toward the opening, it is possible to reliably obtain a semiconductor device with excellent electrical conductivity and heat dissipation without the generation of voids.
  • the thickness t42 of the first plating layer (coating layer 42) to the bottom surface of the recess is set to 1/4 or more of the thickness of the substrate (via height Hv), the occurrence of voids can be more reliably prevented.
  • a metal film 44 containing titanium, tantalum, tungsten, chromium, or platinum is provided between the first plating layer (coating layer 42) and the second plating layer (filling layer 43, 53, 63, 73, 83), the plating film of the filling layer 43 becomes uniform, and the embeddability in the via 10v is further improved.
  • the substrate 1 is made of silicon carbide, indium phosphide, gallium nitride, germanium silicide, germanium, or silicon, a semiconductor device with higher performance can be obtained.
  • the manufacturing method of the semiconductor device 10 of the present application includes the steps of forming a wiring member on one side of the substrate 1 of the semiconductor material, opening on the other side of the substrate 1 and forming a cylindrical hole with the wiring member (surface electrode 3) as the bottom (steps S100 to S200), forming a first gold plating layer (coating layer 42) by electroless plating so as to cover the inner wall of the cylindrical hole and form a recess 42d recessed from the opening side toward the bottom (steps S220, S220V), and forming a second plating layer (filling layer 43) of copper, silver, nickel, tin, or gold by electrolytic plating so as to fill the recess 42d (step S230).
  • step S225 of forming a metal film 44 that covers the inner surface of the recess 42d by sputtering or vapor deposition, the plating film will be uniform when the filling layer 43 is formed by electrolytic plating, and the embeddability of the via 10v will be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A semiconductor device (10) according to the present application is configured to comprise a substrate (1) of a semiconductor material, a surface electrode (3) formed on one surface of the substrate (1), and a solid via (10v) including: a covering layer (42) formed from gold, which covers the inner wall of a tubular hole opening on the other surface of the substrate (1) and having the surface electrode (3) as the bottom surface thereof, and in which is formed a depression (42d) depressed from the opening side toward the bottom surface; and a filler layer (43) filling the depression (42d) and formed from any of copper, silver, nickel, tin, and gold with a larger crystal grain size than the covering layer (42).

Description

半導体装置および半導体装置の製造方法Semiconductor device and method for manufacturing the same

 本願は、半導体装置および半導体装置の製造方法に関するものである。 This application relates to a semiconductor device and a method for manufacturing the semiconductor device.

 半導体基板の表面と裏面を貫通する電極(ビア)を有する半導体装置においては、ビア内を通常、Cuビアフィリングと称される銅(Cu)めっきにおいて充填することで、電気的な接続、高周波特性の向上および放熱性の向上が期待される。 In semiconductor devices that have electrodes (vias) that penetrate the front and back surfaces of a semiconductor substrate, filling the vias with copper (Cu) plating, which is usually called Cu via filling, is expected to improve electrical connection, high frequency characteristics, and heat dissipation.

 銅めっきによるビアフィリングは電解めっきで実施され、めっき液の組成、印加電圧波形、液の攪拌など精密な制御が必要である(例えば、特許文献1参照。)。また、銅の半導体内部への拡散による電気的特性の劣化が懸念されることから、ビア内壁には拡散バリア層を形成する必要がある(例えば、特許文献2参照。)。 Via filling with copper plating is performed by electrolytic plating, which requires precise control of the plating solution composition, applied voltage waveform, solution agitation, etc. (see, for example, Patent Document 1). In addition, there is concern that the electrical characteristics may deteriorate due to the diffusion of copper into the semiconductor, so a diffusion barrier layer must be formed on the inner wall of the via (see, for example, Patent Document 2).

特開2014-095104号公報(段落0042~0050、表1)JP 2014-095104 A (paragraphs 0042 to 0050, Table 1) 特表2013-532903号公報(段落0039、図13)JP2013-532903A (paragraph 0039, FIG. 13)

 しかし、電解めっきによるCuビアフィリングにおいては、めっき工程(めっき液の組成、印加電圧波形、液の攪拌)の精密な管理が必要であり、過大な装置投資、工程管理等のコスト増大が問題であった。さらに、拡散バリア層としては、導電性金属窒化物のような形成工程が複雑で取り扱いが困難な材料を必要とし、やはり、過大な装置投資、工程管理等のコスト増大が問題であった。 However, Cu via filling by electrolytic plating requires precise control of the plating process (composition of plating solution, applied voltage waveform, agitation of solution), which poses problems of excessive equipment investment and increased costs for process management. Furthermore, the diffusion barrier layer requires materials such as conductive metal nitrides, which have a complex formation process and are difficult to handle, which again poses problems of excessive equipment investment and increased costs for process management.

 本願は、上記のような課題を解決するための技術を開示するものであり、厚み方向において良好な電気的な接続と放熱性を有する半導体装置を低コストで得ることを目的とする。 This application discloses technology to solve the problems described above, and aims to provide a semiconductor device with good electrical connection and heat dissipation in the thickness direction at low cost.

 本願に開示される半導体装置は、半導体材料の基板、前記基板の他方の面で開口し、前記配線部材を底面とする筒状の孔の内壁を被覆し、前記開口の側から前記底面に向かって窪む凹部が形成された金による第一メッキ層と、前記凹部を埋め、銅、銀、ニッケル、錫、および前記第一メッキ層よりも結晶粒径が大きな金のいずれかによる第二メッキ層と、を有する中実のビア、を備えたことを特徴とする。 The semiconductor device disclosed in this application is characterized by comprising a substrate of a semiconductor material, a solid via having an opening on the other side of the substrate, a first plating layer of gold covering the inner wall of a cylindrical hole having the wiring member as its bottom surface and having a recess recessed from the opening side toward the bottom surface, and a second plating layer of copper, silver, nickel, tin, or gold having a larger crystal grain size than the first plating layer, filling the recess.

 本願に開示される半導体装置の製造方法は、半導体材料の基板の一方の面に配線部材を形成し、前記基板の他方の面で開口し、前記配線部材を底面とする筒状の孔を形成する工程、前記筒状の孔の内壁を被覆し、かつ前記開口の側から前記底面に向かって窪む凹部が形成されるように、無電解メッキにより、金の第一メッキ層を形成する工程、および前記凹部を埋めるように、電解メッキにより、銅、銀、ニッケル、錫、金のいずれかの第二メッキ層を形成する工程、を含むことを特徴とする。 The method of manufacturing a semiconductor device disclosed in this application is characterized by including the steps of forming a wiring member on one side of a substrate made of a semiconductor material, forming a cylindrical hole that opens on the other side of the substrate and has the wiring member as its bottom, forming a first plating layer of gold by electroless plating so as to cover the inner wall of the cylindrical hole and form a recess that is recessed from the opening side toward the bottom, and forming a second plating layer of copper, silver, nickel, tin, or gold by electrolytic plating so as to fill the recess.

 本願に開示される半導体装置あるいは半導体装置の製造方法によれば、ビア内壁に過大な装置を必要とせず、簡単な工程で金の被覆層を形成したので、厚み方向において良好な電気的な接続と放熱性を有する半導体装置を低コストで得ることができる。 The semiconductor device or semiconductor device manufacturing method disclosed in this application does not require excessively large equipment and forms a gold coating layer on the inner wall of the via in a simple process, making it possible to obtain a semiconductor device with good electrical connection and heat dissipation in the thickness direction at low cost.

実施の形態1にかかる半導体装置のビアの構成を説明するための端面図である。4 is an end view for explaining a configuration of a via of the semiconductor device according to the first embodiment; FIG. 実施の形態1にかかる半導体装置の構成を説明するための端面図である。1 is an end view for explaining a configuration of a semiconductor device according to a first embodiment; 実施の形態1にかかる半導体装置の製造方法を説明するためのフローチャートである。1 is a flowchart for explaining a method of manufacturing a semiconductor device according to a first embodiment. 実施の形態1にかかる半導体装置のビアの被覆層の構成を説明するためのビアフィリング工程中の端面図である。1 is an end view during a via filling process for explaining the configuration of a covering layer of a via in the semiconductor device according to the first embodiment; FIG. 実施の形態1にかかる半導体装置におけるビアフィリング工程中の断面SEM像を示す図である。1A to 1C are diagrams showing cross-sectional SEM images during a via filling process in the semiconductor device according to the first embodiment; 実施の形態1にかかる半導体装置のビアフィリングにおける被覆層形成中の段階ごとの状態を示す端面模式図である。5A to 5C are schematic end views showing stages during formation of a covering layer in via filling of the semiconductor device according to the first embodiment. 実施の形態1の変形例にかかる半導体装置のビアの構成を説明するための端面図である。13 is an end view for explaining a configuration of a via of a semiconductor device according to a modified example of the first embodiment; FIG. 比較例にかかる半導体装置のビアの構成を説明するための端面図である。11 is an end view for explaining a configuration of a via of a semiconductor device according to a comparative example. FIG. 比較例にかかる半導体装置におけるビアフィリング工程中の断面SEM像を示す図である。11A and 11B are diagrams showing cross-sectional SEM images during a via filling process in a semiconductor device according to a comparative example. 実施の形態2にかかる半導体装置のビアフィリングにおける充填層形成前の構成を説明するための端面図である。13 is an end view for explaining a configuration before a filling layer is formed in via filling of a semiconductor device according to a second embodiment. FIG. 実施の形態2にかかる半導体装置の製造方法を説明するためのフローチャートである。10 is a flowchart for explaining a method of manufacturing a semiconductor device according to a second embodiment. 実施の形態2にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 11 is an end view for explaining a configuration of a via of a semiconductor device according to a second embodiment. 実施の形態3にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 13 is an end view for explaining a configuration of a via of a semiconductor device according to a third embodiment. 実施の形態3の変形例にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 13 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the third embodiment. 実施の形態4にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 13 is an end view for explaining a configuration of a via of a semiconductor device according to a fourth embodiment. 実施の形態4の変形例にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 13 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the fourth embodiment. 実施の形態5にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 13 is an end view for explaining a configuration of a via of a semiconductor device according to a fifth embodiment. 実施の形態5の変形例にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 13 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the fifth embodiment. 実施の形態6にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 23 is an end view for explaining the configuration of a via of a semiconductor device according to a sixth embodiment. 実施の形態6の変形例にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 23 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the sixth embodiment. 実施の形態7にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 23 is an end view for explaining a configuration of a via of a semiconductor device according to a seventh embodiment. 実施の形態7の変形例にかかる半導体装置のビアの構成を説明するための端面図である。FIG. 23 is an end view for explaining a configuration of a via in a semiconductor device according to a modified example of the seventh embodiment.

