[go: up one dir, main page]

WO2024232334A1 - Projector and head-up display system - Google Patents

Projector and head-up display system Download PDF

Info

Publication number
WO2024232334A1
WO2024232334A1 PCT/JP2024/016869 JP2024016869W WO2024232334A1 WO 2024232334 A1 WO2024232334 A1 WO 2024232334A1 JP 2024016869 W JP2024016869 W JP 2024016869W WO 2024232334 A1 WO2024232334 A1 WO 2024232334A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
selective reflection
polarized light
layer
image
Prior art date
Application number
PCT/JP2024/016869
Other languages
French (fr)
Japanese (ja)
Inventor
昭裕 安西
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024232334A1 publication Critical patent/WO2024232334A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a projector used in a head-up display and a head-up display system that uses this projector.
  • head-up display head-up display system
  • windshield windshield glass
  • the head-up display is also referred to as "HUD.”
  • HUD is an abbreviation for "Head up Display.”
  • the driver can obtain various information such as maps, driving speed, and vehicle status without moving their line of sight significantly while looking at the outside world ahead, which is expected to enable safer driving while obtaining a variety of information.
  • FIG. 5 conceptually illustrates an example of a typical HUD.
  • the HUD 100 in the illustrated example includes an image display unit 112, a reflecting mirror 116, a concave mirror 118, and a windshield 126 that acts as a reflecting member for reflecting and projecting the image light.
  • the image display unit 112 includes an image display device 129 such as a liquid crystal display, and a projection lens 131.
  • the image display unit 112, the reflecting mirror 116, and the concave mirror 118 constitute a projector of the HUD, and are housed under a dashboard 120 of a vehicle such as an automobile.
  • the image displayed by the image display device 129 i.e., the image light
  • the projection lens 131 reflected along a predetermined optical path by the reflecting mirror 116 and the concave mirror 118, passes through a transparent window 124 provided in the dashboard 120, enters the windshield 126, is reflected and projected, and is observed by the user O as a projected image.
  • the user O observes a virtual image of the image projected onto the windshield 126 .
  • the projector used in the HUD 100 is housed under the dashboard of the vehicle, and is therefore subject to significant size restrictions. For this reason, conventional HUD projectors use multiple mirrors to fold the optical path, thereby ensuring the necessary optical path length. Therefore, the structure of the projector used in the HUD 100 tends to be complicated. Moreover, as described above, the space below the dashboard is small, so the degree of freedom in designing the projector is low.
  • FIG. 6 conceptually shows one example of this.
  • the HUD 130 includes a light guide plate 132 , an input diffraction element 134 , and an output diffraction element 136 .
  • image light G emitted from an image display device (not shown) is diffracted by an incident diffraction element 134 and enters the light guide plate 132 at an angle at which the light is totally reflected.
  • the image light G that enters the light guide plate 132 is guided (propagated) within the light guide plate 132 by repeating total reflection, as indicated by the arrow pointing leftward in the figure.
  • an output diffraction element 136 is provided on the upper surface (hereinafter also referred to as the output surface) of the light guide plate 132 in the figure.
  • a part of the light guided within the light guide plate 132 is incident on the output diffraction element 136, diffracted, and output upward from the output surface.
  • the image light G output from the light guide plate 132 is incident on the windshield 126, reflected, and projected, and is observed by the user O as a projected image.
  • the light guide plate 132 can be disposed, for example, on the dashboard of an automobile or the like, and size restrictions are significantly reduced compared to the conventional HUD 100 as shown in FIG. Furthermore, since there is no need to use a mirror to fold the optical path, and projection light can be emitted according to the size of the light guide plate 132, the device configuration of the HUD can be simplified.
  • external light such as sunlight passes through the windshield 126 , enters the vehicle interior, and reaches the light guide plate 132 .
  • an output diffraction element 136 is provided on the output surface of the light guide plate 132. Therefore, external light is diffracted by the output diffraction element 136, and depending on the incident direction, the light enters the light guide plate 132 at an angle that causes total reflection.
  • the external light thus incident on the light guide plate 132 is guided by repeated total reflection within the light guide plate 132 as indicated by the arrow pointing to the right in the figure, in contrast to the image light G indicated by the arrow pointing to the left in the figure, and a part of the light is diffracted by the output diffraction element 136 and emitted from the light guide plate 132 together with the image light.
  • the image light and external light emitted from the light guide plate 132 are incident on the windshield 126, reflected and projected (projected), and observed by the user O as interference light D.
  • the image observed by the user O is glaring, and the interference light D dazzles the user O.
  • the external light that enters the light guide plate 132, is guided, and then exits may not enter the windshield 126, but may exit the light guide plate 132 and reach the user O directly as interfering light D.
  • an optical filter 138 that absorbs light of wavelengths other than the wavelength of the image light G is provided on the exit surface side of the diffraction element, as shown by the dashed line in Figure 6.
  • this prevents external light such as sunlight from entering the light guide plate 132, suppresses glare in the image observed by the user O caused by the interfering light D, and also suppresses the user O from being dazzled by the interfering light D.
  • the object of the present invention is to provide a projector for a HUD that uses a light guide plate and a diffraction element as in Patent Document 1, which prevents the user from observing interfering light and has measures in place to prevent heat damage, and to provide a HUD that uses this projector.
  • the present invention has the following configuration.
  • a projector for a head-up display an image display device that emits image light; and a light guide plate that guides the image light emitted by the image display device; an emission element that emits the image light guided through the light guide plate from the light guide plate; a selective reflection film that reflects linearly polarized light and is provided on the image light emission side of the emission element.
  • the projector according to [1] or [2], wherein the selective reflection film that reflects linearly polarized light reflects visible light.
  • a head-up display system including the projector according to any one of [1] to [8] and a windshield glass onto which the projection light emitted from the projector is irradiated.
  • the present invention uses a new method to prevent interference light from being observed by the user in a HUD projector that uses a light guide plate and a diffraction element, and to suppress thermal damage caused by temperature rise inside the projector.
  • FIG. 1 is a diagram conceptually showing an example of a projector and HUD of the present invention.
  • FIG. 2 is a schematic perspective view for explaining the projector shown in FIG.
