[go: up one dir, main page]

WO2024237290A1 - Sheet for structure - Google Patents

Sheet for structure Download PDF

Info

Publication number
WO2024237290A1
WO2024237290A1 PCT/JP2024/018002 JP2024018002W WO2024237290A1 WO 2024237290 A1 WO2024237290 A1 WO 2024237290A1 JP 2024018002 W JP2024018002 W JP 2024018002W WO 2024237290 A1 WO2024237290 A1 WO 2024237290A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
layer
pair
structural
adhesive layer
Prior art date
Application number
PCT/JP2024/018002
Other languages
French (fr)
Japanese (ja)
Inventor
紀昭 大谷
有希 松野
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2024078997A external-priority patent/JP2024166136A/en
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Publication of WO2024237290A1 publication Critical patent/WO2024237290A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • E04D5/06Roof covering by making use of flexible material, e.g. supplied in roll form by making use of plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • This specification discloses a sheet that is attached to a structure for use.
  • Patent Document 1 discloses a method for repairing a roof using a sheet having a polymer cement layer and a resin layer. By attaching this sheet to the roof, it is possible to prevent roof leaks.
  • the sheet When a sheet is applied to a roof with a step, it is preferable for the sheet to conform to the step.
  • the sheet needs to have the ability to conform and deform to conform to the step.
  • a flexible sheet will deform significantly under its own weight when a worker grasps it. This deformation makes it difficult for the worker to handle the sheet.
  • the sheet also needs to have an appropriate level of rigidity.
  • the applicant's intention is to provide a sheet for structures that has excellent conformability and ease of handling.
  • the structural sheet disclosed in this specification is a structural sheet having a functional layer and an adhesive layer, and is curved so that a pair of short sides on the same surface of the rectangular structural sheet with short sides of 50 mm and long sides of 100 mm overlap each other, and a pair of regions of the structural sheet from the edge of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the structural sheet.
  • the energy of compressive deformation of 20 mm of the curved portion at 60°C is 2.0 mJ or more
  • the energy of compressive deformation of 20 mm of the curved portion at -10°C is 60.0 mJ or less.
  • This structural sheet is easy to handle even when installed in summer. This structural sheet is easy to follow even when installed in winter.
  • FIG. 1 is a perspective view showing a portion of a structural sheet according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is an enlarged view of the portion indicated by reference symbol III in FIG.
  • FIG. 4 is a front view showing the structural sheet of FIG. 1 together with a roof.
  • FIG. 5 is an enlarged view of a portion indicated by the symbol V in FIG.
  • FIG. 6 is an enlarged view of a portion designated by reference character VI in FIG.
  • FIG. 7 is a perspective view showing a test piece for measuring the energy of compressive deformation of the structural sheet of FIG.
  • FIG. 8 is a cross-sectional perspective view of the test strip of FIG. 7 shown with a clamp.
  • FIG. 1 is a perspective view showing a portion of a structural sheet according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is an enlarged view of the portion indicated
  • FIG. 9 is a front view of the test piece and gripper of FIG. 8 shown together with an indenter.
  • FIG. 10 is a plan view showing the gripper and indenter of FIG.
  • FIG. 11 is a graph showing the results obtained by measurements using the tester of FIGS.
  • FIG. 12 is a cross-sectional view showing a portion of a structural sheet according to another embodiment.
  • FIG. 13 is an enlarged plan view showing a part of a reinforcing body included in the structural sheet of FIG.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of a structural sheet according to the fourth embodiment.
  • FIG. 15 is a cross-sectional view showing a schematic configuration of a structural sheet according to the fifth embodiment.
  • FIG. 16 is a cross-sectional view showing a schematic configuration of a structural sheet according to the sixth embodiment.
  • FIG. 17 is a schematic diagram showing the structure of a supply item containing a structural sheet according to the present disclosure.
  • FIG. 1-3 shows a sheet 2 for structures (hereinafter, also referred to as "sheet 2").
  • sheet 2 includes a functional layer 4, an intermediate layer 6, and an adhesive layer 8, each of which includes at least one layer.
  • the sheet 2 includes, for example, a single functional layer 4, an intermediate layer 6, and an adhesive layer 8. The material of each layer will be described in detail later.
  • This sheet 2 is attached to a structure.
  • the sheet 2 may have a release paper or a release film (see the release film 9 in FIG. 14).
  • the release paper and the release film are laminated with the adhesive layer 8.
  • the release paper or the release film may remain until a predetermined timing, such as when the sheet 2 is used.
  • at least one of the adhesive layer 8 and the functional layer 4 may contain a filler.
  • FIG. 10 A typical application of this structural sheet 2 is the repair of a roof of a structure.
  • a repaired roof 10 is shown in Figures 4-6.
  • two sheets 2 (a first sheet 2a and a second sheet 2b) are shown together with the roof 10.
  • the specifications of the second sheet 2b are the same as those of the first sheet 2a.
  • Examples of the roof 10 include a slate roof, a tile roof, a steel roof (including a folded plate roof), a copper roof, a galvanized iron roof, and a concrete roof.
  • the position of the lower edge 12a of the first sheet 2a is generally aligned with the position of the lower end 14 of the roof 10.
  • the first sheet 2a is attached to the roof 10 as a whole.
  • the roof 10 has a step 16.
  • the first sheet 2a is curved in the vicinity of the step 16. This curvature allows the first sheet 2a to follow the step 16.
  • the second sheet 2b overlaps the vicinity of the upper edge 18a of the first sheet 2a near its lower edge 12b. This overlap forms a seam 20.
  • the portion of the second sheet 2b other than the seam 20 is affixed to the roof 10.
  • the upper edge 18a of the first sheet 2a forms a step 22 between the first sheet 2a and the roof 10.
  • the second sheet 2b is curved near this step 22. This curvature allows the second sheet 2b to follow the step 22.
  • the structural sheet 2 is usually attached to the roof 10 via a primer layer.
  • the phrase "the sheet is attached to the roof” also refers to the case where the sheet 2 is attached to the roof 10 via a primer layer or the like.
  • the primer layer is not shown in Figures 5 and 6.
  • the energy E1 of the structural sheet 2 for 20 mm compressive deformation at 60° C. is preferably 2.0 mJ or more.
  • a worker lifts the sheet 2 with his/her hands. At this time, gravity is applied to the sheet 2.
  • the sheet 2 deforms due to its own weight. This deformation causes the sheet 2 to hang down from the worker's hands.
  • the degree of deformation when gravity is applied is small.
  • This sheet 2 is easy for a worker to handle. With this sheet 2, deformation can be suppressed even in a high temperature environment such as summer.
  • the energy E1 is more preferably 3.0 mJ or more, even more preferably 6.0 mJ or more, and particularly preferably 9.5 mJ or more.
  • the energy E2 of this structural sheet 2 for a 20 mm compressive deformation at -10°C is preferably 60.0 mJ or less. As described above, the sheet 2 curves in the vicinity of the step 16 (22). A sheet 2 with an energy E2 of 60.0 mJ or less can conform well to the step 16 (22). When repairing a roof 10 with this sheet 2, a space is unlikely to be created between the sheet 2 and the roof 10. This sheet 2 exhibits excellent conformability even in low-temperature environments such as winter. From the viewpoint of conformability, the energy E2 is more preferably 57.1 mJ or less, and particularly preferably 44.7 mJ or less.
  • [Energy Measurement] 7-10 show a method for measuring the compressive deformation energies E1 and E2.
  • a test piece 24 shown in FIG. 7 is cut out from the structural sheet 2.
  • the planar shape of this test piece 24 is rectangular.
  • the length of the short side 26 of this rectangle is 50 mm, and the length of the long side 28 is 100 mm.
  • the layer structure of this test piece 24 is the same as the layer structure of the sheet 2.
  • the test piece 24 is curved as shown by the arrow A1 in Figure 7. This bending brings one short side 26 into contact with the other short side 26.
  • the test piece 24 is gripped by a gripping tool (fixture) 30 as shown in Figures 8 and 9. This gripping forms an overlapping portion 32 in the test piece 24.
  • the length of the overlapping portion 32 is 15 mm.
  • the portion of the test piece 24 other than the overlapping portion 32 is the curved portion 34 of the sheet 2.
  • the circumference of this curved portion 34 is 70 mm ⁇ (100-15 x 2) mm ⁇ .
  • This test piece 24 is subjected to a compression test.
  • the pressing tool which is the device for this test, is shown in Figures 9 and 10.
  • This pressing tool has an indenter 36 and a shaft 38.
  • This indenter 36 has a disk shape.
  • This indenter 36 has a diameter of 100 mm and a thickness of 10 mm.
  • This indenter 36 descends as shown by arrow A2 in Figure 9.
  • the descending speed is 30 mm/min.
  • the force is measured between the time when this indenter 36 hits the curved portion 34 and the time when the indenter 36 has further descended 20 mm from this point.
  • E energy (mJ)
  • F force (N)
  • s displacement (mm) of the indenter 36.
  • Figure 11 shows a graph of the measurement results.
  • the horizontal axis is the displacement (stroke) of the indenter 36
  • the vertical axis is the force.
  • the area of the hatched zone in this graph is the energy E (E1, E2 or E3).
  • the energy is the integral of the force F from zero to 20 mm of displacement.
  • Energy E1 is measured in an environment with a temperature of 60°C.
  • Energy E2 is measured in an environment with a temperature of -10°C.
  • the measurement conditions for energy E3 will be described in detail later.
  • An example of a gripping tool 30 suitable for this test is the "PFG-1kNA” product name manufactured by Shimadzu Corporation.
  • An example of a tester suitable for this test is the "Autograph AGX-V 10kN" product name manufactured by Shimadzu Corporation.
  • the energy E1 is the energy of compressive deformation of the curved portion 34 in a 60° C. environment, calculated by the calculation in (4) below, when a deformation test is performed by sequentially performing the operations described in the following items (1), (2), (3), and (4), and has a value of 2.0 mJ or more.
  • the energy E2 is the energy of compressive deformation of the curved portion 34 in a ⁇ 10° C. environment, calculated by the calculation in (4) below, when a deformation test is performed by sequentially performing the operations described in the following items (1), (2), (3), and (4), and has a value of 60.0 mJ or less.
  • a rectangular structural sheet 2 having short sides of 50 mm and long sides of 100 mm is prepared as a test piece 24 (see FIG. 7).
  • the test piece 24 is bent so that a pair of short sides on the same surface overlap each other, and a pair of regions of the test piece 24 from the edges of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture to form a curved portion 34 with a circumference of 70 mm between the pair of regions of the test piece 24 (see Figure 8).
  • a pressing tool having a disk-shaped indenter 36 with a pressing surface having a diameter of 100 mm and a thickness of 10 mm is used to bring the indenter 36 of the pressing tool into contact with the curved portion 34 from above in an environment of humidity 50 ⁇ 10% RH, and the indenter 36 is moved downward by 20 mm at a test speed of 30 mm/min (see FIG. 9 ).
  • the energy required to move the indenter 36 is calculated.
  • the functional layer 4 of this embodiment is, as an example, located on the outermost surface side. In other words, when the sheet 2 is attached to a structure, the functional layer 4 is located furthest from the structure.
  • the functional layer 4 of this embodiment is disposed above the adhesive layer 8.
  • the functional layer 4 contributes to a function desired for the sheet 2. Examples of such functions include light resistance, weather resistance, heat resistance, abrasion resistance, chemical resistance, water impermeability, moisture impermeability, and moisture permeability.
  • the functional layer 4 can contribute to one or more functions.
  • the material of the functional layer 4 is a polymer composition.
  • This functional layer 4 is generally flexible.
  • the sheet 2 having this functional layer 4 can conform to the unevenness of the substrate.
  • the polymer composition includes a base polymer. Synthetic resins, synthetic rubbers, and natural rubbers can be included in the composition as base polymers.
  • the weather resistance of the functional layer 4 can be controlled, for example, by adjusting the material of the functional layer 4 or the selection and content of the material in the functional layer 4.
  • the material of the functional layer 4 is preferably, for example, a base polymer that is not easily degraded by ultraviolet light.
  • examples of methods include arranging a material (polymer, etc.) that can form a large number of bond structures having a bond energy stronger than ultraviolet light (410 KJ/mol) in the functional layer 4, or increasing the content of the material in the functional layer 4.
  • polymers that can contribute to the weather resistance of the functional layer 4 and the flexibility of the sheet 2 include acrylic resin, acrylic urethane resin, acrylic silicone resin, fluororesin, soft epoxy resin, and polybutadiene.
  • the functional layer 4 may contain a material having a structure with few double bonds. If the functional layer 4 contains a large amount of such material, the chemical stability of the functional layer 4 increases.
  • a material is a non-diene rubber.
  • the non-diene rubber may be at least one of CIIR (chlorinated butyl rubber), BIIR (brominated butyl rubber), and EPDM (ethylene propylene rubber).
  • a method for forming a large amount of the bond structure in the functional layer 4 for example, a method of unevenly distributing at least one of a radical trapping material that traps radicals generated by irradiation with energy rays such as ultraviolet (UV) rays, an additive such as HALS that absorbs UV rays and suppresses the generation of radicals, and an antioxidant such as a phenolic or thioether type can be exemplified.
  • a radical trapping material that traps radicals generated by irradiation with energy rays such as ultraviolet (UV) rays
  • an additive such as HALS that absorbs UV rays and suppresses the generation of radicals
  • an antioxidant such as a phenolic or thioether type
  • an example of a resin that is particularly suitable for the base polymer of the functional layer 4 of this embodiment is an acrylic silicone resin.
  • the acrylic silicone resin contains siloxane bonds.
  • the acrylic silicone resin also has excellent heat resistance and cold resistance.
  • Specific examples of compositions containing an acrylic silicone resin include "Cool Life SP Black (CB1) P5-0” manufactured by Dainichi Seikagaku Kogyo Co., Ltd., "Bell Earth Elastic Black” manufactured by Fujikura Kasei Co., Ltd., "Aronble Coat T-1000" manufactured by Toagosei Co., Ltd., and "Acryset EMN325E” and "U-Double EF008” manufactured by Nippon Shokubai Co., Ltd.
  • the polymer composition of the functional layer 4 may contain additives such as pigments, fillers, reinforcing materials, and antifouling agents, as necessary.
  • Functional layer 4 containing pigments has excellent cosmetic properties.
  • the polymer composition may contain organic pigments and inorganic pigments.
  • fillers include metal oxide particles such as silica, alumina, and titania.
  • reinforcing materials include cellulose nanofibers. The content of each additive is adjusted according to its function.
  • the arrow T1 indicates the thickness of the functional layer 4.
  • the thickness T1 is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and particularly preferably 40 ⁇ m or more.
  • the thickness T1 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the structural sheet 2 may have two or more functional layers 4.
  • the functional layer 4 contains a filler, it may contain the same filler as the filler contained in the intermediate layer 6 described below.
  • the intermediate layer 6 contributes to the rigidity of the sheet 2.
  • the intermediate layer 6 is, for example, a layer that defines the shape of the sheet 2.
  • the intermediate layer 6 has, for example, a function of maintaining the overall shape of the sheet 2.
  • a preferred material for the intermediate layer 6 is a composite material of a polymer and a filler. This makes it easier to impart a predetermined rigidity to the structural sheet 2.
  • the polymer include acrylic resin, acrylic silicone resin, fluororesin, silicone resin, epoxy resin, ethylene-vinyl acetate copolymer, and styrene-butadiene copolymer.
  • the filler include cement, silica, alumina, titanium oxide, calcium carbonate, and carbon black.
  • a preferred composite material is, for example, polymer cement.
  • This polymer cement includes a polymer and cement.
  • the cement include Portland cement, alumina cement, and a mixture thereof.
  • Portland cement is preferred.
  • the filler which is a material for the intermediate layer 6, may contain cement.
  • the filler may also contain at least one of sand and aggregate that constitute mortar.
  • the above-listed materials may be used alone or in combination.
  • the rigidity of the structure sheet 2 can be easily controlled and the freedom of material design can be improved.
  • the thickness of the intermediate layer 6 can be obtained to an extent that makes it easy to handle.
  • the rigidity of the structure sheet 2 can be controlled.
  • the particle shape of the filler include spherical, needle-like, amorphous, and tetrapod-like shapes.
  • the rigidity of the structure sheet 2 can be controlled.
  • compositions containing a polymer suitable for the intermediate layer 6 include “Spring Coat Brush Mixture” manufactured by Kikusui Chemical Industry Co., Ltd. and “Aronbull Coat A450 Base” manufactured by Toagosei Co., Ltd.
  • cement compositions that are fillers suitable for the intermediate layer 6 include “Spring Coat Brush Powder” manufactured by Kikusui Chemical Industry Co., Ltd. and “Aronbull Coat A450 Setter” manufactured by Toagosei Co., Ltd.
  • the mass ratio of the solids of the polymer to the filler is preferably, for example, 5/95 or more and 70/30 or less.
  • An intermediate layer 6 having this ratio of 5/95 or more has excellent adhesion to other layers (functional layer 4).
  • the energy E2 is small. Therefore, this sheet 2 has excellent tracking properties. From these viewpoints, this ratio is more preferably 12/88 or more, and particularly preferably 27/73 or more.
  • this ratio is more preferably 60/40 or less, and particularly preferably 45/55 or less.
  • the arrow T2 indicates the thickness of the intermediate layer 6.
  • the thickness T2 is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, and particularly preferably 300 ⁇ m or more.
  • the thickness T2 is preferably 1500 ⁇ m or less, more preferably 1200 ⁇ m or less, and particularly preferably 700 ⁇ m or less.
  • the structure sheet 2 may have two or more intermediate layers 6.
  • the structure sheet 2 may have a layer structure that does not include an intermediate layer 6.
  • the arrow Tt indicates the total thickness of the sheet 2.
  • the ratio of the thickness T2 of the intermediate layer 6 to the total thickness Tt is preferably 30% or more, more preferably 45% or more, and particularly preferably 55% or more. From the viewpoints of the conformability, productivity, and light weight of the sheet 2, this ratio is preferably 85% or less, more preferably 75% or less, and particularly preferably 70% or less.
  • the structure sheet 2 may have one or more intermediate layers 6.
  • the number of intermediate layers 6 included in the structure sheet 2 is set taking into consideration, for example, the overall thickness of the structure sheet 2, the function to be imparted to the intermediate layers 6, the length of the factory production line, or the production cost of the structure sheet 2. For example, if a single intermediate layer 6 having a predetermined thickness cannot be obtained due to a short factory production line, a layered structure of multiple intermediate layers 6 having a predetermined overall thickness can be formed by applying multiple coats of the material for the intermediate layer 6.
  • the adhesive layer 8 abuts against the base.
  • the sheet 2 can be attached to the structure by the adhesive force of the adhesive layer 8.
  • the adhesiveness of the adhesive layer 8 can be controlled, for example, by adjusting the thickness and surface properties of the adhesive layer 8, and the material of the adhesive layer 8.
  • a microstructure described later can be adopted.
  • setting the thickness of the adhesive layer 8 to an appropriate value that is neither too thick nor too thin is also effective in controlling the adhesiveness of the adhesive layer 8.
  • examples of materials for the adhesive layer 8 include adhesives that have a low glass transition temperature (Tg) and can utilize van der Waals forces or electrostatic forces, such as acrylic, silicone with siloxane bonds, rubber, and urethane-based adhesives.
  • the adhesive strength of the adhesive layer 8 can be controlled by adjusting the thickness of the adhesive layer 8 and the degree of crosslinking of the adhesive layer 8.
  • the attachment surface of the adhesive layer 8 may also be configured with a microstructure like the limbs of a gecko (a structure that has a large surface area and can utilize intermolecular forces). Furthermore, the adhesives and the microstructures may be used in combination.
  • the material of the adhesive layer 8 in this embodiment is, for example, a polymer-based adhesive composition.
  • polymers suitable for this adhesive composition include acrylic resin, silicone, polyurethane, polyester, natural rubber, and synthetic rubber.
  • a particularly preferred polymer as the base material is acrylic resin.
  • Specific examples of adhesive compositions include those available from Toyochem Co., Ltd. under the trade names "Olivine BPS6574,” “Olivine BPS6554,” and "Olivine BPS5565K.”
  • the adhesive composition may contain a curing agent.
  • a preferred curing agent is an isocyanate curing agent.
  • the ratio of the isocyanate curing agent to 100 parts by mass of the acrylic resin is preferably 1.0 part by mass or more, more preferably 2.0 parts by mass or more, and particularly preferably 2.5 parts by mass or more. This ratio is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and particularly preferably 7 parts by mass or less.
  • the adhesive composition may contain a tackifier.
  • tackifiers include rosin-based tackifiers, terpene-based tackifiers, petroleum resin-based tackifiers, and phenolic resin-based tackifiers.
  • the ratio of the tackifier to 100 parts by mass of the base polymer is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and particularly preferably 1.5 parts by mass or more. This ratio is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and particularly preferably 7 parts by mass or less.
  • Specific examples of tackifiers include Arakawa Chemical Industries Co., Ltd.'s product names "Ester Gum H", "Ester Gum AA-V", and "Ester Gum 105".
  • an arrow T3 indicates the thickness of the adhesive layer 8.
  • the thickness T3 is preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the thickness T3 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m or less.
  • the structure sheet 2 may have two or more adhesive layers 8. [Release film]
  • the release film 9 is disposed (attached) on the surface of the adhesive layer 8 opposite to the intermediate layer 6.
  • the release film 9 is preferably attached to the sheet for structure 2 for the purpose of protecting the surface of the adhesive layer 8 before use.
  • the release film 9 is peeled off when the sheet for structure 2 is attached.
  • the sheet for structure 2, with the adhesive layer 8 exposed as a result of the release film 9 being peeled off, is attached to the structure by bringing the adhesive layer 8 into contact with the surface of the structure.
  • the structure of the release film 9 is not particularly limited, and may be, for example, a sheet having a support layer and a peeling layer.
  • materials constituting the support layer include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene and polymethylpentene, polyamides such as nylon 6, vinyl resins such as polyvinyl chloride, acrylic resins such as polymethyl methacrylate, cellulose resins such as cellulose acetate, and synthetic resins such as polycarbonate.
  • the support layer may also be formed with paper as the main component. Furthermore, the support layer may be a laminate having two or more constituent layers.
  • Examples of materials constituting the release layer include silicone resin, melamine resin, and fluorinated polymer.
  • the release layer can be formed, for example, by applying a coating liquid containing the material constituting the release layer and an organic solvent onto the support layer by a known coating method such as gravure coating, roll coating, comma coating, or lip coating, and then drying and curing the coating film formed by the application.
  • a coating liquid containing the material constituting the release layer and an organic solvent onto the support layer by a known coating method such as gravure coating, roll coating, comma coating, or lip coating, and then drying and curing the coating film formed by the application.
  • the surface of the support layer on which the release layer is to be formed may be previously subjected to a corona treatment or an easy-adhesion treatment.
  • the sheet for a structure 2 may have another layer located on the functional layer 4.
  • a typical other layer is, for example, a clear paint layer.
  • the other layer may be a layer that reinforces or adds a function such as design or heat insulation.
  • the sheet for a structure 2 may have a layer located between the functional layer 4 and the intermediate layer 6.
  • the sheet for a structure 2 may have a layer located between the intermediate layer 6 and the adhesive layer 8.
  • the total thickness Tt of the structural sheet 2 is preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more, and particularly preferably 400 ⁇ m or more.
  • the total thickness Tt is preferably 5.0 mm or less, more preferably 3.0 mm or less, and particularly preferably 1.0 mm or less.
  • the structure sheet 2 has the above-mentioned rigidity and also has a suitable flexibility.
  • the structure sheet 2 has flexibility to the extent that it can be wound into a roll.
  • the roll-shaped winding referred to here refers to winding the structure sheet 2 around a roll core material having a diameter of, for example, several centimeters or more and several tens of centimeters or less (specifically, for example, a diameter of 10 mm or more and 300 mm or less). Even with a thinner roll core material, the structure sheet 2 can be wound up to several meters by hand winding or the like. Therefore, for example, the structure sheet 2 can be managed in a roll shape.
  • the structure sheet 2 can be easily and simply applied to a construction target having a relatively large area.
  • the polymer composition of the functional layer 4 is mixed with a solvent to obtain a first coating material.
  • This first coating material is applied onto a base film to obtain a first coating film.
  • This first coating film is heated, and the solvent volatilizes from the first coating material. This heating hardens the base polymer in the first coating film, and the functional layer 4 is obtained.
  • the base film is a shape-imparting film (sheet) that imparts a shape to the first coating film.
  • the composite material of the intermediate layer 6 is mixed with a solvent to obtain a second paint.
  • This second paint is applied onto the functional layer 4 to obtain a second coating film.
  • This second coating film is heated, and the solvent evaporates from the second paint. This heating hardens the polymer, and the intermediate layer 6 is obtained.
  • the adhesive composition of the adhesive layer 8 is mixed with a solvent to obtain a third coating material.
  • This third coating material is applied onto a release paper or film to obtain a third coating film.
  • This third coating film is heated, and the solvent evaporates from the third coating material to obtain the adhesive layer 8.
  • This adhesive layer 8 is overlaid on the intermediate layer 6. Furthermore, the base film is peeled off from the functional layer 4, and the release film is peeled off from the adhesive layer 8 to obtain the structural sheet 2. Note that at least one of the release paper or release film and the base film may be peeled off and removed before use.
  • the base film is used as a substrate when manufacturing the structural sheet 2.
  • the base film may include resin laminated paper, which is a process paper used in the manufacturing process of the structural sheet 2, or a resin film.
  • the resin laminated paper referred to here may have an olefin resin layer such as polypropylene or polyethylene.
  • an example of the base film that can be used is a PP laminated sheet (manufactured by, for example, Lintec Corporation).
  • the thickness of this PP laminated sheet is, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • This structural sheet 2 has excellent conformability and can therefore be applied to roofs 10 having steps, as described above.
  • a wide area of the surface of the roof 10 can be covered with the sheet 2.
  • the adhesive layer 8 has excellent adhesiveness, a wide area of the surface of the roof 10 can be covered with the sheet 2 even if the surface of the roof 10 is made of a mixture of materials.
  • a wide area of the surface of the roof 10 can be covered with the sheet 2 even if the surface of the roof 10 includes both metal and slate.
  • the entire surface of the roof 10 may be covered with the sheet 2.
  • the surface of the roof 10 means the surface that is visible when the roof 10 is viewed from above in the vertical direction. Repair methods in which the entire surface of the roof 10 is covered with a single type of sheet 2 are not found in conventional construction methods.
  • the density of the sheet 2 is preferably 4.0 g/cm 3 or less, more preferably 3.0 g/cm 3 or less, and particularly preferably 2.5 g/cm 3 or less. This density is much smaller than the density of aluminum-zinc alloy plated steel sheet (trade name "Galvalume Steel Sheet” (registered trademark)) which is used for repairing the roof 10.
  • This sheet 2 can contribute to the repair or reinforcement of structures other than the roof 10.
  • structures other than the roof 10 include walls, pillars, eaves, fences, gates, doors, parapets, copings, etc. of houses.
  • This sheet 2 may also be used in commercial buildings, factories, warehouses, bridges, sewage facilities, railway facilities, tunnels, etc.
  • the first method is a method of repairing or reinforcing a structure using the sheet 2 for structures, and comprises the following steps (1a) and (2a).
  • the method includes the steps of (1a) preparing a sheet 2 having a rectangular shape with short sides of 50 mm and long sides of 100 mm (sheet 2 corresponding to test piece 24) by bending a pair of short sides on the same surface so that they overlap each other, and by gripping and fixing a pair of regions of the sheet 2 from the edges of the pair of short sides to a position 15 mm away along the long side with a fixture 30 of a test device, forming a curved portion 34 with a circumference of 70 mm between the pair of regions of the sheet 2, such that the energy of a 20 mm compressive deformation of the curved portion 34 at 60°C is 2.0 mJ or more and the energy of a 20 mm compressive deformation of the curved portion 34 at -10°C is 60.0 mJ or less, and the sheet 2 has a functional layer 4 and an adhesive layer 8, and (2a) attaching the sheet 2 to the surface of a structure by the adhesive force of the adhesive layer 8.
  • the method of re-repairing or re-reinforcing a structure disclosed herein can also be referred to as the second method below. That is, the second method can also be a method of re-repairing or re-reinforcing using two structural sheets 2 (hereinafter also referred to as the "first sheet 2a" and the "second sheet 2b").
  • This method is a method of re-repairing or re-reinforcing a structure that has been repaired or reinforced with the first sheet 2a with the second sheet 2b, and includes the following steps (1b) to (4b).
  • the second method includes the steps of (1b) curving a rectangular first sheet 2a with short sides of 50 mm and long sides of 100 mm so that a pair of short sides on the same surface overlap each other, and gripping and fixing a pair of regions of the first sheet 2a from the edges of the pair of short sides to a position 15 mm away along the long side with a fixture 30 of a testing device to form a curved portion 34 with a circumference of 70 mm between the pair of regions of the first sheet 2a, such that the energy of a 20 mm compressive deformation of the curved portion 34 of the first sheet 2a at 60°C is 2.0 mJ or more and the energy of a 20 mm compressive deformation of the curved portion 34 of the first sheet 2a at -10°C is 60.0 mJ or less, and the first sheet 2a has a functional layer 4 and an adhesive layer 8.
  • the second method further includes a step (2b) of attaching the first sheet 2a to the surface of the structure by the adhesive force of the adhesive layer 8 of the first sheet 2a.
  • the method further includes (3b) preparing a second sheet 2b having a rectangular shape with short sides of 50 mm and long sides of 100 mm, by bending the pair of short sides of the same surface so that they overlap each other, and by gripping and fixing a pair of regions of the second sheet 2b from the edge of the pair of short sides to a position 15 mm away along the long side with a fixture 30 of a testing device, forming a curved portion 34 with a circumference of 70 mm between the pair of regions of the second sheet 2b, in which the energy of a 20 mm compressive deformation of the curved portion 34 of the second sheet 2b at 60°C is 2.0 mJ or more and the energy of a 20 mm compressive deformation of the curved portion 34 of the second sheet 2b at -10°C is 60.0 mJ or less, and the second
  • FIG. 12 shows a structure sheet 40 according to the second embodiment.
  • the sheet 40 has a functional layer 42, an intermediate layer 44, an adhesive layer 46, and a reinforcing body 48.
  • the reinforcing body 48 is embedded in the intermediate layer 44.
  • the material, thickness, and other configurations of the functional layer 42 are the same as those of the functional layer 4 shown in FIG. 3.
  • the material, thickness, and other configurations of the adhesive layer 46 are the same as those of the adhesive layer 8 shown in FIG. 3.
  • the sheet 40 is attached to a structure.
  • the sheet 40 may have a release paper or a release film. The release paper and the release film are laminated with the adhesive layer 46.
  • the energy E1 of the sheet 40 for compressive deformation of 20 mm at 60° C. is preferably 2.0 mJ or more.
  • a worker lifts the sheet 40 with his/her hands. At this time, gravity is applied to the sheet 40.
  • the sheet 40 deforms due to its own weight. This deformation causes the sheet 40 to hang down from the worker's hand.
  • the energy E1 is more preferably 3.0 mJ or more, even more preferably 6.0 mJ or more, and particularly preferably 9.5 mJ or more.
  • the energy E2 of this sheet 40 for a compressive deformation of 20 mm at -10°C is preferably 60.0 mJ or less. As described above, the sheet 40 curves near steps. A sheet 40 with an energy E2 of 60.0 mJ or less can conform well to steps. When repairing a roof with this sheet 40, spaces are unlikely to form between the sheet 40 and the roof. This sheet 40 exhibits excellent conformability even in low-temperature environments such as winter. From the viewpoint of conformability, the energy E2 is more preferably 57.1 mJ or less, and particularly preferably 44.7 mJ or less. The energies E1 and E2 are measured in the same manner as described above for the first embodiment.
  • the intermediate layer 44 is disposed between the functional layer 42 and the adhesive layer 46.
  • the intermediate layer 44 includes a reinforcing body 48.
  • the material of the intermediate layer 44 (the material of the portion excluding the reinforcing body 48) is the same as the material of the intermediate layer 6 shown in FIG. 3.
  • the arrow T2 indicates the thickness of the intermediate layer 44.
  • the thickness T2 is measured including the reinforcing body 48.
  • the thickness T2 is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, and particularly preferably 300 ⁇ m or more.
  • the thickness T2 is preferably 1500 ⁇ m or less, more preferably 1200 ⁇ m or less, and particularly preferably 700 ⁇ m or less.
  • the ratio of the thickness T2 of the intermediate layer 44 to the total thickness Tt of the sheet 40 is preferably 30% or more, more preferably 45% or more, and particularly preferably 55% or more. From the viewpoints of the conformability, productivity, and light weight of the sheet 40, this ratio is preferably 85% or less, more preferably 75% or less, and particularly preferably 70% or less.
  • the reinforcing body 48 can contribute to the rigidity of the sheet 40.