実施の形態1.
 図1~図9は、実施の形態1にかかる半導体装置、および半導体装置の製造方法について説明するためのものであり、図1は半導体装置のビアの構成を説明するための後述する図2のA-A線に対応する端面図、図2は半導体装置の構成を説明するための端面図である。そして、図3は半導体装置の製造方法を説明するためのフローチャートであり、図4は半導体装置のビアの被覆層の構成を説明するためのビアフィリング工程中の被覆層を形成し、充填層を形成する前の図1に対応する端面図、図5はビアフィリング工程における図4と同様の被覆層を形成した段階の断面SEM像である。また、図6は実施の形態1にかかる半導体装置のビアフィリングにおける被覆層形成中の段階ごとの状態を示す端面模式図である。
Embodiment 1.
1 to 9 are for explaining the semiconductor device according to the first embodiment and the manufacturing method of the semiconductor device, and FIG. 1 is an end view corresponding to the line A-A in FIG. 2 described later for explaining the configuration of the via of the semiconductor device, and FIG. 2 is an end view for explaining the configuration of the semiconductor device. And FIG. 3 is a flow chart for explaining the manufacturing method of the semiconductor device, and FIG. 4 is an end view corresponding to FIG. 1 before forming the filling layer and forming the coating layer during the via filling process for explaining the configuration of the coating layer of the via of the semiconductor device, and FIG. 5 is a cross-sectional SEM image at the stage of forming the coating layer similar to FIG. 4 in the via filling process. Also, FIG. 6 is an end view schematic diagram showing the state at each stage during the formation of the coating layer in the via filling of the semiconductor device according to the first embodiment.

 また、図7は変形例にかかる半導体装置のビアの構成を説明するための被覆層を形成した段階の図4に対応する端面図である。一方、図8は比較例にかかる半導体装置のビアの構成を説明するための被覆層を形成した段階の端面図、図9はビアフィリング工程における図8と同様の被覆層を形成した段階の断面SEM像である。 FIG. 7 is an end view corresponding to FIG. 4 at the stage where a coating layer has been formed to explain the configuration of the via of the semiconductor device according to the modified example. Meanwhile, FIG. 8 is an end view at the stage where a coating layer has been formed to explain the configuration of the via of the semiconductor device according to the comparative example, and FIG. 9 is a cross-sectional SEM image at the stage where a coating layer similar to that of FIG. 8 has been formed in the via filling process.

 実施の形態1にかかる半導体装置10は、例えば高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)と称される半導体装置を想定している。そして、図1と図2に示すように、表面(図中上方の面)のソース電極3s直下に裏面からビア10vが形成された場合を例として説明する。なお、図1に示すビア10vは、図2においてソース電極3s直下に形成されたビア10vの詳細図であるが、ビア10vは必ずしもソース電極3sの直下にある必要はなく、配線パターンを含め、表面に形成された導体層(配線部材)の直下に位置すればよい。 The semiconductor device 10 according to the first embodiment is assumed to be, for example, a semiconductor device called a high electron mobility transistor (HEMT). As shown in Figures 1 and 2, a case will be described in which a via 10v is formed from the back surface directly below the source electrode 3s on the front surface (the upper surface in the figure). Note that the via 10v shown in Figure 1 is a detailed view of the via 10v formed directly below the source electrode 3s in Figure 2, but the via 10v does not necessarily have to be directly below the source electrode 3s, and may be located directly below a conductor layer (wiring member) formed on the front surface, including the wiring pattern.

 半導体装置10では、炭化ケイ素(SiC)の基板1上にエピタキシャル成長層2があり、その上にソース電極3s、ドレイン電極3d、ゲート電極3g(まとめて表面電極3)がある。ビア10vはソース電極3sをエッチングストップ層として、ソース電極3s直下に形成されている。ビア10vの内壁に沿う形でメタル層があり、このメタル層をシード層41として、被覆層42、充填層43の順に形成し、充填体4を構成することでビアフィリングが達成される。 In the semiconductor device 10, there is an epitaxial growth layer 2 on a silicon carbide (SiC) substrate 1, and there are a source electrode 3s, a drain electrode 3d, and a gate electrode 3g (collectively, surface electrodes 3) on top of that. The via 10v is formed directly below the source electrode 3s, with the source electrode 3s serving as an etching stop layer. There is a metal layer along the inner wall of the via 10v, and this metal layer serves as a seed layer 41, and a coating layer 42 and a filling layer 43 are formed in that order to form the filling body 4, thereby achieving via filling.

 なお、実施の形態1、および以降の実施の形態においては炭化ケイ素の基板1上の窒化ガリウム(GaN)HEMTを例として説明するが、これに限ることはない。例えば、リン化インジウム(InP)、窒化ガリウム、珪化ゲルマニウム(SiGe)などの化合物半導体、シリコン(Si)系半導体など、他の半導体基板においても、同様の効果を得ることができる。これは、ビア10vの被覆層42を構成する金(Au)をシード層41上に形成するため、基板1の元素種によらないためである。 In the first embodiment and the following embodiments, a gallium nitride (GaN) HEMT on a silicon carbide substrate 1 is described as an example, but the present invention is not limited to this. For example, the same effect can be obtained with other semiconductor substrates, such as compound semiconductors such as indium phosphide (InP), gallium nitride, and germanium silicide (SiGe), and silicon (Si)-based semiconductors. This is because the gold (Au) that constitutes the coating layer 42 of the via 10v is formed on the seed layer 41, and is therefore not dependent on the element type of the substrate 1.

 つぎに、実施の形態1にかかる半導体装置10の構成の詳細について、図3のフローチャートを参考にして製造方法とともに説明する。
 はじめに、SiC単結晶で構成する基板1の表面(図1、2における上方の面)側に、ウエハプロセスでエピタキシャル成長、金属膜、絶縁膜形成、転写パターンニングを繰り返して行い、表面に電気回路を形成する(ステップS100)。なお、ウエハプロセスは、直径4~8インチの円盤状で、0.35mm、あるいは0.5mm厚の状態で行われる。
Next, the details of the configuration of the semiconductor device 10 according to the first embodiment will be described together with a manufacturing method with reference to the flow chart of FIG.
First, epitaxial growth, metal film and insulating film formation, and transfer patterning are repeatedly performed in a wafer process on the surface (upper surface in Figs. 1 and 2) of a substrate 1 made of SiC single crystal, to form an electric circuit on the surface (step S100). The wafer process is performed on a disk-shaped substrate having a diameter of 4 to 8 inches and a thickness of 0.35 mm or 0.5 mm.

 まず、基板1上にエピタキシャル成長層2を形成する。窒化ガリウムHEMTの場合、窒化ガリウム層上に窒化アルミガリウム(AlGaN)層を重ねた積層構造とするのが一般的である。つぎに、ソース電極3s、ドレイン電極3d、ゲート電極3gを形成する。ソース電極3s、ドレイン電極3dには、例えば、チタン/アルミ/金(Ti/Al/Au)。チタン/アルミ/ニッケル/金(Ti/Al/Ni/Au)などの積層構造を用いる。ゲート電極3gにはチタン/白金/金(Ti/Pt/Au)等の積層構造を用いる。 First, an epitaxial growth layer 2 is formed on a substrate 1. In the case of a gallium nitride HEMT, a laminated structure is generally formed in which an aluminum gallium nitride (AlGaN) layer is laminated on a gallium nitride layer. Next, a source electrode 3s, a drain electrode 3d, and a gate electrode 3g are formed. For the source electrode 3s and the drain electrode 3d, a laminated structure such as titanium/aluminum/gold (Ti/Al/Au) or titanium/aluminum/nickel/gold (Ti/Al/Ni/Au) is used. For the gate electrode 3g, a laminated structure such as titanium/platinum/gold (Ti/Pt/Au) is used.

 その後、ソース電極3s、ドレイン電極3d、ゲート電極3gを例えば窒化ケイ素(SiN)等の絶縁膜9で保護する。なお、ソース電極3s、ドレイン電極3dを形成し、絶縁膜9で保護した後に、ゲート電極3g部分のみをドライエッチングで開口してゲート電極3gを形成し、再度、絶縁膜9で全体を保護するようにしてもよい。この後、さらに配線用の電極をつけてもよい。配線用の電極には、電気金めっき等を用いる。 Then, the source electrode 3s, the drain electrode 3d, and the gate electrode 3g are protected with an insulating film 9 made of, for example, silicon nitride (SiN). After the source electrode 3s and the drain electrode 3d are formed and protected with the insulating film 9, only the gate electrode 3g portion may be opened by dry etching to form the gate electrode 3g, and the whole may be protected again with the insulating film 9. After this, electrodes for wiring may be further attached. For the electrodes for wiring, electrolytic gold plating or the like is used.

 表面のウエハプロセスが完了すると、裏面(図1、2における下方の面)処理のため、ワックス材を用い、ウエハの表面側を支持基板に貼り付ける。このとき、ワックス材の代わりにテープ材を用いても良い。ワックス材の厚さは例えば20μmとする。ウエハは、支持基板に貼り付けられた状態で裏面の研削、ポリッシュを行う。例えば、基板厚を50μm厚まで薄くする。薄くすることにより、デバイスの放熱性、および高周波特性が向上する。 Once the wafer processing on the front side is complete, a wax material is used to attach the front side of the wafer to a support substrate for processing the back side (the lower surface in Figures 1 and 2). At this time, a tape material may be used instead of the wax material. The thickness of the wax material is, for example, 20 μm. The back side of the wafer is ground and polished while still attached to the support substrate. For example, the substrate thickness is thinned to 50 μm. By thinning the substrate, the heat dissipation and high frequency characteristics of the device are improved.

 つぎに、ビア加工プロセス(ステップS200~S230)を行う。基板1を貫通する電極であるビア10vを形成するため、スピンコータによりレジスト材を塗布した後、転写・現像パターニングにより加工部のみレジストを除去する。例えば、ICP(誘導結合プラズマ:Inductively Coupled Plasma)ドライエッチングにより、基板エッチング加工を行い、ビア10v用の貫通孔を形成する(ステップS200)。 Next, the via processing process (steps S200 to S230) is performed. To form the via 10v, which is an electrode that penetrates the substrate 1, a resist material is applied using a spin coater, and then the resist is removed only from the processed area using transfer and development patterning. For example, the substrate is etched using ICP (Inductively Coupled Plasma) dry etching to form a through hole for the via 10v (step S200).