  • FIG. 3 is a perspective view conceptually showing another example of a projector according to the invention.
  • FIG. 4 is a diagram showing an example of a selective reflection film that reflects linearly polarized light and is used in the projector shown in FIG.
  • FIG. 5 is a diagram conceptually illustrating an example of a typical projector.
  • FIG. 6 is a diagram conceptually illustrating an example of a conventional projector.
  • FIG. 7 is a conceptual diagram for explaining the operation of the projector shown in FIG.
  • HUD head-up display system
  • visible light refers to electromagnetic waves having wavelengths visible to the human eye, in the wavelength range of 380 to 780 nm
  • non-visible light refers to light having a wavelength range of less than 380 nm or more than 780 nm.
  • light in the visible light wavelength range of 420 to 490 nm is blue light (B light)
  • light in the wavelength range of 495 to 570 nm is green light (G light)
  • light in the wavelength range of 620 to 750 nm is red light (R light).
  • infrared light refers to a wavelength range of non-visible light exceeding 780 nm and not exceeding 2000 nm.
  • the terms parallel, perpendicular, and orthogonal include the error range generally accepted in the technical field. Specifically, the terms parallel, perpendicular, and orthogonal mean that the difference from strict agreement is within a range of less than 5°. The difference from strict agreement is preferably less than 4°, and more preferably less than 3°.
  • FIG. 1 conceptually shows an example of a HUD of the present invention that uses an example of a projector of the present invention.
  • the projector of the present invention and a windshield glass 30 constitute a HUD 10 of the present invention.
  • the projector shown in Fig. 1 is a projector for a HUD, and includes a light guide plate 12, an output diffraction element 14, a selective reflection film 16 that reflects linearly polarized light, an image display device 18, and an input diffraction element 20.
  • the projector uses a windshield 30 of a vehicle such as an automobile to display (project) an image toward a user O.
  • the output diffraction element 14 is the output element of the present invention.
  • the projector in the illustrated example further includes an intermediate diffraction element 24 on the rear side of the input diffraction element 20 in the figure (see Fig. 2).
  • This projector is basically the same as the virtual image display device (a device that generates a virtual image (VB)) described in Patent Document 1, which is conceptually shown in Figure 6, except that it has a selective reflection film 16 that reflects linearly polarized light instead of an optical filter 138 that suppresses interfering light by absorbing external light such as sunlight. 6 described above, this projector also diffracts the image light G emitted by the image display device 18 by the incident diffraction element 20 and causes the image light G to enter the light guide plate 12 at an angle at which the image light G is totally reflected.
  • the image light G that enters the light guide plate 12 is diffused by the intermediate diffraction element 24 and, as indicated by the arrow pointing left in the figure, is guided (propagated) through the light guide plate 12 by repeating total reflection.
  • An output diffraction element 14 is attached to the output surface (top surface in the figure) of the light guide plate 12. A portion of the light guided within the light guide plate 12 enters the output diffraction element 14, is diffracted, and is output from the light guide plate 12.
  • the image light output from the light guide plate 12 enters the windshield 30, is reflected and projected, and is observed by the user O.
  • the user O observes a virtual image of the image projected on the windshield 30, similar to a known HUD (projector). 1 as well, similarly to the HUD 130 shown in FIG.
  • FIG. 2 shows a schematic perspective view of the light guide plate 12.
  • the light guide plate 12 is a plate-like object with a rectangular main surface, and an incident diffraction element 20 is provided near one corner of one of the main surfaces.
  • An intermediate diffraction element 24 that is elongated in the short side direction is provided near an end in the longitudinal direction, close to the incident diffraction element 20.
  • an exit diffraction element 14 is provided so as to cover substantially the entire surface of an area of the main surface where the incident diffraction element 20 and the intermediate diffraction element 24 are not provided.
  • the main surface refers to the largest surface of a plate-like object (sheet, film, layer), and usually refers to both surfaces in the thickness direction of the plate-like object.
  • the vertical direction of the light guide plate 12 on the paper surface is defined as the Y direction
  • the horizontal direction on the paper surface is defined as the X direction. Therefore, in Fig. 1, the left direction in the figure is the X direction, and the direction perpendicular to the paper surface and toward the back is the Y direction.
  • the incident diffraction element 20 is a diffraction element for making the image light G emitted from the image display device 18 incident on the light guide plate 12 .
  • the incident diffraction element 20 diffracts the image light G emitted from the image display device 18 at an angle that causes total reflection within the light guide plate 12 and guides the light in the Y direction.
  • the image light G incident on the light guide plate 12 by the incident diffraction element 20 is guided in the Y direction near the end in the X direction while repeatedly undergoing total reflection within the light guide plate 12, as indicated by the arrow, and a part of the light is incident on the intermediate diffraction element 24.
  • the image light (image) emitted by the image display device 18 is expanded in the Y direction.
  • the intermediate diffraction element 24 is a diffraction element for deflecting the light guide direction of the image light G in the light guide plate 12.
  • a part of the image light G guided in the Y direction near the end in the X direction is incident on the intermediate diffraction element 24 and diffracted at an angle that causes total reflection in the light guide plate 12 toward the X direction of the light guide plate 12 (the left direction in FIG. 1), i.e., the output diffraction element 14, as shown by the arrow.
  • the diffraction of the image light G from the intermediate diffraction element 24 toward the output diffraction element 14 is performed over the entire longitudinal area of the intermediate diffraction element 24 that is elongated in the Y direction of the light guide plate 12.
  • the image light G diffracted by the intermediate diffraction element 24 is totally reflected within the light guide plate 12 and guided in the X direction (the left direction in FIG. 1 ), and a part of it enters the output diffraction element 14 .
  • the output diffraction element 14 is a diffraction element for outputting image light G from the light guide plate 12.
  • a part of the image light G that is totally reflected within the light guide plate 12 and guided in the X direction is incident on the output diffraction element 14 and diffracted, and as shown by the arrow pointing upward in the figure and as shown in Fig. 1 described above, the image light G is output from the light guide plate 12.
  • the image light (image) output from the image display device 18 is expanded in the X direction.
  • the image light G emitted from the light guide plate 12 enters the windshield 30, is reflected and projected, and is observed by the user O.