  • the sheet 40 including the reinforcing body 48 has excellent handleability.
  • the reinforcing body 48 is embedded in the intermediate layer 44.
  • the reinforcing body 48 may be embedded in the functional layer 42.
  • the reinforcing body 48 may be embedded in the adhesive layer 46.
  • the reinforcing body 48 may be located between the functional layer 42 and the intermediate layer 44.
  • the reinforcing body 48 may be located between the intermediate layer 44 and the adhesive layer 46.
  • the reinforcing body 48 in this embodiment is, as an example, a mesh.
  • FIG. 13 shows the reinforcing body 48 which is a mesh.
  • the reinforcing body 48 is a fabric (woven material) and has a biaxial woven structure in which the fibers of the warp threads 50a and the weft threads 50b are arranged in a lattice pattern.
  • this fabric has a plain weave structure.
  • the reinforcing body 48 which is a fabric can be impregnated with the composition of the intermediate layer 44. This impregnation suppresses peeling between the reinforcing body 48 and the intermediate layer 44.
  • the reinforcing body 48 may contain long fibers, short fibers, nonwoven fabric, resin film, or metal foil.
  • the resin film may be, for example, a biaxially stretched film.
  • the shape of the reinforcing body 48 is not particularly limited. When the reinforcing body 48 is a mesh, the shape can be any shape, such as a biaxial woven structure or a triaxial woven structure. Examples of the material of the reinforcing body 48 include a synthetic resin composition and a metal.
  • Preferred base resins for the synthetic resin composition include polyethylene terephthalate, polyethylene naphthalate, aramid, vinylon, polypropylene, polystyrene, and polyvinylidene fluoride.
  • Preferred metals include aluminum alloys, carbon steel, and alloy steel.
  • the reinforcing body 48 is preferably a mesh material such as a high-strength vinylon mesh (for example, for civil engineering applications) or a cheesecloth made of vinylon (for example, for agricultural applications), polyester, polyvinyl alcohol, or the like.
  • These reinforcing bodies 48 can easily widen the elastic range of the structural sheet 40. They can also easily impart appropriate rigidity to the structural sheet 40. Furthermore, the handleability of the structural sheet 40 can be improved.
  • the line pitch of the reinforcement 48 is preferably 50 mm or more and 1.2 mm or less.
  • the line density of the reinforcement 48 is preferably 0.2 lines/cm or more and 8.0 lines/cm or less.
  • the reinforcing body 48 may be, for example, large enough to cover the entire surface of the intermediate layer 44 when the intermediate layer 44 is viewed in a plan view, or may be smaller than the intermediate layer 44. In other words, the area of the reinforcing body 48 when viewed in a plan view may be equal to or smaller than the area of the intermediate layer 44 when viewed in a plan view.
  • the area of the reinforcement 48 when viewed in a plane is preferably, for example, 60% to 95% of the plan view area of the intermediate layer 44. If the plan view area of the reinforcement 48 is 60% or more, for example, it is easier to ensure the rigidity of the structural sheet 40 and to control the elongation rate of the structural sheet 40. In addition, it is easier to suppress the variation in rigidity in different regions of the structural sheet 40. In addition, if the plan view area of the reinforcement 48 is 95% or less, for example, when the intermediate layer 44 is formed so as to sandwich the reinforcement 48 in the thickness direction of the structural sheet 40, it is easier to ensure the adhesive strength of the reinforcement 48 to the intermediate layer 44 throughout the entire intermediate layer 44.
  • the plan view area of the reinforcement 48 can be measured by a known method.
  • the thickness of the reinforcement 48 is, for example, 10% or more of the thickness of the intermediate layer 44.
  • the thickness of the reinforcement 48 is, for example, preferably 20% or more of the thickness of the intermediate layer 44, more preferably 30% or more, particularly preferably 40% or more, and most preferably 50% or more.
  • the thickness of the reinforcement 48 is, for example, 80% or less of the thickness of the intermediate layer 44.
  • the thickness of the reinforcement 48 is, for example, preferably 70% or less of the thickness of the intermediate layer 44, more preferably 60% or less, and particularly preferably 55% or less. Setting the thickness of the intermediate layer 44 in this way makes it easier to impart appropriate rigidity to the structural sheet 40.
  • the structural sheet 40 of the present disclosure can be configured to have excellent adhesion between the adhesive layer 46 and the intermediate layer 44 and appropriate rigidity. Therefore, excellent handleability is obtained when attaching the structural sheet 40 to the roof of the structure, etc., and the structural sheet 40 can protect the structure for a long period of time without causing wrinkles or gaps with the roof of the structure, etc.
  • the lower limit of the thickness of the reinforcing body 48 relative to the thickness of the intermediate layer 44 is preferably 45%, and the upper limit of this thickness is preferably 55%.
  • the reinforcing body 48 may include structures other than the fabric as well as the fabric. Examples of structures in this case include long fibers, short fibers, resin films, metal foils, and nonwoven fabrics.
  • the reinforcing body 48 when the reinforcing body 48 is in the form of a sheet, the reinforcing body 48 is in the form of a rectangular sheet having a short side of 50 mm and a long side of 100 mm, and is curved so that a pair of short sides of the same surface overlap each other, and a pair of regions of the reinforcing body 48 from the edge of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a test device, so that a curved portion having a circumference of 70 mm is formed between the pair of regions of the reinforcing body 48.
  • the energy E3 of the curved portion of the reinforcing body 48 for a compression deformation of 20 mm at 23 ° C. is preferably 1.5 mJ or more.
  • the sheet 40 including the reinforcing body 48 having an energy E3 of 1.5 mJ or more a large energy E1 can be achieved.
  • This sheet 40 has excellent handleability. From this viewpoint, the energy E3 is more preferably 2.0 mJ or more, and particularly preferably 2.0 mJ or more.
  • This energy E3 is preferably 10 mJ or less.
  • a sheet 40 including a reinforcing body 48 with an energy E3 of 10 mJ or less can achieve a small energy E2.
  • This sheet 40 has excellent conformability. From this viewpoint, the energy E3 is more preferably 8 mJ or less, and particularly preferably 6 mJ or less.
  • This energy E3 is measured in the same manner as described above for the compressive deformation energies E1 and E2.
  • a test piece having sides the same length as the short side 26 and long side 28 shown in FIG. 7 is cut out from the reinforcement 48 and subjected to measurement.
  • the device shown in FIGS. 8-10 is used for the measurement.
  • the energy E3 is calculated by the above formula (1).
  • the energy E3 is measured in an environment of 23°C.
  • the arrow D1 indicates the thickness of the thread 50.
  • a large energy E1 can be achieved by a thread 50 having a large thickness D1.
  • a small energy E2 can be achieved by a thread 50 having a small thickness D1.
  • the arrow P1 indicates the pitch of the thread 50.
  • a large energy E1 can be achieved by a reinforcing body 48 having a small pitch P1.
  • a small energy E2 can be achieved by a reinforcing body 48 having a large pitch P1.
  • This sheet 40 is suitable for repairing roofs, similar to the sheet 2 shown in Fig. 1-3.
  • This sheet 40 can also be used for residential walls, pillars, eaves, fences, gates, doors, parapets, copings, etc., similar to the sheet 2 shown in Fig. 1-3.
  • This sheet 40 may also be used for commercial buildings, factories, warehouses, bridges, sewage facilities, railway facilities, tunnels, etc.
  • the density of the sheet 40 is preferably 4.0 g/cm 3 or less, more preferably 3.0 g/cm 3 or less, and particularly preferably 2.5 g/cm 3 or less.
  • the structure sheet 2 preferably has a rigidity that can withstand folding.
  • the structure sheet 2 may be configured so that at least one of the first layer arranged on the application surface side and the second layer arranged on the opposite side to the application surface has a predetermined rigidity.
  • the structure sheet 2 may be configured to include the first layer arranged on the application surface side, the second layer arranged on the opposite side to the application surface, and a third layer arranged between the first layer and the second layer, and the third layer has a predetermined rigidity.
  • the first layer arranged on the attachment surface side of the structure sheet 2 can be an adhesive layer 8.
  • An example of a method for imparting rigidity to the adhesive layer 8 is a method in which the adhesive layer 8 is configured to include an adhesive and a filler.
  • the adhesive layer 8 includes an adhesive that has a relatively low glass transition temperature (Tg) such as acrylic, silicone with siloxane bonds, rubber, or urethane, and can utilize van der Waals forces or electrostatic forces, and a filler such as silica, alumina, titanium oxide, calcium carbonate, or carbon black.
  • Tg glass transition temperature
  • the rigidity of the adhesive layer 8 can be controlled by adjusting at least one of the amount of filler added to the adhesive layer 8 and the particle shape of the filler.
  • the particle shape of the filler include spherical, needle-like, amorphous, and tetrapod-like shapes.
  • the rigidity of the structure sheet 2 can be controlled by adjusting the thickness of the functional layer 4.
  • the rigidity of the structure sheet 2 can be controlled by adjusting the Tg of the adhesive in the functional layer 4.
  • the layer arranged on the surface side of the structure sheet 2, i.e., the second layer arranged on the opposite side to the attachment surface of the structure sheet 2, can be exemplified by the functional layer 4.
  • a method for imparting rigidity to the functional layer 4 a method of configuring the functional layer 4 to include a main material and a filler can be exemplified.
  • the functional layer 4 includes a main material such as acrylic silicone, fluororesin, silicone resin, non-diene rubber, etc., and a filler such as silica, alumina, titanium oxide, calcium carbonate, carbon black, etc.
  • the rigidity of the functional layer 4 can be controlled by adjusting at least one of the amount of filler added to the functional layer 4 and the particle shape of the filler.
  • examples of the particle shape of the filler include spherical, needle-like, amorphous, and tetrapod-like shapes.
  • the rigidity of the structure sheet 2 can be controlled by adjusting at least one of the thickness of the functional layer 4 and the Tg of the main material of the functional layer 4. In this way, in the structure sheet 2, at least one of the adhesive layer 8 and the functional layer 4 may include a filler.
  • a structural sheet 2 that is configured to have a first layer (e.g., adhesive layer 8) arranged on the side to be attached, a second layer (e.g., functional layer 4) arranged on the side opposite the side to be attached, and a third layer arranged between the first and second layers, and in which the third layer is configured to have a predetermined rigidity
  • one method of imparting rigidity to the third layer is, for example, to configure the third layer as an intermediate layer 6 described below, and to impart rigidity to the intermediate layer 6.
  • the rigidity of the structural sheet 2 can be controlled by adjusting the Tg of the resin component contained in the intermediate layer 6.
  • the rigidity of the structural sheet 2 can also be controlled by adjusting the amount of voids or the diameter of the voids in the intermediate layer 6.
  • the structural sheet 2 may have, for example, a first intermediate layer 6 containing a resin component whose Tg is a predetermined value, and a second intermediate layer 6 containing a resin component whose Tg is lower than that of the resin component contained in the first intermediate layer 6.
  • the thickness of the intermediate layer 6 is, for example, 100 ⁇ m or more.
  • the thickness of the intermediate layer 6 is, for example, preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more, and most preferably 350 ⁇ m or more.
  • the thickness of the intermediate layer 6 is, for example, 1500 ⁇ m or less.
  • the thickness of the intermediate layer 6 is preferably 1200 ⁇ m or less, more preferably 1000 ⁇ m or less, and most preferably 750 ⁇ m or less. In this way, by appropriately adjusting the thickness of the intermediate layer 6, appropriate rigidity of the structural sheet 2 can be obtained.
  • the resin component can be a Spring Coat (Brush) mixture liquid manufactured by Kikusui Chemical Industry Co., Ltd.
  • the mortar component can be a Spring Coat (Brush) powder manufactured by Kikusui Chemical Industry Co., Ltd.
  • the reinforcing body 48 (mesh component) can be a vinylon mesh material manufactured by Unitika Co., Ltd. (cheesecloth (BINEO (registered trademark) "V520”)).
  • the internal structure of the sheet for structure 2 can be controlled by changing the content of the reinforcing body 48 in the intermediate layer 6.
  • the sheet for structure 2 may have a reinforcing body 48 of a layered structure disposed inside.
  • the reinforcing body 48 of the layered structure imparts a predetermined rigidity to the sheet for structure 2, thereby making it possible to control the internal structure of the sheet for structure 2.
  • specific methods for imparting rigidity to the structural sheet 2 include, for example, controlling at least one of the filler material, the amount of filler added to the structural sheet 2, and the size and shape of the filler particles.
  • the filler material may be either an inorganic material or an organic material, or a mixture of inorganic and organic materials.
  • the nonwoven fabric is not particularly limited as long as it is a nonwoven fabric formed into a sheet shape without weaving fibers.
  • fibers constituting the nonwoven fabric include at least one of natural fibers and chemical fibers.
  • chemical fibers include fibers made of polyolefin resins such as polypropylene and polyethylene, polyester resins, polyacrylic resins, and polyamide resins such as nylon, as well as copolymers and modified products of these resins, and synthetic fibers made of combinations of these.
  • polyester fibers for example, are preferred as fibers with excellent water resistance, heat resistance, dimensional stability, weather resistance, etc.
  • the thickness of the sheet for structure 2 may be controlled.
  • the rigidity of the sheet for structure 2 can also be controlled by adjusting the viscoelasticity of the intermediate layer 6.
  • the viscoelasticity of the intermediate layer 6 may be adjusted by adjusting the glass transition temperature (Tg, hereinafter also simply referred to as Tg) of the resin contained in the intermediate layer 6 or by changing the degree of crosslinking of the resin. In this way, various methods can be used to control the rigidity of the sheet for structure 2.
  • Fig. 14 is a cross-sectional configuration diagram that shows a structure sheet 61 according to a fourth embodiment.
  • the structure sheet 61 of this embodiment includes a second release film 17 arranged on the opposite side of the adhesive layer 58 of the functional layer 54.
  • the structure sheet 61 has the first release film 9, the adhesive layer 58, the intermediate layer 56, the functional layer 54, and the second release film 17 arranged in this order in the thickness direction.
  • the second release film 17 is configured so that when the surface 17a exposed to the outside comes into contact with the surface 9a exposed to the outside of the first release film 9, the surfaces 17a and 9a are unlikely to adhere to each other. Therefore, when the structure sheet 61 is unwound from the roll body 71 (see FIG. 17) on which the sheet 61 described below is wound, the first release film 9 can be easily separated from the second release film 17, and the structure sheet 61 can be easily unwound.
  • the second release film 17 also has a predetermined rigidity. Therefore, the rigidity of the remaining structure sheet 61 after the first release film 9 has been peeled off can be improved. Therefore, even if the rigidity of the remaining structure sheet 61 after the first release film 9 and the second release film 17 have been peeled off is low, the handling when attaching the structure sheet 61 can be improved, and the structure sheet 61 can be easily attached to the surface of the structure. In addition, the remaining structure sheet 61 after the first release film 9 and the second release film 17 have been peeled off can be designed to have a relatively small rigidity.
  • the structure sheet 61 can be attached by following the surface well.
  • the anchor effect on the surface can be improved, so that the adhesive force of the structure sheet 61 can be sufficiently improved within an allowable range.
  • the structure of the second release film 17 can be set as appropriate.
  • the second release film 17 has a contact layer 11 that contacts the first release film 9 when the structure sheet 61 is wound into a roll, and a weak adhesive layer 13 that is disposed on the first release film 9 side of the contact layer 11 when the structure sheet 61 is disposed flat.
  • the contact layer 11 may be composed of a single layer or multiple layers.
  • the contact layer 11 may also contain a resin.
  • the contact layer 11 may be a resin layer.
  • resins contained in the contact layer 11 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefins such as polyethylene, polypropylene, and polymethylpentene, polyamides such as nylon 6 and aramid, vinyl resins such as polyvinyl chloride, acrylic resins such as polymethyl methacrylate, cellulose resins such as cellulose acetate, synthetic resins such as polycarbonate, and urethane.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyolefins such as polyethylene, polypropylene, and polymethylpentene
  • polyamides such as nylon 6 and aramid
  • vinyl resins such as polyvinyl chloride
  • acrylic resins such as polymethyl methacrylate
  • the contact layer 11 may be a fiber layer containing a fiber component and a binder component that binds the fiber component.
  • the contact layer 11 may contain paper.
  • the contact layer 11 may contain paper as a main component, or may contain paper together with a predetermined main component.
  • the contact layer 11 preferably contains paper having a strength such that the contact layer 11 is not accidentally torn when the structural sheet 61 is attached to the construction target.
  • the contact layer 11 preferably contains, for example, silicone having a siloxane bond together with paper.
  • the contact layer 11 has a higher rigidity than, for example, the remaining portion of the structural sheet 61 from which the release film 9 and the second release film 17 are omitted and from which the contact layer 11 and the weak adhesive layer 13 are omitted.
  • the thickness of the contact layer 11 can be set appropriately, but is, for example, from 20 ⁇ m to 500 ⁇ m. If the contact layer 11 contains polyethylene terephthalate (PET), the thickness of the contact layer 11 is preferably, for example, from 20 ⁇ m to 50 ⁇ m.
  • PET polyethylene terephthalate
  • the weak adhesive layer 13 has a relatively low adhesive strength.
  • the adhesive strength of the weak adhesive layer 13 to the functional layer 54 is lower than the adhesive strength of the adhesive layer 58 to the intermediate layer 56.
  • the adhesive strength of the weak adhesive layer 13 to the contact layer 11 is higher than the adhesive strength of the weak adhesive layer 13 to the functional layer 54.
  • the weak adhesive layer 13 may be attached to the functional layer 54 by, for example, static electricity.
  • the weak adhesive layer 13 may contain a main component whose Tg is substantially 0.
  • the weak adhesive layer 13 may contain, for example, ethylene vinyl acetate (EVA), urethane, silicone having a siloxane bond, acrylic, etc.
  • EVA ethylene vinyl acetate
  • the second release film 17 is not limited to the above-mentioned configuration, and may be, for example, a base film 39 described later.
  • FIG. 15 is a cross-sectional view showing a schematic diagram of a structure sheet 62 according to a fifth embodiment.
  • the structure sheet 62 of this embodiment includes a release sheet 29 arranged on the side of the functional layer 54 opposite the adhesive layer 58.
  • the structure sheet 62 has the adhesive layer 58, intermediate layer 56, functional layer 54, and release sheet 29 arranged in this order in the thickness direction.
  • the release film 9 is omitted.
  • the release sheet 29 contains a surface 29a exposed to the outside and a release agent disposed in the vicinity thereof.
  • An example of a release agent is silicone having a siloxane bond. This makes it difficult for the surface 29a and the attachment surface 58a to adhere to each other when the surface 29a exposed to the outside of the release sheet 29 comes into contact with the attachment surface 58a of the adhesive layer 58 in the roll body 71. Therefore, when the structure sheet 62 is unwound from the roll body 71, the adhesive layer 58 can be easily peeled off from the release sheet 29, and the structure sheet 62 can be easily unwound.
  • the structure sheet 62 when the structure sheet 62 is unwound from the roll 71, the structure sheet 62 may be preliminarily made easy to unwound from the roll 71 so that, for example, the portion of the structure sheet 62 on which the adhesive component is provided does not adhere to other portions of the structure sheet 62 and make it difficult to remove.
  • the release sheet 29 also has a predetermined rigidity. Therefore, in this embodiment, even if the release film 9 is omitted, the rigidity of the structure sheet 2 can be improved. Therefore, the handleability of the structure sheet 62 is improved, and the structure sheet 62 can be easily affixed to the target of the structure. In this case, the release sheet 29 has a higher rigidity than the remaining structure sheet 62 from which the release sheet 29 has been peeled off.
  • the structure of the release sheet 29 can be set as appropriate.
  • the release sheet 29 has a release intermediate layer 15 having a surface 29a that contacts the attachment surface 58a of the adhesive layer 58 when the structural sheet 62 is wound into a roll, and a weak adhesive layer 13 that is disposed on the adhesive layer 58 side of the release intermediate layer 15 when the structural sheet 62 is disposed flat.
  • the release intermediate layer 15 may have a similar structure to the contact layer 11, except that it contains a release agent.
  • the release sheet 29 may also have a release agent layer disposed over the surface 29a.
  • FIG. 16 is a cross-sectional view showing a schematic diagram of a structural sheet 63 according to a sixth embodiment.
  • the structural sheet 63 of this embodiment has a base film 39 arranged on the side opposite the adhesive layer 58 of the functional layer 54 when laid flat.
  • the base film 39 is the base film used when forming the functional layer 4 described above.
  • the structural sheet 63 of this embodiment has the base film 39, which is not peeled off even after the functional layer 54 is formed.
  • the structure sheet 63 has the release film 9, adhesive layer 58, intermediate layer 56, functional layer 54, and base film 39 arranged in this order in the thickness direction.
  • the surface 39a exposed to the outside of the base film 39 and the surface 9a exposed to the outside of the release film 9 are configured so as not to adhere to each other when they come into contact with each other. Therefore, when the structure sheet 63 is unwound from the roll body 71, the structure sheet 2 can be easily unwound.
  • the base film 39 also has a predetermined rigidity. In this case, the base film 39 has a higher rigidity than the remaining structure sheet 63 from which the release film 9 and base film 39 have been peeled off.
  • the rigidity of the structure sheet 63 can be improved by the base film 39. Therefore, even if the stiffness of the remaining structural sheet 63 after the first release film 9 and base film 39 are peeled off is low, the handleability of the structural sheet 63 can be improved and the structural sheet 63 can be easily attached to the target structure.
  • the base film 39 may contain a resin laminated paper that has pseudo-adhesion, which means that once two components that have been attached to each other are peeled off, they cannot be bonded again.
  • the base film 39 may contain a resin laminated paper in which a resin layer and paper are laminated together, and the resin layer and the paper are bonded to each other by pseudo-adhesion in the resin laminated paper.
  • a construction method for reinforcing or repairing a structure by attaching the structural sheets 61 to 63 to the structure is illustrated.
  • the worker unrolls the structural sheets 61 to 63 of the required length from the roll body 71.
  • the worker peels off the release film 9 of the structural sheet 2 and attaches the exposed attachment surface 58a of the adhesive layer 58 to the surface of the structure to be attached.
  • the worker may peel off the release film 9 little by little from the structural sheet 2 and attach the exposed attachment surface 58a of the adhesive layer 58 to the surface of the structure to be attached.
  • the worker attaches the attachment surface 58a of the adhesive layer 58 of the structural sheet 2 to the surface of the structure to be attached.
  • the worker then applies the structural sheet 2 to the target, and then peels and removes the corresponding second release film 17, release sheet 29, or base film 39 from the structural sheet 2.
  • the construction method according to the fourth to sixth embodiments includes a preparation step of preparing a roll body 71 in which the structural sheet 2 is wound into a roll, a payout step of paying out the structural sheet 2 from the roll body 71, and a sticking step of peeling the first release film 9 from the paid out structural sheet 2 and sticking the exposed sticking surface to the surface of the structure.
  • the roll body 71 is prepared using the structural sheet 2 whose sticking surface 58a is covered with the first release film 9.
  • the structural sheet 2 in the roll body 71 prepared in the preparation step has a laminated structure including a functional layer 54 and an adhesive layer 58, and a cover sheet is disposed on the side of the functional layer 54 opposite the adhesive layer 58 side.
  • the structural sheet 2 including this cover sheet is wound in a roll shape, and the cover sheet may be peeled off and removed during or after the attachment step.
  • This cover sheet may be any one of the second release film 17, the release sheet 29, and the base film 39.
  • the structural sheet 2 of the roll body 71 prepared in the preparation step has a laminated structure including the functional layer 54 and the adhesive layer 58, and has a release sheet 29 that is disposed on the opposite side of the functional layer 54 from the adhesive layer 58 side and is separate from the release film 9, and in the preparation step, the roll body 71 may be prepared in which the structural sheet 2 is wound into a roll so that the release sheet 29 is in contact with the adhesive layer 58.
  • FIG. 17 is a schematic diagram showing the structure of a supply item 65 containing the structural sheet 2 of the present disclosure.
  • FIG. 17 shows, as an example, a structural sheet 2 with a release film 9.
  • the supply item 65 shown in FIG. 17 includes a roll 71 on which a strip-shaped structural sheet 2 is wound, and a container 70 having a storage space 70a for storing the roll 71.
  • the container 70 has a supply port 70b that can unwind and supply the structural sheet 2 from the roll 71 stored in the storage space 70a to the outside.
  • the supply port 70b has a width dimension equal to or greater than the width dimension of the structural sheet 2 in the axial direction of the roll 71.
  • the supply item 65 allows the structural sheet 2 to be stored in the form of a roll 71 suitable for storage. Furthermore, when the structural sheet 2 is to be used, only the required amount can be unrolled from the supply item 65. This improves work efficiency.
  • the worker When the worker unrolls the structural sheet 2 from the supply port 70b, the worker can unroll the structural sheet 2 while applying uniform tension to the entire widthwise area of the structural sheet 2, for example, by pressing the entire widthwise area of the structural sheet 2 against the opening periphery of the supply port 70b.
  • This allows the structural sheet 2 to be attached to the surface of the structure with uniform tension. Therefore, it is possible to prevent the structural sheet 2 from being subjected to uneven tension after application, which would cause unexpected contraction or expansion of the structural sheet 2 after application.
  • a separate member such as a long member that extends in the widthwise direction of the structural sheet 2 and comes into contact with the structural sheet 2 may be placed, for example, on the opening periphery of the supply port 70b.
  • the structure sheet provided in the supply item 65 may be any structure sheet disclosed herein, for example, the structure sheet 2 of any of the fourth to sixth embodiments, or the structure sheet 2 of any other embodiment.
  • Example 1 A 130 ⁇ m thick base film was prepared, which was a PP laminate sheet manufactured by Lintec Corp.
  • a weather-resistant layer-forming composition containing an acrylic resin (a mixture of Cool Life SP Black (CB1) P5-0 manufactured by Dainichiseika Color & Chemicals Mfg. Co., Ltd. and FC Coat Elastic Black manufactured by Fujikura Kasei Co., Ltd. in a mass ratio of 50:50) was applied onto the base film.
  • the formed coating film was dried to form a single-layer functional layer having a thickness of 110 ⁇ m.
  • an acrylic adhesive (Olivine BPS6574) manufactured by Toyochem Co., Ltd. was mixed with 6 parts by mass of an isocyanate curing agent (BHS8515) manufactured by Toyochem Co., Ltd. to prepare an adhesive mixture.
  • This adhesive mixture was applied to the surface of a release sheet and dried to form an adhesive layer with a thickness of 100 ⁇ m.
  • the adhesive layer was then layered on and adhered to the intermediate layer to produce a structural sheet according to Example 1 with a total thickness of 660 ⁇ m.
  • Example 2 A structural sheet of Example 2 having a total thickness of 660 ⁇ m was obtained in the same manner as in Example 1, except that no reinforcing member was provided.
  • Example 3 and 4 Structural sheets of Examples 3 and 4, each having a total thickness of 660 ⁇ m, were obtained in the same manner as in Example 1, except that the mass ratio of the solid content of the polymer and the filler (cement-containing material) in the intermediate layer was set as shown in Table 1 below.
  • Example 5 A structural sheet of Example 5 having a total thickness of 660 ⁇ m was obtained in the same manner as in Example 1, except that no reinforcing body was provided and the mass ratio of the solid content of the polymer and the filler (cement-containing material) in the intermediate layer was as shown in Table 1 below.
  • Example 6 A structural sheet of Example 6 having a total thickness of 510 ⁇ m was obtained in the same manner as in Example 3, except that the thickness of the intermediate layer was 300 ⁇ m.
  • Example 7 A structural sheet of Example 7 having a total thickness of 1,410 ⁇ m was obtained in the same manner as in Example 3, except that the thickness of the intermediate layer was 1,200 ⁇ m.
  • Example 8 and 9 Structural sheets of Examples 8 and 9, each having a total thickness of 660 ⁇ m, were obtained in the same manner as in Example 1, except that the mass ratio of the solid content of the polymer and the filler (cement-containing material) in the intermediate layer was set as shown in Table 1 below.
  • Comparative Example 1 A structural sheet of Comparative Example 1 having a total thickness of 660 ⁇ m was obtained in the same manner as in Example 1, except that a reinforcing body (cheesecloth (BINEO “V510”) manufactured by Unitika Ltd.) having an energy E3 of 12.4 mJ was provided.
  • a reinforcing body cheesecloth (BINEO “V510”) manufactured by Unitika Ltd.
  • Comparative Example 2 A structural sheet of Comparative Example 2 having a total thickness of 660 ⁇ m was obtained in the same manner as in Example 1, except that the mass ratio of the solid content of the polymer and the filler (cement-containing material) in the intermediate layer was set as shown in Table 1.
  • each structural sheet was curved so that a pair of short sides on the same surface, with short sides of 50 mm and long sides of 100 mm, overlapped each other, and a pair of regions of each structural sheet from the edge of the pair of short sides to a position 15 mm away along the long sides was gripped and fixed with a fixture of the test device to form a curved portion with a circumference of 70 mm between the pair of regions of each structural sheet.
  • the energy E1 of the compression deformation of the curved portion by 20 mm at 60°C and the energy E2 of the compression deformation of the curved portion by 20 mm at -10°C were measured.
  • each rectangular reinforcement with a short side of 50 mm and a long side of 100 mm was curved so that a pair of short sides on the same surface overlapped each other, and a pair of regions of each reinforcement from the edge of the pair of short sides to a position 15 mm away along the long side was gripped and fixed with a fixture of the testing device to form a curved portion with a circumference of 70 mm between the pair of regions of each reinforcement, and the compressive deformation energy E3 of the curved portion of 20 mm at 23°C was measured.
  • the compressive deformation energies E1 to E3 are shown in Tables 1 and 2 below.
  • Examples 1 to 9 and Comparative Examples 1 and 2 were rated according to the following criteria.
  • a sheet for a structure comprising a functional layer and an adhesive layer
  • the structural sheet is rectangular with short sides of 50 mm and long sides of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other.
  • a pair of regions of the structural sheet from the edge ends of the pair of short sides to a position 15 mm away along the long sides are gripped and fixed with a fixture of a testing device, thereby forming a curved portion with a circumference of 70 mm between the pair of regions of the structural sheet.
  • the energy of compressive deformation of the curved portion at 60° C.
  • Item 10 The structural sheet according to item 9, wherein the reinforcing material is fabric.
  • the structural sheet according to item 10 wherein the material of the fabric is a synthetic resin composition, and the base resin of the synthetic resin composition is polyethylene terephthalate, polyethylene naphthalate, aramid, vinylon, polypropylene, polystyrene, or polyvinylidene fluoride.
  • the reinforcing body is rectangular and sheet-like with short sides of 50 mm and long sides of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other.
  • a pair of regions of the reinforcing body from the edges of the pair of short sides to a position 15 mm away along the long side are grasped and fixed with a fixing device of a testing device, thereby forming a curved portion with a circumference of 70 mm between the pair of regions of the reinforcing body.
  • Item 12 The structure sheet according to any one of items 9 to 11, wherein the energy of compressive deformation of the curved portion of the reinforcing body over a distance of 20 mm at 23° C. is 1.5 mJ or more.
  • Item 13 The structure sheet according to any one of items 1 to 12, wherein at least one of the functional layer and the adhesive layer contains a filler.
  • a method for repairing or reinforcing a structure using a sheet comprising: (1) The rectangular sheet having a short side of 50 mm and a long side of 100 mm is curved so that a pair of short sides on the same surface overlap each other, and a pair of regions of the sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the sheet.
  • the energy of compressive deformation of the curved portion at 60° C. for 20 mm is 2.0 mJ or more; The energy of compressive deformation of the curved portion at ⁇ 10° C.
  • a method for re-repairing or re-reinforcing a structure that has been repaired or reinforced with a first sheet, using a second sheet comprising the steps of: (1)
  • the first sheet is rectangular with a short side of 50 mm and a long side of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other.
  • a pair of regions of the first sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the first sheet.
  • the energy of compressive deformation of the curved portion of the first sheet at 60° C.
  • the energy of compressive deformation of the curved portion of the first sheet at ⁇ 10° C. for 20 mm is 60.0 mJ or less; preparing a first sheet having a functional layer and an adhesive layer; (2) attaching the first sheet to a surface of the structure by the adhesive force of the adhesive layer of the first sheet; (3)
  • the second sheet is rectangular with a short side of 50 mm and a long side of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other.
  • a pair of regions of the second sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the second sheet.
  • the energy of compressive deformation of the curved portion of the second sheet at 60° C. for 20 mm is 2.0 mJ or more;
  • the structural sheet described above can be attached to various objects for use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)