 貫通孔が形成されると、剥離液に浸漬して塗布したレジスト材を除去する。基板1のビア10vとなる貫通孔の内面が露出した状態の半導体裏面を得ることができる。ビア10vは小さいほうがレイアウトの自由度が高く有利であるが、小さすぎると貫通孔を形成する際のエッチングが進行せずに基板1を貫通させることができない。例えばφ50μmの円柱形状で形成する。ここではビア10v(貫通孔)のアスペクト比(ビア深さ/ビア直径)は1となっているが、基板厚みとビア形状によって変動し、1~5まで実施可能である。 Once the through holes are formed, the applied resist material is removed by immersion in a stripping solution. A semiconductor back surface can be obtained with the inner surface of the through hole, which becomes the via 10v in the substrate 1, exposed. Smaller vias 10v are advantageous because they provide greater freedom in layout, but if they are too small, the etching process for forming the through holes will not proceed and they will not be able to penetrate the substrate 1. For example, they can be formed in a cylindrical shape with a diameter of 50 μm. Here, the aspect ratio (via depth/via diameter) of the via 10v (through hole) is 1, but this can vary depending on the substrate thickness and via shape, and can range from 1 to 5.

 形成した貫通孔の内壁を覆うように、シード層41を形成する(ステップS210)。シード層41は例えば基板1に接する厚さ50nmのチタン層上に厚さ200nmの金層を積層して形成する。チタン層はシード層41の主体である金層と基板1との密着性を向上させるために挿入される膜で、チタンの代わりに窒化チタン、タンタル(Ta)、タングステン(W)、クロム(Cr)等を用いてもよい。また、チタン層と金層の間に白金層を挿入してもよく、その場合は、例えば、チタン層厚み50nm、白金層厚み50nm、金層厚み200nmなどとする。また、基板1とシード層41の間に絶縁膜層を挿入してもよい。 A seed layer 41 is formed to cover the inner wall of the formed through hole (step S210). The seed layer 41 is formed, for example, by stacking a 200 nm thick gold layer on a 50 nm thick titanium layer in contact with the substrate 1. The titanium layer is a film inserted to improve adhesion between the gold layer, which is the main component of the seed layer 41, and the substrate 1. Titanium nitride, tantalum (Ta), tungsten (W), chromium (Cr), etc. may be used instead of titanium. A platinum layer may also be inserted between the titanium layer and the gold layer. In that case, for example, the titanium layer may be 50 nm thick, the platinum layer may be 50 nm thick, and the gold layer may be 200 nm thick. An insulating film layer may also be inserted between the substrate 1 and the seed layer 41.

 なお、つぎの被覆層42を形成する工程における無電解金めっきの析出反応を進行させるために、シード層41の析出面を触媒金属で覆う必要がある。シード層41の表面を金層とすることで無電解めっき反応が開始する。金以外にも銀(Ag)、銅(Cu)、パラジウム(Pd)、白金、ニッケル、ルテニウム(Ru)、錫(Sn)などを用いてもよい。 In order to promote the deposition reaction of electroless gold plating in the next step of forming the coating layer 42, it is necessary to cover the deposition surface of the seed layer 41 with a catalytic metal. The electroless plating reaction begins when the surface of the seed layer 41 is made into a gold layer. Other than gold, silver (Ag), copper (Cu), palladium (Pd), platinum, nickel, ruthenium (Ru), tin (Sn), etc. may also be used.

 一方、触媒力の弱い金属表面の場合には、無電解めっきの前処理として触媒金属イオンを含む前処理液に浸漬して、触媒付与を行う工程を追加することで、無電解めっき反応を開始させることができる。めっき反応は一度開始すると、析出金属である金自体が触媒となるため、反応は継続して金めっき膜を得ることができる(自己触媒性無電解めっき)。 On the other hand, in the case of metal surfaces with weak catalytic power, the electroless plating reaction can be initiated by adding a step of immersing the surface in a pretreatment solution containing catalytic metal ions as a pretreatment for electroless plating, thereby adding a catalyst. Once the plating reaction has begun, the gold, which is the deposited metal, itself acts as a catalyst, so the reaction continues and a gold plating film can be obtained (autocatalytic electroless plating).

 シード層41は、基板1に対して金の被覆層42との間に介在するので、特許文献2で懸念されたような銅拡散を防止するバリア層としての役割を必要としない。そのため、窒化チタン(TiN)、窒化タンタル(TaN)、窒化タングステン(WN)、窒化チタンアルミ(TiAlN)といった導電性金属窒化物のような形成工程が複雑で取り扱いが困難な材料を用いる必要がない。 The seed layer 41 is interposed between the substrate 1 and the gold coating layer 42, and therefore does not need to function as a barrier layer to prevent copper diffusion as was feared in Patent Document 2. Therefore, there is no need to use materials that are difficult to handle and require complex formation processes, such as conductive metal nitrides such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), and titanium aluminum nitride (TiAlN).

 シード層41が形成されると、図4に示すように、無電解金めっき法により、シード層41を被覆し、裏面側に開口する凹部42dを有する金の被覆層42を形成する(ステップS220)。図では貫通孔の軸中心を通る断面形状がV字形をなす円錐状の凹部42dを形成する例を示す。円錐状の凹部42dの形成は、無電解金めっき液の液中の添加剤を適切な範囲で調整することで達成できる。なお、この添加剤は開口側(図中下側)へのめっき析出を抑制し、シード層41の底面(図中上方)と内周面から優先的に金を析出させる働きを有する。 Once the seed layer 41 is formed, as shown in FIG. 4, the seed layer 41 is covered by electroless gold plating to form a gold coating layer 42 having a recess 42d that opens to the back side (step S220). The figure shows an example of forming a conical recess 42d whose cross section passing through the axial center of the through hole is V-shaped. The formation of the conical recess 42d can be achieved by adjusting the additive in the electroless gold plating solution within an appropriate range. Note that this additive has the effect of suppressing plating deposition on the opening side (lower side in the figure) and preferentially depositing gold from the bottom surface (upper side in the figure) and inner peripheral surface of the seed layer 41.

 図5の断面SEM(Scanning Electron Microscope)像に示すように、上述した手法により、円錐状の凹部42dを有するように被覆層42を形成することができた。ここで、ビア底から円錐の頂点(凹部42dの底部42b)までの厚みt42(図4参照)は、ビア高さHvの1/4以上あることが望ましい。つまり、凹部42dの深さDdは、ビア高さHvの4/3未満であることが望ましい。そうすることで、つぎの電解メッキによる充填層43を形成する際に、ボイドの発生なく、ビア埋め込みの形状を実現することができる。 As shown in the cross-sectional SEM (Scanning Electron Microscope) image of Figure 5, the above-mentioned method allows the formation of a coating layer 42 having a conical recess 42d. Here, it is desirable that the thickness t42 (see Figure 4) from the bottom of the via to the apex of the cone (bottom 42b of recess 42d) is at least 1/4 of the via height Hv. In other words, it is desirable that the depth Dd of recess 42d is less than 4/3 of the via height Hv. By doing so, when forming the filling layer 43 by electrolytic plating in the next step, the shape of the via filling can be achieved without the generation of voids.

 なお、図4では、エピタキシャル成長層2を含む基板1の厚みから、シード層41の厚みを差し引いた寸法をビア高さHvとして描画しているが、シード層41の厚みは基板1の厚みに比べて無視できる程度に薄い。基板1に比べて薄い。そこで、基板1の厚みとエピタキシャル成長層2の厚みの和を上述したビア高さHvと定義することとする。一方、厚みt42はビア高さHvの1/2以下であることが望ましい。厚みt42をビア高さHvの1/2より厚くすると、めっき液中の添加剤が少なくなり、図9のようにビア開口部が閉塞するリスクが増大する。また、添加剤が少ないために、ウエハ裏面の被覆層42の厚みが厚くなりすぎるからである。 In FIG. 4, the via height Hv is drawn as the dimension obtained by subtracting the thickness of the seed layer 41 from the thickness of the substrate 1 including the epitaxial growth layer 2, but the thickness of the seed layer 41 is negligibly thin compared to the thickness of the substrate 1. Thinner than the substrate 1. Therefore, the sum of the thickness of the substrate 1 and the thickness of the epitaxial growth layer 2 is defined as the above-mentioned via height Hv. On the other hand, it is desirable that the thickness t42 is 1/2 or less of the via height Hv. If the thickness t42 is made thicker than 1/2 of the via height Hv, the amount of additive in the plating solution will be reduced, increasing the risk of the via opening being blocked as shown in FIG. 9. Also, because the amount of additive is small, the thickness of the coating layer 42 on the back surface of the wafer will be too thick.

 先述の通り、めっきの縦方向の成長は添加剤により抑制することができる。そのため、図6に示すように、添加剤の添加量によって決まる厚みt42まで、段階1、段階2、段階3というように、めっきが成長すると、その後、例えば2時間、無電解めっき液にウエハを浸漬しても金めっきは成長しない(段階3から段階4)。従って、基板面内の複数の貫通孔それぞれで、均一に同じ厚みt42を有する凹部42dを有する被覆層42が形成できる。 As mentioned above, the vertical growth of the plating can be suppressed by the additive. Therefore, as shown in FIG. 6, once the plating has grown through stages 1, 2, and 3 to a thickness t42 determined by the amount of additive added, the gold plating will not grow even if the wafer is subsequently immersed in an electroless plating solution for, for example, two hours (from stage 3 to stage 4). Therefore, a coating layer 42 having recesses 42d with the same uniform thickness t42 can be formed in each of the multiple through holes in the substrate surface.