  • the image light is emitted from the light guide plate 12 by the output diffraction element 14 from the entire surface of the output diffraction element 14.
  • one light guide plate 12 is provided.
  • the present invention is not limited to this.
  • a light guide plate 12R that guides the R image light, a light guide plate 12G that guides the G image light, and a light guide plate 12B that guides the B image light may be provided according to the respective colors, as conceptually shown in FIG. 3 .
  • the stacking order of the light guide plates is not limited to the example shown in FIG.
  • Light guide plate 12R, light guide plate 12G and light guide plate 12B are provided with an input diffraction element 20, an intermediate diffraction element 24 and an output diffraction element 14, respectively.
  • the diffraction elements provided in each light guide plate at least the input diffraction element 20 and the output diffraction element 14 have wavelength dependency (wavelength selectivity) and diffract only the image light of the corresponding color to be incident on the light guide plate.
  • the intermediate diffraction element 24 also has wavelength dependency and diffracts only the image light of the corresponding color. In this case, the diffraction element that receives monochromatic light does not need to have wavelength dependency.
  • the diffraction element provided in the light guide plate 12B does not need to have wavelength dependency.
  • the diffraction elements provided on each light guide plate all have wavelength dependency.
  • the image light emitted from the image display device 18 is deflected by the mirror 34 toward the light guide plate 12R.
  • the R image light is diffracted by the incident diffraction element 20 provided in the light guide plate 12 R and enters the light guide plate 12 R.
  • the G image light and the B image light pass through this incident diffraction element 20.
  • the G image light is diffracted by the incident diffraction element 20 provided in the light guide plate 12G and enters the light guide plate 12G.
  • the B image light passes through this incident diffraction element.
  • the B image light is diffracted by the incident diffraction element 20 provided in the light guide plate 12B, and enters the light guide plate 12B.
  • the image light incident on each corresponding light guide plate is guided in the Y direction (short direction of the light guide plate) as in FIG. 2, deflected in the light guide direction in the X direction (longitudinal direction of the light guide plate) by the intermediate diffraction element 24, and emitted from the light guide plate toward the windshield 30 by the emission diffraction element 14.
  • the B image light emitted from the light guide plate 12B passes through the emission diffraction element 14 provided on the light guide plate 12G and the light guide plate 12R, and is emitted toward the windshield 30.
  • the G image light emitted from the light guide plate 12G passes through the emission diffraction element 14 provided on the light guide plate 12R, and is emitted toward the windshield 30.
  • the image display device 18 there are no limitations on the image display device 18, the light guide plate 12, and each diffraction element, and various known elements can be used.
  • various known image display devices such as a liquid crystal display device, a liquid crystal on silicon (LCOS), an organic electroluminescence (organic EL) display, and a digital light processing (DLP) using a digital micromirror device (DMD) can be used as the image display device 18.
  • DLP digital light processing
  • DMD digital micromirror device
  • a projection lens may be combined with these image display devices as necessary.
  • light guide plate 12 various types of well-known light guide plates such as those used in backlight units of liquid crystal display devices and AR glasses can be used, such as light guide plates made of glass or plastic such as acrylic resin.
  • the diffraction element various known diffraction elements such as a liquid crystal diffraction element, a holographic diffraction element (hologram), a volume hologram diffraction element, and a surface relief diffraction element can be used.
  • the diffraction element may be of a reflective type or a transmissive type. In the illustrated example, the diffraction element is of a transmissive type. When the diffraction element is of a reflective type, the diffraction element is disposed on the surface of the light guide plate opposite to the transmissive diffraction element.
  • each diffraction element may be attached to the light guide plate 12 by a known method, such as a method using an OCA (Optical Clear Adhesive).
  • OCA Optical Clear Adhesive
  • the diffraction element 14 is used as an output element for outputting the image light G from the light guide plate 12, but the present invention is not limited to this.
  • a plurality of half mirrors inclined with respect to the main surface may be provided in the light guide plate 12 in the light guide direction of the image light G, and these half mirrors may be used as emission elements that emit the image light G from the light guide plate.
  • the HUD 10 in the illustrated example causes image light G to be incident on the windshield 30 and then reflected and projected, but the present invention is not limited to this. That is, the HUD 10 (projector) of the present invention may use a combiner such as a half mirror for reflecting an image, and the image light G emitted from the light guide plate 12 may be incident on the combiner, reflected, and projected. Also, a combiner for reflecting the image light G may be provided inside the windshield 30.
  • the linearly polarized light is preferably S-polarized or P-polarized.
  • S-polarized light and P-polarized light refer to the polarization directions of linearly polarized light that is incident on the windshield 30.
  • the HUD 10 of the present invention (the projector of the present invention) has a selective reflection film 16 that reflects linearly polarized light on the output side of the image light G of the output diffraction element 14.
  • the selective reflection film 16 that reflects linearly polarized light is a reflective layer having polarization selectivity that transmits the linearly polarized light output from the image display device 18 and reflects the linearly polarized light orthogonal to the linearly polarized light output from the image display device 18. Therefore, when the image light G emitted by the image display device 18 is P-polarized light, the selective reflection film 16 is configured to reflect S-polarized light and transmit P-polarized light. When the image light G emitted from the image display device 18 is S-polarized light, the selective reflection film 16 is configured to reflect P-polarized light and transmit S-polarized light.
  • the HUD 10 of the present invention has a selective reflection film 16 that reflects such linearly polarized light on the output side of the image light G of the output diffraction element 14, thereby preventing external light such as sunlight from entering the light guide plate 12 and preventing the user O from observing the external light as interfering light.
  • the selective reflection film 16 prevents external light from entering the inside of the projector as interfering light, and solves heat problems such as burning of the image display device.
  • the selective reflection film 16 transmits the polarized light emitted from the image display device 18, and therefore does not impair the brightness of the image display.
  • FIG. 4 An example of a selective reflection film 16 that reflects linearly polarized light is shown in Fig. 4.
  • the selective reflection film 16 that reflects linearly polarized light shown in Fig. 4 has, from the bottom in the figure, a polarization conversion layer 60, a selective reflection layer 62, a retardation layer 64, and a transparent substrate 66, in this order.