Abstract

A sheet 40 for a structure comprises a functional layer 42, an intermediate layer 44, an adhesive layer 46, and a reinforcing body 48. The functional layer 42 has excellent weather resistance. The intermediate layer 44 contributes to rigidity and the like of the sheet. The adhesive layer 46 makes contact with an underlayer. A test piece of the sheet 40 has a bending part 34 which has a length of 50 mm and a peripheral length 70 mm, for which the energy of compressive deformation at 20 mm and 60°C is not less than 2.0 mJ, and for which the energy of compressive deformation at 20 mm and -10°C is not more than 60.0 mJ.

Description

構造物用シートStructural Sheets

 本明細書は、構造物に貼り付けられて使用されるシートを開示する。 This specification discloses a sheet that is attached to a structure for use.

 住宅のスレート屋根が長期間風雨に曝されると、劣化が生じる。劣化したスレート屋根からの雨漏りが、懸念される。雨漏りの防止の目的で、スレート屋根に塗料が塗布されている。しかし、劣化が激しいスレート屋根の場合、塗料の塗布によっても雨漏りが防止されないことがある。 When a slate roof on a house is exposed to wind and rain for a long period of time, it deteriorates. There is concern that a deteriorated slate roof may leak. To prevent leaks, paint is applied to the slate roof. However, in the case of a severely deteriorated slate roof, even applying paint may not prevent leaks.

 ここで特許文献1には、ポリマーセメント層と樹脂層とを有するシートによる屋根の補修方法が、開示されている。このシートが屋根に貼り付けられることで、屋根の雨漏りが抑制されうる。 Patent Document 1 discloses a method for repairing a roof using a sheet having a polymer cement layer and a resin layer. By attaching this sheet to the roof, it is possible to prevent roof leaks.

特開2022-101896公報JP 2022-101896 A

 段差がある屋根にシートが貼られるとき、シートがこの段差に沿うことが好ましい。シートには、段差に沿って変形しうる追従性が必要である。柔軟なシートは、作業者が把持したときに自重で大幅に変形する。この変形は、作業者によるシートの取り扱いを困難とする。シートには、適度な剛性も必要である。 When a sheet is applied to a roof with a step, it is preferable for the sheet to conform to the step. The sheet needs to have the ability to conform and deform to conform to the step. A flexible sheet will deform significantly under its own weight when a worker grasps it. This deformation makes it difficult for the worker to handle the sheet. The sheet also needs to have an appropriate level of rigidity.

 スレート屋根以外の屋根の補修においても、シートに対する追従性及び取り扱い性の要請がある。屋根以外の構造物の補修又は補強においても、シートに対する追従性及び取り扱い性の要請がある。 When repairing roofs other than slate roofs, there is also a demand for the sheet to be easy to follow and handle. When repairing or reinforcing structures other than roofs, there is also a demand for the sheet to be easy to follow and handle.

 本出願人の意図するところは、追従性及び取り扱い性に優れた構造物用シートの提供にある。 The applicant's intention is to provide a sheet for structures that has excellent conformability and ease of handling.

 本明細書が開示する構造物用シートは、機能層と粘着層とを備える構造物用シートであって、短辺が50mm及び長辺が100mmの矩形状の前記構造物用シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記構造用シートの一対の領域を試験装置の固定具で把持して固定することにより、前記構造物用シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、60℃における前記湾曲部の20mmの圧縮変形のエネルギーが、2.0mJ以上であり、前記湾曲部の、-10℃における前記湾曲部の20mmの圧縮変形のエネルギーが、60.0mJ以下である。 The structural sheet disclosed in this specification is a structural sheet having a functional layer and an adhesive layer, and is curved so that a pair of short sides on the same surface of the rectangular structural sheet with short sides of 50 mm and long sides of 100 mm overlap each other, and a pair of regions of the structural sheet from the edge of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the structural sheet. In this state, the energy of compressive deformation of 20 mm of the curved portion at 60°C is 2.0 mJ or more, and the energy of compressive deformation of 20 mm of the curved portion at -10°C is 60.0 mJ or less.

 この構造物用シートは、夏の施工においても、取り扱い性に優れる。この構造物用シートは、冬の施工においても、追従性に優れる。 This structural sheet is easy to handle even when installed in summer. This structural sheet is easy to follow even when installed in winter.

図1は、一実施形態に係る構造物用シートの一部が示された斜視図である。FIG. 1 is a perspective view showing a portion of a structural sheet according to an embodiment. 図2は、図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 図3は、図2において符号IIIが付された部分が示された拡大図である。FIG. 3 is an enlarged view of the portion indicated by reference symbol III in FIG. 図4は、図1の構造物用シートが屋根と共に示された正面図である。FIG. 4 is a front view showing the structural sheet of FIG. 1 together with a roof. 図5は、図4において符号Vが付された部分が示された拡大図である。FIG. 5 is an enlarged view of a portion indicated by the symbol V in FIG. 図6は、図4において符号VIが付された部分が示された拡大図である。FIG. 6 is an enlarged view of a portion designated by reference character VI in FIG. 図7は、図1の構造物用シートの、圧縮変形のエネルギーの測定のための試験片が示された斜視図である。FIG. 7 is a perspective view showing a test piece for measuring the energy of compressive deformation of the structural sheet of FIG. 図8は、図7の試験片がつかみ具と共に示された、断面斜視図である。FIG. 8 is a cross-sectional perspective view of the test strip of FIG. 7 shown with a clamp. 図9は、図8の試験片及びつかみ具が圧子と共に示された正面図である。FIG. 9 is a front view of the test piece and gripper of FIG. 8 shown together with an indenter. 図10は、図9のつかみ具及び圧子が示された平面図である。FIG. 10 is a plan view showing the gripper and indenter of FIG. 図11は、図9及び10の試験器による測定で得られた結果が示されたグラフである。FIG. 11 is a graph showing the results obtained by measurements using the tester of FIGS. 図12は、他の実施形態に係る構造物用シートの一部が示された断面図である。FIG. 12 is a cross-sectional view showing a portion of a structural sheet according to another embodiment. 図13は、図12の構造物用シートに含まれる補強体の一部が示された拡大平面図である。FIG. 13 is an enlarged plan view showing a part of a reinforcing body included in the structural sheet of FIG. 図14は、第4実施形態に係る構造物用シートを模式的に示す断面構成図である。FIG. 14 is a cross-sectional view showing a schematic configuration of a structural sheet according to the fourth embodiment. 図15は、第5実施形態に係る構造物用シートを模式的に示す断面構成図である。FIG. 15 is a cross-sectional view showing a schematic configuration of a structural sheet according to the fifth embodiment. 図16は、第6実施形態に係る構造物用シートを模式的に示す断面構成図である。FIG. 16 is a cross-sectional view showing a schematic configuration of a structural sheet according to the sixth embodiment. 図17は、本開示の構造物用シートを収容した供給物品の構造を示す模式図である。FIG. 17 is a schematic diagram showing the structure of a supply item containing a structural sheet according to the present disclosure.

 以下、適宜図面が参照されつつ、好ましい実施形態が詳細に説明される。
<第1実施形態>
[層構造]
 図1-3に、構造物用シート2(以下、「シート2」とも称する。)が示されている。このシート2の平面形状は、概して矩形である。図3から明らかなように、このシート2は、それぞれ少なくとも1つの層を含む、機能層4、中間層6及び粘着層8を備える。図3から明らかなように、シート2は、例えば、それぞれ単一の機能層4、中間層6、及び、粘着層8を備える。各層の材質等は、後に詳説される。このシート2は、構造物に貼り付けられる。シート2が、離型紙又は離型フィルム(図14の離型フィルム9を参照)を有してもよい。離型紙及び離型フィルムは、粘着層8と積層される。離型紙又は離型フィルムは、例えば、シート2の使用時等の所定のタイミングまで残存していてもよい。また後述するように、粘着層8及び機能層4の少なくともいずれかは、フィラーを含んでいてもよい。
Hereinafter, preferred embodiments will be described in detail with reference to the drawings as appropriate.
First Embodiment
[Layer structure]
FIG. 1-3 shows a sheet 2 for structures (hereinafter, also referred to as "sheet 2"). The planar shape of this sheet 2 is generally rectangular. As is clear from FIG. 3, this sheet 2 includes a functional layer 4, an intermediate layer 6, and an adhesive layer 8, each of which includes at least one layer. As is clear from FIG. 3, the sheet 2 includes, for example, a single functional layer 4, an intermediate layer 6, and an adhesive layer 8. The material of each layer will be described in detail later. This sheet 2 is attached to a structure. The sheet 2 may have a release paper or a release film (see the release film 9 in FIG. 14). The release paper and the release film are laminated with the adhesive layer 8. The release paper or the release film may remain until a predetermined timing, such as when the sheet 2 is used. As will be described later, at least one of the adhesive layer 8 and the functional layer 4 may contain a filler.

[屋根の補修]
 この構造物用シート2の典型的な用途は、構造物の屋根の補修である。図4-6に、補修された屋根10が示されている。これらの図には、屋根10と共に、2つのシート2(第1シート2a及び第2シート2b)が示されている。第2シート2bの仕様は、第1シート2aの仕様と同じである。屋根10として、スレート屋根、瓦屋根、鋼板屋根(折板屋根を含む)、銅板屋根、トタン板屋根、コンクリート屋根等が挙げられる。
[Roof Repair]
A typical application of this structural sheet 2 is the repair of a roof of a structure. A repaired roof 10 is shown in Figures 4-6. In these figures, two sheets 2 (a first sheet 2a and a second sheet 2b) are shown together with the roof 10. The specifications of the second sheet 2b are the same as those of the first sheet 2a. Examples of the roof 10 include a slate roof, a tile roof, a steel roof (including a folded plate roof), a copper roof, a galvanized iron roof, and a concrete roof.

 図4では、第1シート2aの下縁12aの位置は、屋根10の下端14の位置と概ね一致している。第1シート2aは、全体として、屋根10に貼られている。図5に示されるように、この屋根10は、段差16を有している。第1シート2aは、この段差16の近傍において、湾曲している。この湾曲によって第1シート2aは、段差16に追従している。 In FIG. 4, the position of the lower edge 12a of the first sheet 2a is generally aligned with the position of the lower end 14 of the roof 10. The first sheet 2a is attached to the roof 10 as a whole. As shown in FIG. 5, the roof 10 has a step 16. The first sheet 2a is curved in the vicinity of the step 16. This curvature allows the first sheet 2a to follow the step 16.

 図6に示されるように、第2シート2bは、その下縁12bの近傍において、第1シート2aの上縁18aの近傍と重なっている。この重なりにより、継ぎ目20が形成されている。第2シート2bのうち、継ぎ目20以外の部分は、屋根10に貼られている。第1シート2aの上縁18aは、この第1シート2aと屋根10との間に段差22を形成している。第2シート2bは、この段差22の近傍において、湾曲している。この湾曲によって第2シート2bは、段差22に追従している。 As shown in FIG. 6, the second sheet 2b overlaps the vicinity of the upper edge 18a of the first sheet 2a near its lower edge 12b. This overlap forms a seam 20. The portion of the second sheet 2b other than the seam 20 is affixed to the roof 10. The upper edge 18a of the first sheet 2a forms a step 22 between the first sheet 2a and the roof 10. The second sheet 2b is curved near this step 22. This curvature allows the second sheet 2b to follow the step 22.

 構造物用シート2は通常、プライマー層を介して屋根10に貼り付けられる。本明細書では、プライマー層等を介してシート2が屋根10に貼り付けられる場合も含め、「シートが屋根に貼り付けられる」と称される。図5及び6では、プライマー層の図示が省略されている。 The structural sheet 2 is usually attached to the roof 10 via a primer layer. In this specification, the phrase "the sheet is attached to the roof" also refers to the case where the sheet 2 is attached to the roof 10 via a primer layer or the like. The primer layer is not shown in Figures 5 and 6.

[圧縮変形エネルギー]
 この構造物用シート2の、60℃における20mmの圧縮変形のエネルギーE1は、2.0mJ以上が好ましい。屋根10の補修作業のとき、作業者は手でシート2を持ち上げる。このとき、シート2には重力が掛かる。シート2は、自重によって変形する。この変形により、シート2は作業者の手から垂れ下がる。エネルギーE1が2.0mJ以上であるシート2では、重力が掛かったときの変形の程度が、小さい。このシート2は、作業者にとって扱いやすい。このシート2では、夏のような高温環境下においても、変形が抑制されうる。変形の抑制の観点から、エネルギーE1は、3.0mJ以上がより好ましく、6.0mJ以上が一層好ましく、9.5mJ以上が特に好ましい。
[Compressive deformation energy]
The energy E1 of the structural sheet 2 for 20 mm compressive deformation at 60° C. is preferably 2.0 mJ or more. When repairing the roof 10, a worker lifts the sheet 2 with his/her hands. At this time, gravity is applied to the sheet 2. The sheet 2 deforms due to its own weight. This deformation causes the sheet 2 to hang down from the worker's hands. In the sheet 2 having the energy E1 of 2.0 mJ or more, the degree of deformation when gravity is applied is small. This sheet 2 is easy for a worker to handle. With this sheet 2, deformation can be suppressed even in a high temperature environment such as summer. From the viewpoint of suppressing deformation, the energy E1 is more preferably 3.0 mJ or more, even more preferably 6.0 mJ or more, and particularly preferably 9.5 mJ or more.

 この構造物用シート2の、-10℃における20mmの圧縮変形のエネルギーE2は、60.0mJ以下が好ましい。前述の通りシート2は、段差16(22)の近傍において湾曲する。エネルギーE2が60.0mJ以下であるシート2は、段差16(22)によく追従しうる。このシート2による屋根10の補修では、シート2と屋根10との間に、スペースが生じにくい。このシート2は、冬のような低温環境下においても、優れた追従性を発揮する。追従性の観点から、エネルギーE2は57.1mJ以下がより好ましく、44.7mJ以下が特に好ましい。 The energy E2 of this structural sheet 2 for a 20 mm compressive deformation at -10°C is preferably 60.0 mJ or less. As described above, the sheet 2 curves in the vicinity of the step 16 (22). A sheet 2 with an energy E2 of 60.0 mJ or less can conform well to the step 16 (22). When repairing a roof 10 with this sheet 2, a space is unlikely to be created between the sheet 2 and the roof 10. This sheet 2 exhibits excellent conformability even in low-temperature environments such as winter. From the viewpoint of conformability, the energy E2 is more preferably 57.1 mJ or less, and particularly preferably 44.7 mJ or less.

[エネルギーの測定]
 図7-10に、圧縮変形のエネルギーE1及びE2の測定方法が示されている。この測定方法では、構造物用シート2から、図7に示された試験片24が切り出される。この試験片24の平面形状は、矩形である。この矩形の、短辺26の長さは50mmであり、長辺28の長さは100mmである。この試験片24の層構造は、シート2の層構造と同じである。
[Energy Measurement]
7-10 show a method for measuring the compressive deformation energies E1 and E2. In this measurement method, a test piece 24 shown in FIG. 7 is cut out from the structural sheet 2. The planar shape of this test piece 24 is rectangular. The length of the short side 26 of this rectangle is 50 mm, and the length of the long side 28 is 100 mm. The layer structure of this test piece 24 is the same as the layer structure of the sheet 2.

 この試験片24が、図7において矢印A1で示されるように、湾曲させられる。この湾曲により、一方の短辺26が他方の短辺26と当接する。この試験片24が、図8及び9に示されるように、つかみ具(固定具)30で把持される。この把持により、試験片24に重なり部32が形成される。重なり部32の長さは、15mmである。試験片24の、重なり部32以外の部分は、シート2の湾曲した湾曲部34である。この湾曲部34の周長は、70mm{(100-15×2)mm}である。 The test piece 24 is curved as shown by the arrow A1 in Figure 7. This bending brings one short side 26 into contact with the other short side 26. The test piece 24 is gripped by a gripping tool (fixture) 30 as shown in Figures 8 and 9. This gripping forms an overlapping portion 32 in the test piece 24. The length of the overlapping portion 32 is 15 mm. The portion of the test piece 24 other than the overlapping portion 32 is the curved portion 34 of the sheet 2. The circumference of this curved portion 34 is 70 mm {(100-15 x 2) mm}.

 この試験片24が、圧縮試験に供される。この試験のための装置である押圧治具が、図9及び10に示されている。この押圧治具は、圧子36及びシャフト38を有している。この圧子36は、円盤形状を有している。この圧子36では、直径は100mmであり、厚さは10mmである。この圧子36は、図9において矢印A2で示されるように下降する。下降の速度は、30mm/minである。この圧子36が湾曲部34に当たった時点と、この時点から圧子36が更に20mm下がった時点との間にて、力が、測定される。 This test piece 24 is subjected to a compression test. The pressing tool, which is the device for this test, is shown in Figures 9 and 10. This pressing tool has an indenter 36 and a shaft 38. This indenter 36 has a disk shape. This indenter 36 has a diameter of 100 mm and a thickness of 10 mm. This indenter 36 descends as shown by arrow A2 in Figure 9. The descending speed is 30 mm/min. The force is measured between the time when this indenter 36 hits the curved portion 34 and the time when the indenter 36 has further descended 20 mm from this point.

 エネルギーは、下記数式(1)によって算出される。 Energy is calculated using the following formula (1):

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 この数式(1)において、Eはエネルギー(mJ)を表し、Fは力(N)を表し、sは圧子36の変異(mm)を表す。 In this formula (1), E represents energy (mJ), F represents force (N), and s represents the displacement (mm) of the indenter 36.

 図11に、測定結果のグラフが示されている。このグラフでは、横軸は圧子36の変位(ストローク)であり、縦軸は力である。このグラフにおいてハッチングが施されたゾーンの面積が、エネルギーE(E1、E2又はE3)である。換言すれば、エネルギーは、変位がゼロから20mmまでの、力Fの積分である。 Figure 11 shows a graph of the measurement results. In this graph, the horizontal axis is the displacement (stroke) of the indenter 36, and the vertical axis is the force. The area of the hatched zone in this graph is the energy E (E1, E2 or E3). In other words, the energy is the integral of the force F from zero to 20 mm of displacement.

 エネルギーE1は、温度が60℃の環境下で測定される。エネルギーE2は、温度が-10℃の環境下で測定される。エネルギーE3の測定条件は、後に詳説される。 Energy E1 is measured in an environment with a temperature of 60°C. Energy E2 is measured in an environment with a temperature of -10°C. The measurement conditions for energy E3 will be described in detail later.

 この試験に適したつかみ具30として、(株)島津製作所の商品名「PFG-1kNA」が挙げられる。この試験に適した試験器として、(株)島津製作所の商品名「オートグラフ AGX-V 10kN」が挙げられる。 An example of a gripping tool 30 suitable for this test is the "PFG-1kNA" product name manufactured by Shimadzu Corporation. An example of a tester suitable for this test is the "Autograph AGX-V 10kN" product name manufactured by Shimadzu Corporation.

 以上の試験方法、及び、エネルギーE1、E2については、以下のようにも言い換えられる。
 即ち、エネルギーE1は、下記項目(1)、(2)、(3)、及び(4)記載の操作を順次行う変形試験を実施した場合、下記(4)の計算で算出される、60℃環境下における湾曲部34の圧縮変形のエネルギーであって、2.0mJ以上の値である。エネルギーE2は、下記項目(1)、(2)、(3)、及び(4)記載の操作を順次行う変形試験を実施した場合、下記(4)の計算で算出される、-10℃環境下における湾曲部34の圧縮変形のエネルギーであって、60.0mJ以下の値である。
(1) 短辺が50mm及び長辺が100mmの矩形状の構造物用シート2を試験片24として準備する(図7参照)。
(2) 試験片24を同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの試験片24の一対の領域を固定具で把持して固定することにより、試験片24の前記一対の領域の間に周長が70mmの湾曲部34を形成する(図8参照)。
(3) 試験片24の前記一対の領域の表面を鉛直方向と平行に配置し且つ湾曲部34を上方に向けた状態で、押付面が直径100mmで厚み10mmの円盤形状の圧子36を有する押付治具を用い、湿度50±10%RHの環境下で、湾曲部34に押付治具の圧子36を上方から接触させ、圧子36を試験速度30mm/minで20mm下方に移動させる(図9参照)。
(4) 圧子36を前記移動させる際に必要なエネルギーを計算する。
The above test method and energies E1 and E2 can also be rephrased as follows.
That is, the energy E1 is the energy of compressive deformation of the curved portion 34 in a 60° C. environment, calculated by the calculation in (4) below, when a deformation test is performed by sequentially performing the operations described in the following items (1), (2), (3), and (4), and has a value of 2.0 mJ or more. The energy E2 is the energy of compressive deformation of the curved portion 34 in a −10° C. environment, calculated by the calculation in (4) below, when a deformation test is performed by sequentially performing the operations described in the following items (1), (2), (3), and (4), and has a value of 60.0 mJ or less.
(1) A rectangular structural sheet 2 having short sides of 50 mm and long sides of 100 mm is prepared as a test piece 24 (see FIG. 7).
(2) The test piece 24 is bent so that a pair of short sides on the same surface overlap each other, and a pair of regions of the test piece 24 from the edges of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture to form a curved portion 34 with a circumference of 70 mm between the pair of regions of the test piece 24 (see Figure 8).
(3) With the surfaces of the pair of regions of the test piece 24 arranged parallel to the vertical direction and the curved portion 34 facing upward, a pressing tool having a disk-shaped indenter 36 with a pressing surface having a diameter of 100 mm and a thickness of 10 mm is used to bring the indenter 36 of the pressing tool into contact with the curved portion 34 from above in an environment of humidity 50±10% RH, and the indenter 36 is moved downward by 20 mm at a test speed of 30 mm/min (see FIG. 9 ).
(4) The energy required to move the indenter 36 is calculated.