 被覆層42が形成されると、電解メッキにより、図1で示した凹部42d内を埋め、無電解メッキによる被覆層42よりも結晶粒径が大きな金の充填層43を形成する(ステップS230)。これにより、貫通孔内が金で埋め尽くされた中実のビア10vが形成される。凹部42d内に金イオンを効率よく供給するため、パルス電圧を印加するとよい。ビア10vの開口端(図中下方の面)、つまり、充填層43には、被覆層42の凹部42dを反映して窪みが生じる可能性があるが、この有無および形状は問わない。 Once the coating layer 42 is formed, the recesses 42d shown in FIG. 1 are filled by electrolytic plating to form a gold filling layer 43 with a larger crystal grain size than the coating layer 42 formed by electroless plating (step S230). This forms a solid via 10v whose through hole is filled completely with gold. To efficiently supply gold ions into the recesses 42d, it is advisable to apply a pulse voltage. There is a possibility that a depression will occur in the opening end of the via 10v (the lower surface in the figure), i.e., the filling layer 43, reflecting the recesses 42d in the coating layer 42, but the presence or absence of this depression and its shape are not important.

 電解めっきによる充填層43でビア10vが完全に埋め込まれるので、高周波特性と放熱性が向上する。ビア10vを完全に埋め込むことでウエハ裏面(図中下方)側の金の膜厚が厚くなりすぎた場合は、所望の膜厚になるまでエッチングを実施してよい。ドライエッチングには、例えば、アルゴン(Ar)イオンミリング等を用い、ウェットエッチングには、例えばヨウ素(I)系のウェットエッチング等を用いる。 The via 10v is completely filled with the filling layer 43 formed by electrolytic plating, improving high frequency characteristics and heat dissipation. If the gold film thickness on the back surface (lower part in the figure) of the wafer becomes too thick due to the complete filling of the via 10v, etching can be carried out until the desired film thickness is reached. For example, argon (Ar) ion milling is used for dry etching, and for example, iodine (I)-based wet etching is used for wet etching.

 最後に、ウエハから支持基板を剥がす。支持基板とウエハをホットプレートで1分以上100℃に加熱してワックス材を溶解し、ウエハ面に対して平行に相互をスライドすることで剥がす。そして、50℃に加熱したアセトンに10分間浸漬して表面のワックス材を除去して仕上げる(ステップS300)。このとき、温度が高いほど、浸漬時間が長いほど除去性はよい。 Finally, the support substrate is peeled off from the wafer. The support substrate and wafer are heated to 100°C on a hot plate for at least one minute to melt the wax material, and then slid parallel to the wafer surface to peel them off. The wafer is then immersed in acetone heated to 50°C for 10 minutes to remove the wax material from the surface (step S300). At this time, the higher the temperature and the longer the immersion time, the better the removability.

変形例.
 なお、被覆層42の凹部42dは、必ずしも図4に示したような断面形状がV字(円錐状)になっている必要はなく、図7の変形例に示すように、曲線的に窪んだ形状となっていてもよい。被覆層42の凹部42dの開口幅Wdが、底部42bに向かって減少するように形成されていればよく、底部42bが尖っていなくてもよい。
Variant examples.
The recess 42d of the coating layer 42 does not necessarily have to have a V-shaped (conical) cross-sectional shape as shown in Fig. 4, but may have a curved recessed shape as shown in the modified example of Fig. 7. It is sufficient that the opening width Wd of the recess 42d of the coating layer 42 is formed so as to decrease toward the bottom 42b, and the bottom 42b does not have to be pointed.

比較例.
 これに対し、図8に示す比較例のように、被覆層42Cの凹部42dCの開口幅Wdが、底部42bCに向かって大きくなる部分を有するオーバーハング形状になってはいけない。この状態で、充填層43Cを形成するための電解メッキを実施すると、凹部42dCの開口が閉塞し、ビア内部に空隙が生じるためである。添加剤を使用しないと、図9に示すように、凹部42dCがオーバーハング形状となってしまい、ビア開口部が先に閉塞し、ボイド4vが生じる。なお、比較例(図8、図9)における、実施の形態との対応部分に対しては、符号の末尾に「C」を付して区別している。
Comparative example.
In contrast, as shown in the comparative example in FIG. 8, the opening width Wd of the recess 42dC of the coating layer 42C must not be an overhang shape having a portion that becomes larger toward the bottom 42bC. If electrolytic plating is performed to form the filling layer 43C in this state, the opening of the recess 42dC will be blocked, and a gap will be generated inside the via. If no additive is used, the recess 42dC will have an overhang shape as shown in FIG. 9, the via opening will be blocked first, and a void 4v will be generated. In the comparative example (FIG. 8, FIG. 9), the parts corresponding to the embodiment are distinguished by adding "C" to the end of the reference numeral.

 つまり、無電解めっきで、底部42bに向かって細くなる凹部42dを有する被覆層42を形成することで、電解メッキで形成し、被覆層42よりも結晶粒径が大きな金の充填層43とでビア10v内部を空隙なく完全に埋め込むことができる。 In other words, by forming a coating layer 42 with a recess 42d that tapers toward the bottom 42b using electroless plating, the inside of the via 10v can be completely filled without any voids with a gold filling layer 43 formed by electrolytic plating and having a larger crystal grain size than the coating layer 42.

 その結果、ビア10vのインダクタ成分が小さなり、高周波特性が向上する。そして、例えば、中空のビア構造に対して、10%程度の放熱性の改善が見込まれる(R. Baskaran, Allen W. Hanson, CS MANTECH Conference(米), May 18th-21st, 2015 “Simulation of the Impact of Through-Substrate Vias on the Thermal Resistance of Compound Semiconductor Devices”)。さらに、被覆層42を金で構成したので、銅汚染による電気的信頼性の低下懸念もなくなる。 As a result, the inductor component of the via 10v is reduced, improving high frequency characteristics. Furthermore, an improvement of about 10% in heat dissipation is expected compared to hollow via structures, for example (R. Baskaran, Allen W. Hanson, CS MANTECH Conference (USA), May 18th-21st, 2015 "Simulation of the Impact of Through-Substrate Vias on the Thermal Resistance of Compound Semiconductor Devices"). Furthermore, because the coating layer 42 is made of gold, there is no concern about reduced electrical reliability due to copper contamination.

実施の形態2.
 上記実施の形態1においては、ウエハ裏面に被覆層で覆われる部分を残した例について説明した。本実施の形態2においては、ウエハ裏面から被覆層を除去した例について説明する。
Embodiment 2.
In the above-mentioned first embodiment, an example in which a portion covered with a coating layer remains on the rear surface of the wafer has been described. In the second embodiment, an example in which the coating layer is removed from the rear surface of the wafer will be described.

 図10~図12は、実施の形態2にかかる半導体装置、および半導体装置の製造方法について説明するためのものであり、図10は半導体装置の製造方法を説明するためのフローチャートである。そして、図11は半導体装置のビアフィリングにおける被覆層形成後、充填層形成前の構成を説明するための、実施の形態1の説明に用いた図3に対応する端面図、図12はビアの構成を説明するための、実施の形態1の説明に用いた図1に対応する端面図である。なお、実施の形態1と同様の部分については同じ符号を付するとともに、同様部分の説明は省略し、実施の形態1で用いた図2と図4を援用する。 FIGS. 10 to 12 are used to explain the semiconductor device and the manufacturing method of the semiconductor device according to the second embodiment, and FIG. 10 is a flow chart for explaining the manufacturing method of the semiconductor device. FIG. 11 is an end view corresponding to FIG. 3 used to explain the configuration after the formation of the covering layer and before the formation of the filling layer in via filling of the semiconductor device, and FIG. 12 is an end view corresponding to FIG. 1 used to explain the configuration of the via. Note that the same reference numerals are used for the same parts as in the first embodiment, and the description of the same parts is omitted, and FIG. 2 and FIG. 4 used in the first embodiment are used.

 実施の形態2にかかる半導体装置10の構成について、製造工程とともに説明する。
 図10のフローチャートに示すように、シード層41の形成までは、実施の形態1と同様である。そして、被覆層42の形成(ステップS220V)においても、実施の形態1の図4で説明した裏面側に開口する凹部42dを有し、ウエハ裏面も覆うように金の被覆層42を形成するまでは同じである。しかし、本実施の形態2における被覆層42の形成工程(ステップS220V)では、図11に示すように、被覆層42とシード層41のうち、表面(ウエハ裏面)に析出した層をエッチングにより除去して被覆範囲を調整する工程が加わる。
The configuration of the semiconductor device 10 according to the second embodiment will be described together with the manufacturing process.
As shown in the flow chart of Fig. 10, the process up to the formation of the seed layer 41 is the same as that of the first embodiment. The formation of the coating layer 42 (step S220V) is also the same as that of the first embodiment, up to the formation of the gold coating layer 42 having the recess 42d opening on the back side as described in Fig. 4 of the first embodiment, so as to cover the back surface of the wafer. However, in the process of forming the coating layer 42 (step S220V) of the second embodiment, as shown in Fig. 11, a process of adjusting the coverage by removing the layer of the coating layer 42 and the seed layer 41 precipitated on the front surface (back surface of the wafer) by etching is added.

 エッチングにはドライエッチングまたはウェットエッチングを用いる。ドライエッチングには、例えば、アルゴンイオンミリング等を用いる。ドライエッチングを用いると、チタン、金、および白金を一括でエッチングできる。ウェットエッチングでは、除去する対象層により使用する薬液を変える。金に対しては、例えば、ヨウ素系の薬液を使用し、チタンに対しては、バッファードフッ酸(BHF)、あるいはアンモニア(NH3)と過酸化水素(H22)の混合液を用いる。 Dry etching or wet etching is used for the etching. For dry etching, for example, argon ion milling is used. By using dry etching, titanium, gold, and platinum can be etched at the same time. For wet etching, the chemical used is changed depending on the target layer to be removed. For example, an iodine-based chemical is used for gold, and for titanium, buffered hydrofluoric acid (BHF) or a mixture of ammonia (NH 3 ) and hydrogen peroxide (H 2 O 2 ) is used.

 なお、シード層41は必ずしもエッチングしなくてもよい。例えば金のみヨウ素系の薬液でエッチングすることにより、ウエハ裏面の平坦部はシード層41の金下地面(本例ではチタン、白金)の表面を得ることができる。貫通孔内は平坦部よりも厚い金が析出しているため、主に金表面となる。 Note that the seed layer 41 does not necessarily have to be etched. For example, by etching only the gold with an iodine-based chemical, the flat area on the backside of the wafer can have the surface of the gold base of the seed layer 41 (titanium and platinum in this example). Because a thicker layer of gold is deposited inside the through-holes than on the flat area, the surface is mainly gold.