  • the selective reflection film 16 in the illustrated example may be disposed with the transparent substrate 66 facing the light guide plate 12, or the transparent substrate 66 may be disposed facing the windshield glass 30. From the viewpoint of protecting the selective reflection film 16, it is preferable to dispose the transparent substrate 66 facing the windshield glass 30. In this case, the transparent substrate 66 may contain an ultraviolet absorbing agent or the like. This point is the same in the configuration described later.
  • the selective reflection film that reflects linearly polarized light is not limited to the configuration shown in FIG.
  • the selective reflection film may have, in this order, a retardation layer 64, a selective reflection layer 62, a retardation layer 64, and a transparent substrate 66.
  • the selective reflection film may have, in this order, a polarization conversion layer 60, a selective reflection layer 62, a polarization conversion layer 60, and a transparent substrate 66.
  • the selective reflection film may have, in addition to the layers (plates) shown in the figures, an alignment film, an attachment layer (adhesive layer/sticky layer), a support plate (transparent substrate) that supports each layer, an anti-reflection layer (to improve the intensity of image light), and a hard coat layer, etc., as necessary.
  • the selective reflection film 16 may be arranged so as to cover a portion of the light guide plate 12, but it is preferable that the selective reflection film 16 is arranged so as to cover at least the entire surface of the output diffraction element 14, more preferable that the selective reflection film 16 is arranged so as to cover the entire surfaces of the output diffraction element 14 and the intermediate diffraction element 24, even more preferable that the selective reflection film 16 is arranged so as to cover all of the diffraction elements, and it is particularly preferable that the selective reflection film 16 is arranged so as to cover the entire surface of the light guide plate 12. Furthermore, the image light G emitted from the image display device 18 may be transmitted through the selective reflection film 16 and then incident on the incident diffraction element 20 , or may be incident on the incident diffraction element 20 without transmitting through the selective reflection film 16 .
  • the members constituting the selective reflection film 16 that reflects linearly polarized light will be described in detail below.
  • the polarization conversion layer 60 exhibits optical rotation and birefringence for visible light, and converts the polarization state of incident light.
  • the polarization conversion layer 60 has a function of converting linearly polarized light orthogonal to the image light G, i.e., the linearly polarized light emitted by the image display device 18, into circularly polarized light that is reflected by the cholesteric liquid crystal layer of the selective reflection layer 62, which will be described later.
  • the polarization conversion layer 60 converts the image light G, i.e., the linearly polarized light emitted by the image display device 18, into circularly polarized light that passes through the cholesteric liquid crystal layer of the selective reflection layer 62.
  • the polarization conversion layer 60 converts the circularly polarized light that has passed through the cholesteric liquid crystal layer of the selective reflection layer 62 into linearly polarized light that is the same as the image light G, and converts the circularly polarized light reflected by the cholesteric liquid crystal layer of the selective reflection layer 62 into linearly polarized light that is perpendicular to the image light G.
  • the polarization conversion layer 60 converts S-polarized light into circularly polarized light that is reflected by the cholesteric liquid crystal layer of the selective reflection layer 62, and converts P-polarized light into circularly polarized light that is transmitted through the cholesteric liquid crystal layer of the selective reflection layer 62.
  • the polarization conversion layer 60 also converts circularly polarized light that is reflected by the cholesteric liquid crystal layer of the selective reflection layer 62 into S-polarized light, and converts circularly polarized light that is transmitted through the cholesteric liquid crystal layer of the selective reflection layer 62 into P-polarized light.
  • the polarization conversion layer 60 is preferably a layer in which the helical alignment structure of a liquid crystal compound is fixed.
  • the polarization conversion layer 60 is a layer in which a helical orientation structure of a liquid crystal compound is fixed in the thickness direction, and it is preferable that the pitch number x of the helical orientation structure and the film thickness y (unit: ⁇ m) of the polarization conversion layer satisfy all of the following relationship formulas (a) to (c): 0.1 ⁇ x ⁇ 1.0... Formula (a) 0.5 ⁇ y ⁇ 3.0... Formula (b) 3000 ⁇ (1560 ⁇ y)/x ⁇ 50000...
  • One pitch of the helical structure of a liquid crystal compound is one turn of the helix of the liquid crystal compound. That is, one pitch is defined as a state in which the director of the helically aligned liquid crystal compound (the long axis direction in the case of a rod-shaped liquid crystal) rotates 360°.
  • the polarization conversion layer 60 When the polarization conversion layer 60 has a helical structure of a liquid crystal compound, it exhibits optical rotation and birefringence for visible light, which has a shorter wavelength than the reflection peak wavelength in the infrared range. This allows for control of polarization in the visible range.
  • the pitch number x of the helical orientation structure of the polarization conversion layer 60 and the film thickness y of the polarization conversion layer 60 within the above ranges, it is possible to impart the function of converting linearly polarized light incident on the selective reflection film 16 into circularly polarized light.
  • the liquid crystal compound has a helical structure that satisfies the relational expressions (a) to (c), so that the polarization conversion layer 60 exhibits optical rotation and birefringence for visible light.
  • the pitch P of the helical structure of the polarization conversion layer 60 to a length that corresponds to the pitch P of the cholesteric liquid crystal layer, whose selective reflection center wavelength is in the long-wavelength infrared range, the layer exhibits high optical rotation and birefringence for visible light, which has a short wavelength.
  • the pitch number x of the helical structure of the polarization conversion layer 60 is more preferably 0.1 to 0.8, and the film thickness y is more preferably 0.6 to 2.6 ⁇ m.
  • "(1560 ⁇ y)/x" is more preferably 5000 to 13000.
  • Such a polarization conversion layer 60 can basically be formed in the same way as a known cholesteric liquid crystal layer.
  • a layer in which a helical orientation structure (helical structure) of a liquid crystal compound is fixed is a so-called cholesteric liquid crystal layer, which means a layer in which a cholesteric liquid crystal phase is fixed.
  • the cholesteric liquid crystal layer may be a layer in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • the cholesteric liquid crystal layer may be a layer in which the polymerizable liquid crystal compound is oriented in the cholesteric liquid crystal phase, polymerized and cured by ultraviolet irradiation and heating, etc., to form a layer with no fluidity, and at the same time, changed to a state in which the orientation form is not changed by an external field or external force.
  • the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer does not need to exhibit liquid crystallinity anymore.