[機能層]
 図3から明らかなように、本実施形態の機能層4は、一例として、最表面側上に位置している。換言すれば、シート2が構造物に貼られたとき、機能層4は、この構造物から最も離れて位置する。本実施形態の機能層4は、粘着層8の上方に配置されている。機能層4は、シート2に望まれる機能に、寄与する。この機能として、耐光性、耐候性、耐熱性、耐摩耗性、耐薬品性、非透水性、非透湿性及び透湿性が例示される。機能層4は、1又は2以上の機能に寄与しうる。
[Functional layer]
As is clear from Fig. 3, the functional layer 4 of this embodiment is, as an example, located on the outermost surface side. In other words, when the sheet 2 is attached to a structure, the functional layer 4 is located furthest from the structure. The functional layer 4 of this embodiment is disposed above the adhesive layer 8. The functional layer 4 contributes to a function desired for the sheet 2. Examples of such functions include light resistance, weather resistance, heat resistance, abrasion resistance, chemical resistance, water impermeability, moisture impermeability, and moisture permeability. The functional layer 4 can contribute to one or more functions.

 機能層4の材質は、ポリマー組成物である。この機能層4は、概して柔軟である。この機能層4を有するシート2は、下地の凹凸に追従しうる。ポリマー組成物は、基材ポリマーを含む。合成樹脂、合成ゴム及び天然ゴムが、基材ポリマーとして、組成物に含有されうる。 The material of the functional layer 4 is a polymer composition. This functional layer 4 is generally flexible. The sheet 2 having this functional layer 4 can conform to the unevenness of the substrate. The polymer composition includes a base polymer. Synthetic resins, synthetic rubbers, and natural rubbers can be included in the composition as base polymers.

 機能層4に耐候性が望まれる場合、機能層4の耐候性は、例えば、機能層4の材料や機能層4中の前記材料の選択及び含有量を調整することで制御できる。機能層4に耐候性が望まれる場合の機能層4の材料としては、例えば、紫外線で劣化しにくい基材ポリマーが好ましい。具体的には、紫外線(410KJ/mol)よりも強い結合エネルギーを有する結合構造を機能層4中に多く形成できる材料(ポリマー等)を配置したり、機能層4中の当該材料の含有量を増大させたりする方法を例示できる。機能層4の耐候性及びシート2の柔軟性に寄与しうるポリマーとして、アクリル樹脂、アクリルウレタン樹脂、アクリルシリコーン樹脂、フッ素樹脂、柔軟エポキシ樹脂及びポリブタジエンが例示される。 When weather resistance is desired for the functional layer 4, the weather resistance of the functional layer 4 can be controlled, for example, by adjusting the material of the functional layer 4 or the selection and content of the material in the functional layer 4. When weather resistance is desired for the functional layer 4, the material of the functional layer 4 is preferably, for example, a base polymer that is not easily degraded by ultraviolet light. Specifically, examples of methods include arranging a material (polymer, etc.) that can form a large number of bond structures having a bond energy stronger than ultraviolet light (410 KJ/mol) in the functional layer 4, or increasing the content of the material in the functional layer 4. Examples of polymers that can contribute to the weather resistance of the functional layer 4 and the flexibility of the sheet 2 include acrylic resin, acrylic urethane resin, acrylic silicone resin, fluororesin, soft epoxy resin, and polybutadiene.

 また、機能層4中の反応点を少なくして機能層4を化学的に安定にする観点から、機能層4は、二重結合が少ない構造を有する材料を含んでいてもよい。当該材料が機能層4に多く存在すると、機能層4の化学的安定性が増大する。このような材料として、非ジエン系のゴムを例示できる。具体的に当該非ジエン系のゴムとしては、CIIR(塩素化ブチルゴム)、BIIR(臭素化ブチルゴム)、EPDM(エチレンプロピレンゴム)の少なくともいずれかを例示できる。機能層4中に前記結合構造を多く形成する方法として、例えば、紫外線(UV)等のエネルギー線の照射により生じたラジカルをトラップするラジカルトラップ材、HALS等UVを吸収してラジカルの発生を抑制する添加材、フェノール系、チオエーテル系等の酸化防止剤の少なくともいずれかを偏在させる方法も例示できる。 Furthermore, from the viewpoint of reducing the number of reaction sites in the functional layer 4 and making the functional layer 4 chemically stable, the functional layer 4 may contain a material having a structure with few double bonds. If the functional layer 4 contains a large amount of such material, the chemical stability of the functional layer 4 increases. An example of such a material is a non-diene rubber. Specifically, the non-diene rubber may be at least one of CIIR (chlorinated butyl rubber), BIIR (brominated butyl rubber), and EPDM (ethylene propylene rubber). As a method for forming a large amount of the bond structure in the functional layer 4, for example, a method of unevenly distributing at least one of a radical trapping material that traps radicals generated by irradiation with energy rays such as ultraviolet (UV) rays, an additive such as HALS that absorbs UV rays and suppresses the generation of radicals, and an antioxidant such as a phenolic or thioether type can be exemplified.

 耐候性の観点から、本実施形態の機能層4の基材ポリマーに特に適した樹脂は、一例として、アクリルシリコーン樹脂である。アクリルシリコーン樹脂は、シロキサン結合を含む。アクリルシリコーン樹脂は、耐熱性及び耐寒性にも優れる。アクリルシリコーン樹脂を含む組成物の具体例として、大日精化工業(株)製の商品名「クールライフSPブラック(CB1)P5-0」、藤倉化成(株)製の商品名「ベルアース弾性黒」、東亞合成(株)製の商品名「アロンブルコートT-1000」、並びに(株)日本触媒製の商品名「アクリセットEMN325E」及び「ユーダブルEF008」が挙げられる。 From the viewpoint of weather resistance, an example of a resin that is particularly suitable for the base polymer of the functional layer 4 of this embodiment is an acrylic silicone resin. The acrylic silicone resin contains siloxane bonds. The acrylic silicone resin also has excellent heat resistance and cold resistance. Specific examples of compositions containing an acrylic silicone resin include "Cool Life SP Black (CB1) P5-0" manufactured by Dainichi Seikagaku Kogyo Co., Ltd., "Bell Earth Elastic Black" manufactured by Fujikura Kasei Co., Ltd., "Aronble Coat T-1000" manufactured by Toagosei Co., Ltd., and "Acryset EMN325E" and "U-Double EF008" manufactured by Nippon Shokubai Co., Ltd.

 機能層4のポリマー組成物は、必要に応じ、顔料、充填剤、補強材、防汚剤等の添加剤を含みうる。顔料を含む機能層4は、化粧性に優れる。有機顔料及び無機顔料を、ポリマー組成物は含みうる。充填剤として、シリカ、アルミナ、チタニア等の金属酸化物粒子が例示される。補強材として、セルロールナノファイバーが例示される。それぞれの添加剤の含有率は、機能に応じ調整される。 The polymer composition of the functional layer 4 may contain additives such as pigments, fillers, reinforcing materials, and antifouling agents, as necessary. Functional layer 4 containing pigments has excellent cosmetic properties. The polymer composition may contain organic pigments and inorganic pigments. Examples of fillers include metal oxide particles such as silica, alumina, and titania. Examples of reinforcing materials include cellulose nanofibers. The content of each additive is adjusted according to its function.

 図3において矢印T1は、機能層4の厚さを表す。機能の観点から、厚さT1は10μm以上が好ましく、30μm以上がより好ましく、40μm以上が特に好ましい。シート2の追従性、生産性及び軽量の観点から、厚さT1は500μm以下が好ましく、300μm以下がより好ましく、200μm以下が特に好ましい。構造物用シート2が、2以上の機能層4を有してもよい。また機能層4がフィラーを含む場合、後述する中間層6が含むフィラーと同様のフィラーを含んでいてもよい。 In FIG. 3, the arrow T1 indicates the thickness of the functional layer 4. From the viewpoint of functionality, the thickness T1 is preferably 10 μm or more, more preferably 30 μm or more, and particularly preferably 40 μm or more. From the viewpoints of the conformability, productivity, and light weight of the sheet 2, the thickness T1 is preferably 500 μm or less, more preferably 300 μm or less, and particularly preferably 200 μm or less. The structural sheet 2 may have two or more functional layers 4. Furthermore, when the functional layer 4 contains a filler, it may contain the same filler as the filler contained in the intermediate layer 6 described below.

[中間層]
 中間層6は、シート2の剛性等に寄与する。中間層6は、例えば、シート2の形状を規定する層である。中間層6は、例えば、シート2の全体形状を保持する機能を有する。中間層6の好ましい材質は、ポリマーとフィラーとの、複合材料である。これにより、構造物用シート2に所定の剛性を付与し易くできる。ポリマーとして、アクリル樹脂、アクリルシリコーン樹脂、フッ素樹脂、シリコーン樹脂、エポキシ樹脂、エチレン-酢酸ビニル共重合体及びスチレン-ブタジエン共重合体が例示される。フィラーとして、セメント、シリカ、アルミナ、酸化チタン、炭酸カルシウム及びカーボンブラックが例示される。好ましい複合材料は、例えば、ポリマーセメントである。このポリマーセメントは、ポリマーとセメントとを含む。セメントとして、ポルトランドセメント及びアルミナセメント並びにこれらの混合物が例示される。一例として、ポルトランドセメントが、好ましい。このように、中間層6の材料であるフィラーは、セメントを含有していてもよい。また当該フィラーは、モルタルを組成する砂、及び、骨材の少なくともいずれかを含有していてもよい。前記例示した材料は、単体又は混合して用いられてもよい。
[Middle layer]
The intermediate layer 6 contributes to the rigidity of the sheet 2. The intermediate layer 6 is, for example, a layer that defines the shape of the sheet 2. The intermediate layer 6 has, for example, a function of maintaining the overall shape of the sheet 2. A preferred material for the intermediate layer 6 is a composite material of a polymer and a filler. This makes it easier to impart a predetermined rigidity to the structural sheet 2. Examples of the polymer include acrylic resin, acrylic silicone resin, fluororesin, silicone resin, epoxy resin, ethylene-vinyl acetate copolymer, and styrene-butadiene copolymer. Examples of the filler include cement, silica, alumina, titanium oxide, calcium carbonate, and carbon black. A preferred composite material is, for example, polymer cement. This polymer cement includes a polymer and cement. Examples of the cement include Portland cement, alumina cement, and a mixture thereof. As an example, Portland cement is preferred. In this way, the filler, which is a material for the intermediate layer 6, may contain cement. The filler may also contain at least one of sand and aggregate that constitute mortar. The above-listed materials may be used alone or in combination.

 中間層6の材料である樹脂成分とフィラー成分の比率を制御することで、構造物用シート2の剛性を容易に制御できると共に、材料設計の自由度を向上できる。また、取り扱い易い程度の中間層6の厚みが得られる。また例えば、フィラーの粒子形状を調整することで、構造物用シート2の剛性を制御できる。具体的にフィラーの粒子形状としては、球状、針状、不定形、テトラポット形状等を例示できる。更に、中間層6の厚みを調節することで、構造物用シート2の剛性を制御できる。 By controlling the ratio of the resin component and the filler component, which are the materials of the intermediate layer 6, the rigidity of the structure sheet 2 can be easily controlled and the freedom of material design can be improved. In addition, the thickness of the intermediate layer 6 can be obtained to an extent that makes it easy to handle. Furthermore, for example, by adjusting the particle shape of the filler, the rigidity of the structure sheet 2 can be controlled. Specific examples of the particle shape of the filler include spherical, needle-like, amorphous, and tetrapod-like shapes. Furthermore, by adjusting the thickness of the intermediate layer 6, the rigidity of the structure sheet 2 can be controlled.

 中間層6に適したポリマーを含む組成物の具体例として、菊水化学工業(株)製の商品名「スプリングコートハケ混和液」及び東亞合成(株)製の商品名「アロンブルコートA450ベース」が挙げられる。中間層6に適したフィラーであるセメント組成物の具体例として、菊水化学工業(株)製の商品名「スプリングコートハケ粉体」及び東亞合成(株)製の商品名「アロンブルコートA450セッター」が挙げられる。 Specific examples of compositions containing a polymer suitable for the intermediate layer 6 include "Spring Coat Brush Mixture" manufactured by Kikusui Chemical Industry Co., Ltd. and "Aronbull Coat A450 Base" manufactured by Toagosei Co., Ltd. Specific examples of cement compositions that are fillers suitable for the intermediate layer 6 include "Spring Coat Brush Powder" manufactured by Kikusui Chemical Industry Co., Ltd. and "Aronbull Coat A450 Setter" manufactured by Toagosei Co., Ltd.

 中間層6がポリマーとフィラーとを含む場合、ポリマーとフィラーとの固形分の質量比は、例えば、5/95以上70/30以下が好ましい。この比が5/95以上である中間層6は、他の層(機能層4)との密着性に優れる。更に、この比が5/95以上である中間層6を有するシート2では、エネルギーE2が小さい。従ってこのシート2は、追従性に優れる。これらの観点から、この比は12/88以上がより好ましく、27/73以上が特に好ましい。この比率が70/30以下である中間層6を有するシート2では、エネルギーE1が大きい。従ってこのシート2は、取り扱い性に優れる。この観点から、この比は60/40以下がより好ましく、45/55以下が特に好ましい。 When the intermediate layer 6 contains a polymer and a filler, the mass ratio of the solids of the polymer to the filler is preferably, for example, 5/95 or more and 70/30 or less. An intermediate layer 6 having this ratio of 5/95 or more has excellent adhesion to other layers (functional layer 4). Furthermore, in a sheet 2 having an intermediate layer 6 having this ratio of 5/95 or more, the energy E2 is small. Therefore, this sheet 2 has excellent tracking properties. From these viewpoints, this ratio is more preferably 12/88 or more, and particularly preferably 27/73 or more. In a sheet 2 having an intermediate layer 6 having this ratio of 70/30 or less, the energy E1 is large. Therefore, this sheet 2 has excellent handleability. From this viewpoint, this ratio is more preferably 60/40 or less, and particularly preferably 45/55 or less.

 図3において矢印T2は、中間層6の厚さを表す。シート2の取り扱い性の観点から、厚さT2は100μm以上が好ましく、200μm以上がより好ましく、300μm以上が特に好ましい。シート2の追従性、生産性及び軽量の観点から、厚さT2は1500μm以下が好ましく、1200μm以下がより好ましく、700μm以下が特に好ましい。構造物用シート2が、2以上の中間層6を有してもよい。構造物用シート2が、中間層6を含まない層構造を有してもよい。 In FIG. 3, the arrow T2 indicates the thickness of the intermediate layer 6. From the viewpoint of the handleability of the sheet 2, the thickness T2 is preferably 100 μm or more, more preferably 200 μm or more, and particularly preferably 300 μm or more. From the viewpoints of the conformability, productivity, and light weight of the sheet 2, the thickness T2 is preferably 1500 μm or less, more preferably 1200 μm or less, and particularly preferably 700 μm or less. The structure sheet 2 may have two or more intermediate layers 6. The structure sheet 2 may have a layer structure that does not include an intermediate layer 6.

 図3において矢印Ttは、シート2の総厚さを表す。シート2の取り扱い性の観点から、中間層6の厚さT2の、総厚さTtに対する比率は、30%以上が好ましく、45%以上がより好ましく、55%以上が特に好ましい。シート2の追従性、生産性及び軽量の観点から、この比率は85%以下が好ましく、75%以下がより好ましく、70%以下が特に好ましい。 In FIG. 3, the arrow Tt indicates the total thickness of the sheet 2. From the viewpoint of the ease of handling of the sheet 2, the ratio of the thickness T2 of the intermediate layer 6 to the total thickness Tt is preferably 30% or more, more preferably 45% or more, and particularly preferably 55% or more. From the viewpoints of the conformability, productivity, and light weight of the sheet 2, this ratio is preferably 85% or less, more preferably 75% or less, and particularly preferably 70% or less.

 構造物用シート2は、1又は複数の中間層6を備えていてもよい。構造物用シート2が備える中間層6の数は、例えば、構造物用シート2の全体厚み、中間層6に付与される機能、工場の製造ラインの長さ、或いは、構造物用シート2の生産コスト等を考慮して設定される。例えば、工場の製造ラインが短いために所定の厚みを有する単一の中間層6が得られない場合、中間層6の材料を重ね塗りすることで、所定の全体厚みを有する複数の中間層6の積層構造を形成すればよい。 The structure sheet 2 may have one or more intermediate layers 6. The number of intermediate layers 6 included in the structure sheet 2 is set taking into consideration, for example, the overall thickness of the structure sheet 2, the function to be imparted to the intermediate layers 6, the length of the factory production line, or the production cost of the structure sheet 2. For example, if a single intermediate layer 6 having a predetermined thickness cannot be obtained due to a short factory production line, a layered structure of multiple intermediate layers 6 having a predetermined overall thickness can be formed by applying multiple coats of the material for the intermediate layer 6.

[粘着層]
 粘着層8は、下地と当接する。粘着層8の粘着力により、シート2が構造物に貼り付けられうる。粘着層8の粘着性は、例えば、粘着層8の厚みや表面特性、及び、粘着層8の材料を調整することで制御できる。粘着層8の表面特性を制御する場合、例えば、後述する微細構造を採用できる。更に、粘着層8の厚みを厚過ぎず且つ薄過ぎない適度な値に設定することも、粘着層8の粘着性の制御には有効である。また、粘着層8の粘着力を所定範囲に制御し易いという観点から、粘着剤の材料及び粘着層8の厚みを組み合わせて調整することも好ましい。
[Adhesive layer]
The adhesive layer 8 abuts against the base. The sheet 2 can be attached to the structure by the adhesive force of the adhesive layer 8. The adhesiveness of the adhesive layer 8 can be controlled, for example, by adjusting the thickness and surface properties of the adhesive layer 8, and the material of the adhesive layer 8. When controlling the surface properties of the adhesive layer 8, for example, a microstructure described later can be adopted. Furthermore, setting the thickness of the adhesive layer 8 to an appropriate value that is neither too thick nor too thin is also effective in controlling the adhesiveness of the adhesive layer 8. In addition, from the viewpoint of easily controlling the adhesive force of the adhesive layer 8 within a predetermined range, it is also preferable to adjust the adhesive material and the thickness of the adhesive layer 8 in combination.

 より具体的に、粘着層8の材料としては、アクリル、シロキサン結合を有するシリコーン、ゴム、ウレタン系等の、ガラス転移温度(Tg)が低く且つファンデルワールス力や静電気力を利用できる粘着剤を例示できる。また、粘着層8の厚みや、粘着層8の架橋度を調整することで、粘着層8の粘着力を制御できる。また、粘着層8の貼付面をヤモリの手足のような微細構造(大表面積且つ分子間力を利用できる構造)に構成してもよい。更に、前記粘着剤と前記微細構造を組み合わせて用いてもよい。 More specifically, examples of materials for the adhesive layer 8 include adhesives that have a low glass transition temperature (Tg) and can utilize van der Waals forces or electrostatic forces, such as acrylic, silicone with siloxane bonds, rubber, and urethane-based adhesives. The adhesive strength of the adhesive layer 8 can be controlled by adjusting the thickness of the adhesive layer 8 and the degree of crosslinking of the adhesive layer 8. The attachment surface of the adhesive layer 8 may also be configured with a microstructure like the limbs of a gecko (a structure that has a large surface area and can utilize intermolecular forces). Furthermore, the adhesives and the microstructures may be used in combination.

 本実施形態の粘着層8の材質は、一例として、ポリマーを基材とする粘着剤組成物である。この粘着剤組成物に適したポリマーとして、アクリル樹脂、シリコーン、ポリウレタン、ポリエステル、天然ゴム及び合成ゴムが、例示される。基材として特に好ましいポリマーは、アクリル樹脂である。粘着剤組成物の具体例として、トーヨーケム(株)製の商品名「オリバインBPS6574」、「オリバインBPS6554」及び「オリバインBPS5565K」が挙げられる。 The material of the adhesive layer 8 in this embodiment is, for example, a polymer-based adhesive composition. Examples of polymers suitable for this adhesive composition include acrylic resin, silicone, polyurethane, polyester, natural rubber, and synthetic rubber. A particularly preferred polymer as the base material is acrylic resin. Specific examples of adhesive compositions include those available from Toyochem Co., Ltd. under the trade names "Olivine BPS6574," "Olivine BPS6554," and "Olivine BPS5565K."

 粘着剤組成物は、硬化剤を含んでいてもよい。基材がアクリル樹脂である場合の好ましい硬化剤は、イソシアネート硬化剤である。アクリル樹脂100質量部に対するイソシアネート硬化剤の比率は1.0質量部以上が好ましく、2.0質量部以上がより好ましく、2.5質量部以上が特に好ましい。この比率は10質量部以下が好ましく、8質量部以下がより好ましく、7質量部以下が特に好ましい。 The adhesive composition may contain a curing agent. When the substrate is an acrylic resin, a preferred curing agent is an isocyanate curing agent. The ratio of the isocyanate curing agent to 100 parts by mass of the acrylic resin is preferably 1.0 part by mass or more, more preferably 2.0 parts by mass or more, and particularly preferably 2.5 parts by mass or more. This ratio is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and particularly preferably 7 parts by mass or less.

 粘着剤組成物は、粘着付与剤を含みうる。粘着付与剤として、ロジン系粘着付与剤、テルペン系粘着付与剤、石油樹脂系粘着付与剤及びフェノール樹脂系粘着付与剤が例示される。基材ポリマー100質量部に対する粘着付与剤の比率は、0.5質量部以上が好ましく、1.0質量部以上がより好ましく、1.5質量部以上が特に好ましい。この比率は15質量部以下が好ましく、10質量部以下がより好ましく、7質量部以下が特に好ましい。粘着付与剤の具体例として、荒川化学工業(株)の商品名「エステルガム H」、「エステルガム AA-V」及び「エステルガム 105」が例示される。 The adhesive composition may contain a tackifier. Examples of tackifiers include rosin-based tackifiers, terpene-based tackifiers, petroleum resin-based tackifiers, and phenolic resin-based tackifiers. The ratio of the tackifier to 100 parts by mass of the base polymer is preferably 0.5 parts by mass or more, more preferably 1.0 parts by mass or more, and particularly preferably 1.5 parts by mass or more. This ratio is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and particularly preferably 7 parts by mass or less. Specific examples of tackifiers include Arakawa Chemical Industries Co., Ltd.'s product names "Ester Gum H", "Ester Gum AA-V", and "Ester Gum 105".

 図3において矢印T3は、粘着層8の厚さを表す。粘着性の観点から、厚さT3は20μm以上が好ましく、40μm以上がより好ましく、50μm以上が特に好ましい。シート2の生産性、軽量及び取り扱い性の観点から、厚さT3は300μm以下が好ましく、200μm以下がより好ましく、150μm以下が特に好ましい。構造物用シート2が、2以上の粘着層8を有してもよい。
[離型フィルム]
 離型フィルム9は、粘着層8の中間層6側とは反対側の面に配置(貼付)されている。構造物用シート2では、使用前においては粘着層8を表面保護する目的で、離型フィルム9が貼付されていることが好ましい。離型フィルム9は、構造物用シート2の貼付に際して剥離される。離型フィルム9が剥離されることで粘着層8が露出した構造物用シート2は、粘着層8を構造物の表面に接触させて、構造物に貼付される。
In Fig. 3, an arrow T3 indicates the thickness of the adhesive layer 8. From the viewpoint of adhesiveness, the thickness T3 is preferably 20 µm or more, more preferably 40 µm or more, and particularly preferably 50 µm or more. From the viewpoints of productivity, light weight, and handleability of the sheet 2, the thickness T3 is preferably 300 µm or less, more preferably 200 µm or less, and particularly preferably 150 µm or less. The structure sheet 2 may have two or more adhesive layers 8.
[Release film]
The release film 9 is disposed (attached) on the surface of the adhesive layer 8 opposite to the intermediate layer 6. The release film 9 is preferably attached to the sheet for structure 2 for the purpose of protecting the surface of the adhesive layer 8 before use. The release film 9 is peeled off when the sheet for structure 2 is attached. The sheet for structure 2, with the adhesive layer 8 exposed as a result of the release film 9 being peeled off, is attached to the structure by bringing the adhesive layer 8 into contact with the surface of the structure.

 離型フィルム9の構造は特に限定されず、例えば、支持層と剥離層とを有するシートを例示できる。支持層を構成する材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、ナイロン6等のポリアミド、ポリ塩化ビニル等のビニル樹脂、ポリメチルメタクリレート等のアクリル樹脂、セルロースアセテート等のセルロース樹脂、ポリカーボネート等の合成樹脂を例示できる。また前記支持層は、紙を主成分として形成されていてもよい。更に支持層は、2層以上の構成層を備える積層体であってもよい。 The structure of the release film 9 is not particularly limited, and may be, for example, a sheet having a support layer and a peeling layer. Examples of materials constituting the support layer include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene and polymethylpentene, polyamides such as nylon 6, vinyl resins such as polyvinyl chloride, acrylic resins such as polymethyl methacrylate, cellulose resins such as cellulose acetate, and synthetic resins such as polycarbonate. The support layer may also be formed with paper as the main component. Furthermore, the support layer may be a laminate having two or more constituent layers.

 剥離層を構成する材料としては、例えば、シリコーン樹脂、メラミン樹脂、フッ素化重合体等を例示できる。剥離層は、例えば、剥離層を構成する材料、及び、有機溶剤を含む塗工液を、支持層上に、グラビアコート法、ロールコート法、コンマコート法、リップコート法等の公知の塗布方法によって塗布し、前記塗布より形成された塗膜を乾燥及び硬化させることで形成できる。また、剥離層の形成に当たっては、予め、支持層の剥離層が形成される面に、コロナ処理や易接着処理を施していてもよい。 Examples of materials constituting the release layer include silicone resin, melamine resin, and fluorinated polymer. The release layer can be formed, for example, by applying a coating liquid containing the material constituting the release layer and an organic solvent onto the support layer by a known coating method such as gravure coating, roll coating, comma coating, or lip coating, and then drying and curing the coating film formed by the application. In addition, when forming the release layer, the surface of the support layer on which the release layer is to be formed may be previously subjected to a corona treatment or an easy-adhesion treatment.

[他の層]
 構造物用シート2は、機能層4の上に位置する他の層を有してもよい。典型的な他の層は、例えば、クリアーペイント層である。他の層が、意匠性、遮熱性等の機能を補強又は付加する層であってもよい。構造物用シート2が、機能層4と中間層6との間に位置する層を有してもよい。構造物用シート2が、中間層6と粘着層8との間に位置する層を有してもよい。
[Other layers]
The sheet for a structure 2 may have another layer located on the functional layer 4. A typical other layer is, for example, a clear paint layer. The other layer may be a layer that reinforces or adds a function such as design or heat insulation. The sheet for a structure 2 may have a layer located between the functional layer 4 and the intermediate layer 6. The sheet for a structure 2 may have a layer located between the intermediate layer 6 and the adhesive layer 8.

[総厚さ]
 構造物用シート2の総厚さTtは、200μm以上が好ましく、300μm以上がより好ましく、400μm以上が特に好ましい。この総厚さTtは、5.0mm以下が好ましく、3.0mm以下がより好ましく、1.0mm以下が特に好ましい。
[Total thickness]
The total thickness Tt of the structural sheet 2 is preferably 200 μm or more, more preferably 300 μm or more, and particularly preferably 400 μm or more. The total thickness Tt is preferably 5.0 mm or less, more preferably 3.0 mm or less, and particularly preferably 1.0 mm or less.