 その後、シード層41を形成するときと同様に、スパッタ法にて、図12に示すように被覆層42およびウエハ裏面に金属膜44を形成する(ステップS225)。例えば、厚さ50nmのチタン、厚さ200nmの金層とする。 Then, in the same manner as when forming the seed layer 41, a metal film 44 is formed on the coating layer 42 and the back surface of the wafer by sputtering as shown in FIG. 12 (step S225). For example, a titanium layer with a thickness of 50 nm and a gold layer with a thickness of 200 nm are used.

 以降は、実施の形態1と同様に、電解金めっきにより凹部42dを埋め込む充填層43を形成する(ステップS230)。ここでも、充填層43の膜厚が厚くなりすぎた場合は、所望の膜厚になるまでエッチングを実施してよい。ドライエッチングには、例えば、アルゴンイオンミリング等を用い、ウェットエッチングには、例えばヨウ素系のウェットエッチング等を用いる。 Then, as in the first embodiment, a filling layer 43 is formed by electrolytic gold plating to fill the recess 42d (step S230). Again, if the thickness of the filling layer 43 becomes too thick, etching may be performed until the desired thickness is reached. For dry etching, for example, argon ion milling or the like is used, and for wet etching, for example, iodine-based wet etching or the like is used.

 ここで、被覆層42を形成するための無電解金めっきでは、ウエハ裏面の平坦部の膜厚が、例えば5μm程度にまで厚くなった場合、めっき膜の内部応力が高く、ウエハ反り、チップ反りを引き起こす。これらはクラック、熱抵抗特性異常、およびハンドリング性の悪化の要因となる。 Here, in the electroless gold plating used to form the coating layer 42, if the film thickness on the flat part of the back surface of the wafer becomes as thick as, for example, about 5 μm, the internal stress of the plating film becomes high, causing wafer warping and chip warping. These can lead to cracks, abnormalities in thermal resistance characteristics, and deterioration of handleability.

 これに対して実施の形態2にかかる半導体装置10あるいは半導体装置の製造方法ではウエハ裏面の平坦部のめっき膜をエッチバックすることで、平坦部の金厚みを削減し、上述した不具合を改善する。一方、エッチバックを行った際、平坦部の金がなくなるため、そのままでは平坦部の電気抵抗が高くなり、次工程の電解めっきでの給電に支障をきたす。そこで、スパッタまたは蒸着により金属膜44を形成することで、シード層41を再構成したのと同様に、充填層43の形成工程(ステップS230)での電解めっきにおいて膜の均一性、およびビア10v内の埋め込み特性を確保することができる。 In contrast, in the semiconductor device 10 or semiconductor device manufacturing method according to the second embodiment, the plating film on the flat portion on the back surface of the wafer is etched back to reduce the gold thickness on the flat portion, thereby improving the above-mentioned problem. However, when the etch-back is performed, the gold on the flat portion is removed, and if left as is, the electrical resistance of the flat portion increases, which interferes with the power supply in the next electrolytic plating process. Therefore, by forming the metal film 44 by sputtering or vapor deposition, it is possible to ensure the uniformity of the film and the filling characteristics in the via 10v in the electrolytic plating in the process of forming the filling layer 43 (step S230), in the same way as reconstructing the seed layer 41.

 つまり、被覆層42のうち、ウエハ裏面の平坦部を覆う部分を除去することで、ウエハ反りが低減され、ウエハクラックおよびチップクラックを抑制することができる。さらに平坦部のめっき厚のウエハ面内での均一性が向上するため、チップ特性の均一化、高歩留まり化にも貢献する。 In other words, by removing the portion of the coating layer 42 that covers the flat portion on the back surface of the wafer, wafer warping is reduced and wafer cracks and chip cracks can be suppressed. Furthermore, the uniformity of the plating thickness on the flat portion across the wafer surface is improved, which contributes to uniform chip characteristics and high yields.

実施の形態3.
 上記実施の形態1、2では、製法が異なり、結晶粒径こそ異なるが、充填層を被覆層と同じ金で構成する例について説明した。本実施の形態3では、充填層を銅で構成した例について説明する。
Embodiment 3.
In the above-mentioned first and second embodiments, the manufacturing method and the crystal grain size are different, but the filling layer is made of the same gold as the covering layer. In the present embodiment 3, an example in which the filling layer is made of copper will be described.

 図13と図14は、実施の形態3にかかる半導体装置、および半導体装置の製造方法について説明するためのものであり、図13は半導体装置のビアの構成を説明するための、実施の形態1の説明に用いた図1に対応する端面図、図14は変形例にかかる半導体装置のビアの構成を説明するための図13に対応する端面図である。なお、実施の形態1と同様の部分については同じ符号を付するとともに、同様部分の説明は省略し、実施の形態1で用いた図2~図4を援用する。 13 and 14 are intended to explain a semiconductor device according to the third embodiment and a method for manufacturing the semiconductor device, with FIG. 13 being an end view corresponding to FIG. 1 used to explain the configuration of the vias in the semiconductor device, and FIG. 14 being an end view corresponding to FIG. 13 to explain the configuration of the vias in the semiconductor device according to a modified example. Note that parts similar to those in the first embodiment are given the same reference numerals, and explanations of similar parts are omitted, with reference to FIGS. 2 to 4 used in the first embodiment.

 本実施の形態3においても、被覆層42の構成、およびその製造方法(ステップS220まで)については、実施の形態1と同様である。しかし、本実施の形態1においては、充填層53を形成する工程では、電解メッキではあるが、銅の電解メッキ(電解銅メッキ)により、図13に示すように、銅の充填層53を形成する。 In the third embodiment, the configuration of the coating layer 42 and the manufacturing method thereof (up to step S220) are the same as those in the first embodiment. However, in the first embodiment, the step of forming the filling layer 53 is performed by electrolytic plating, but the copper filling layer 53 is formed by electrolytic plating of copper (electrolytic copper plating) as shown in FIG. 13.

 変形例.
 なお、充填層53を形成した図13の状態からCMP研磨(Chemical Mechanical Polishing)を行い、図14に示すように、ウエハ裏面の平坦部を完全に平坦化するようにしてもよい。
Variant examples.
It is also possible to perform CMP (Chemical Mechanical Polishing) from the state shown in FIG. 13 after the filling layer 53 has been formed, so as to completely flatten the flat portion of the rear surface of the wafer, as shown in FIG.

 実施の形態1と同様に無電解めっきで、底部42bに向かって細くなる凹部42dを有する被覆層42を形成することで、電解メッキで形成した銅の充填層53とでビア10v内部を空隙なく完全に埋め込むことができる。さらに実施の形態3では、充填層53を銅で構成しているので、特殊な薬剤を用いなくてもCMP研磨ができるので、表面の平坦化が容易になる。さらに、電解メッキにおいて、銅めっきは金めっきに比べてビア埋め込みに効果のある添加剤の開発が進んでおり、凹部42dを埋め込みやすくなる。 As in the first embodiment, by forming a coating layer 42 having a recess 42d that tapers toward the bottom 42b by electroless plating, the inside of the via 10v can be completely filled without gaps together with the copper filling layer 53 formed by electrolytic plating. Furthermore, in the third embodiment, since the filling layer 53 is made of copper, CMP polishing can be performed without using special chemicals, making it easier to flatten the surface. Furthermore, in electrolytic plating, additives that are more effective for filling vias have been developed for copper plating than for gold plating, making it easier to fill the recess 42d.

 つまり、実施の形態3にかかる半導体装置10、あるいは半導体装置の製造方法においては、ビア10vのインダクタ成分が小さなり、高周波特性が向上する。充填体4すべてを銅で構成する場合に比べて、金の被覆層42が、特許文献2で示された導電性窒化膜に加えて銅の拡散バリアとして働くことで、デバイスの信頼性が向上する。 In other words, in the semiconductor device 10 according to the third embodiment or the method for manufacturing the semiconductor device, the inductor component of the via 10v is reduced, improving the high frequency characteristics. Compared to a case in which the entire filling body 4 is made of copper, the gold coating layer 42 acts as a copper diffusion barrier in addition to the conductive nitride film shown in Patent Document 2, improving the reliability of the device.

 また金よりも銅のほうが電気伝導性、熱伝導性に優れるので、金のみで充填体4を構成する場合に比べてデバイス特性(電気特性、高周波特性、熱特性)が向上する。また、ウエハ裏面を容易に平坦化できるので、平坦化された層の上につぎの層を積層させる3次元のデバイス設計ができる。 In addition, copper has better electrical and thermal conductivity than gold, so the device characteristics (electrical characteristics, high frequency characteristics, thermal characteristics) are improved compared to when the filler 4 is made of gold alone. In addition, the back surface of the wafer can be easily planarized, allowing three-dimensional device design in which the next layer is stacked on top of the planarized layer.

実施の形態4.
 上記実施の形態3では、実施の形態1の半導体装置における充填層を銅で構成した例について説明した。本実施の形態4では、実施の形態2の半導体装置における充填層を銅で構成した例について説明する。
Embodiment 4.
In the above-described third embodiment, an example was described in which the filling layer in the semiconductor device of the first embodiment is made of copper. In the fourth embodiment, an example is described in which the filling layer in the semiconductor device of the second embodiment is made of copper.

 図15と図16は、実施の形態4にかかる半導体装置、および半導体装置の製造方法について説明するためのものであり、図15は半導体装置のビアの構成を説明するための、実施の形態2の説明に用いた図12に対応する端面図、図16は変形例にかかる半導体装置のビアの構成を説明するための図15に対応する端面図である。なお、実施の形態1、2と同様の部分については同じ符号を付するとともに、同様部分の説明は省略し、実施の形態1で用いた図2と図4、実施の形態2で用いた図10と図11を援用する。 15 and 16 are intended to explain the semiconductor device and the method of manufacturing the semiconductor device according to the fourth embodiment, with FIG. 15 being an end view corresponding to FIG. 12 used to explain the second embodiment and intended to explain the via configuration of the semiconductor device, and FIG. 16 being an end view corresponding to FIG. 15 and intended to explain the via configuration of the semiconductor device according to the modified example. Note that parts similar to those in the first and second embodiments are given the same reference numerals, and explanations of similar parts are omitted, with reference to FIGS. 2 and 4 used in the first embodiment and FIGS. 10 and 11 used in the second embodiment.