  • the polymerizable liquid crystal compound may be polymerized by a curing reaction and no longer have liquid crystallinity.
  • the selective reflection layer 62 has three cholesteric liquid crystal layers (68R, 68G, 68B).
  • the three cholesteric liquid crystal layers have different selective reflection center wavelengths.
  • the cholesteric liquid crystal layer 68R having a selective reflection center wavelength in the red wavelength region, the cholesteric liquid crystal layer 68G having a selective reflection center wavelength in the green wavelength region, and the cholesteric liquid crystal layer 68B having a selective reflection center wavelength in the blue wavelength region are arranged in this order.
  • each cholesteric liquid crystal layer is in direct contact with any of the other cholesteric liquid crystal layers.
  • a cholesteric liquid crystal layer is a layer in which liquid crystal compounds are fixed in an oriented state of a helical structure of a cholesteric liquid crystal phase, and it reflects circularly polarized light of a wavelength corresponding to the pitch of the helical structure and transmits light of other wavelength ranges. Furthermore, the cholesteric liquid crystal layer exhibits selective reflectivity for either left-handed or right-handed circularly polarized light at a specific wavelength.
  • the selective reflection layer 62 has a configuration including three cholesteric liquid crystal layers having different selective reflection center wavelengths, but this is not limited to this, and the selective reflection layer 62 may have one cholesteric liquid crystal layer, or two or four or more cholesteric liquid crystal layers.
  • the selective reflection layer 62 may have one cholesteric liquid crystal layer, or two or four or more cholesteric liquid crystal layers.
  • the total thickness of the selective reflection layer 62 is preferably from 1 to 50 ⁇ m, more preferably from 1.5 to 40 ⁇ m, and even more preferably from 2 to 30 ⁇ m.
  • the retardation layer 64 changes the state of the incident polarized light by imparting a phase difference (optical path difference) to two orthogonal polarized light components.
  • the front retardation of the retardation layer 64 may be set to a retardation that provides optical compensation.
  • the retardation layer 64 preferably has a front retardation of 50 to 160 nm at a wavelength of 550 nm.
  • the retardation layer 64 converts linearly polarized light into circularly polarized light
  • the retardation layer 64 is preferably configured to provide an in-plane retardation of ⁇ /4, and may be configured to provide an in-plane retardation of 3 ⁇ /4.
  • the angle of the slow axis of the retardation layer 64 may be arranged so as to be oriented in such a way that it converts the incident linearly polarized light into circularly polarized light.
  • the retardation layer 64 preferably has an in-plane retardation in the range of 100 to 450 nm at a wavelength of 550 nm, more preferably in the range of 120 to 200 nm or 300 to 400 nm.
  • the retardation layer 64 basically exhibits the same function as the polarization conversion layer 60 described above. Specifically, the retardation layer 64 converts the linearly polarized light orthogonal to the image light G, i.e., the linearly polarized light emitted by the image display device 18, into circularly polarized light that is reflected by the cholesteric liquid crystal layer of the selective reflection layer 62. In other words, the polarization conversion layer 60 converts the image light G, i.e., the linearly polarized light emitted by the image display device 18, into circularly polarized light that passes through the cholesteric liquid crystal layer of the selective reflection layer 62.
  • the retardation layer 64 converts the circularly polarized light that has passed through the cholesteric liquid crystal layer of the selective reflection layer 62 into linearly polarized light that is the same as the image light G, and converts the circularly polarized light reflected by the cholesteric liquid crystal layer of the selective reflection layer 62 into linearly polarized light that is perpendicular to the image light G.
  • the retardation layer 64 converts S-polarized light into circularly polarized light reflected by the cholesteric liquid crystal layer of the selective reflection layer 62, and converts P-polarized light into circularly polarized light transmitted through the cholesteric liquid crystal layer of the selective reflection layer 62.
  • the retardation layer 64 converts circularly polarized light reflected by the cholesteric liquid crystal layer of the selective reflection layer 62 into S-polarized light, and converts circularly polarized light transmitted through the cholesteric liquid crystal layer of the selective reflection layer 62 into P-polarized light.
  • the type of the retardation layer 64 is not particularly limited and can be appropriately selected depending on the purpose.
  • Examples of the retardation layer 64 include a stretched polycarbonate film, a stretched norbornene-based polymer film, a transparent film containing and oriented inorganic particles having birefringence such as strontium carbonate, a thin film formed by obliquely depositing an inorganic dielectric onto a support, a film in which a polymerizable liquid crystal compound is uniaxially oriented and fixed in orientation, and a film in which a liquid crystal compound is uniaxially oriented and fixed in orientation.
  • the thickness of the retardation layer 64 is not particularly limited, but is preferably 0.2 to 300 ⁇ m, more preferably 0.5 to 150 ⁇ m, and even more preferably 1.0 to 80 ⁇ m.
  • the transparent substrate 66 supports each layer of the selective reflection film 16.
  • the transparent substrate 66 can also be used as a substrate when the selective reflection layer 62 is formed.
  • the transparent substrate 66 used for forming the selective reflection layer 62 may be a temporary support that is peeled off after the selective reflection layer 62 is formed.
  • the material of the transparent substrate 66 is not particularly limited, and examples include polyesters such as polyethylene terephthalate (PET), polycarbonate, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, and plastic films such as silicone.
  • PET polyethylene terephthalate
  • acrylic resins acrylic resins
  • epoxy resins epoxy resins
  • polyurethanes polyamides
  • polyolefins polyolefins
  • cellulose derivatives cellulose derivatives
  • plastic films such as silicone.
  • the thickness of the transparent substrate 66 there are no restrictions on the thickness of the transparent substrate 66, but it should be approximately 5.0 to 1000 ⁇ m, preferably 10 to 250 ⁇ m, and more preferably 15 to 90 ⁇ m.
  • the projector and HUD of the present invention will be described in detail by explaining the function of the selective reflection film that reflects linearly polarized light.
  • the image light G that is, the image light irradiated by the image display device 18, is P-polarized light. Therefore, the selective reflection film 16 selectively reflects S-polarized light.