[構造物用シートの柔軟性]
 構造物用シート2は、前記した剛性を有しつつ、適度な柔軟性も有する。例えば構造物用シート2は、ロール状に巻き取りが可能な程度の柔軟性を有する。ここで言うロール状の巻き取りとは、例えば数cm以上数十cm以下の値の直径(具体的には、例えば、10mm以上300mm以下の値の直径)を有するロール芯材への構造物用シート2の巻き取りを指す。これより細いロール芯材でも、手巻き等により、構造物用シート2を数m程度巻き取ることは可能である。従って、例えば、構造物用シート2をロール状で管理できる。更に、ロール状に巻回された構造物用シート2を施工現場で展開し、所定のサイズに切り出した構造物用シート2を迅速に準備して施工することも可能である。よって、比較的大面積を有する施工対象に対しても、構造物用シート2を容易且つ簡便に適用できる。
[Flexibility of structural sheets]
The structure sheet 2 has the above-mentioned rigidity and also has a suitable flexibility. For example, the structure sheet 2 has flexibility to the extent that it can be wound into a roll. The roll-shaped winding referred to here refers to winding the structure sheet 2 around a roll core material having a diameter of, for example, several centimeters or more and several tens of centimeters or less (specifically, for example, a diameter of 10 mm or more and 300 mm or less). Even with a thinner roll core material, the structure sheet 2 can be wound up to several meters by hand winding or the like. Therefore, for example, the structure sheet 2 can be managed in a roll shape. Furthermore, it is also possible to unfold the structure sheet 2 wound in a roll shape at the construction site, and quickly prepare and construct the structure sheet 2 cut into a predetermined size. Therefore, the structure sheet 2 can be easily and simply applied to a construction target having a relatively large area.

[製造方法]
 以下、この構造物用シート2の製造方法の一例が、説明される。この製造方法では、機能層4のポリマー組成物が溶媒と混合され、第1塗料が得られる。この第1塗料がベースフィルムの上に塗工され、第1塗膜が得られる。この第1塗膜が加熱され、第1塗料から溶媒が揮発する。この加熱によって第1塗膜中の基材ポリマーが硬化し、機能層4が得られる。ベースフィルムは、第1塗膜に形状を付与する形状付与フィルム(シート)である。
[Production method]
An example of a manufacturing method for this structural sheet 2 is described below. In this manufacturing method, the polymer composition of the functional layer 4 is mixed with a solvent to obtain a first coating material. This first coating material is applied onto a base film to obtain a first coating film. This first coating film is heated, and the solvent volatilizes from the first coating material. This heating hardens the base polymer in the first coating film, and the functional layer 4 is obtained. The base film is a shape-imparting film (sheet) that imparts a shape to the first coating film.

 次に、中間層6の複合材料が溶媒と混合され、第2塗料が得られる。この第2塗料が機能層4の上に塗工され、第2塗膜が得られる。この第2塗膜が加熱され、第2塗料から溶媒が揮発する。この加熱よってポリマーが硬化し、中間層6が得られる。 Next, the composite material of the intermediate layer 6 is mixed with a solvent to obtain a second paint. This second paint is applied onto the functional layer 4 to obtain a second coating film. This second coating film is heated, and the solvent evaporates from the second paint. This heating hardens the polymer, and the intermediate layer 6 is obtained.

 次に、粘着層8の粘着剤組成物が溶媒と混合され、第3塗料が得られる。この第3塗料が、離型紙又は離型フィルムの上に塗工され、第3塗膜が得られる。この第3塗膜が加熱され、第3塗料から溶媒が揮発して、粘着層8が得られる。 Next, the adhesive composition of the adhesive layer 8 is mixed with a solvent to obtain a third coating material. This third coating material is applied onto a release paper or film to obtain a third coating film. This third coating film is heated, and the solvent evaporates from the third coating material to obtain the adhesive layer 8.

 この粘着層8が、中間層6と重ねられる。更に、機能層4からベースフィルムが剥離され、粘着層8から離型フィルムが剥離されて、構造物用シート2が得られる。尚、離型紙又は離型フィルム、及び、ベースフィルムの少なくともいずれかは、使用の際までに剥離除去されてもよい。 This adhesive layer 8 is overlaid on the intermediate layer 6. Furthermore, the base film is peeled off from the functional layer 4, and the release film is peeled off from the adhesive layer 8 to obtain the structural sheet 2. Note that at least one of the release paper or release film and the base film may be peeled off and removed before use.

 ここでベースフィルムの具体例について述べる。ベースフィルムは、構造物用シート2の製造の際の基材として用いられる。ベースフィルムは、構造物用シート2の製造工程で用いられる工程紙である樹脂ラミネート紙や、樹脂フィルムを含んでいてもよい。ここで言う樹脂ラミネート紙は、例えば、ポリプロピレン、ポリエチレン等のオレフィン樹脂層を有していてもよい。具体的にベースフィルムとしては、例えば、PPラミネートシート(例えばリンテック(株)製)を利用できる。このPPラミネートシートの厚みは、一例として50μm以上200μm以下の値である。 Here, specific examples of the base film will be described. The base film is used as a substrate when manufacturing the structural sheet 2. The base film may include resin laminated paper, which is a process paper used in the manufacturing process of the structural sheet 2, or a resin film. The resin laminated paper referred to here may have an olefin resin layer such as polypropylene or polyethylene. Specifically, an example of the base film that can be used is a PP laminated sheet (manufactured by, for example, Lintec Corporation). The thickness of this PP laminated sheet is, for example, 50 μm or more and 200 μm or less.

[効果]
 この構造物用シート2は追従性に優れるので、前述の通り、段差が存在する屋根10にも適用されうる。複数のシート2が継ぎ貼りされることで、広い面積にて、屋根10の表面がシート2で覆われうる。粘着層8は粘着性に優れるので、屋根10の表面の材質が複合的である場合でも、広い面積にて、屋根10の表面がシート2で覆われうる。例えば、表面が金属及びスレートの両方を含む屋根10であっても、広い面積にて、屋根10の表面がシート2で覆われうる。
[effect]
This structural sheet 2 has excellent conformability and can therefore be applied to roofs 10 having steps, as described above. By patching together a plurality of sheets 2, a wide area of the surface of the roof 10 can be covered with the sheet 2. Since the adhesive layer 8 has excellent adhesiveness, a wide area of the surface of the roof 10 can be covered with the sheet 2 even if the surface of the roof 10 is made of a mixture of materials. For example, a wide area of the surface of the roof 10 can be covered with the sheet 2 even if the surface of the roof 10 includes both metal and slate.

 屋根10の表面の全体が、シート2で覆われてもよい。本明細書において屋根10の表面とは、鉛直方向の上から屋根10が見られたとき、視認されうる面を意味する。屋根10の表面の全体が単一種類のシート2で覆われる補修方法は、従来の工法には見られない。 The entire surface of the roof 10 may be covered with the sheet 2. In this specification, the surface of the roof 10 means the surface that is visible when the roof 10 is viewed from above in the vertical direction. Repair methods in which the entire surface of the roof 10 is covered with a single type of sheet 2 are not found in conventional construction methods.

 このシート2は、鋼板、銅板、トタン板等に比べ、軽量である。従って、広い面積にて屋根10の表面がシート2で覆われても、建築物の耐震性への悪影響は、小さい。シート2に経年劣化が生じたとき、このシート2に他のシート2が積層されてもよい。この場合でも、建築物の耐震性への悪影響は、小さい。耐震性の観点から、シート2の密度は4.0g/cm以下が好ましく、3.0g/cm以下がより好ましく、2.5g/cm以下が特に好ましい。この密度は、屋根10の補修に賞用されているアルミニウム-亜鉛合金メッキ鋼板(商品名「ガルバリウム鋼板」(登録商標))の密度に比べ、はるかに小さい。 This sheet 2 is lighter than steel plates, copper plates, galvanized iron sheets, etc. Therefore, even if the surface of the roof 10 is covered with the sheet 2 over a wide area, the adverse effect on the earthquake resistance of the building is small. When the sheet 2 deteriorates with age, another sheet 2 may be laminated on this sheet 2. Even in this case, the adverse effect on the earthquake resistance of the building is small. From the viewpoint of earthquake resistance, the density of the sheet 2 is preferably 4.0 g/cm 3 or less, more preferably 3.0 g/cm 3 or less, and particularly preferably 2.5 g/cm 3 or less. This density is much smaller than the density of aluminum-zinc alloy plated steel sheet (trade name "Galvalume Steel Sheet" (registered trademark)) which is used for repairing the roof 10.

[他の用途]
 このシート2は、屋根10以外の構造物の補修又は補強に寄与しうる。屋根10以外の構造物として、住宅の壁、柱、軒、塀、門、扉、パラペット、笠木等が挙げられる。このシート2が、商用ビルディング、工場、倉庫、橋梁、下水施設、鉄道施設、トンネル等に用いられてもよい。
[Other uses]
This sheet 2 can contribute to the repair or reinforcement of structures other than the roof 10. Examples of structures other than the roof 10 include walls, pillars, eaves, fences, gates, doors, parapets, copings, etc. of houses. This sheet 2 may also be used in commercial buildings, factories, warehouses, bridges, sewage facilities, railway facilities, tunnels, etc.

[再補修及び再補強]
 このシート2により構造物(屋根等)が補修又は補強された後、経年変化により、シート2や構造物が破損又は劣化することがある。この破損箇所又は劣化箇所のシート2に、新たに用意された構造物用シート2が貼られることで、再補修又は再補強がなされうる。シート2が重ね貼りされることで、極めて長い期間にわたり、構造物の価値が保全され、且つ維持されうる。このシート2による再補修及び大補強により、廃棄物の発生が抑制されうる。このシート2は、サーキュラーエコノミーの実現の一助となり得る。
[Repair and reinforcement]
After a structure (roof, etc.) is repaired or reinforced with this sheet 2, the sheet 2 or the structure may be damaged or deteriorated due to aging. A newly prepared sheet 2 for structures may be applied to the damaged or deteriorated area to repair or reinforce it again. By overlapping the sheets 2, the value of the structure can be preserved and maintained for an extremely long period of time. Re-repair and major reinforcement with this sheet 2 can reduce the generation of waste. This sheet 2 can help realize a circular economy.

 このように、本開示のシート2による構造物の補修又は補強の方法は、以下の第1の方法と言うことができる。当該第1の方法は、構造物用シート2による構造物の補修又は補強の方法であって、以下の工程(1a)、(2a)を備える。即ち当該方法は、(1a)短辺が50mm及び長辺が100mmの矩形状のシート2(試験片24相当のシート2)を、同一面の一対の短辺同士を重ねるように湾曲させ、一対の短辺の縁端から長辺に沿って15mm離れた位置までのシート2の一対の領域を試験装置の固定具30で把持して固定することにより、シート2の一対の領域の間に周長が70mmの湾曲部34を形成した状態において、60℃における湾曲部34の20mmの圧縮変形のエネルギーが、2.0mJ以上であり、-10℃における湾曲部34の20mmの圧縮変形のエネルギーが、60.0mJ以下であり、且つ機能層4及び粘着層8を有するシート2を準備する工程、並びに(2a)粘着層8の粘着力により、構造物の表面にシート2を貼り付ける工程を備える。 In this way, the method of repairing or reinforcing a structure using the sheet 2 of the present disclosure can be said to be the following first method. The first method is a method of repairing or reinforcing a structure using the sheet 2 for structures, and comprises the following steps (1a) and (2a). That is, the method includes the steps of (1a) preparing a sheet 2 having a rectangular shape with short sides of 50 mm and long sides of 100 mm (sheet 2 corresponding to test piece 24) by bending a pair of short sides on the same surface so that they overlap each other, and by gripping and fixing a pair of regions of the sheet 2 from the edges of the pair of short sides to a position 15 mm away along the long side with a fixture 30 of a test device, forming a curved portion 34 with a circumference of 70 mm between the pair of regions of the sheet 2, such that the energy of a 20 mm compressive deformation of the curved portion 34 at 60°C is 2.0 mJ or more and the energy of a 20 mm compressive deformation of the curved portion 34 at -10°C is 60.0 mJ or less, and the sheet 2 has a functional layer 4 and an adhesive layer 8, and (2a) attaching the sheet 2 to the surface of a structure by the adhesive force of the adhesive layer 8.

 また一例として、本開示の構造物の再補修又は再補強の方法は、以下の第2の方法と言うこともできる。即ち当該第2の方法は、2枚の構造物用シート2(以下、「第1シート2a」、「第2シート2b」とも称する。)を用いて、再補修又は再補強を行う方法とすることもできる。当該方法は、第1シート2aによって補修又は補強された構造物の、第2シート2bによる再補修又は再補強の方法であり、以下の工程(1b)~(4b)を備える。 As another example, the method of re-repairing or re-reinforcing a structure disclosed herein can also be referred to as the second method below. That is, the second method can also be a method of re-repairing or re-reinforcing using two structural sheets 2 (hereinafter also referred to as the "first sheet 2a" and the "second sheet 2b"). This method is a method of re-repairing or re-reinforcing a structure that has been repaired or reinforced with the first sheet 2a with the second sheet 2b, and includes the following steps (1b) to (4b).

 具体的に当該第2の方法は、(1b)短辺が50mm及び長辺が100mmの矩形状の第1シート2aを、同一面の一対の短辺同士を重ねるように湾曲させ、一対の短辺の縁端から長辺に沿って15mm離れた位置までの第1シート2aの一対の領域を試験装置の固定具30で把持して固定することにより、第1シート2aの一対の領域の間に周長が70mmの湾曲部34を形成した状態において、第1シート2aの湾曲部34の60℃における20mmの圧縮変形のエネルギーが、2.0mJ以上であり、第1シート2aの湾曲部34の-10℃における20mmの圧縮変形のエネルギーが、60.0mJ以下であり、且つ機能層4及び粘着層8を有する第1シート2aを、準備する工程を備える。 Specifically, the second method includes the steps of (1b) curving a rectangular first sheet 2a with short sides of 50 mm and long sides of 100 mm so that a pair of short sides on the same surface overlap each other, and gripping and fixing a pair of regions of the first sheet 2a from the edges of the pair of short sides to a position 15 mm away along the long side with a fixture 30 of a testing device to form a curved portion 34 with a circumference of 70 mm between the pair of regions of the first sheet 2a, such that the energy of a 20 mm compressive deformation of the curved portion 34 of the first sheet 2a at 60°C is 2.0 mJ or more and the energy of a 20 mm compressive deformation of the curved portion 34 of the first sheet 2a at -10°C is 60.0 mJ or less, and the first sheet 2a has a functional layer 4 and an adhesive layer 8.

 更に当該第2の方法は、(2b)前記第1シート2aの粘着層8の粘着力により、前記構造物の表面に前記第1シート2aを貼り付ける工程を備える。更に当該方法は、(3b)短辺が50mm及び長辺が100mmの矩形状の第2シート2bを、同一面の一対の短辺同士を重ねるように湾曲させ、一対の短辺の縁端から長辺に沿って15mm離れた位置までの第2シート2bの一対の領域を試験装置の固定具30で把持して固定することにより、第2シート2bの一対の領域の間に周長が70mmの湾曲部34を形成した状態において、第2シート2bの湾曲部34の60℃における20mmの圧縮変形のエネルギーが、2.0mJ以上であり、第2シート2bの湾曲部34の-10℃における20mmの圧縮変形のエネルギーが、60.0mJ以下であり、且つ機能層4及び粘着層8を有する第2シート2bを、準備する工程、並びに(4b)前記第2シート2bの粘着層8の粘着力により、破損又は劣化した前記第1シート2aの表面に前記第2シート2bを貼り付ける工程を備える。 The second method further includes a step (2b) of attaching the first sheet 2a to the surface of the structure by the adhesive force of the adhesive layer 8 of the first sheet 2a. The method further includes (3b) preparing a second sheet 2b having a rectangular shape with short sides of 50 mm and long sides of 100 mm, by bending the pair of short sides of the same surface so that they overlap each other, and by gripping and fixing a pair of regions of the second sheet 2b from the edge of the pair of short sides to a position 15 mm away along the long side with a fixture 30 of a testing device, forming a curved portion 34 with a circumference of 70 mm between the pair of regions of the second sheet 2b, in which the energy of a 20 mm compressive deformation of the curved portion 34 of the second sheet 2b at 60°C is 2.0 mJ or more and the energy of a 20 mm compressive deformation of the curved portion 34 of the second sheet 2b at -10°C is 60.0 mJ or less, and the second sheet 2b has a functional layer 4 and an adhesive layer 8, and (4b) attaching the second sheet 2b to the damaged or deteriorated surface of the first sheet 2a by the adhesive force of the adhesive layer 8 of the second sheet 2b.

[第2実施形態]
[層構造]
 図12に、第2実施形態に係る構造物用シート40が示されている。このシート40は、機能層42、中間層44、粘着層46及び補強体48を有している。補強体48は、中間層44に埋設されている。機能層42の材質、厚さ等の構成は、図3に示された機能層4のそれらと同じである。粘着層46の材質、厚さ等の構成は、図3に示された粘着層8のそれらと同じである。このシート40は、構造物に貼り付けられる。シート40が、離型紙又は離型フィルムを有してもよい。離型紙及び離型フィルムは、粘着層46と積層される。
[Second embodiment]
[Layer structure]
FIG. 12 shows a structure sheet 40 according to the second embodiment. The sheet 40 has a functional layer 42, an intermediate layer 44, an adhesive layer 46, and a reinforcing body 48. The reinforcing body 48 is embedded in the intermediate layer 44. The material, thickness, and other configurations of the functional layer 42 are the same as those of the functional layer 4 shown in FIG. 3. The material, thickness, and other configurations of the adhesive layer 46 are the same as those of the adhesive layer 8 shown in FIG. 3. The sheet 40 is attached to a structure. The sheet 40 may have a release paper or a release film. The release paper and the release film are laminated with the adhesive layer 46.

[圧縮変形エネルギー]
 このシート40の、60℃における20mmの圧縮変形のエネルギーE1は、2.0mJ以上が好ましい。屋根の補修作業のとき、作業者は手でシート40を持ち上げる。このとき、シート40には重力が掛かる。シート40は、自重によって変形する。この変形により、シート40は作業者の手から垂れ下がる。エネルギーE1が2.0mJ以上であるシート40では、重力が掛かったときの変形が、抑制されうる。このシート40は、作業者にとって扱いやすい。このシート40では、夏のような高温環境下においても、変形が抑制されうる。変形の抑制の観点から、エネルギーE1は、3.0mJ以上がより好ましく、6.0mJ以上が一層好ましく、9.5mJ以上が特に好ましい。
[Compressive deformation energy]
The energy E1 of the sheet 40 for compressive deformation of 20 mm at 60° C. is preferably 2.0 mJ or more. When repairing a roof, a worker lifts the sheet 40 with his/her hands. At this time, gravity is applied to the sheet 40. The sheet 40 deforms due to its own weight. This deformation causes the sheet 40 to hang down from the worker's hand. In the sheet 40 with the energy E1 of 2.0 mJ or more, deformation when gravity is applied can be suppressed. The sheet 40 is easy for a worker to handle. In the sheet 40, deformation can be suppressed even in a high temperature environment such as in summer. From the viewpoint of suppressing deformation, the energy E1 is more preferably 3.0 mJ or more, even more preferably 6.0 mJ or more, and particularly preferably 9.5 mJ or more.

 このシート40の、-10℃における20mmの圧縮変形のエネルギーE2は、60.0mJ以下が好ましい。前述の通りシート40は、段差の近傍において湾曲する。エネルギーE2が60.0mJ以下であるシート40は、段差によく追従しうる。このシート40による屋根の補修では、シート40の屋根との間にスペースが生じにくい。このシート40は、冬のような低温環境下においても、優れた追従性を発揮する。追従性の観点から、エネルギーE2は57.1mJ以下がより好ましく、44.7mJ以下が特に好ましい。エネルギーE1及びE2は、第1実施形態に関して前述された方法と同じ方法で、測定される。 The energy E2 of this sheet 40 for a compressive deformation of 20 mm at -10°C is preferably 60.0 mJ or less. As described above, the sheet 40 curves near steps. A sheet 40 with an energy E2 of 60.0 mJ or less can conform well to steps. When repairing a roof with this sheet 40, spaces are unlikely to form between the sheet 40 and the roof. This sheet 40 exhibits excellent conformability even in low-temperature environments such as winter. From the viewpoint of conformability, the energy E2 is more preferably 57.1 mJ or less, and particularly preferably 44.7 mJ or less. The energies E1 and E2 are measured in the same manner as described above for the first embodiment.

[中間層]
 中間層44は、機能層42と粘着層46との間に配置されている。中間層44は、補強体48を含んでいる。中間層44の材質(補強体48を除く部分の材質)は、図3に示された中間層6の材質と同じである。図12において矢印T2は、中間層44の厚さを表す。本実施形態では、補強体48を含め、厚さT2が測定される。シート40の取り扱い性の観点から、厚さT2は100μm以上が好ましく、200μm以上がより好ましく、300μm以上が特に好ましい。シート40の追従性、生産性及び軽量の観点から、厚さT2は1500μm以下が好ましく、1200μm以下がより好ましく、700μm以下が特に好ましい。
[Middle layer]
The intermediate layer 44 is disposed between the functional layer 42 and the adhesive layer 46. The intermediate layer 44 includes a reinforcing body 48. The material of the intermediate layer 44 (the material of the portion excluding the reinforcing body 48) is the same as the material of the intermediate layer 6 shown in FIG. 3. In FIG. 12, the arrow T2 indicates the thickness of the intermediate layer 44. In this embodiment, the thickness T2 is measured including the reinforcing body 48. From the viewpoint of the handleability of the sheet 40, the thickness T2 is preferably 100 μm or more, more preferably 200 μm or more, and particularly preferably 300 μm or more. From the viewpoint of the followability, productivity, and light weight of the sheet 40, the thickness T2 is preferably 1500 μm or less, more preferably 1200 μm or less, and particularly preferably 700 μm or less.

 シート40の取り扱い性の観点から、中間層44の厚さT2の、シート40の総厚さTtに対する比率は、30%以上が好ましく、45%以上がより好ましく、55%以上が特に好ましい。シート40の追従性、生産性及び軽量の観点から、この比率は85%以下が好ましく、75%以下がより好ましく、70%以下が特に好ましい。 From the viewpoint of the ease of handling of the sheet 40, the ratio of the thickness T2 of the intermediate layer 44 to the total thickness Tt of the sheet 40 is preferably 30% or more, more preferably 45% or more, and particularly preferably 55% or more. From the viewpoints of the conformability, productivity, and light weight of the sheet 40, this ratio is preferably 85% or less, more preferably 75% or less, and particularly preferably 70% or less.

[補強体]
 補強体48は、シート40の剛性に寄与しうる。補強体48を含むシート40は、取り扱い性に優れる。前述の通り補強体48は、中間層44に埋設されている。補強体48が、機能層42に埋設されてもよい。補強体48が、粘着層46に埋設されてもよい。補強体48が、機能層42と中間層44との間に位置してもよい。補強体48が、中間層44と粘着層46との間に位置してもよい。
[Reinforcement body]
The reinforcing body 48 can contribute to the rigidity of the sheet 40. The sheet 40 including the reinforcing body 48 has excellent handleability. As described above, the reinforcing body 48 is embedded in the intermediate layer 44. The reinforcing body 48 may be embedded in the functional layer 42. The reinforcing body 48 may be embedded in the adhesive layer 46. The reinforcing body 48 may be located between the functional layer 42 and the intermediate layer 44. The reinforcing body 48 may be located between the intermediate layer 44 and the adhesive layer 46.

 本実施形態の補強体48は、一例としてメッシュである。図13に、メッシュである補強体48が示されている。この補強体48では、複数の経糸50aと複数の緯糸50bとが、織られている。換言すれば、補強体48は、ファブリック(織物)であり、経糸50aと緯糸50bとの各繊維が格子状に配置された二軸組布構造を有する。本実施形態では、このファブリックは、平織り組織を有する。ファブリックである補強体48には、中間層44の組成物が含浸しうる。この含浸は、補強体48と中間層44との剥離を抑制する。 The reinforcing body 48 in this embodiment is, as an example, a mesh. FIG. 13 shows the reinforcing body 48 which is a mesh. In this reinforcing body 48, a plurality of warp threads 50a and a plurality of weft threads 50b are woven. In other words, the reinforcing body 48 is a fabric (woven material) and has a biaxial woven structure in which the fibers of the warp threads 50a and the weft threads 50b are arranged in a lattice pattern. In this embodiment, this fabric has a plain weave structure. The reinforcing body 48 which is a fabric can be impregnated with the composition of the intermediate layer 44. This impregnation suppresses peeling between the reinforcing body 48 and the intermediate layer 44.

 補強体48は、メッシュに代えて、長繊維、短繊維、不織布、樹脂フィルム、又は金属箔を含んでいてもよい。このうち樹脂フィルムは、例えば2軸延伸フィルムでもよい。中間層44の製造時には、中間層44の組成物の塗膜が乾燥する前に、塗膜に補強体48が押し当てられることで、補強体48を含む中間層44が得られる。 Instead of a mesh, the reinforcing body 48 may contain long fibers, short fibers, nonwoven fabric, resin film, or metal foil. Among these, the resin film may be, for example, a biaxially stretched film. When the intermediate layer 44 is manufactured, the reinforcing body 48 is pressed against the coating of the composition of the intermediate layer 44 before the coating dries, thereby obtaining the intermediate layer 44 including the reinforcing body 48.

 補強体48の形状は、特に限定されない。補強体48がメッシュである場合の形状としては、二軸組布構造の他、例えば、三軸組布構造等の任意の形状を例示できる。補強体48の材質として、例えば、合成樹脂組成物及び金属が例示される。 The shape of the reinforcing body 48 is not particularly limited. When the reinforcing body 48 is a mesh, the shape can be any shape, such as a biaxial woven structure or a triaxial woven structure. Examples of the material of the reinforcing body 48 include a synthetic resin composition and a metal.

 合成樹脂組成物の好ましい基材樹脂として、ポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、ビニロン、ポリプロピレン、ポリスチレン及びポリフッ化ビニリデンが例示される。好ましい金属として、アルミニウム合金、炭素鋼及び合金鋼が例示される。引張強さが大きい経糸50a及び緯糸50bが採用されることにより、十分に大きいエネルギーE3(後に詳説)が達成されうる。或いは補強体48としては、例えば、高強度ビニロンメッシュ(例えば土木用途)や、ビニロン(例えば農業用途)、ポリエステル、ポリビニルアルコール等で形成された寒冷紗等の網材が好ましい。これらの補強体48によれば、構造物用シート40の弾性域を広げ易くできる。また、構造物用シート40に適度な剛性を付与し易くできる。更に、構造物用シート40の取扱性を改善できる。 Preferred base resins for the synthetic resin composition include polyethylene terephthalate, polyethylene naphthalate, aramid, vinylon, polypropylene, polystyrene, and polyvinylidene fluoride. Preferred metals include aluminum alloys, carbon steel, and alloy steel. By using warp threads 50a and weft threads 50b with high tensile strength, a sufficiently large energy E3 (described in detail later) can be achieved. Alternatively, the reinforcing body 48 is preferably a mesh material such as a high-strength vinylon mesh (for example, for civil engineering applications) or a cheesecloth made of vinylon (for example, for agricultural applications), polyester, polyvinyl alcohol, or the like. These reinforcing bodies 48 can easily widen the elastic range of the structural sheet 40. They can also easily impart appropriate rigidity to the structural sheet 40. Furthermore, the handleability of the structural sheet 40 can be improved.

 例えば、補強体48の線ピッチは、50mm以上1.2mm以下の値が好ましい。言い換えると、例えば、補強体48の線密度は、0.2本/cm以上8.0本/cm以下の値が好ましい。このような補強体48によれば、構造物用シート40の引張強度を確保しつつ、構造物用シート40に剛性を付与し易くできる。 For example, the line pitch of the reinforcement 48 is preferably 50 mm or more and 1.2 mm or less. In other words, for example, the line density of the reinforcement 48 is preferably 0.2 lines/cm or more and 8.0 lines/cm or less. Such a reinforcement 48 can easily impart rigidity to the structural sheet 40 while ensuring the tensile strength of the structural sheet 40.

 補強体48は、例えば、中間層44を平面視したとき、中間層44の全面をカバーする大きさを有していてもよいし、中間層44よりも小さい大きさを有していてもよい。すなわち、平面視したときの補強体48の面積は、平面視したときの中間層44の面積と同等、又は、中間層44の前記面積より小さくてもよい。 The reinforcing body 48 may be, for example, large enough to cover the entire surface of the intermediate layer 44 when the intermediate layer 44 is viewed in a plan view, or may be smaller than the intermediate layer 44. In other words, the area of the reinforcing body 48 when viewed in a plan view may be equal to or smaller than the area of the intermediate layer 44 when viewed in a plan view.