 本実施の形態4においても、被覆層42の構成、およびその製造方法(ステップS225まで)については、実施の形態2と同様である。しかし、本実施の形態4においては、充填層53を形成する工程では、電解メッキではあるが、銅の電解メッキ(電解銅メッキ)により、図15に示すように、銅の充填層53を形成する。 In this fourth embodiment, the configuration of the coating layer 42 and the manufacturing method thereof (up to step S225) are the same as those in the second embodiment. However, in this fourth embodiment, the step of forming the filling layer 53 is performed by electrolytic plating, but the copper filling layer 53 is formed by electrolytic plating of copper (electrolytic copper plating) as shown in FIG. 15.

 変形例.
 なお、充填層53を形成した図15の状態からCMP研磨を行い、図16に示すように、ウエハ裏面の平坦部を完全に平坦化するようにしてもよい。
Variant examples.
It is also possible to perform CMP polishing from the state shown in FIG. 15 after the filling layer 53 has been formed, so as to completely flatten the flat portion of the rear surface of the wafer, as shown in FIG.

 実施の形態2と同様に無電解めっきで、底部42bに向かって細くなる凹部42dを有する被覆層42を形成することで、電解メッキで形成した銅の充填層53とでビア10v内部を空隙なく完全に埋め込むことができる。さらに実施の形態4では、充填層53を銅で構成しているので、特殊な薬剤を用いなくてもCMP研磨ができるので、表面の平坦化が容易になる。さらに、電解メッキにおいて、銅めっきは金めっきに比べてビア埋め込みに効果のある添加剤の開発が進んでおり、凹部42dを埋め込みやすくな。 As in the second embodiment, by forming a coating layer 42 having a recess 42d that tapers toward the bottom 42b by electroless plating, the inside of the via 10v can be completely filled without gaps together with the copper filling layer 53 formed by electrolytic plating. Furthermore, in the fourth embodiment, since the filling layer 53 is made of copper, CMP polishing can be performed without using special chemicals, making it easier to flatten the surface. Furthermore, in electrolytic plating, additives that are more effective for filling vias have been developed for copper plating than for gold plating, making it easier to fill the recess 42d.

 つまり、実施の形態4にかかる半導体装置10、あるいは半導体装置の製造方法においては、ビア10vのインダクタ成分が小さなり、高周波特性が向上する。充填体4すべてを銅で構成する場合に比べて、金の被覆層42が、導電性窒化膜に加えて銅の拡散バリアとして働くことで、デバイスの信頼性が向上する。 In other words, in the semiconductor device 10 according to the fourth embodiment or the method for manufacturing the semiconductor device, the inductor component of the via 10v is reduced, improving the high frequency characteristics. Compared to a case in which the entire filling body 4 is made of copper, the gold coating layer 42 acts as a copper diffusion barrier in addition to the conductive nitride film, improving the reliability of the device.

 また金よりも銅のほうが電気伝導性、熱伝導性に優れるので、金のみで充填体4を構成する場合に比べてデバイス特性(電気特性、高周波特性、熱特性)が向上する。また、ウエハ裏面を容易に平坦化できるので、平坦化された層の上につぎの層を積層させる3次元のデバイス設計ができる。 In addition, copper has better electrical and thermal conductivity than gold, so the device characteristics (electrical characteristics, high frequency characteristics, thermal characteristics) are improved compared to when the filler 4 is made of gold alone. In addition, the back surface of the wafer can be easily planarized, allowing three-dimensional device design in which the next layer is stacked on top of the planarized layer.

実施の形態5.
 上記実施の形態3、4では、実施の形態1、2に対し、充填層の構成を金から銅に変えた例について説明した。本実施の形態5では、充填層の構成を金から銀に変えた例について説明する。
Embodiment 5.
In the above-described third and fourth embodiments, examples were described in which the composition of the filling layer was changed from gold to copper in comparison with the first and second embodiments. In the present fifth embodiment, an example will be described in which the composition of the filling layer is changed from gold to silver.

 図17と図18は、実施の形態5にかかる半導体装置、および半導体装置の製造方法について説明するためのものであり、図17は半導体装置のビアの構成を説明するための、実施の形態1の説明に用いた図1に対応する端面図、図18は変形例にかかる半導体装置のビアの構成を説明するための、実施の形態2の説明に用いた図12に対応する端面図である。なお、実施の形態1、2と同様の部分については同じ符号を付するとともに、同様部分の説明は省略し、実施の形態1で用いた図2~図4、実施の形態2で用いた図10と図11を援用する。 17 and 18 are intended to explain the semiconductor device and the manufacturing method of the semiconductor device according to the fifth embodiment, with FIG. 17 being an end view corresponding to FIG. 1 used in the description of the first embodiment and illustrating the via configuration of the semiconductor device, and FIG. 18 being an end view corresponding to FIG. 12 used in the description of the second embodiment and illustrating the via configuration of the semiconductor device according to the modified example. Note that parts similar to those in the first and second embodiments are given the same reference numerals, and descriptions of similar parts are omitted, and FIG. 2 to FIG. 4 used in the first embodiment and FIG. 10 and FIG. 11 used in the second embodiment are used.

 本実施の形態5においても、被覆層42の構成、およびその製造方法(ステップS220まで)については、実施の形態1と同様である。しかし、本実施の形態5においては、充填層63を形成する工程では、電解メッキではあるが、銀の電解メッキ(電解銀メッキ)により、図17に示すように、銀の充填層63を形成する。 In this fifth embodiment, the configuration of the coating layer 42 and the manufacturing method thereof (up to step S220) are the same as those in the first embodiment. However, in this fifth embodiment, the step of forming the filling layer 63 involves electrolytic plating, but the filling layer 63 is formed of silver by electrolytic plating (electrolytic silver plating) as shown in FIG. 17.

 変形例.
 変形例においても、被覆層42の構成、およびその製造方法(ステップS225まで)については、実施の形態2と同様である。しかし、本変形例においては、充填層63を形成する工程では、電解メッキではあるが、銀の電解メッキ(電解銀メッキ)により、図18に示すように、銀の充填層63を形成する。
Variant examples.
In the modified example, the configuration of coating layer 42 and the manufacturing method thereof (up to step S225) are the same as those in embodiment 2. However, in this modified example, the step of forming filling layer 63 is performed by electrolytic plating, but by electrolytic plating of silver (electrolytic silver plating), to form filling layer 63 of silver, as shown in FIG.

 実施の形態1、2と同様に無電解めっきで、底部42bに向かって細くなる凹部42dを有する被覆層42を形成することで、電解メッキで形成した銀の充填層63とでビア10v内部を空隙なく完全に埋め込むことができる。さらに実施の形態5では、充填層63を銀で構成しているので、実施の形態1、2と同様に銅汚染を心配する必要がなく、電気的信頼性の低下懸念がない。 As in the first and second embodiments, a coating layer 42 having a recess 42d that tapers toward the bottom 42b is formed by electroless plating, and together with the silver filling layer 63 formed by electrolytic plating, the inside of the via 10v can be completely filled without gaps. Furthermore, in the fifth embodiment, since the filling layer 63 is made of silver, there is no need to worry about copper contamination as in the first and second embodiments, and there is no concern about a decrease in electrical reliability.

 また金、銅よりも銀のほうが電気伝導性、熱伝導性に優れるので、金のみで充填体4を構成する場合、あるいは充填層を銅で構成する場合に比べて、ビア10vのインダクタ成分が低くなり、デバイス特性(電気特性、高周波特性、熱特性)が向上する。 In addition, silver has better electrical and thermal conductivity than gold or copper, so the inductor component of via 10v is lower and the device characteristics (electrical characteristics, high frequency characteristics, thermal characteristics) are improved compared to when the filler 4 is made of gold alone or when the filler layer is made of copper.

実施の形態6.
 上記実施の形態5では、実施の形態1、2に対し、充填層の構成を金から銀に変えた例について説明した。本実施の形態6では、充填層の構成を金からニッケルに変えた例について説明する。
Embodiment 6.
In the above-mentioned embodiment 5, an example was described in which the composition of the filling layer was changed from gold to silver in comparison with embodiments 1 and 2. In the present embodiment 6, an example will be described in which the composition of the filling layer is changed from gold to nickel.

 図19と図20は、実施の形態6にかかる半導体装置、および半導体装置の製造方法について説明するためのものであり、図19は半導体装置のビアの構成を説明するための、実施の形態1の説明に用いた図1に対応する端面図、図20は変形例にかかる半導体装置のビアの構成を説明するための、実施の形態2の説明に用いた図12に対応する端面図である。なお、実施の形態1、2と同様の部分については同じ符号を付するとともに、同様部分の説明は省略し、実施の形態1で用いた図2~図4、実施の形態2で用いた図10と図11を援用する。 19 and 20 are intended to explain the semiconductor device and the method of manufacturing the semiconductor device according to the sixth embodiment, with FIG. 19 being an end view corresponding to FIG. 1 used in the explanation of the first embodiment and illustrating the via configuration of the semiconductor device, and FIG. 20 being an end view corresponding to FIG. 12 used in the explanation of the second embodiment and illustrating the via configuration of the semiconductor device according to the modified example. Note that parts similar to those in the first and second embodiments are given the same reference numerals, and explanations of similar parts are omitted, and FIG. 2 to FIG. 4 used in the first embodiment and FIG. 10 and FIG. 11 used in the second embodiment are used.

 本実施の形態6においても、被覆層42の構成、およびその製造方法(ステップS220まで)については、実施の形態1と同様である。しかし、本実施の形態6においては、充填層73を形成する工程では、電解メッキではあるが、ニッケル(Ni)の電解メッキ(電解ニッケルメッキ)により、図19に示すように、ニッケルの充填層73を形成する。 In the sixth embodiment, the configuration of the coating layer 42 and the manufacturing method thereof (up to step S220) are the same as in the first embodiment. However, in the sixth embodiment, the step of forming the filling layer 73 is performed by electrolytic plating, but the nickel (Ni) filling layer 73 is formed by electrolytic plating (electrolytic nickel plating) as shown in FIG. 19.

 変形例.
 変形例においても、被覆層42の構成、およびその製造方法(ステップS225まで)については、実施の形態2と同様である。しかし、本変形例においては、充填層73を形成する工程では、電解メッキではあるが、ニッケルの電解メッキ(電解ニッケルメッキ)により、図20に示すように、ニッケルの充填層73を形成する。
Variant examples.
In the modified example, the configuration of coating layer 42 and its manufacturing method (up to step S225) are the same as those in the embodiment 2. However, in this modified example, the step of forming filling layer 73 is performed by electrolytic plating, but by electrolytic plating of nickel (electrolytic nickel plating), to form nickel filling layer 73 as shown in FIG.