  • each cholesteric liquid crystal layer of the selective reflection layer 62 selectively reflects right-handed circularly polarized light in a specific wavelength range and transmits left-handed circularly polarized light. Therefore, the polarization conversion layer 60 and the retardation layer 64 convert P-polarized light into left-handed circularly polarized light and S-polarized light into right-handed circularly polarized light.
  • the polarization conversion layer 60 and the retardation layer 64 convert left-handed circularly polarized light into P-polarized light and right-handed circularly polarized light into S-polarized light. Furthermore, in this example, the selective reflection film 16 is disposed with the polarization conversion layer 60 facing the output diffraction element 14. Therefore, the image light G is incident on the selective reflection film 16 from the polarization conversion layer 60 side, and external light such as sunlight is incident on the selective reflection film 16 from the transparent substrate 66 side.
  • the function of the selective reflection film 16 is the same even when the transparent substrate 66 is on the output diffraction element side.
  • the function of the selective reflection film is also the same when the polarization conversion layer 60 is changed to the retardation layer 64, i.e., when two retardation layers 64 are used, and when the retardation layer 64 is changed to the polarization conversion layer 60, i.e., when two polarization conversion layers 60 are used.
  • each cholesteric liquid crystal layer of the selective reflection layer 62 selectively reflects left-handed circularly polarized light and transmits right-handed circularly polarized light
  • the function of the selective reflection film will be the same if the polarization conversion layer 60 and/or the phase difference layer 64 converts the image light G into circularly polarized light that transmits through the cholesteric liquid crystal layer and converts linearly polarized light perpendicular to the image light G into circularly polarized light that is reflected by the cholesteric liquid crystal layer.
  • the image light G (P-polarized light) emitted from the image display device 18 is diffracted by the incident diffraction element 20, enters the light guide plate 12, and propagates in the direction of the arrow Y inside the light guide plate 12. Furthermore, the image light G propagated in the direction of the arrow Y is diffracted by the intermediate diffraction element 24, and changes its propagation direction to the direction of the arrow X, i.e., to the left in FIG. The image light G propagating in the direction of the arrow X is diffracted by the output diffraction element 14 , exits the light guide plate 12 , and enters the polarization conversion layer 60 of the selective reflection film 16 .
  • the image light G is P-polarized light.
  • the polarization conversion layer 60 converts the image light G, that is, P-polarized light, into left-handed circularly polarized light.
  • each cholesteric liquid crystal layer of the selective reflection layer 62 selectively reflects right-handed circularly polarized light and transmits left-handed circularly polarized light. Therefore, the P-polarized image light G that is emitted from the light guide plate 12 and enters the selective reflection film 16 is converted into left-handed circularly polarized light by the polarization conversion layer 60 , passes through the selective reflection layer 62 , and enters the retardation layer 64 .
  • the retardation layer 64 also converts P-polarized light into left-handed circularly polarized light and converts left-handed circularly polarized light into P-polarized light. Therefore, the left-handed circularly polarized image light incident on the retardation layer 64 is converted into P-polarized light by the retardation layer 64, passes through the transparent substrate 66, and exits from the selective reflection film 16, i.e., the projector, as P-polarized image light G.
  • the P-polarized image light G emitted from the projector is incident on the windshield glass 30, is reflected, and is observed by the user O as a projected image of the HUD.
  • each cholesteric liquid crystal layer constituting the selective reflection layer 62 selectively reflects right-handed circularly polarized light. Therefore, of the external light incident on the selective reflection layer 62, the right-handed circularly polarized component is reflected by the selective reflection layer 62, and the left-handed circularly polarized component is transmitted through the selective reflection layer 62. That is, half of the external light incident on the selective reflection layer 62 is reflected by the selective reflection layer 62 .
  • the retardation layer 64 converts left-handed circularly polarized light into P-polarized light and P-polarized light into left-handed circularly polarized light. Therefore, the right-handed circularly polarized external light incident on the retardation layer 64 is converted into S-polarized light by the retardation layer 64, passes through the transparent substrate 66, and is emitted from the selective reflection film 16.
  • the selective reflection film 16 selectively reflects the S-polarized component of the incident external light. As a result, the selective reflection film 16 reflects half of the external light that is incident on the selective reflection layer 62.
  • the left-handed circularly polarized component of the external light that has passed through the selective reflection layer 62 enters the polarization conversion layer 60 which, like the phase difference layer 64, converts left-handed circularly polarized light to P-polarized light and P-polarized light to left-handed circularly polarized light, is converted to P-polarized light, and is emitted from the selective reflection film 16, with a portion of it entering the exit diffraction element 14. A part of this P-polarized external light is diffracted by the output diffraction element 14 as described above, and enters the light guide plate 12 .
  • the external light incident on the light guide plate 12 in this manner can cause glare in the image, disturbing light, and thermal damage inside the projector.
  • the selective reflection film is a reflective film. Therefore, compared with an absorptive film, heat is not trapped in the selective reflection film, and heat damage to the selective reflection film can be reduced.
  • the reflective film transmits almost 100% of the non-reflected light, i.e., the image light G, so the selective reflection film can prevent the HUD display image from becoming dark.
  • a reflective polarizer that selectively reflects P-polarized light may be provided on the windshield glass 30.
  • An example of a selective reflective polarizer is a reflective circular polarizer such as a combination of a retardation plate ( ⁇ /4 plate) and a cholesteric liquid crystal layer. External light that passes through such a reflective polarizer that selectively reflects P-polarized light usually becomes S-polarized light. That is, in this case, the external light that is S-polarized is incident on the selective reflection film 16. As described above, the external light incident on the selective reflection film 16 is incident on the retardation layer 64.
  • the retardation layer 64 converts P-polarized light into left-handed circularly polarized light and converts left-handed circularly polarized light into P-polarized light.
  • the cholesteric liquid crystal layer constituting the selective reflection layer 62 selectively reflects right-handed circularly polarized light. Therefore, the S-polarized external light incident on the retardation layer 64 is converted into right-handed circularly polarized light, reflected by the cholesteric liquid crystal layer of the selective reflection layer 62, re-incident on the retardation layer 64, converted into S-polarized light, and emitted from the selective reflection film 16. That is, the selective reflection film selectively reflects the S-polarized external light.