 平面視したときの補強体48の面積(平面視面積)は、例えば、中間層44の平面視面積に対し60%以上95%以下の値であることが好ましい。補強体48の平面視面積が60%以上の値であれば、例えば、構造物用シート40の剛性を確保し易くなり、構造物用シート40の伸び率も制御し易くできる。また、構造物用シート40の異なる領域での剛性のバラツキも抑制し易くできる。また、補強体48の平面視面積が95%以下の値であれば、例えば、構造物用シート40の厚み方向で補強体48を挟むように中間層44が形成された場合、中間層44の全体において、中間層44に対する補強体48の接着強度を確保し易くできる。尚、補強体48の平面視面積は、公知の方法で測定できる。 The area of the reinforcement 48 when viewed in a plane (plan view area) is preferably, for example, 60% to 95% of the plan view area of the intermediate layer 44. If the plan view area of the reinforcement 48 is 60% or more, for example, it is easier to ensure the rigidity of the structural sheet 40 and to control the elongation rate of the structural sheet 40. In addition, it is easier to suppress the variation in rigidity in different regions of the structural sheet 40. In addition, if the plan view area of the reinforcement 48 is 95% or less, for example, when the intermediate layer 44 is formed so as to sandwich the reinforcement 48 in the thickness direction of the structural sheet 40, it is easier to ensure the adhesive strength of the reinforcement 48 to the intermediate layer 44 throughout the entire intermediate layer 44. The plan view area of the reinforcement 48 can be measured by a known method.

 補強体48の厚みは、例えば、中間層44の厚みに対して10%以上の値である。補強体48の厚みは、中間層44の厚みに対して、例えば、20%以上の値が好ましく、30%以上の値がより好ましく、40%以上の値が特に好ましく、50%以上の値が最も好ましい。一方、補強体48の厚みは、例えば、中間層44の厚みに対して80%以下の値である。補強体48の厚みは、中間層44の厚みに対して、例えば、70%以下の値が好ましく、60%以下の値がより好ましく、55%以下の値が特に好ましい。このような中間層44の厚みの設定により、構造物用シート40に適度な剛性を付与し易くできる。 The thickness of the reinforcement 48 is, for example, 10% or more of the thickness of the intermediate layer 44. The thickness of the reinforcement 48 is, for example, preferably 20% or more of the thickness of the intermediate layer 44, more preferably 30% or more, particularly preferably 40% or more, and most preferably 50% or more. On the other hand, the thickness of the reinforcement 48 is, for example, 80% or less of the thickness of the intermediate layer 44. The thickness of the reinforcement 48 is, for example, preferably 70% or less of the thickness of the intermediate layer 44, more preferably 60% or less, and particularly preferably 55% or less. Setting the thickness of the intermediate layer 44 in this way makes it easier to impart appropriate rigidity to the structural sheet 40.

 更に、補強体48の厚みと中間層44の厚みとを前記関係を有するように設定することで、本開示の構造物用シート40は、粘着層46と中間層44との密着性に優れ、適切な剛性を有するように構成できる。よって、構造物の屋根等に構造物用シート40を貼り合せる際に優れた取扱性が得られ、シワや、構造物の屋根等との隙間を生じることなく、構造物を長期にわたって構造物用シート40により保護できる。例えば、中間層44の厚みに対する補強体48の厚みの下限は、45%が好ましく、当該厚みの上限は、55%が好ましい。 Furthermore, by setting the thickness of the reinforcing body 48 and the thickness of the intermediate layer 44 to have the above-mentioned relationship, the structural sheet 40 of the present disclosure can be configured to have excellent adhesion between the adhesive layer 46 and the intermediate layer 44 and appropriate rigidity. Therefore, excellent handleability is obtained when attaching the structural sheet 40 to the roof of the structure, etc., and the structural sheet 40 can protect the structure for a long period of time without causing wrinkles or gaps with the roof of the structure, etc. For example, the lower limit of the thickness of the reinforcing body 48 relative to the thickness of the intermediate layer 44 is preferably 45%, and the upper limit of this thickness is preferably 55%.

 尚、補強体48は、ファブリックと共に、ファブリック以外の構造物を含んでいてもよい。この場合の構造物として、長繊維、短繊維、樹脂フィルム、金属箔及び不織布が例示される。 The reinforcing body 48 may include structures other than the fabric as well as the fabric. Examples of structures in this case include long fibers, short fibers, resin films, metal foils, and nonwoven fabrics.

[圧縮変形エネルギーE3]
 ここで、補強体48がシート状である場合、短辺が50mm及び長辺が100mmの矩形状且つシート状の補強体48を、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの補強体48の一対の領域を試験装置の固定具で把持して固定することにより、補強体48の前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、補強体48の湾曲部の、23℃における20mmの圧縮変形のエネルギーE3は、1.5mJ以上が好ましい。エネルギーE3が1.5mJ以上である補強体48を含むシート40では、大きいエネルギーE1が達成されうる。このシート40は、取り扱い性に優れる。この観点から、エネルギーE3は2.0mJ以上がより好ましく、2.0mJ以上が特に好ましい。
[Compressive deformation energy E3]
Here, when the reinforcing body 48 is in the form of a sheet, the reinforcing body 48 is in the form of a rectangular sheet having a short side of 50 mm and a long side of 100 mm, and is curved so that a pair of short sides of the same surface overlap each other, and a pair of regions of the reinforcing body 48 from the edge of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a test device, so that a curved portion having a circumference of 70 mm is formed between the pair of regions of the reinforcing body 48. In this state, the energy E3 of the curved portion of the reinforcing body 48 for a compression deformation of 20 mm at 23 ° C. is preferably 1.5 mJ or more. In the sheet 40 including the reinforcing body 48 having an energy E3 of 1.5 mJ or more, a large energy E1 can be achieved. This sheet 40 has excellent handleability. From this viewpoint, the energy E3 is more preferably 2.0 mJ or more, and particularly preferably 2.0 mJ or more.

 このエネルギーE3は、10mJ以下が好ましい。エネルギーE3が10mJ以下である補強体48を含むシート40では、小さいエネルギーE2が達成されうる。このシート40は、追従性に優れる。この観点から、エネルギーE3は8mJ以下がより好ましく、6mJ以下が特に好ましい。 This energy E3 is preferably 10 mJ or less. A sheet 40 including a reinforcing body 48 with an energy E3 of 10 mJ or less can achieve a small energy E2. This sheet 40 has excellent conformability. From this viewpoint, the energy E3 is more preferably 8 mJ or less, and particularly preferably 6 mJ or less.

 このエネルギーE3は、圧縮変形のエネルギーE1及びE2に関して前述された方法と同じ方法で、測定される。図7に示された短辺26及び長辺28と同じ長さの辺を有する試験片が、補強体48から切り出され、測定に供される。測定には、図8-10に示された装置が使用される。エネルギーE3は、前記数式(1)によって算出される。エネルギーE3は、23℃の環境下において測定される。 This energy E3 is measured in the same manner as described above for the compressive deformation energies E1 and E2. A test piece having sides the same length as the short side 26 and long side 28 shown in FIG. 7 is cut out from the reinforcement 48 and subjected to measurement. The device shown in FIGS. 8-10 is used for the measurement. The energy E3 is calculated by the above formula (1). The energy E3 is measured in an environment of 23°C.

[ファブリック]
 図13において矢印D1は、糸50の太さである。太さD1が大きい糸50により、大きいエネルギーE1が達成されうる。太さD1が小さい糸50により、小さいエネルギーE2が達成されうる。図13において矢印P1は、糸50のピッチである。ピッチP1が小さい補強体48により、大きいエネルギーE1が達成されうる。ピッチP1が大きい補強体48により、小さいエネルギーE2が達成されうる。
[fabric]
In Fig. 13, the arrow D1 indicates the thickness of the thread 50. A large energy E1 can be achieved by a thread 50 having a large thickness D1. A small energy E2 can be achieved by a thread 50 having a small thickness D1. In Fig. 13, the arrow P1 indicates the pitch of the thread 50. A large energy E1 can be achieved by a reinforcing body 48 having a small pitch P1. A small energy E2 can be achieved by a reinforcing body 48 having a large pitch P1.

[製造方法]
 中間層44のための塗膜が乾燥する前に、この塗膜に補強体48が押し当てられることで、中間層44に埋設された補強体48を含むシート40が、得られうる。
[Production method]
Before the coating for the intermediate layer 44 dries, the reinforcing body 48 is pressed against the coating, thereby obtaining a sheet 40 including the reinforcing body 48 embedded in the intermediate layer 44 .

[用途]
 このシート40は、図1-3に示されたシート2と同様、屋根の補修に適している。このシート40は、更に、図1-3に示されたシート2と同様、住宅の壁、柱、軒、塀、門、扉、パラペット、笠木等に用いられうる。このシート40が、商用ビルディング、工場、倉庫、橋梁、下水施設、鉄道施設、トンネル等に用いられてもよい。
[Application]
This sheet 40 is suitable for repairing roofs, similar to the sheet 2 shown in Fig. 1-3. This sheet 40 can also be used for residential walls, pillars, eaves, fences, gates, doors, parapets, copings, etc., similar to the sheet 2 shown in Fig. 1-3. This sheet 40 may also be used for commercial buildings, factories, warehouses, bridges, sewage facilities, railway facilities, tunnels, etc.

[密度]
 シート40の密度は4.0g/cm以下が好ましく、3.0g/cm以下がより好ましく、2.5g/cm以下が特に好ましい。
[density]
The density of the sheet 40 is preferably 4.0 g/cm 3 or less, more preferably 3.0 g/cm 3 or less, and particularly preferably 2.5 g/cm 3 or less.

<その他の補足事項>
 以下、その他の補足事項について説明する。以下では構造物用シート2について例示するが、以下の補足事項は、その他の本開示の構造物シートにも適用可能である。
[構造物用シートの剛性について]
 構造物用シート2は、例えば、構造物への貼付の際の取扱い性を確保するとの観点から、折曲げに耐えうる剛性を有することが好ましい。このため例えば、構造物用シート2は、貼付面側に配置された第1層、及び、貼付面とは反対側に配置された第2層の少なくともいずれかを所定の剛性を有するように構成されていてもよい。或いは構造物用シート2は、貼付面側に配置された第1層と、貼付面とは反対側に配置された第2層と、第1層と第2層との間に配置された第3層とを備え、第3層が所定の剛性を有するように構成されていてもよい。以下、具体的に説明する。
<Other supplementary information>
Other supplementary points will be described below. Although the structural sheet 2 will be exemplified below, the following supplementary points can also be applied to other structural sheets of the present disclosure.
[On the rigidity of structural sheets]
From the viewpoint of ensuring ease of handling when applied to a structure, the structure sheet 2 preferably has a rigidity that can withstand folding. For this reason, for example, the structure sheet 2 may be configured so that at least one of the first layer arranged on the application surface side and the second layer arranged on the opposite side to the application surface has a predetermined rigidity. Alternatively, the structure sheet 2 may be configured to include the first layer arranged on the application surface side, the second layer arranged on the opposite side to the application surface, and a third layer arranged between the first layer and the second layer, and the third layer has a predetermined rigidity. The following is a detailed explanation.

 構造物用シート2の貼付面側に配置された第1層としては、粘着層8を例示できる。粘着層8に剛性を付与する方法としては、粘着層8を、粘着剤とフィラーとを含むように構成する方法を例示できる。この場合、粘着層8は、例えば、アクリル、シロキサン結合を有するシリコーン、ゴム、ウレタン系等のガラス転移温度(Tg)が比較的低く且つファンデルワールス力や静電気力を利用できる粘着剤と、シリカ、アルミナ、酸化チタン、炭酸カルシウム、カーボンブラック等のフィラーを含む。例えば、粘着層8のフィラーの添加量及びフィラーの粒子形状の少なくともいずれかを調整することで、粘着層8の剛性を制御できる。具体的にフィラーの粒子形状としては、球状、針状、不定形、テトラポット形状等を例示できる。また、機能層4の厚みを調整することで、構造物用シート2の剛性を制御できる。また、機能層4中の粘着剤のTgを調整することで、構造物用シート2の剛性を制御できる。 The first layer arranged on the attachment surface side of the structure sheet 2 can be an adhesive layer 8. An example of a method for imparting rigidity to the adhesive layer 8 is a method in which the adhesive layer 8 is configured to include an adhesive and a filler. In this case, the adhesive layer 8 includes an adhesive that has a relatively low glass transition temperature (Tg) such as acrylic, silicone with siloxane bonds, rubber, or urethane, and can utilize van der Waals forces or electrostatic forces, and a filler such as silica, alumina, titanium oxide, calcium carbonate, or carbon black. For example, the rigidity of the adhesive layer 8 can be controlled by adjusting at least one of the amount of filler added to the adhesive layer 8 and the particle shape of the filler. Specific examples of the particle shape of the filler include spherical, needle-like, amorphous, and tetrapod-like shapes. In addition, the rigidity of the structure sheet 2 can be controlled by adjusting the thickness of the functional layer 4. In addition, the rigidity of the structure sheet 2 can be controlled by adjusting the Tg of the adhesive in the functional layer 4.

 構造物用シート2の表面側に配置された層、即ち、構造物用シート2の貼付面とは反対側に配置された第2層としては、機能層4を例示できる。機能層4に剛性を付与する方法として、機能層4を、主材と、フィラーとを含むように構成する方法を例示できる。この場合、機能層4は、例えば、アクリルシリコーン、フッ素樹脂、シリコーン樹脂、非ジエン系ゴム等の主材と、シリカ、アルミナ、酸化チタン、炭酸カルシウム、カーボンブラック等のフィラーとを含む。例えば、機能層4のフィラーの添加量及びフィラーの粒子形状の少なくともいずれかを調整することで、機能層4の剛性を制御できる。具体的にフィラーの粒子形状としては、球状、針状、不定形、テトラポット形状等を例示できる。また、機能層4の厚み、及び、機能層4の主材のTgの少なくともいずれかを調整することで、構造物用シート2の剛性を制御できる。このように構造物用シート2では、粘着層8及び機能層4の少なくともいずれかは、フィラーを含んでいてもよい。 The layer arranged on the surface side of the structure sheet 2, i.e., the second layer arranged on the opposite side to the attachment surface of the structure sheet 2, can be exemplified by the functional layer 4. As a method for imparting rigidity to the functional layer 4, a method of configuring the functional layer 4 to include a main material and a filler can be exemplified. In this case, the functional layer 4 includes a main material such as acrylic silicone, fluororesin, silicone resin, non-diene rubber, etc., and a filler such as silica, alumina, titanium oxide, calcium carbonate, carbon black, etc. For example, the rigidity of the functional layer 4 can be controlled by adjusting at least one of the amount of filler added to the functional layer 4 and the particle shape of the filler. Specifically, examples of the particle shape of the filler include spherical, needle-like, amorphous, and tetrapod-like shapes. In addition, the rigidity of the structure sheet 2 can be controlled by adjusting at least one of the thickness of the functional layer 4 and the Tg of the main material of the functional layer 4. In this way, in the structure sheet 2, at least one of the adhesive layer 8 and the functional layer 4 may include a filler.

 貼付面側に配置された第1層(例えば粘着層8)と、貼付面とは反対側に配置された第2層(例えば機能層4)と、第1層と第2層との間に配置された第3層とを備え、第3層が所定の剛性を有するように構成された構造物用シート2において、第3層に剛性を付与する方法としては、例えば、第3層を後述する中間層6として構成し、中間層6に剛性を付与する方法がある。 In a structural sheet 2 that is configured to have a first layer (e.g., adhesive layer 8) arranged on the side to be attached, a second layer (e.g., functional layer 4) arranged on the side opposite the side to be attached, and a third layer arranged between the first and second layers, and in which the third layer is configured to have a predetermined rigidity, one method of imparting rigidity to the third layer is, for example, to configure the third layer as an intermediate layer 6 described below, and to impart rigidity to the intermediate layer 6.

 更に、中間層6が含有する樹脂成分のTgを調整することでも構造物用シート2の剛性を制御できる。また、中間層6中の空隙の量や空隙の径を調整することでも構造物用シート2の剛性を制御できる。また、構造物用シート2が複数の中間層6を備える場合、例えば、Tgが所定の値である樹脂成分を含む第1の中間層6と、第1の中間層6に含まれる樹脂成分よりも低いTgを有する樹脂成分を含む第2の中間層6とを備えていてもよい。 Furthermore, the rigidity of the structural sheet 2 can be controlled by adjusting the Tg of the resin component contained in the intermediate layer 6. The rigidity of the structural sheet 2 can also be controlled by adjusting the amount of voids or the diameter of the voids in the intermediate layer 6. Furthermore, when the structural sheet 2 has multiple intermediate layers 6, it may have, for example, a first intermediate layer 6 containing a resin component whose Tg is a predetermined value, and a second intermediate layer 6 containing a resin component whose Tg is lower than that of the resin component contained in the first intermediate layer 6.

 構造物用シート2の剛性を確保する観点から、中間層6の厚みは、例えば100μm以上の値である。中間層6の厚みは、例えば、200μm以上の値が好ましく、300μm以上の値がより好ましく、350μm以上の値が最も好ましい。一方、生産性等も考慮すると、中間層6の厚みは、例えば1500μm以下の値である。中間層6の厚みは、1200μm以下の値が好ましく、1000μm以下の値がより好ましく、750μm以下の値が最も好ましい。このように、中間層6の厚みを適宜調整することで、構造物用シート2の適切な剛性が得られる。 From the viewpoint of ensuring the rigidity of the structural sheet 2, the thickness of the intermediate layer 6 is, for example, 100 μm or more. The thickness of the intermediate layer 6 is, for example, preferably 200 μm or more, more preferably 300 μm or more, and most preferably 350 μm or more. On the other hand, taking into consideration productivity and the like, the thickness of the intermediate layer 6 is, for example, 1500 μm or less. The thickness of the intermediate layer 6 is preferably 1200 μm or less, more preferably 1000 μm or less, and most preferably 750 μm or less. In this way, by appropriately adjusting the thickness of the intermediate layer 6, appropriate rigidity of the structural sheet 2 can be obtained.

 中間層6の材料として、樹脂成分、モルタル成分、及び補強体48を使用する場合、具体例として、樹脂成分としては、菊水化学工業(株)製スプリングコート(ハケ)混和液を利用できる。またモルタル成分としては、菊水化学工業(株)製スプリングコート(ハケ)粉体を利用できる。また、補強体48(メッシュ成分)としては、ユニチカ(株)製のビニロン系網材(寒冷紗(BINEO(登録商標)「V520」))を利用できる。 When a resin component, a mortar component, and a reinforcing body 48 are used as materials for the intermediate layer 6, as a specific example, the resin component can be a Spring Coat (Brush) mixture liquid manufactured by Kikusui Chemical Industry Co., Ltd., and the mortar component can be a Spring Coat (Brush) powder manufactured by Kikusui Chemical Industry Co., Ltd., and the reinforcing body 48 (mesh component) can be a vinylon mesh material manufactured by Unitika Co., Ltd. (cheesecloth (BINEO (registered trademark) "V520")).

[補強材料の詳細]
 構造物用シート2の内部構造を制御するため、前述したように、中間層6の内部に補強体48を配置することが好ましい。この場合、中間層6の補強体48の含有量を変化させることで、構造物用シート2の内部構造を制御できる。また、構造物用シート2が複数の層を備える場合、構造物用シート2は、内部に配置された層構造の補強体48を備えていてもよい。この場合、層構造の補強体48により、構造物用シート2に所定の剛性が付与されることで、構造物用シート2の内部構造を制御できる。
[Details of reinforcing material]
In order to control the internal structure of the sheet for structure 2, as described above, it is preferable to dispose a reinforcing body 48 inside the intermediate layer 6. In this case, the internal structure of the sheet for structure 2 can be controlled by changing the content of the reinforcing body 48 in the intermediate layer 6. Furthermore, when the sheet for structure 2 has a plurality of layers, the sheet for structure 2 may have a reinforcing body 48 of a layered structure disposed inside. In this case, the reinforcing body 48 of the layered structure imparts a predetermined rigidity to the sheet for structure 2, thereby making it possible to control the internal structure of the sheet for structure 2.

 構造物用シート2が強度調整用のフィラーを含む場合、構造物用シート2に剛性を付与する具体的方法として、例えばフィラーの材質、構造物用シート2中のフィラーの添加量、フィラー粒子のサイズや形状の少なくともいずれかを制御する方法を例示できる。この場合、フィラーの材料は、無機材料又は有機材料のいずれでもよく、無機材料及び有機材料を混合してもよい。 When the structural sheet 2 contains a filler for adjusting strength, specific methods for imparting rigidity to the structural sheet 2 include, for example, controlling at least one of the filler material, the amount of filler added to the structural sheet 2, and the size and shape of the filler particles. In this case, the filler material may be either an inorganic material or an organic material, or a mixture of inorganic and organic materials.

 補強体48が不織布を含む場合、当該不織布としては、繊維を織らずにシート状に形成した不織布であれば、特に限定されない。また、不織布を構成する繊維としては、天然繊維及び化学繊維の少なくともいずれかを例示できる。化学繊維としては、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ポリエステル系樹脂、ポリアクリル系樹脂、ナイロン等のポリアミド系樹脂からなる繊維、及び、これら樹脂の共重合物、変性物、及び、これらの組合せからなる合成繊維を例示できる。これらの中でも、耐水性、耐熱性、寸法安定性、耐候性等に優れる繊維として、例えばポリエステル繊維が好ましい。 When the reinforcing body 48 includes a nonwoven fabric, the nonwoven fabric is not particularly limited as long as it is a nonwoven fabric formed into a sheet shape without weaving fibers. Examples of fibers constituting the nonwoven fabric include at least one of natural fibers and chemical fibers. Examples of chemical fibers include fibers made of polyolefin resins such as polypropylene and polyethylene, polyester resins, polyacrylic resins, and polyamide resins such as nylon, as well as copolymers and modified products of these resins, and synthetic fibers made of combinations of these. Among these, polyester fibers, for example, are preferred as fibers with excellent water resistance, heat resistance, dimensional stability, weather resistance, etc.

 また構造物用シート2に剛性を付与する具体的方法として、構造物用シート2の厚みを制御してもよい。また、中間層6を備える構造物用シート2の場合、中間層6の粘弾性を調節することでも構造物用シート2の剛性を制御できる。この場合、中間層6が含む樹脂のガラス転移点温度(Tg、以下単にTgとも称する。)を調節したり、当該樹脂の架橋度を変化したりすることで、中間層6の粘弾性を調節してもよい。このように、構造物用シート2の剛性を制御する方法として様々な方法を利用できる。 As a specific method for imparting rigidity to the sheet for structure 2, the thickness of the sheet for structure 2 may be controlled. In the case of a sheet for structure 2 having an intermediate layer 6, the rigidity of the sheet for structure 2 can also be controlled by adjusting the viscoelasticity of the intermediate layer 6. In this case, the viscoelasticity of the intermediate layer 6 may be adjusted by adjusting the glass transition temperature (Tg, hereinafter also simply referred to as Tg) of the resin contained in the intermediate layer 6 or by changing the degree of crosslinking of the resin. In this way, various methods can be used to control the rigidity of the sheet for structure 2.

<その他の実施形態>
 以下、本開示の構造物用シートの更なる構成を例示する。図14は、第4実施形態に係る構造物用シート61を模式的に示す断面構成図である。本実施形態の構造物用シート61は、前述した離型フィルム9を第1離型フィルム9とするとき、機能層54の粘着層58側とは反対側に配置された第2離型フィルム17を備える。一例として、構造物用シート61は、厚み方向において、第1離型フィルム9、粘着層58、中間層56、機能層54、及び第2離型フィルム17が、この順に配置されている。
<Other embodiments>
Further configurations of the structure sheet of the present disclosure will be illustrated below. Fig. 14 is a cross-sectional configuration diagram that shows a structure sheet 61 according to a fourth embodiment. When the above-mentioned release film 9 is the first release film 9, the structure sheet 61 of this embodiment includes a second release film 17 arranged on the opposite side of the adhesive layer 58 of the functional layer 54. As an example, the structure sheet 61 has the first release film 9, the adhesive layer 58, the intermediate layer 56, the functional layer 54, and the second release film 17 arranged in this order in the thickness direction.

 第2離型フィルム17は、外部に露出する表面17aが、第1離型フィルム9の外部に露出する表面9aと接触した際、表面17a、9a同士が固着しにくいように構成されている。このため、後述するシート61を巻回したロール体71(図17参照)から構造物用シート61を繰り出す際、第1離型フィルム9を第2離型フィルム17から容易に離して、構造物用シート61を簡単に繰り出すことができる。 The second release film 17 is configured so that when the surface 17a exposed to the outside comes into contact with the surface 9a exposed to the outside of the first release film 9, the surfaces 17a and 9a are unlikely to adhere to each other. Therefore, when the structure sheet 61 is unwound from the roll body 71 (see FIG. 17) on which the sheet 61 described below is wound, the first release film 9 can be easily separated from the second release film 17, and the structure sheet 61 can be easily unwound.

 また第2離型フィルム17は、所定の剛性を有する。このため、第1離型フィルム9が剥離除去された残余の構造物用シート61の剛性を向上できる。従って、第1離型フィルム9及び第2離型フィルム17が剥離除去された残余の構造物用シート61の剛性が低い場合でも、構造物用シート61を貼り付ける際の取扱性を向上できると共に、構造物の表面に構造物用シート61を容易に貼付できる。また、第1離型フィルム9及び第2離型フィルム17が剥離除去された残余の構造物用シート61を、剛性を比較的小さい構成に設計できる。このため例えば、構造物用シート61が貼付される構造物の表面の形状が、凹凸や欠陥による高低差により平坦でない場合でも、構造物用シート61を当該表面に良好に追従させて貼付できる。また例えば、当該表面に対するアンカー効果を向上できるため、許容される範囲内で構造物用シート61の粘着力を十分に向上できる。 The second release film 17 also has a predetermined rigidity. Therefore, the rigidity of the remaining structure sheet 61 after the first release film 9 has been peeled off can be improved. Therefore, even if the rigidity of the remaining structure sheet 61 after the first release film 9 and the second release film 17 have been peeled off is low, the handling when attaching the structure sheet 61 can be improved, and the structure sheet 61 can be easily attached to the surface of the structure. In addition, the remaining structure sheet 61 after the first release film 9 and the second release film 17 have been peeled off can be designed to have a relatively small rigidity. Therefore, for example, even if the shape of the surface of the structure to which the structure sheet 61 is attached is not flat due to unevenness or height differences caused by defects, the structure sheet 61 can be attached by following the surface well. In addition, for example, the anchor effect on the surface can be improved, so that the adhesive force of the structure sheet 61 can be sufficiently improved within an allowable range.

 第2離型フィルム17の構造は、適宜設定できる。例えば図14に示すように、第2離型フィルム17は、構造物用シート61がロール状に巻回された際に第1離型フィルム9と接触する接触層11と、構造物用シート61が平坦に配置された状態において、接触層11の第1離型フィルム9側に配置された微粘着層13とを有する。 The structure of the second release film 17 can be set as appropriate. For example, as shown in FIG. 14, the second release film 17 has a contact layer 11 that contacts the first release film 9 when the structure sheet 61 is wound into a roll, and a weak adhesive layer 13 that is disposed on the first release film 9 side of the contact layer 11 when the structure sheet 61 is disposed flat.

 接触層11は、単一層により構成されていてもよいし、複数層により構成されていてもよい。また接触層11は、樹脂を含有していてもよい。言い換えると接触層11は、樹脂層でもよい。接触層11が含有する樹脂としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、ナイロン6、アラミド等のポリアミド、ポリ塩化ビニル等のビニル樹脂、ポリメチルメタクリレート等のアクリル樹脂、セルロースアセテート等のセルロース樹脂、ポリカーボネート等の合成樹脂、ウレタン等を例示できる。 The contact layer 11 may be composed of a single layer or multiple layers. The contact layer 11 may also contain a resin. In other words, the contact layer 11 may be a resin layer. Examples of resins contained in the contact layer 11 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefins such as polyethylene, polypropylene, and polymethylpentene, polyamides such as nylon 6 and aramid, vinyl resins such as polyvinyl chloride, acrylic resins such as polymethyl methacrylate, cellulose resins such as cellulose acetate, synthetic resins such as polycarbonate, and urethane.