 実施の形態1、2と同様に無電解めっきで、底部42bに向かって細くなる凹部42dを有する被覆層42を形成することで、電解メッキで形成した銀の充填層63とでビア10v内部を空隙なく完全に埋め込むことができる。そのため、中空の場合と比べて放熱性およびインダクタ成分の抑制による高周波特性の改善が見込まれる。さらに実施の形態6では、充填層73をニッケルで構成しているので、実施の形態1、2と同様に銅汚染を心配する必要がなく、電気的信頼性の低下懸念がない。 As in the first and second embodiments, by forming a coating layer 42 having a recess 42d that tapers toward the bottom 42b by electroless plating, the inside of the via 10v can be completely filled without gaps with the silver filling layer 63 formed by electrolytic plating. Therefore, compared to the hollow case, it is expected that the high frequency characteristics will be improved by suppressing the heat dissipation and inductor components. Furthermore, in the sixth embodiment, since the filling layer 73 is made of nickel, there is no need to worry about copper contamination as in the first and second embodiments, and there is no concern about a decrease in electrical reliability.

 また高周波デバイスの裏面は金錫(AuSn)はんだ、銀錫(SnAg)はんだなどでダイボンドするが、金、あるいは銅の面にはんだでダイボンドすると、界面に厚い合金層が形成され、導電性不良、接着不良、および熱特性悪化を招く。しかし本実施の形態6では、金とはんだ界面に充填層73を構成するニッケルがバリア層として働き、これらの特性劣化の防止をすることができる。 The back surface of the high frequency device is die-bonded with gold-tin (AuSn) solder, silver-tin (SnAg) solder, etc., but when die-bonding to a gold or copper surface with solder, a thick alloy layer is formed at the interface, leading to poor conductivity, poor adhesion, and deterioration of thermal properties. However, in this embodiment 6, the nickel that constitutes the filling layer 73 at the gold and solder interface acts as a barrier layer, preventing these deteriorations in properties.

実施の形態7.
 上記実施の形態5、6では、実施の形態1、2に対し、充填層の構成を金から銀、ニッケルに変えた例について説明した。本実施の形態7では、充填層の構成を金から錫に変えた例について説明する。
Embodiment 7.
In the above-mentioned fifth and sixth embodiments, examples were described in which the composition of the filling layer was changed from gold to silver and nickel, as compared with the first and second embodiments. In the seventh embodiment, an example will be described in which the composition of the filling layer is changed from gold to tin.

 図21と図22は、実施の形態7にかかる半導体装置、および半導体装置の製造方法について説明するためのものであり、図21は半導体装置のビアの構成を説明するための、実施の形態1の説明に用いた図1に対応する端面図、図22は変形例にかかる半導体装置のビアの構成を説明するための、実施の形態2の説明に用いた図12に対応する端面図である。なお、実施の形態1、2と同様の部分については同じ符号を付するとともに、同様部分の説明は省略し、実施の形態1で用いた図2~図4、実施の形態2で用いた図10と図11を援用する。 21 and 22 are intended to explain the semiconductor device and the method of manufacturing the semiconductor device according to the seventh embodiment, with FIG. 21 being an end view corresponding to FIG. 1 used in the explanation of the first embodiment and illustrating the via configuration of the semiconductor device, and FIG. 22 being an end view corresponding to FIG. 12 used in the explanation of the second embodiment and illustrating the via configuration of the semiconductor device according to the modified example. Note that parts similar to those in the first and second embodiments are given the same reference numerals, and explanations of similar parts are omitted, and FIG. 2 to FIG. 4 used in the first embodiment and FIG. 10 and FIG. 11 used in the second embodiment are used.

 本実施の形態7においても、被覆層42の構成、およびその製造方法(ステップS220まで)については、実施の形態1と同様である。しかし、本実施の形態7においては、充填層83を形成する工程では、電解メッキではあるが、錫の電解メッキ(電解錫メッキ)により、図21に示すように、錫の充填層83を形成する。 In the seventh embodiment, the configuration of the coating layer 42 and the manufacturing method thereof (up to step S220) are the same as in the first embodiment. However, in the seventh embodiment, the step of forming the filling layer 83 is performed by electrolytic plating, but the tin filling layer 83 is formed by electrolytic plating of tin (electrolytic tin plating) as shown in FIG. 21.

 変形例.
 変形例においても、被覆層42の構成、およびその製造方法(ステップS225)までについては、実施の形態2と同様である。しかし、本変形例においては、充填層83を形成する工程では、電解メッキではあるが、錫の電解メッキ(電解錫メッキ)により、図22に示すように、錫の充填層83を形成する。
Variant examples.
In the modified example, the configuration of coating layer 42 and the manufacturing method thereof (step S225) are the same as those in the embodiment 2. However, in this modified example, the step of forming filling layer 83 is performed by electrolytic plating, but by electrolytic plating of tin (electrolytic tin plating), to form tin filling layer 83 as shown in FIG.

 実施の形態1、2と同様に無電解めっきで、底部42bに向かって細くなる凹部42dを有する被覆層42を形成することで、電解メッキで形成した錫の充填層83とでビア10v内部を空隙なく完全に埋め込むことができる。そのため、中空の場合と比べて放熱性およびインダクタ成分の抑制による高周波特性の改善が見込まれる。さらに実施の形態7では、充填層83を錫で構成しているので、実施の形態1、2と同様に銅汚染を心配する必要がなく、電気的信頼性の低下懸念がない。 As in the first and second embodiments, by forming a coating layer 42 having a recess 42d that tapers toward the bottom 42b by electroless plating, the inside of the via 10v can be completely filled without gaps with the tin filling layer 83 formed by electrolytic plating. Therefore, compared to the hollow case, it is expected that the high frequency characteristics will be improved by suppressing the heat dissipation and inductor components. Furthermore, in the seventh embodiment, since the filling layer 83 is made of tin, there is no need to worry about copper contamination as in the first and second embodiments, and there is no concern about a decrease in electrical reliability.

 また高周波デバイスの裏面は金錫(AuSn)はんだ、銀錫(SnAg)はんだなどでダイボンドするが、その際に、はんだの塗布が不要となる。また、ウエハ裏面の錫は、はんだの構成材料であるため、実質的にデバイスに直接はんだを形成していることになるため良好な密着性が得られる。 The backside of the high frequency device is die-bonded using gold-tin (AuSn) solder, silver-tin (SnAg) solder, etc., but this eliminates the need to apply solder. In addition, since the tin on the backside of the wafer is a component of the solder, the solder is essentially formed directly on the device, resulting in good adhesion.

 さらに、本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Furthermore, although various exemplary embodiments and examples are described in this application, the various features, aspects, and functions described in one or more embodiments are not limited to application in a particular embodiment, but may be applied to the embodiments alone or in various combinations. Thus, countless variations not illustrated are anticipated within the scope of the technology disclosed in this specification. For example, this includes cases in which at least one component is modified, added, or omitted, and even cases in which at least one component is extracted and combined with components of another embodiment.

 以上のように、本願の半導体装置10によれば、半導体材料の基板1、基板1の一方の面(図中上側の面)に形成された配線部材、および基板1の他方の面で開口し、配線部材(表面電極3)を底面とする筒状の孔の内壁を被覆し、開口の側から底面に向かって窪む凹部42dが形成された金による第一メッキ層(被覆層42)と、凹部42dを埋め、銅、銀、ニッケル、錫、および第一メッキ層(被覆層42)よりも結晶粒径が大きな金のいずれかによる第二メッキ層(充填層43、53、63、73、83)と、を有する中実のビア10v、を備えるようにした。これにより、銅汚染の心配がなく、ビア10vを介した厚み方向において良好な電気的な接続と放熱性を有する半導体装置を低コストで得ることができる。 As described above, the semiconductor device 10 of the present application includes a substrate 1 made of a semiconductor material, a wiring member formed on one surface (the upper surface in the figure) of the substrate 1, a first plating layer (coating layer 42) made of gold that opens on the other surface of the substrate 1 and covers the inner wall of a cylindrical hole with the wiring member (surface electrode 3) as its bottom surface, and has a recess 42d recessed from the opening side toward the bottom surface, and a solid via 10v that has a second plating layer (filling layer 43, 53, 63, 73, 83) made of copper, silver, nickel, tin, or gold with a crystal grain size larger than that of the first plating layer (coating layer 42) that fills the recess 42d. This makes it possible to obtain a semiconductor device that has good electrical connection and heat dissipation in the thickness direction through the via 10v at low cost without worrying about copper contamination.

 とくに、凹部42dは底面から開口に向かうにつれて広がっているように構成すれば、ボイドが発生することなく、電気伝導性と放熱性に優れた半導体装置を確実に得ることができる。 In particular, if the recess 42d is configured to widen from the bottom surface toward the opening, it is possible to reliably obtain a semiconductor device with excellent electrical conductivity and heat dissipation without the generation of voids.

 また、第一メッキ層(被覆層42)における凹部の底面までの厚みt42は、基板の厚み(ビア高さHv)の1/4以上であるようにすれば、より確実にボイドの発生を防止できる。 Furthermore, if the thickness t42 of the first plating layer (coating layer 42) to the bottom surface of the recess is set to 1/4 or more of the thickness of the substrate (via height Hv), the occurrence of voids can be more reliably prevented.

 チタン、タンタル、タングステン、クロム、白金のいずれかを含み、第一メッキ層(被覆層42)と第二メッキ層(充填層43、53、63、73、83)との間に介在する金属膜44を有するようにすれば、充填層43のメッキ膜が均一化し、ビア10v内の埋め込み性がより向上する。 If a metal film 44 containing titanium, tantalum, tungsten, chromium, or platinum is provided between the first plating layer (coating layer 42) and the second plating layer (filling layer 43, 53, 63, 73, 83), the plating film of the filling layer 43 becomes uniform, and the embeddability in the via 10v is further improved.

 基板1が、炭化ケイ素、リン化インジウム、窒化ガリウム、珪化ゲルマニウム、ゲルマニウム、シリコンのいずれかであれば、より高性能な半導体装置が得られる。 If the substrate 1 is made of silicon carbide, indium phosphide, gallium nitride, germanium silicide, germanium, or silicon, a semiconductor device with higher performance can be obtained.