  • the image display device 18 emits P-polarized image light G, and the image light G emitted from the selective reflection film 16 that reflects linearly polarized light, i.e., the projection light of the HUD, is also P-polarized light, and the selective reflection film 16 reflects S-polarized light, but the present invention is not limited to this.
  • the image display device 18 may emit S-polarized image light G, and the image light G emitted from the selective reflection film 16 that reflects linearly polarized light, i.e., the projection light of the HUD, may also be S-polarized light, and the selective reflection film 16 may reflect P-polarized light.
  • Such a projector of the present invention can be suitably used in HUDs mounted on various types of transportation, such as automobiles, trains, airplanes, and ships.
  • the projector and HUD of the present invention can be used for a variety of purposes, in addition to such transportation.
  • HUD head mounted display system
  • a 40 ⁇ m thick cellulose acylate film was produced by the same production method as in Example 20 of International Publication No. 2014/112575.
  • UV-531 manufactured by Teisei Kako Co., Ltd. was added to this cellulose acylate film as an ultraviolet absorbent. The amount added was 3 phr (per hundred resin).
  • the prepared cellulose acylate film was passed through a dielectric heating roll at 60° C. to raise the film surface temperature to 40° C.
  • an alkaline solution having the composition shown below was applied to one side of the film with a coating amount of 14 mL/ m2 using a bar coater, and the film was allowed to remain under a steam type far-infrared heater (manufactured by Noritake Co., Ltd.) heated to 110° C. for 10 seconds.
  • 3 mL/m 2 of pure water was applied using the same bar coater.
  • washing with water using a fountain coater and draining with an air knife were repeated three times, and then the film was allowed to stay in a drying zone at 70° C. for 5 seconds and dried to prepare a saponified cellulose acylate film.
  • the in-plane retardation of the saponified cellulose acylate film was measured by AxoScan and found to be 1 nm.
  • a coating solution for forming an alignment layer having the composition shown below was applied by a wire bar coater at 24 mL/m 2 , and dried with hot air at 100° C. for 120 seconds.
  • the cellulose acylate film having the alignment layer formed thereon was used as a support (transparent substrate).
  • One surface of the support facing the alignment film was subjected to a rubbing treatment (rayon cloth, pressure: 0.1 kgf (0.98 N), rotation speed: 1000 rpm (revolutions per minute), conveying speed: 10 m/min, number of reciprocations: 1) in a direction rotated 45° counterclockwise from the long side direction of the support.
  • the following coating liquid for forming a retardation layer was applied to the rubbed surface of the alignment film on the support using a wire bar, and then dried to obtain a coating film of the coating liquid for forming a retardation layer.
  • Composition of Coating Solution for Forming Retardation Layer-- Mixture 1 100 parts by weight Fluorine-based horizontal alignment agent 1 (alignment control agent 1): 0.05 parts by weight Fluorine-based horizontal alignment agent 2 (alignment control agent 2): 0.01 parts by weight Polymerization initiator IRGACURE OXE01 (manufactured by BASF) 1.0 part by mass of solvent (methyl ethyl ketone) - amount to give a solute concentration of 20% by mass
  • the support with the coating film thus obtained was then placed on a hot plate at 50° C., and the coating film was irradiated with ultraviolet light for 6 seconds using an electrodeless lamp “D bulb” (60 mW/ cm2 ) manufactured by Fusion UV Systems in an environment with an oxygen concentration of 1000 ppm or less, thereby fixing the liquid crystal phase.
  • an electrodeless lamp “D bulb” 60 mW/ cm2
  • Fusion UV Systems in an environment with an oxygen concentration of 1000 ppm or less
  • the following cholesteric liquid crystal layer forming coating solution (B1) was applied to the surface of the obtained retardation layer at room temperature using a wire bar so that the thickness of the dried film after drying would be 3.0 ⁇ m, thereby obtaining a coating film.
  • the coating film was dried at room temperature for 30 seconds, and then heated for 2 minutes in an atmosphere at 85° C. Thereafter, in an environment with an oxygen concentration of 1000 ppm or less, the coating film was irradiated with ultraviolet light at an output of 60% for 6 to 12 seconds using a D bulb (90 mW/ cm2 lamp) manufactured by Fusion Co., Ltd. at 60° C. to fix the cholesteric liquid crystal phase, thereby obtaining a cholesteric liquid crystal layer B1 having a thickness of 2.5 ⁇ m.
  • Mixture 1 100 parts by mass Fluorine-based horizontal alignment agent 1 (alignment control agent 1): 0.05 parts by mass Fluorine-based horizontal alignment agent 2 (alignment control agent 2): 0.02 parts by mass
  • Right-handed chiral agent LC756 (manufactured by BASF)
  • Polymerization initiator IRGACURE OXE01 (manufactured by BASF) 1.0 part by mass of solvent (methyl ethyl ketone) - amount to give a solute concentration of 30% by mass
  • cholesteric liquid crystal layer forming coating liquid (G1) on the surface of the obtained cholesteric liquid crystal layer B1 to form a cholesteric liquid crystal layer G1 having a thickness of 3.0 ⁇ m.
  • a coating solution (G1) for forming a cholesteric liquid crystal layer was prepared by mixing the same components as those in the coating solution (B1) for forming a cholesteric liquid crystal layer, except that the amount of the right-handed chiral dopant LC756 used in the coating solution (B1) for forming a cholesteric liquid crystal layer was adjusted so that the selective reflection center wavelength of the resulting cholesteric liquid crystal layer was 530 nm.
  • a coating solution (R1) for forming a cholesteric liquid crystal layer was prepared by mixing the same components as those in the coating solution (B1) for forming a cholesteric liquid crystal layer, except that the amount of the right-handed chiral dopant LC756 used in the coating solution (B1) for forming a cholesteric liquid crystal layer was adjusted so that the selective reflection center wavelength of the resulting cholesteric liquid crystal layer was 630 nm.
  • the coating liquid for forming a polarization conversion layer was further applied to the surface of the obtained cholesteric liquid crystal layer so as to have a target film thickness, thereby forming a polarization conversion layer, and thus the selective reflection film of Example 1 was produced.
  • the polarization conversion layer was formed in the same manner as the above-mentioned cholesteric liquid crystal layer.