 或いは接触層11は、繊維成分と、繊維成分を結合するバインダ成分を含む繊維層でもよい。或いは接触層11は、紙を含有していてもよい。この場合、接触層11は、紙を主成分として含有していてもよいし、所定の主成分と共に紙を含有していてもよい。接触層11が紙を含有する場合、接触層11は、例えば、構造物用シート61を施工対象に貼付する際に接触層11が不用意に破れない程度の強度を有する紙を含有することが好ましい。また接触層11が紙を含有する場合、接触層11は、例えば、紙と共に、シロキサン結合を有するシリコーンを含有することが好ましい。接触層11は、例えば、離型フィルム9と第2離型フィルム17とが省略され且つ接触層11と微粘着層13が省略された残余の構造物用シート61の部分に比べて、高い剛性を有する。 Alternatively, the contact layer 11 may be a fiber layer containing a fiber component and a binder component that binds the fiber component. Alternatively, the contact layer 11 may contain paper. In this case, the contact layer 11 may contain paper as a main component, or may contain paper together with a predetermined main component. When the contact layer 11 contains paper, the contact layer 11 preferably contains paper having a strength such that the contact layer 11 is not accidentally torn when the structural sheet 61 is attached to the construction target. When the contact layer 11 contains paper, the contact layer 11 preferably contains, for example, silicone having a siloxane bond together with paper. The contact layer 11 has a higher rigidity than, for example, the remaining portion of the structural sheet 61 from which the release film 9 and the second release film 17 are omitted and from which the contact layer 11 and the weak adhesive layer 13 are omitted.

 接触層11の厚みは、適宜設定可能であるが、例えば20μm以上500μm以下の値である。接触層11がポリエチレンテレフタレート(PET)を含む場合、接触層11の厚みは、例えば20μm以上50μm以下の値が好ましい。 The thickness of the contact layer 11 can be set appropriately, but is, for example, from 20 μm to 500 μm. If the contact layer 11 contains polyethylene terephthalate (PET), the thickness of the contact layer 11 is preferably, for example, from 20 μm to 50 μm.

 微粘着層13は、比較的低い粘着力を有する。例えば、微粘着層13の機能層54に対する粘着力は、粘着層58の中間層56に対する粘着力よりも低い。また例えば、微粘着層13の接触層11に対する粘着力は、微粘着層13の機能層54に対する粘着力よりも高い。微粘着層13は、例えば静電気により、機能層54に被着されていてもよい。微粘着層13は、Tgが実質的に0である主成分を含有していてもよい。微粘着層13は、例えば、エチレン酢酸ビニル(EVA)、ウレタン、シロキサン結合を有するシリコーン、アクリル等を含有していてもよい。尚、第2離型フィルム17は、前記した構成に限定されず、例えば、後述するベースフィルム39であってもよい。 The weak adhesive layer 13 has a relatively low adhesive strength. For example, the adhesive strength of the weak adhesive layer 13 to the functional layer 54 is lower than the adhesive strength of the adhesive layer 58 to the intermediate layer 56. Also, for example, the adhesive strength of the weak adhesive layer 13 to the contact layer 11 is higher than the adhesive strength of the weak adhesive layer 13 to the functional layer 54. The weak adhesive layer 13 may be attached to the functional layer 54 by, for example, static electricity. The weak adhesive layer 13 may contain a main component whose Tg is substantially 0. The weak adhesive layer 13 may contain, for example, ethylene vinyl acetate (EVA), urethane, silicone having a siloxane bond, acrylic, etc. The second release film 17 is not limited to the above-mentioned configuration, and may be, for example, a base film 39 described later.

 図15は、第5実施形態に係る構造物用シート62を模式的に示す断面構成図である。本実施形態の構造物用シート62は、機能層54の粘着層58側とは反対側に配置された離型シート29を備える。一例として、構造物用シート62は、厚み方向において、粘着層58、中間層56、機能層54、及び離型シート29が、この順に配置されている。本実施形態の構造物用シート62では、離型フィルム9は省略されている。 FIG. 15 is a cross-sectional view showing a schematic diagram of a structure sheet 62 according to a fifth embodiment. The structure sheet 62 of this embodiment includes a release sheet 29 arranged on the side of the functional layer 54 opposite the adhesive layer 58. As an example, the structure sheet 62 has the adhesive layer 58, intermediate layer 56, functional layer 54, and release sheet 29 arranged in this order in the thickness direction. In the structure sheet 62 of this embodiment, the release film 9 is omitted.

 離型シート29は、外部に露出する表面29a及びその近傍に配置された離型剤を含有する。離型剤としては、例えば、シロキサン結合を有するシリコーンを例示できる。これにより、ロール体71において、離型シート29の外部に露出する表面29aが、粘着層58の貼付面58aと接触した際、表面29a及び貼付面58aが互いに固着しにくいように構成されている。このため、ロール体71から構造物用シート62を繰り出す際、粘着層58を離型シート29から容易に剥離して、構造物用シート62を簡単に繰り出すことができる。 The release sheet 29 contains a surface 29a exposed to the outside and a release agent disposed in the vicinity thereof. An example of a release agent is silicone having a siloxane bond. This makes it difficult for the surface 29a and the attachment surface 58a to adhere to each other when the surface 29a exposed to the outside of the release sheet 29 comes into contact with the attachment surface 58a of the adhesive layer 58 in the roll body 71. Therefore, when the structure sheet 62 is unwound from the roll body 71, the adhesive layer 58 can be easily peeled off from the release sheet 29, and the structure sheet 62 can be easily unwound.

 このように本開示では、ロール体71から構造物用シート62を繰り出す際、例えば、構造物用シート62の粘着成分が設けられた部分が構造物用シート62の他の部分に付着して取り出しにくくならないように、予め構造物用シート62がロール体71から繰り出し易くされていてもよい。また離型シート29は、所定の剛性を有する。このため本実施形態では、離型フィルム9が省略されていても、構造物用シート2の剛性を向上できる。従って、構造物用シート62の取扱性を向上させ、構造物の貼付対象に構造物用シート62を容易に貼付できる。この場合、離型シート29は、離型シート29が剥離除去された残余の構造物用シート62に比べて、高い剛性を有する。 In this manner, in the present disclosure, when the structure sheet 62 is unwound from the roll 71, the structure sheet 62 may be preliminarily made easy to unwound from the roll 71 so that, for example, the portion of the structure sheet 62 on which the adhesive component is provided does not adhere to other portions of the structure sheet 62 and make it difficult to remove. The release sheet 29 also has a predetermined rigidity. Therefore, in this embodiment, even if the release film 9 is omitted, the rigidity of the structure sheet 2 can be improved. Therefore, the handleability of the structure sheet 62 is improved, and the structure sheet 62 can be easily affixed to the target of the structure. In this case, the release sheet 29 has a higher rigidity than the remaining structure sheet 62 from which the release sheet 29 has been peeled off.

 離型シート29の構造は、適宜設定できる。例えば図15に示すように、離型シート29は、構造物用シート62がロール状に巻回された際に粘着層58の貼付面58aと接触する表面29aを有する離型中間層15と、構造物用シート62が平坦に配置された状態において、離型中間層15の粘着層58側に配置された微粘着層13とを有する。離型中間層15は、例えば離型剤を含有する点以外は、接触層11と同様の構成を有していてもよい。また離型シート29は、表面29aに重ねて配置された離型剤層を有していてもよい。 The structure of the release sheet 29 can be set as appropriate. For example, as shown in FIG. 15, the release sheet 29 has a release intermediate layer 15 having a surface 29a that contacts the attachment surface 58a of the adhesive layer 58 when the structural sheet 62 is wound into a roll, and a weak adhesive layer 13 that is disposed on the adhesive layer 58 side of the release intermediate layer 15 when the structural sheet 62 is disposed flat. The release intermediate layer 15 may have a similar structure to the contact layer 11, except that it contains a release agent. The release sheet 29 may also have a release agent layer disposed over the surface 29a.

 図16は、第6実施形態に係る構造物用シート63を模式的に示す断面構成図である。本実施形態の構造物用シート63は、平坦に配置された状態において、機能層54の粘着層58側とは反対側に配置されたベースフィルム39を備える。ベースフィルム39は、前述した機能層4の形成時に使用されるベースフィルムである。本実施形態の構造物用シート63は、機能層54の形成後も剥離されることなくベースフィルム39を備えている。 FIG. 16 is a cross-sectional view showing a schematic diagram of a structural sheet 63 according to a sixth embodiment. The structural sheet 63 of this embodiment has a base film 39 arranged on the side opposite the adhesive layer 58 of the functional layer 54 when laid flat. The base film 39 is the base film used when forming the functional layer 4 described above. The structural sheet 63 of this embodiment has the base film 39, which is not peeled off even after the functional layer 54 is formed.

 一例として、構造物用シート63は、厚み方向において、離型フィルム9、粘着層58、中間層56、機能層54、及びベースフィルム39が、この順に配置されている。ベースフィルム39の外部に露出する表面39aと、離型フィルム9の外部に露出する表面9aとは、互いに接触した際、固着しにくいように構成されている。このため、ロール体71から構造物用シート63を繰り出す際、構造物用シート2を簡単に繰り出すことができる。またベースフィルム39は、所定の剛性を有する。この場合、ベースフィルム39は、離型フィルム9及びベースフィルム39が剥離除去された残余の構造物用シート63に比べて、高い剛性を有する。このため、離型フィルム9が剥離除去された残余の構造物用シート63において、ベースフィルム39により構造物用シート63の剛性を向上できる。従って、第1離型フィルム9及びベースフィルム39が剥離除去された残余の構造物用シート63の剛性が低い場合でも、構造物用シート63の取扱性を向上できると共に、構造物の貼付対象に構造物用シート63を容易に貼付できる。 As an example, the structure sheet 63 has the release film 9, adhesive layer 58, intermediate layer 56, functional layer 54, and base film 39 arranged in this order in the thickness direction. The surface 39a exposed to the outside of the base film 39 and the surface 9a exposed to the outside of the release film 9 are configured so as not to adhere to each other when they come into contact with each other. Therefore, when the structure sheet 63 is unwound from the roll body 71, the structure sheet 2 can be easily unwound. The base film 39 also has a predetermined rigidity. In this case, the base film 39 has a higher rigidity than the remaining structure sheet 63 from which the release film 9 and base film 39 have been peeled off. Therefore, in the remaining structure sheet 63 from which the release film 9 has been peeled off, the rigidity of the structure sheet 63 can be improved by the base film 39. Therefore, even if the stiffness of the remaining structural sheet 63 after the first release film 9 and base film 39 are peeled off is low, the handleability of the structural sheet 63 can be improved and the structural sheet 63 can be easily attached to the target structure.

 ベースフィルム39は、互いに貼付された2部材を剥がすと二度と接着できない性質である疑似接着性を有する樹脂ラミネート紙を含有していてもよい。この場合、例えば、ベースフィルム39が、樹脂層と紙とを積層した樹脂ラミネート紙を含有し、樹脂ラミネート紙中で、樹脂層と紙とが疑似接着により接着されていてもよい。この構成によれば、樹脂層が機能層54に被着した状態で、樹脂ラミネート紙中の紙を樹脂層から剥離すると、紙のみが剥離除去され、樹脂層が構造物用シート63の機能層54に被着した状態で残留する。 The base film 39 may contain a resin laminated paper that has pseudo-adhesion, which means that once two components that have been attached to each other are peeled off, they cannot be bonded again. In this case, for example, the base film 39 may contain a resin laminated paper in which a resin layer and paper are laminated together, and the resin layer and the paper are bonded to each other by pseudo-adhesion in the resin laminated paper. With this configuration, when the paper in the resin laminated paper is peeled off from the resin layer while the resin layer is attached to the functional layer 54, only the paper is peeled off and removed, and the resin layer remains attached to the functional layer 54 of the structural sheet 63.

 次に、第4~第6実施形態において、構造物用シート61~63を構造物に貼付することにより構造物の補強又は修復を行う施工方法について例示する。本施工方法において、作業者は、必要な長さの構造物用シート61~63をロール体71から繰り出す。次に作業者は、第4及び第6実施形態の場合、構造物用シート2の離型フィルム9を剥離しつつ、露出した粘着層58の貼付面58aを構造物の貼付対象の表面に貼付する。このとき作業者は、構造物用シート2から離型フィルム9を少しずつ剥離させながら、露出した粘着層58の貼付面58aを貼付対象の表面に貼付してもよい。他方で作業者は、第5実施形態の場合、構造物用シート2の粘着層58の貼付面58aを構造物の貼付対象の表面に貼付する。 Next, in the fourth to sixth embodiments, a construction method for reinforcing or repairing a structure by attaching the structural sheets 61 to 63 to the structure is illustrated. In this construction method, the worker unrolls the structural sheets 61 to 63 of the required length from the roll body 71. Next, in the fourth and sixth embodiments, the worker peels off the release film 9 of the structural sheet 2 and attaches the exposed attachment surface 58a of the adhesive layer 58 to the surface of the structure to be attached. At this time, the worker may peel off the release film 9 little by little from the structural sheet 2 and attach the exposed attachment surface 58a of the adhesive layer 58 to the surface of the structure to be attached. On the other hand, in the fifth embodiment, the worker attaches the attachment surface 58a of the adhesive layer 58 of the structural sheet 2 to the surface of the structure to be attached.

 その後、作業者は、第4~第6実施形態の場合、構造物用シート2を貼付対象に貼付した後、構造物用シート2から、対応する第2離型フィルム17、離型シート29、及び、ベースフィルム39のいずれかを剥離除去する。 In the fourth to sixth embodiments, the worker then applies the structural sheet 2 to the target, and then peels and removes the corresponding second release film 17, release sheet 29, or base film 39 from the structural sheet 2.

 即ち第4~第6実施形態に係る本施工方法は、構造物用シート2がロール状に巻回されたロール体71を準備する準備工程と、ロール体71から構造物用シート2を繰り出す繰出工程と、繰り出された構造物用シート2から第1離型フィルム9を剥離すると共に、外部に露出した貼付面を構造物の表面に貼付する貼付工程とを有する。ここで第4及び第6実施形態の準備工程では、第1離型フィルム9により貼付面58aが覆われた構造物用シート2を用いてロール体71を準備する。 That is, the construction method according to the fourth to sixth embodiments includes a preparation step of preparing a roll body 71 in which the structural sheet 2 is wound into a roll, a payout step of paying out the structural sheet 2 from the roll body 71, and a sticking step of peeling the first release film 9 from the paid out structural sheet 2 and sticking the exposed sticking surface to the surface of the structure. Here, in the preparation step of the fourth and sixth embodiments, the roll body 71 is prepared using the structural sheet 2 whose sticking surface 58a is covered with the first release film 9.

 また本施工方法では、準備工程で準備されるロール体71の構造物用シート2が、機能層54と粘着層58とを含む積層構造を有し、機能層54の粘着層58側とは反対側には、被覆シートが配置され、ロール体71では、この被覆シートを含む構造物用シート2がロール状に巻回されており、貼付工程中又は貼付工程後に、被覆シートが剥離除去されてもよい。この被覆シートは、第2離型フィルム17、離型シート29、及び、ベースフィルム39のいずれかであってもよい。 In addition, in this construction method, the structural sheet 2 in the roll body 71 prepared in the preparation step has a laminated structure including a functional layer 54 and an adhesive layer 58, and a cover sheet is disposed on the side of the functional layer 54 opposite the adhesive layer 58 side. In the roll body 71, the structural sheet 2 including this cover sheet is wound in a roll shape, and the cover sheet may be peeled off and removed during or after the attachment step. This cover sheet may be any one of the second release film 17, the release sheet 29, and the base film 39.

 また第4実施形態の施工方法では、準備工程で準備されるロール体71の構造物用シート2が、機能層54と粘着層58とを含む積層構造を有すると共に、機能層54の粘着層58側とは反対側に配置され且つ離型フィルム9とは別の離型シート29を有し、準備工程では、離型シート29が粘着層58と接触するように構造物用シート2がロール状に巻回されたロール体71を準備してもよい。 In addition, in the construction method of the fourth embodiment, the structural sheet 2 of the roll body 71 prepared in the preparation step has a laminated structure including the functional layer 54 and the adhesive layer 58, and has a release sheet 29 that is disposed on the opposite side of the functional layer 54 from the adhesive layer 58 side and is separate from the release film 9, and in the preparation step, the roll body 71 may be prepared in which the structural sheet 2 is wound into a roll so that the release sheet 29 is in contact with the adhesive layer 58.

 本開示の構造物用シート2を使用する際、例えば、以下に示す供給物品65を利用できる。図17は、本開示の構造物用シート2を収容した供給物品65の構造を示す模式図である。図17では、一例として、離型フィルム9を備える構造物用シート2を示している。図17に示される供給物品65は、帯状の構造物用シート2が巻回されたロール体71と、ロール体71を収容する収容空間70aを有する容器70とを備える。容器70は、収容空間70aに収容されたロール体71から外部に構造物用シート2を繰り出して供給可能な供給口70bを有する。供給口70bは、ロール体71の軸方向における構造物用シート2の幅寸法と同等以上の幅寸法を有する。 When using the structural sheet 2 of the present disclosure, for example, the supply item 65 shown below can be used. FIG. 17 is a schematic diagram showing the structure of a supply item 65 containing the structural sheet 2 of the present disclosure. FIG. 17 shows, as an example, a structural sheet 2 with a release film 9. The supply item 65 shown in FIG. 17 includes a roll 71 on which a strip-shaped structural sheet 2 is wound, and a container 70 having a storage space 70a for storing the roll 71. The container 70 has a supply port 70b that can unwind and supply the structural sheet 2 from the roll 71 stored in the storage space 70a to the outside. The supply port 70b has a width dimension equal to or greater than the width dimension of the structural sheet 2 in the axial direction of the roll 71.

 作業者は、例えば供給物品65を施工現場に搬入し、供給物品65から必要な長さの構造物用シート2を繰り出して、構造物用シート2を施工に用いることができる。従って供給物品65によれば、構造物用シート2を保管に適したロール体71の形態で保存できる。更に、構造物用シート2の使用時には必要な分だけ供給物品65から繰り出して使用できる。よって、作業効率の向上を図れる。 For example, a worker can bring the supply item 65 to a construction site, unroll the required length of the structural sheet 2 from the supply item 65, and use the structural sheet 2 for construction. Therefore, the supply item 65 allows the structural sheet 2 to be stored in the form of a roll 71 suitable for storage. Furthermore, when the structural sheet 2 is to be used, only the required amount can be unrolled from the supply item 65. This improves work efficiency.

 また作業者は、供給口70bから構造物用シート2を繰り出す際、例えば、構造物用シート2の幅方向の全体領域を供給口70bの開口周縁に押し付けながら構造物用シート2を繰り出すことにより、構造物用シート2の幅方向の全体領域に均一な張力を付与しながら構造物用シート2を繰り出すことができる。これにより、構造物の表面に対して構造物用シート2を均一な張力で貼付できる。従って、貼付後の構造物用シート2に不均一な張力が作用することで、貼付後の構造物用シート2の予期せぬ収縮や膨張が発生するのを防止できる。尚、構造物用シート2の幅方向の全体領域に均一に張力を付与するために、例えば供給口70bの開口周縁に、構造物用シート2の幅方向に延びて構造物用シート2と接触する長尺部材等の別部材を配置してもよい。 When the worker unrolls the structural sheet 2 from the supply port 70b, the worker can unroll the structural sheet 2 while applying uniform tension to the entire widthwise area of the structural sheet 2, for example, by pressing the entire widthwise area of the structural sheet 2 against the opening periphery of the supply port 70b. This allows the structural sheet 2 to be attached to the surface of the structure with uniform tension. Therefore, it is possible to prevent the structural sheet 2 from being subjected to uneven tension after application, which would cause unexpected contraction or expansion of the structural sheet 2 after application. Note that in order to apply uniform tension to the entire widthwise area of the structural sheet 2, a separate member such as a long member that extends in the widthwise direction of the structural sheet 2 and comes into contact with the structural sheet 2 may be placed, for example, on the opening periphery of the supply port 70b.

 また、供給物品65が備える構造物用シートは、本開示の構造物用シートであればよく、例えば、第4~第6実施形態のいずれかの構造物用シート2、或いはその他の実施形態の構造物用シート2であってもよい。 The structure sheet provided in the supply item 65 may be any structure sheet disclosed herein, for example, the structure sheet 2 of any of the fourth to sixth embodiments, or the structure sheet 2 of any other embodiment.

<実施例> <Example>

 以下、実施例に係る構造物用シートの効果が明らかにされる。この実施例の記載に基づいて本明細書で開示された範囲が限定的に解釈されるべきではない。 The effects of the structural sheet according to the embodiment will be explained below. The scope of the disclosure in this specification should not be interpreted in a limited manner based on the description of this embodiment.

[実施例1]
 リンテック(株)製PPラミネートシートである厚み130μmのベースフィルムを準備した。このベースフィルム上に、アクリル系樹脂を含む耐侯層形成用組成物(大日精化工業(株)製クールライフSPブラック(CB1)P5-0と、藤倉化成(株)製エフシーコート弾性黒を質量比50:50で混ぜたもの)を塗工した。形成した塗膜を乾燥することにより、単一層により構成される厚み110μmの機能層を形成した。
[Example 1]
A 130 μm thick base film was prepared, which was a PP laminate sheet manufactured by Lintec Corp. A weather-resistant layer-forming composition containing an acrylic resin (a mixture of Cool Life SP Black (CB1) P5-0 manufactured by Dainichiseika Color & Chemicals Mfg. Co., Ltd. and FC Coat Elastic Black manufactured by Fujikura Kasei Co., Ltd. in a mass ratio of 50:50) was applied onto the base film. The formed coating film was dried to form a single-layer functional layer having a thickness of 110 μm.

 次いで、中間層を構成するポリマー形成用組成物(菊水化学工業(株)製、スプリングコートハケ混和液)及びセメントを含有する組成物(菊水化学工業(株)製(スプリングコートハケ粉体)を22:78で混ぜた混合物を調整した。この混合物を、機能層上に塗工した。この混合物の塗膜の表面に、補強体(ユニチカ(株)製寒冷紗(BINEO「V520」)を押し付けるように配置した。これにより、塗膜を硬化させて、硬化後の厚みが450μmであり、ポリマーとフィラー(セメント含有物)の固形分の質量比が12:88である中間層を機能層の上に形成した。 Next, a mixture of the polymer-forming composition (Kikusui Chemical Industry Co., Ltd., Spring Coat Brush Mixture) that constitutes the intermediate layer and a cement-containing composition (Kikusui Chemical Industry Co., Ltd., Spring Coat Brush Powder) was mixed in a ratio of 22:78 to prepare a mixture. This mixture was applied onto the functional layer. A reinforcing material (Unitika Ltd., cheesecloth (BINEO "V520")) was placed so as to be pressed against the surface of the coating of this mixture. This allowed the coating to harden, forming an intermediate layer on top of the functional layer that was 450 μm thick after hardening and had a mass ratio of polymer to filler (cement-containing material) solids of 12:88.

 一方、トーヨーケム(株)製アクリル系粘着剤(オリバインBPS6574)100質量部に対して、トーヨーケム(株)製イソシアネート系硬化剤(BHS8515)6質量部を混合し、粘着剤用混合液を調整した。この粘着剤用混合液を剥離シート表面に塗布、乾燥させて厚み100μmの粘着層を形成した。その後、粘着層を中間層に重ねて密着させて、総厚みが660μmである実施例1に係る構造物用シートを作製した。 Meanwhile, 100 parts by mass of an acrylic adhesive (Olivine BPS6574) manufactured by Toyochem Co., Ltd. was mixed with 6 parts by mass of an isocyanate curing agent (BHS8515) manufactured by Toyochem Co., Ltd. to prepare an adhesive mixture. This adhesive mixture was applied to the surface of a release sheet and dried to form an adhesive layer with a thickness of 100 μm. The adhesive layer was then layered on and adhered to the intermediate layer to produce a structural sheet according to Example 1 with a total thickness of 660 μm.

[実施例2]
 補強体を設けなかった他は実施例1と同様にして、総厚みが660μmである実施例2の構造物用シートを得た。
[Example 2]
A structural sheet of Example 2 having a total thickness of 660 μm was obtained in the same manner as in Example 1, except that no reinforcing member was provided.

[実施例3及び4]
 中間層におけるポリマーとフィラー(セメント含有物)との固形分の質量比を、下記の表1に示される通りとした他は実施例1と同様にして、各総厚みが660μmである実施例3及び4の構造物用シートを得た。
[Examples 3 and 4]
Structural sheets of Examples 3 and 4, each having a total thickness of 660 μm, were obtained in the same manner as in Example 1, except that the mass ratio of the solid content of the polymer and the filler (cement-containing material) in the intermediate layer was set as shown in Table 1 below.

[実施例5]
 補強体を設けず、且つ中間層におけるポリマーとフィラー(セメント含有物)との固形分の質量比を、下記の表1に示される通りとした他は実施例1と同様にして、総厚みが660μmである実施例5の構造物用シートを得た。
[Example 5]
A structural sheet of Example 5 having a total thickness of 660 μm was obtained in the same manner as in Example 1, except that no reinforcing body was provided and the mass ratio of the solid content of the polymer and the filler (cement-containing material) in the intermediate layer was as shown in Table 1 below.

[実施例6]
 中間層の厚みを300μmとした以外は実施例3と同様にして、総厚みが510μmである実施例6の構造物用シートを得た。
[Example 6]
A structural sheet of Example 6 having a total thickness of 510 μm was obtained in the same manner as in Example 3, except that the thickness of the intermediate layer was 300 μm.

[実施例7]
 中間層の厚みを1200μmとした以外は実施例3と同様にして、総厚みが1410μmである実施例7の構造物用シートを得た。
[Example 7]
A structural sheet of Example 7 having a total thickness of 1,410 μm was obtained in the same manner as in Example 3, except that the thickness of the intermediate layer was 1,200 μm.

[実施例8及び9]
 中間層におけるポリマーとフィラー(セメント含有物)との固形分の質量比を、下記の表1に示される通りとした他は実施例1と同様にして、各総厚みが660μmである実施例8及び9の構造物用シートを得た。
[Examples 8 and 9]
Structural sheets of Examples 8 and 9, each having a total thickness of 660 μm, were obtained in the same manner as in Example 1, except that the mass ratio of the solid content of the polymer and the filler (cement-containing material) in the intermediate layer was set as shown in Table 1 below.

[比較例1]
 エネルギーE3が12.4mJである補強体(ユニチカ(株)製寒冷紗(BINEO「V510」)を設けた他は実施例1と同様にして、総厚みが660μmである比較例1の構造物用シートを得た。
[Comparative Example 1]
A structural sheet of Comparative Example 1 having a total thickness of 660 μm was obtained in the same manner as in Example 1, except that a reinforcing body (cheesecloth (BINEO “V510”) manufactured by Unitika Ltd.) having an energy E3 of 12.4 mJ was provided.

[比較例2]
 中間層におけるポリマーとフィラー(セメント含有物)との固形分の質量比を、表1に示される通りとした他は実施例1と同様にして、総厚みが660μmである比較例2の構造物用シートを得た。
[Comparative Example 2]
A structural sheet of Comparative Example 2 having a total thickness of 660 μm was obtained in the same manner as in Example 1, except that the mass ratio of the solid content of the polymer and the filler (cement-containing material) in the intermediate layer was set as shown in Table 1.

 実施例1~9及び比較例1、2について、短辺が50mm及び長辺が100mmの矩形状の各構造物用シートを、同一面の一対の短辺同士を重ねるように湾曲させ、当該一対の短辺の縁端から当該長辺に沿って15mm離れた位置までの各構造用シートの一対の領域を試験装置の固定具で把持して固定することにより、各構造物用シートの当該一対の領域の間に周長が70mmの湾曲部を形成した状態において、60℃における当該湾曲部の20mmの圧縮変形のエネルギーE1と、当該湾曲部の、-10℃における当該湾曲部の20mmの圧縮変形のエネルギーE2を測定した。 For Examples 1 to 9 and Comparative Examples 1 and 2, each structural sheet was curved so that a pair of short sides on the same surface, with short sides of 50 mm and long sides of 100 mm, overlapped each other, and a pair of regions of each structural sheet from the edge of the pair of short sides to a position 15 mm away along the long sides was gripped and fixed with a fixture of the test device to form a curved portion with a circumference of 70 mm between the pair of regions of each structural sheet. In this state, the energy E1 of the compression deformation of the curved portion by 20 mm at 60°C and the energy E2 of the compression deformation of the curved portion by 20 mm at -10°C were measured.