 以上のように、本願の半導体装置10の製造方法によれば、半導体材料の基板1の一方の面に配線部材を形成し、基板1の他方の面で開口し、配線部材(表面電極3)を底面とする筒状の孔を形成する工程(ステップS100~S200)、筒状の孔の内壁を被覆し、かつ開口の側から底面に向かって窪む凹部42dが形成されるように、無電解メッキにより、金の第一メッキ層(被覆層42)を形成する工程(ステップS220、S220V)、および凹部42dを埋めるように、電解メッキにより、銅、銀、ニッケル、錫、金のいずれかの第二メッキ層(充填層43)を形成する工程(ステップS230)、を含むように構成した。これにより、銅汚染の心配がなく、ビア10vを介した厚み方向において良好な電気的な接続と放熱性を有する半導体装置を低コストで得ることができる。 As described above, the manufacturing method of the semiconductor device 10 of the present application includes the steps of forming a wiring member on one side of the substrate 1 of the semiconductor material, opening on the other side of the substrate 1 and forming a cylindrical hole with the wiring member (surface electrode 3) as the bottom (steps S100 to S200), forming a first gold plating layer (coating layer 42) by electroless plating so as to cover the inner wall of the cylindrical hole and form a recess 42d recessed from the opening side toward the bottom (steps S220, S220V), and forming a second plating layer (filling layer 43) of copper, silver, nickel, tin, or gold by electrolytic plating so as to fill the recess 42d (step S230). This makes it possible to obtain a semiconductor device at low cost that has good electrical connection and heat dissipation in the thickness direction through the vias 10v without worrying about copper contamination.

 スパッタ法、または蒸着法により、凹部42dの内面を被覆する金属膜44を形成する工程(ステップS225)を含むようにすれば、電解メッキで充填層43を形成する際のメッキ膜が均一化し、ビア10v内の埋め込み性がより向上する。 If the process includes a step (step S225) of forming a metal film 44 that covers the inner surface of the recess 42d by sputtering or vapor deposition, the plating film will be uniform when the filling layer 43 is formed by electrolytic plating, and the embeddability of the via 10v will be improved.

 1:基板、 10:半導体装置、 10v:ビア、 2:エピタキシャル成長層、 3:表面電極(配線部材)、 4:充填体、 41:シード層、 42:被覆層(第一メッキ層)、 42d:凹部、 43:充填層(第二メッキ層)、 44:金属膜、 53:充填層(第二メッキ層)、 63:充填層(第二メッキ層)、 73:充填層(第二メッキ層)、 83:充填層(第二メッキ層)、 Dd:深さ、 Hv:ビア高さ、 t42:厚み、 Wd:開口幅。 1: Substrate, 10: Semiconductor device, 10v: Via, 2: Epitaxial growth layer, 3: Surface electrode (wiring member), 4: Filler, 41: Seed layer, 42: Cover layer (first plating layer), 42d: Recess, 43: Filler layer (second plating layer), 44: Metal film, 53: Filler layer (second plating layer), 63: Filler layer (second plating layer), 73: Filler layer (second plating layer), 83: Filler layer (second plating layer), Dd: Depth, Hv: Via height, t42: Thickness, Wd: Opening width.

Claims (7)

 半導体材料の基板、
 前記基板の一方の面に形成された配線部材、および
 前記基板の他方の面で開口し、前記配線部材を底面とする筒状の孔の内壁を被覆し、前記開口の側から前記底面に向かって窪む凹部が形成された金による第一メッキ層と、前記凹部を埋め、銅、銀、ニッケル、錫、および前記第一メッキ層よりも結晶粒径が大きな金のいずれかによる第二メッキ層と、を有する中実のビア、
 を備えたことを特徴とする半導体装置。
a substrate of semiconductor material;
a wiring member formed on one surface of the substrate; a first plating layer of gold that opens on the other surface of the substrate, covers an inner wall of a cylindrical hole having the wiring member as a bottom surface, and has a recess recessed from the opening side toward the bottom surface; and a second plating layer of copper, silver, nickel, tin, or gold that fills the recess and has a crystal grain size larger than that of the first plating layer;
A semiconductor device comprising:
 前記凹部は前記底面から前記開口に向かうにつれて広がっていることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, characterized in that the recess widens from the bottom surface toward the opening.  前記第一メッキ層における前記凹部の前記底面までの厚みは、前記基板の厚みの1/4以上であることを特徴とする請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1 or 2, characterized in that the thickness of the first plating layer to the bottom surface of the recess is at least 1/4 of the thickness of the substrate.  チタン、タンタル、タングステン、クロム、白金のいずれかを含み、前記第一メッキ層と前記第二メッキ層との間に介在する金属膜を有することを特徴とする請求項1から3のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 3, characterized in that it has a metal film containing any one of titanium, tantalum, tungsten, chromium, and platinum and interposed between the first plating layer and the second plating layer.  前記基板が、炭化ケイ素、リン化インジウム、窒化ガリウム、珪化ゲルマニウム、ゲルマニウム、シリコンのいずれかであることを特徴とする請求項1から4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, characterized in that the substrate is made of any one of silicon carbide, indium phosphide, gallium nitride, germanium silicide, germanium, and silicon.  半導体材料の基板の一方の面に配線部材を形成し、前記基板の他方の面で開口し、前記配線部材を底面とする筒状の孔を形成する工程、
 前記筒状の孔の内壁を被覆し、かつ前記開口の側から前記底面に向かって窪む凹部が形成されるように、無電解メッキにより、金の第一メッキ層を形成する工程、および
 前記凹部を埋めるように、電解メッキにより、銅、銀、ニッケル、錫、金のいずれかの第二メッキ層を形成する工程、
 を含むことを特徴とする半導体装置の製造方法。
A step of forming a wiring member on one surface of a substrate made of a semiconductor material, and forming a cylindrical hole on the other surface of the substrate, the hole being open and having the wiring member as a bottom surface;
forming a first plating layer of gold by electroless plating so as to cover the inner wall of the cylindrical hole and form a recess recessed from the opening side toward the bottom surface; and forming a second plating layer of any of copper, silver, nickel, tin, and gold by electrolytic plating so as to fill the recess.
2. A method for manufacturing a semiconductor device comprising the steps of:
 スパッタ法、または蒸着法により、前記凹部の内面を被覆する金属膜を形成する工程を含むことを特徴とする請求項6に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 6, further comprising the step of forming a metal film that covers the inner surface of the recess by a sputtering method or a vapor deposition method.
PCT/JP2023/019866 2023-05-29 2023-05-29 Semiconductor device and method for manufacturing semiconductor device WO2024247025A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023556766A JP7378693B1 (en) 2023-05-29 2023-05-29 Semiconductor device and semiconductor device manufacturing method
PCT/JP2023/019866 WO2024247025A1 (en) 2023-05-29 2023-05-29 Semiconductor device and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/019866 WO2024247025A1 (en) 2023-05-29 2023-05-29 Semiconductor device and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2024247025A1 true WO2024247025A1 (en) 2024-12-05

Family

ID=88729163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019866 WO2024247025A1 (en) 2023-05-29 2023-05-29 Semiconductor device and method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP7378693B1 (en)
WO (1) WO2024247025A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025109755A1 (en) * 2023-11-24 2025-05-30 三菱電機株式会社 Semiconductor device and production method for same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214127A (en) * 1989-02-15 1990-08-27 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH05102200A (en) * 1991-10-03 1993-04-23 Mitsubishi Electric Corp Semiconductor device
JP2014112634A (en) * 2012-10-30 2014-06-19 Mitsubishi Electric Corp Method for manufacturing semiconductor element and semiconductor element
JP2022070436A (en) * 2020-10-27 2022-05-13 富士通株式会社 Semiconductor device and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504780B (en) * 2009-09-04 2015-10-21 Win Semiconductors Corp A method of using an electroless plating for depositing a metal seed layer on semiconductor chips for the backside and via-hole manufacturing processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214127A (en) * 1989-02-15 1990-08-27 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH05102200A (en) * 1991-10-03 1993-04-23 Mitsubishi Electric Corp Semiconductor device
JP2014112634A (en) * 2012-10-30 2014-06-19 Mitsubishi Electric Corp Method for manufacturing semiconductor element and semiconductor element
JP2022070436A (en) * 2020-10-27 2022-05-13 富士通株式会社 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP7378693B1 (en) 2023-11-13
JPWO2024247025A1 (en) 2024-12-05

Similar Documents

Publication Publication Date Title
JP5284314B2 (en) Small electronic device, method of forming the same, and system
US10573611B2 (en) Solder metallization stack and methods of formation thereof
CN105393345A (en) Metal PVD-Free Conducting Structures
JP2005203785A (en) Method for manufacturing contact structure
JP5985495B2 (en) Contact pad and manufacturing method thereof
KR20100028069A (en) Methods of fabricating electronic devices using direct copper plating
JP2017228583A (en) Method for manufacturing semiconductor device
US20090166867A1 (en) Metal interconnect structures for semiconductor devices
JP7378693B1 (en) Semiconductor device and semiconductor device manufacturing method
TW201737455A (en) Semiconductor device and method of manufacturing the same
US20070246133A1 (en) Method for Electroplating and Contact Projection Arrangement
US12068221B2 (en) Plating for thermal management
TWI419276B (en) Semiconductor device and manufacturing method thereof
JP2003045965A (en) Semiconductor device and manufacturing method
US12266622B2 (en) Method of manufacturing semiconductor structure having hybrid bonding pad
JP6556377B2 (en) Semiconductor device and manufacturing method thereof
US20230402414A1 (en) Semiconductor structure having hybrid bonding pad
JPH07321343A (en) Semiconductor device and manufacture thereof
US20060141769A1 (en) Method for forming metal line of semiconductor device
KR100672724B1 (en) Metal wiring formation method of semiconductor device
TW202433701A (en) Semiconductor device with stacked conductive layers and related methods
JP2023053484A (en) Method for manufacturing semiconductor device
TW201434124A (en) Semiconductor structure and method of manufacturing the same
CN117276210A (en) Semiconductor device and method for manufacturing semiconductor device
CN119384000A (en) Silicon carbide device and preparation method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023556766

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23939505

Country of ref document: EP

Kind code of ref document: A1