 また実施例1~9及び比較例1、2について、短辺が50mm及び長辺が100mmの矩形状の各補強体を、同一面の一対の短辺同士を重ねるように湾曲させ、当該一対の短辺の縁端から当該長辺に沿って15mm離れた位置までの各補強体の一対の領域を試験装置の固定具で把持して固定することにより、各補強体の当該一対の領域の間に周長が70mmの湾曲部を形成した状態において、23℃における当該湾曲部の20mmの圧縮変形のエネルギーE3を測定した。この圧縮変形のエネルギーE1~E3が、下記の表1及び表2に示されている。 Furthermore, for Examples 1 to 9 and Comparative Examples 1 and 2, each rectangular reinforcement with a short side of 50 mm and a long side of 100 mm was curved so that a pair of short sides on the same surface overlapped each other, and a pair of regions of each reinforcement from the edge of the pair of short sides to a position 15 mm away along the long side was gripped and fixed with a fixture of the testing device to form a curved portion with a circumference of 70 mm between the pair of regions of each reinforcement, and the compressive deformation energy E3 of the curved portion of 20 mm at 23°C was measured. The compressive deformation energies E1 to E3 are shown in Tables 1 and 2 below.

[取り扱い性]
 実施例1~9及び比較例1、2の構造物用シートを屋根に貼る作業を、高温環境下において、作業者に行わせた。この作業者に、取り扱い性について聞き取った。下記の基準に従って、実施例1~9及び比較例1、2の格付け評価を行った。なお、構造物用シートを比較的長く一度に貼付できることは良好と評価されるが、本試験では、構造物用シートを簡便に比較的短い長さを複数に分けて貼付できる場合も良好と評価した。
  A:極めて良好
  作業者が構造物用シートを貼付する際の位置合わせにおいて、当該シートを幅方向の両端を持続的に引張ながら把持せずに貼付できると評価される。
  B:良好
  比較的長く一度に貼付する場合には、自重により意図しない位置に貼付されるおそれが若干あるものの、作業者が構造物用シートを貼付する際の位置合わせにおいて、当該シートを幅方向の両端を持続的に引張ながら把持せずに貼付できると評価される。
  C:不良
  作業者が構造物用シートを貼付する際の位置合わせにおいて、当該シートを幅方向の両端を持続的に引張ながら把持しなければ、自重により意図しない位置に貼付されてしまうと評価される。
 この結果が、下記の表1及び表2に示されている。
[Easy handling]
A worker was made to apply the structural sheets of Examples 1 to 9 and Comparative Examples 1 and 2 to a roof in a high temperature environment. The worker was asked about the ease of handling. Examples 1 to 9 and Comparative Examples 1 and 2 were rated and evaluated according to the following criteria. Note that, although a structural sheet that can be applied in a relatively long length at once is evaluated as good, in this test, a structural sheet that can be easily applied in multiple relatively short lengths was also evaluated as good.
A: Very good. It is evaluated that the worker can align the structural sheet when applying it without gripping both ends of the sheet in the width direction while continuously pulling the sheet.
B: Good. When applying a relatively long length at once, there is a slight risk that the sheet may be applied in an unintended location due to its own weight. However, the sheet is evaluated as being able to be applied by an operator without gripping it while continuously pulling on both ends of the width direction when aligning the sheet for structural applications.
C: Poor When applying a structural sheet, unless the worker continuously pulls and grips both ends of the sheet in the width direction, the sheet will be applied in an unintended position due to its own weight.
The results are shown in Tables 1 and 2 below.

[追従性]
 実施例1~9及び比較例1、2の構造物用シートを段差に貼る作業を、低温環境下において、作業者に行わせた。この作業者に、追従性について聞き取った。下記の基準に従って、実施例1~9及び比較例1、2の格付け評価を行った。
  A:極めて良好
  作業者が構造物用シートを段差がある箇所に貼付する際において、簡便な作業にて、段差に追従して隙間を生じさせずに当該シートを貼付できると評価される。
  B:良好
  作業者が構造物用シートを段差がある箇所に貼付する際において、段差に追従して隙間を生じさせずに当該シートを貼付できると評価される。
  C:不良
  作業者が構造物用シートを段差がある箇所に貼付する際において、当該シートが段差に追従せずに隙間が生じてしまうと評価される。
この結果が、下記の表1及び表2に示されている。
[Following ability]
A worker was made to apply the structural sheets of Examples 1 to 9 and Comparative Examples 1 and 2 to a step in a low temperature environment. The worker was asked about the conformability. Examples 1 to 9 and Comparative Examples 1 and 2 were rated according to the following criteria.
A: Very good. When a worker applies the structural sheet to an area with a step, the sheet can be applied with simple operation, conforming to the step and without creating any gaps.
B: Good. When a worker applies the structural sheet to a location with a step, the sheet can be applied by following the step and without creating any gaps.
C: Poor When a worker applies the structural sheet to a location with a step, the sheet does not conform to the step and a gap is generated.
The results are shown in Tables 1 and 2 below.

Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 

Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 

 表1及び表2から明らかな通り、実施例1~9は、比較例1、2に比べて、取り扱い性及び追従性に優れている。この評価結果から、実施例1~9に係る構造物用シートの優位性は明らかである。 As is clear from Tables 1 and 2, Examples 1 to 9 have superior handling and followability compared to Comparative Examples 1 and 2. These evaluation results clearly demonstrate the superiority of the structural sheets of Examples 1 to 9.

[開示項目]
 以下の項目のそれぞれは、好ましい実施形態を開示する。
[Disclosure items]
Each of the following sections discloses a preferred embodiment.

[項目1]
 機能層と粘着層とを備える構造物用シートであって、
 短辺が50mm及び長辺が100mmの矩形状の前記構造物用シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記構造用シートの一対の領域を試験装置の固定具で把持して固定することにより、前記構造物用シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 60℃における前記湾曲部の20mmの圧縮変形のエネルギーが、2.0mJ以上であり、
 前記湾曲部の、-10℃における前記湾曲部の20mmの圧縮変形のエネルギーが、60.0mJ以下である、構造物用シート。
[項目2]
 前記機能層と前記粘着層との間に位置する中間層を更に備える、項目1に記載の構造物用シート。
[Item 1]
A sheet for a structure comprising a functional layer and an adhesive layer,
The structural sheet is rectangular with short sides of 50 mm and long sides of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other. A pair of regions of the structural sheet from the edge ends of the pair of short sides to a position 15 mm away along the long sides are gripped and fixed with a fixture of a testing device, thereby forming a curved portion with a circumference of 70 mm between the pair of regions of the structural sheet.
The energy of compressive deformation of the curved portion at 60° C. for 20 mm is 2.0 mJ or more;
The sheet for structures, wherein the energy of compressive deformation of the curved portion over 20 mm at -10°C is 60.0 mJ or less.
[Item 2]
Item 2. The structure sheet according to item 1, further comprising an intermediate layer located between the functional layer and the adhesive layer.

[項目3]
 前記中間層の材質が、ポリマーとフィラーとの複合材料である、項目2に記載の構造物用シート。
[Item 3]
3. The structural sheet according to item 2, wherein the material of the intermediate layer is a composite material of a polymer and a filler.

[項目4]
 前記複合材料におけるポリマーとフィラーとの固形分の質量比が、5/95以上70/30以下である、項目3に記載の構造物用シート。
[Item 4]
4. The sheet for structures according to item 3, wherein a mass ratio of solid contents of the polymer and the filler in the composite material is 5/95 or more and 70/30 or less.

[項目5]
 前記フィラーがセメント成分を含有する、項目3又は4に記載の構造物用シート。
[Item 5]
5. The structural sheet according to item 3 or 4, wherein the filler contains a cement component.

[項目6]
 前記フィラーが、モルタルを組成する砂、及び、骨材の少なくともいずれかを含有する、項目3~5のいずれか1項に記載の構造物用シート。
[Item 6]
6. The sheet for structures according to any one of items 3 to 5, wherein the filler contains at least one of sand and aggregate constituting mortar.

[項目7]
 前記中間層の厚さが100μm以上1500μm以下である、項目2~6のいずれか1項に記載の構造物用シート。
[Item 7]
7. The structure sheet according to any one of items 2 to 6, wherein the thickness of the intermediate layer is 100 μm or more and 1500 μm or less.

[項目8]
 前記中間層の厚さの、前記構造物用シートの総厚さに対する比率が、30%以上85%以下である、項目2~7のいずれか1項に記載の構造物用シート。
[Item 8]
8. The sheet for a structure according to any one of items 2 to 7, wherein a ratio of a thickness of the intermediate layer to a total thickness of the sheet for a structure is 30% or more and 85% or less.

[項目9]
 補強体を更に備える、項目2~8のいずれか1項に記載の構造物シート。
[Item 9]
The structure sheet according to any one of items 2 to 8, further comprising a reinforcing body.

[項目10]
 前記補強体がファブリックである、項目9に記載の構造物用シート。
[Item 10]
Item 10. The structural sheet according to item 9, wherein the reinforcing material is fabric.

[項目11]
 前記ファブリックの材質が合成樹脂組成物であり、この合成樹脂組成物の基材樹脂がポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、ビニロン、ポリプロピレン、ポリスチレン又はポリフッ化ビニリデンである、項目10に記載の構造物用シート。
[項目12]
 短辺が50mm及び長辺が100mmの矩形状且つシート状の前記補強体を、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記補強体の一対の領域を試験装置の固定具で把持して固定することにより、前記補強体の前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 23℃における前記補強体の前記湾曲部の20mmの圧縮変形のエネルギーが、1.5mJ以上である、項目9~11のいずれか1項に記載の構造物用シート。
[Item 11]
Item 11. The structural sheet according to item 10, wherein the material of the fabric is a synthetic resin composition, and the base resin of the synthetic resin composition is polyethylene terephthalate, polyethylene naphthalate, aramid, vinylon, polypropylene, polystyrene, or polyvinylidene fluoride.
[Item 12]
The reinforcing body is rectangular and sheet-like with short sides of 50 mm and long sides of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other. A pair of regions of the reinforcing body from the edges of the pair of short sides to a position 15 mm away along the long side are grasped and fixed with a fixing device of a testing device, thereby forming a curved portion with a circumference of 70 mm between the pair of regions of the reinforcing body.
Item 12. The structure sheet according to any one of items 9 to 11, wherein the energy of compressive deformation of the curved portion of the reinforcing body over a distance of 20 mm at 23° C. is 1.5 mJ or more.

[項目13]
 前記機能層及び前記粘着層の少なくともいずれかは、フィラーを含む、項目1~12のいずれか1項に記載の構造物用シート。
[Item 13]
Item 13. The structure sheet according to any one of items 1 to 12, wherein at least one of the functional layer and the adhesive layer contains a filler.

[項目14] [Item 14]

 前記粘着層の前記機能層側とは反対側の面に配置された離型フィルムを備える、項目1~13のいずれか1項に記載の構造物用シート。 The structural sheet described in any one of items 1 to 13, which is provided with a release film disposed on the surface of the adhesive layer opposite the functional layer.

[項目15]
 シートによる構造物の補修又は補強の方法であって、
(1)短辺が50mm及び長辺が100mmの矩形状の前記シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記シートの一対の領域を試験装置の固定具で把持して固定することにより、前記シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 60℃における前記湾曲部の20mmの圧縮変形のエネルギーが、2.0mJ以上であり、
 -10℃における前記湾曲部の20mmの圧縮変形のエネルギーが、60.0mJ以下であり、
 且つ機能層及び粘着層を有するシートを、準備する工程、
並びに
(2)前記粘着層の粘着力により、前記構造物の表面に前記シートを貼り付ける工程
を備えた、構造物の補修又は補強の方法。
[Item 15]
A method for repairing or reinforcing a structure using a sheet, comprising:
(1) The rectangular sheet having a short side of 50 mm and a long side of 100 mm is curved so that a pair of short sides on the same surface overlap each other, and a pair of regions of the sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the sheet.
The energy of compressive deformation of the curved portion at 60° C. for 20 mm is 2.0 mJ or more;
The energy of compressive deformation of the curved portion at −10° C. for 20 mm is 60.0 mJ or less;
and preparing a sheet having a functional layer and an adhesive layer;
and (2) a method for repairing or reinforcing a structure, comprising a step of attaching the sheet to a surface of the structure by the adhesive strength of the adhesive layer.

[項目16]
 第1シートによって補修又は補強された構造物の、第2シートによる再補修又は再補強の方法であって、
(1)短辺が50mm及び長辺が100mmの矩形状の前記第1シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記第1シートの一対の領域を試験装置の固定具で把持して固定することにより、前記第1シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 前記第1シートの前記湾曲部の60℃における20mmの圧縮変形のエネルギーが、2.0mJ以上であり、
 前記第1シートの前記湾曲部の-10℃における20mmの圧縮変形のエネルギーが、60.0mJ以下であり、
 且つ機能層及び粘着層を有する第1シートを、準備する工程、
(2)前記第1シートの粘着層の粘着力により、前記構造物の表面に前記第1シートを貼り付ける工程、
(3)短辺が50mm及び長辺が100mmの矩形状の前記第2シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記第2シートの一対の領域を試験装置の固定具で把持して固定することにより、前記第2シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 前記第2シートの前記湾曲部の60℃における20mmの圧縮変形のエネルギーが、2.0mJ以上であり、
 前記第2シートの前記湾曲部の-10℃における20mmの圧縮変形のエネルギーが、60.0mJ以下であり、
 且つ機能層及び粘着層を有する第2シートを、準備する工程、
並びに
(4)前記第2シートの粘着層の粘着力により、破損又は劣化した前記第1シートの表面に前記第2シートを貼り付ける工程
を備えた、構造物の再補修又は再補強の方法。
[Item 16]
A method for re-repairing or re-reinforcing a structure that has been repaired or reinforced with a first sheet, using a second sheet, comprising the steps of:
(1) The first sheet is rectangular with a short side of 50 mm and a long side of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other. A pair of regions of the first sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the first sheet.
The energy of compressive deformation of the curved portion of the first sheet at 60° C. for 20 mm is 2.0 mJ or more;
The energy of compressive deformation of the curved portion of the first sheet at −10° C. for 20 mm is 60.0 mJ or less;
preparing a first sheet having a functional layer and an adhesive layer;
(2) attaching the first sheet to a surface of the structure by the adhesive force of the adhesive layer of the first sheet;
(3) The second sheet is rectangular with a short side of 50 mm and a long side of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other. A pair of regions of the second sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the second sheet.
The energy of compressive deformation of the curved portion of the second sheet at 60° C. for 20 mm is 2.0 mJ or more;
The energy of compressive deformation of the curved portion of the second sheet at −10° C. for 20 mm is 60.0 mJ or less,
and preparing a second sheet having a functional layer and an adhesive layer;
and (4) a method for repairing or reinforcing a structure, comprising a step of attaching the second sheet to the damaged or deteriorated surface of the first sheet by using the adhesive strength of the adhesive layer of the second sheet.

 本開示の構成は、前記実施形態及び前記実施例のものに限定されるものではなく、本開示の趣旨を逸脱しない範囲で、その構成及び方法を変更、追加、又は削除できる。本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。例えば、1つの実施形態又は実施例に記載の構成の一部を、他のいずれかの実施形態又は実施例に記載の構成に適用できる。 The configurations of the present disclosure are not limited to those of the above-mentioned embodiments and examples, and the configurations and methods can be modified, added to, or deleted without departing from the spirit of the present disclosure. Each aspect disclosed in this specification can be combined with any other feature disclosed in this specification. For example, a part of the configuration described in one embodiment or example can be applied to the configuration described in any other embodiment or example.

 以上説明された構造物用シートは、種々の物体に貼り付けられて使用されうる。 The structural sheet described above can be attached to various objects for use.

 2、40、61、62、63  構造物用シート
 2a  第1シート
 2b  第2シート
 4、42、54  機能層
 6、44、56  中間層
 8、46、58  粘着層
 10  屋根
 16  段差
 20  継ぎ目
 22  段差
 24  試験片
 30  つかみ具(固定具)
 34  湾曲部
 36  圧子
 48  補強体
 50a  経糸
 50b  緯糸
2, 40, 61, 62, 63 Structural sheet 2a First sheet 2b Second sheet 4, 42, 54 Functional layer 6, 44, 56 Intermediate layer 8, 46, 58 Adhesive layer 10 Roof 16 Step 20 Seam 22 Step 24 Test piece 30 Grip (fixing tool)
34 Curved portion 36 Indenter 48 Reinforcement body 50a Warp thread 50b Weft thread

Claims (16)

 機能層と粘着層とを備える構造物用シートであって、
 短辺が50mm及び長辺が100mmの矩形状の前記構造物用シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記構造用シートの一対の領域を試験装置の固定具で把持して固定することにより、前記構造物用シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 60℃における前記湾曲部の20mmの圧縮変形のエネルギーが、2.0mJ以上であり、
 前記湾曲部の、-10℃における前記湾曲部の20mmの圧縮変形のエネルギーが、60.0mJ以下である、構造物用シート。
A sheet for a structure comprising a functional layer and an adhesive layer,
The structural sheet is rectangular with short sides of 50 mm and long sides of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other. A pair of regions of the structural sheet from the edge ends of the pair of short sides to a position 15 mm away along the long sides are gripped and fixed with a fixture of a testing device, thereby forming a curved portion with a circumference of 70 mm between the pair of regions of the structural sheet.
The energy of compressive deformation of the curved portion at 60° C. for 20 mm is 2.0 mJ or more;
The sheet for structures, wherein the energy of compressive deformation of the curved portion over 20 mm at -10°C is 60.0 mJ or less.
 前記機能層と前記粘着層との間に位置する中間層を更に備える、請求項1に記載の構造物用シート。 The structural sheet according to claim 1, further comprising an intermediate layer located between the functional layer and the adhesive layer.  前記中間層の材質が、ポリマーとフィラーとの複合材料である、請求項2に記載の構造物用シート。 The structural sheet according to claim 2, wherein the material of the intermediate layer is a composite material of a polymer and a filler.  前記複合材料におけるポリマーとフィラーとの固形分の質量比が、5/95以上70/30以下である、請求項3に記載の構造物用シート。 The structural sheet according to claim 3, wherein the mass ratio of the solid content of the polymer to the filler in the composite material is 5/95 or more and 70/30 or less.  前記フィラーがセメント成分を含有する、請求項3に記載の構造物用シート。 The structural sheet according to claim 3, wherein the filler contains a cement component.  前記フィラーが、モルタルを組成する砂、及び、骨材の少なくともいずれかを含有する、請求項5に記載の構造物用シート。 The structural sheet according to claim 5, wherein the filler contains at least one of sand and aggregate that constitute mortar.  前記中間層の厚さが100μm以上1500μm以下である、請求項2に記載の構造物用シート。 The structural sheet according to claim 2, wherein the thickness of the intermediate layer is 100 μm or more and 1500 μm or less.  前記中間層の厚さの、前記構造物用シートの総厚さに対する比率が、30%以上85%以下である、請求項2に記載の構造物用シート。 The structural sheet according to claim 2, wherein the ratio of the thickness of the intermediate layer to the total thickness of the structural sheet is 30% or more and 85% or less.  補強体を更に備える、請求項2に記載の構造物用シート。 The structural sheet according to claim 2, further comprising a reinforcing member.  前記補強体がファブリックである、請求項9に記載の構造物用シート。 The structural sheet according to claim 9, wherein the reinforcing material is fabric.  前記ファブリックの材質が合成樹脂組成物であり、この合成樹脂組成物の基材樹脂がポリエチレンテレフタレート、ポリエチレンナフタレート、アラミド、ビニロン、ポリプロピレン、ポリスチレン又はポリフッ化ビニリデンである、請求項10に記載の構造物用シート。 The structural sheet according to claim 10, wherein the material of the fabric is a synthetic resin composition, and the base resin of the synthetic resin composition is polyethylene terephthalate, polyethylene naphthalate, aramid, vinylon, polypropylene, polystyrene, or polyvinylidene fluoride.  短辺が50mm及び長辺が100mmの矩形状且つシート状の前記補強体を、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記補強体の一対の領域を試験装置の固定具で把持して固定することにより、前記補強体の前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 23℃における前記補強体の前記湾曲部の20mmの圧縮変形のエネルギーが、1.5mJ以上である、請求項9に記載の構造物用シート。
The reinforcing body is rectangular and sheet-like with short sides of 50 mm and long sides of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other. A pair of regions of the reinforcing body from the edges of the pair of short sides to a position 15 mm away along the long side are grasped and fixed with a fixing device of a testing device, thereby forming a curved portion with a circumference of 70 mm between the pair of regions of the reinforcing body.
The structural sheet according to claim 9, wherein the energy of compressive deformation of the curved portion of the reinforcing member over a distance of 20 mm at 23° C. is 1.5 mJ or more.
 前記機能層及び前記粘着層の少なくともいずれかは、フィラーを含む、請求項1~12のいずれか1項に記載の構造物用シート。 The structural sheet according to any one of claims 1 to 12, wherein at least one of the functional layer and the adhesive layer contains a filler.  前記粘着層の前記機能層側とは反対側の面に配置された離型フィルムを備える、請求項1~12のいずれか1項に記載の構造物用シート。 The structural sheet according to any one of claims 1 to 12, comprising a release film disposed on the surface of the adhesive layer opposite the functional layer.  シートによる構造物の補修又は補強の方法であって、
(1)短辺が50mm及び長辺が100mmの矩形状の前記シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記シートの一対の領域を試験装置の固定具で把持して固定することにより、前記シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 60℃における前記湾曲部の20mmの圧縮変形のエネルギーが、2.0mJ以上であり、
 -10℃における前記湾曲部の20mmの圧縮変形のエネルギーが、60.0mJ以下であり、
 且つ機能層及び粘着層を有するシートを、準備する工程、
並びに
(2)前記粘着層の粘着力により、前記構造物の表面に前記シートを貼り付ける工程
を備えた、構造物の補修又は補強の方法。
A method for repairing or reinforcing a structure using a sheet, comprising:
(1) The rectangular sheet having a short side of 50 mm and a long side of 100 mm is curved so that a pair of short sides on the same surface overlap each other, and a pair of regions of the sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the sheet.
The energy of compressive deformation of the curved portion at 60° C. for 20 mm is 2.0 mJ or more;
The energy of compressive deformation of the curved portion at −10° C. for 20 mm is 60.0 mJ or less;
and preparing a sheet having a functional layer and an adhesive layer;
and (2) a method for repairing or reinforcing a structure, comprising a step of attaching the sheet to a surface of the structure by the adhesive strength of the adhesive layer.
 第1シートによって補修又は補強された構造物の、第2シートによる再補修又は再補強の方法であって、
(1)短辺が50mm及び長辺が100mmの矩形状の前記第1シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記第1シートの一対の領域を試験装置の固定具で把持して固定することにより、前記第1シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 前記第1シートの前記湾曲部の60℃における20mmの圧縮変形のエネルギーが、2.0mJ以上であり、
 前記第1シートの前記湾曲部の-10℃における20mmの圧縮変形のエネルギーが、60.0mJ以下であり、
 且つ機能層及び粘着層を有する第1シートを、準備する工程、
(2)前記第1シートの粘着層の粘着力により、前記構造物の表面に前記第1シートを貼り付ける工程、
(3)短辺が50mm及び長辺が100mmの矩形状の前記第2シートを、同一面の一対の短辺同士を重ねるように湾曲させ、前記一対の短辺の縁端から前記長辺に沿って15mm離れた位置までの前記第2シートの一対の領域を試験装置の固定具で把持して固定することにより、前記第2シートの前記一対の領域の間に周長が70mmの湾曲部を形成した状態において、
 前記第2シートの前記湾曲部の60℃における20mmの圧縮変形のエネルギーが、2.0mJ以上であり、
 前記第2シートの前記湾曲部の-10℃における20mmの圧縮変形のエネルギーが、60.0mJ以下であり、
 且つ機能層及び粘着層を有する第2シートを、準備する工程、
並びに
(4)前記第2シートの粘着層の粘着力により、破損又は劣化した前記第1シートの表面に前記第2シートを貼り付ける工程
を備えた、構造物の再補修又は再補強の方法。
A method for re-repairing or re-reinforcing a structure that has been repaired or reinforced with a first sheet, using a second sheet, comprising the steps of:
(1) The first sheet is rectangular with a short side of 50 mm and a long side of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other. A pair of regions of the first sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the first sheet.
The energy of compressive deformation of the curved portion of the first sheet at 60° C. for 20 mm is 2.0 mJ or more;
The energy of compressive deformation of the curved portion of the first sheet at −10° C. for 20 mm is 60.0 mJ or less;
preparing a first sheet having a functional layer and an adhesive layer;
(2) attaching the first sheet to a surface of the structure by the adhesive force of the adhesive layer of the first sheet;
(3) The second sheet is rectangular with a short side of 50 mm and a long side of 100 mm, and is curved so that a pair of short sides on the same surface overlap each other. A pair of regions of the second sheet from the edge ends of the pair of short sides to a position 15 mm away along the long side are gripped and fixed with a fixture of a testing device to form a curved portion with a circumference of 70 mm between the pair of regions of the second sheet.
The energy of compressive deformation of the curved portion of the second sheet at 60° C. for 20 mm is 2.0 mJ or more;
The energy of compressive deformation of the curved portion of the second sheet at −10° C. for 20 mm is 60.0 mJ or less,
and preparing a second sheet having a functional layer and an adhesive layer;
and (4) a method for repairing or reinforcing a structure, comprising a step of attaching the second sheet to the damaged or deteriorated surface of the first sheet by using the adhesive strength of the adhesive layer of the second sheet.
PCT/JP2024/018002 2023-05-16 2024-05-15 Sheet for structure WO2024237290A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-080665 2023-05-16
JP2023080665 2023-05-16
JP2024-078997 2024-05-14
JP2024078997A JP2024166136A (en) 2023-05-16 2024-05-14 Structural Sheets

Publications (1)

Publication Number Publication Date
WO2024237290A1 true WO2024237290A1 (en) 2024-11-21

Family

ID=93519770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/018002 WO2024237290A1 (en) 2023-05-16 2024-05-15 Sheet for structure

Country Status (2)

Country Link
TW (1) TW202511064A (en)
WO (1) WO2024237290A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206612A (en) * 2002-01-09 2003-07-25 Piyo:Kk Wall-surface repairing tool
WO2020116450A1 (en) * 2018-12-05 2020-06-11 富士フイルム株式会社 Fall-preventing transparent sheet and fall-preventing transparent sheet manufacturing method
JP2021025295A (en) * 2019-08-05 2021-02-22 株式会社奥村組 Repair part curing structure of concrete surface and curing sheet
JP2022184805A (en) * 2021-05-31 2022-12-13 恵和株式会社 Structure protection sheet and construction method of structure protection sheet
JP7204971B1 (en) * 2022-03-11 2023-01-16 大日本印刷株式会社 Expandable adhesive sheet and method for producing article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206612A (en) * 2002-01-09 2003-07-25 Piyo:Kk Wall-surface repairing tool
WO2020116450A1 (en) * 2018-12-05 2020-06-11 富士フイルム株式会社 Fall-preventing transparent sheet and fall-preventing transparent sheet manufacturing method
JP2021025295A (en) * 2019-08-05 2021-02-22 株式会社奥村組 Repair part curing structure of concrete surface and curing sheet
JP2022184805A (en) * 2021-05-31 2022-12-13 恵和株式会社 Structure protection sheet and construction method of structure protection sheet
JP7204971B1 (en) * 2022-03-11 2023-01-16 大日本印刷株式会社 Expandable adhesive sheet and method for producing article

Also Published As

Publication number Publication date
TW202511064A (en) 2025-03-16

Similar Documents

Publication Publication Date Title
JP2004027718A (en) Repair / reinforcement / deterioration prevention sheet for concrete structures and method for repair / reinforcement / deterioration prevention of concrete structures
JP5490364B2 (en) Fiber sheet bonding method
WO2015134889A1 (en) Roofing membranes with pre-applied, cured, pressure-sensitive seam adhesives
JP2004027718A5 (en)
JP2014066046A (en) Concrete structure curing film
JP7634629B2 (en) How to repair a structure
JP2002256707A (en) Repair and reinforcement sheet for concrete structures and method for repair and reinforcement of concrete structures
JP5398478B2 (en) Underlay sheet and surface material of undercoat sheet and waterproofing method of paint film
CN1362567A (en) Sheet for repairing and reinforcing concrete structure and repairing and reinforcing method thereof
WO2024237290A1 (en) Sheet for structure
JP2024166136A (en) Structural Sheets
WO2024225390A1 (en) Sheet for structure
JP2024159637A (en) Structural Sheets
KR101072343B1 (en) Dry-type waterproof method using polymerized composite waterproof sheet and rubber asphalt sheet
JP2024155818A (en) Sheet body
WO2024219460A1 (en) Sheet body
US20250179819A1 (en) Roof repair method
JP2004137405A (en) Adhesive tape
TW202408818A (en) Sheet for structure
JP2024025715A (en) Roof repair method
TW202413083A (en) Sheet for structure
JP2024078974A (en) Structure protection sheet
WO2024024789A1 (en) Sheet for structure
JP2023178966A (en) Structure for sheet
JP2024019064A (en) Structure sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24807241

Country of ref document: EP

Kind code of ref document: A1