  • the pitch number, film thickness, and selective reflection center wavelength of the polarization conversion layer were adjusted so that the polarization conversion layer had the same polarization conversion characteristics as the previously formed retardation layer ( ⁇ /4 wavelength plate) when light was incident perpendicularly to the substrate.
  • Mixture 1 100 parts by mass Fluorine-based horizontal alignment agent 1 (alignment control agent 1): 0.05 parts by mass Fluorine-based horizontal alignment agent 2 (alignment control agent 2): 0.02 parts by mass
  • Right-handed chiral agent LC756 (manufactured by BASF)
  • Polymerization initiator IRGACURE OXE01 (manufactured by BASF) 1.0 part by mass of solvent (methyl ethyl ketone) - amount to give a solute concentration of 20% by mass
  • the selective reflection film of Example 1 that reflects linearly polarized light was prepared.
  • the selective reflection film of Example 2 that reflects linearly polarized light was produced by preparing the retardation layer and the selective reflection layer in the same manner as in the examples, and then preparing a retardation layer in which the angle of the rubbing treatment on the above-mentioned alignment film was rotated 45° clockwise, and laminating the retardation layer on the selective reflection layer with an OCA.
  • the selective reflection film of Example 3 that reflects linearly polarized light was prepared in the same manner as in Example 2, except for the selective reflection layer.
  • the selective reflection layer was prepared by similarly laminating a cholesteric liquid crystal layer having a selective reflection center wavelength of 850 nm on three cholesteric liquid crystal layers (B1, G1, R1).
  • the selective reflection film of Example 4 that reflects linearly polarized light was produced by changing only the conditions of the retardation layer of Example 3.
  • the retardation layer in contact with the cholesteric liquid crystal layer was produced by rotating the rubbing angle of the alignment film by 45° clockwise, and the retardation layer that was bonded to the cholesteric liquid crystal layer via the OCA was produced by rotating the rubbing angle of the alignment film by 45° counterclockwise.
  • the image light G emitted from the selective reflection film i.e., the projection light in the HUD, becomes S-polarized light.
  • Comparative Example 1 a selective reflection film that reflects linearly polarized light was not produced.
  • Comparative Example 2 only a cholesteric liquid crystal layer was prepared without forming the retardation layer and the polarization conversion layer from Example 1.
  • Table 1 shows the structure of the selective reflection film that reflects linearly polarized light.
  • a light guide plate having an entrance diffraction element, an intermediate diffraction element and an exit diffraction element on one surface as shown in FIG. 2 was prepared.
  • the light guide plate was made of acrylic resin with a thickness of 10 mm and a size of 200 ⁇ 200 mm. All the diffraction elements were holographic diffraction elements, with the incident diffraction element being 10 x 5 mm, the intermediate diffraction element being 185 x 10 mm, and the exit diffraction element being 185 x 175 mm, and were arranged according to Fig. 2.
  • the diffraction elements were fixed using an ultraviolet-curing adhesive (UVX-5457, manufactured by Toa Gosei Co., Ltd.). The diffraction characteristics of each diffraction element were as described above.
  • the light guide plate provided with the diffraction element was placed on the dashboard of a car.
  • an image display device was provided so that an image was incident on the light guide plate from the incident diffraction element.
  • a laser scanning projection unit was used as the image display device.
  • the linearly polarized light emitted by the image display device is shown in Table 2 below.
  • Six types of projectors were produced by providing the selective reflection films for reflecting linearly polarized light of Examples 1 to 4 and Comparative Example 2 on the output diffraction element of this light guide plate.
  • Comparative Example 1 a projector having nothing on the output diffraction element was also produced.
  • the projector was installed in an actual vehicle, and a head-up display system was constructed to project an image onto the windshield glass.
  • the windshield glasses of Examples 1 to 3 and Comparative Examples 1 and 2 were made of windshield glass that reflects P-polarized light, as described in International Publication No. 2022/123946.
  • the windshield glass of Example 4 was made of wedge-shaped glass.
  • thermocouple was placed in front of the image display device outdoors under a clear sky in midsummer, and the temperature was measured and evaluated according to the following criteria. Evaluation Criteria A: The temperature at the front of the image display device is 60° C. or less. B: The temperature at the front of the image display device is 60°C or higher and 80°C or lower. C: The temperature at the front of the image display device rose to 80° C. or higher (a temperature at which the internal members were damaged). The results are shown in Table 2 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

With regard to a projector for a head-up display using a light guide plate and a diffraction element, the present invention addresses the problem of preventing interference light, due to sunlight or the like, from being visible. The present invention solves the problem by providing: an image display device; a light guide plate that guides image light generated by the image display device; a diffraction element that causes the image light to be emitted from the light guide plate; and a selective reflection layer that is provided on the image light emission-side of the diffraction element and reflects linearly polarized light.

Description

プロジェクターおよびヘッドアップディスプレイシステムProjectors and Head-Up Display Systems

 本発明は、ヘッドアップディスプレイに用いられるプロジェクター、および、このプロジェクターを用いるヘッドアップディスプレイシステムに関する。 The present invention relates to a projector used in a head-up display and a head-up display system that uses this projector.

 車両等のウインドシールド(ウインドシールドガラス)に画像を投影(投映)し、運転者に情報を提供する、いわゆるヘッドアップディスプレイ(ヘッドアップディスプレイシステム)が知られている。以下の説明では、ヘッドアップディスプレイを『HUD』とも言う。なお、HUDとは、『Head up Display』の略である。
 HUDによれば、運転者は、前方の外界を見ながら、視線を大きく動かすことなく、地図、走行速度、および、車両の状態など、様々な情報を得ることができるため、各種の情報を得ながら、より安全に運転を行うことが期待できる。
A so-called head-up display (head-up display system) is known that projects an image onto the windshield (windshield glass) of a vehicle or the like to provide information to the driver. In the following description, the head-up display is also referred to as "HUD." HUD is an abbreviation for "Head up Display."
With a HUD, the driver can obtain various information such as maps, driving speed, and vehicle status without moving their line of sight significantly while looking at the outside world ahead, which is expected to enable safer driving while obtaining a variety of information.

 図5に、一般的なHUDの一例を概念的に示す。
 図示例のHUD100は、画像表示部112と、反射ミラー116と、凹面ミラー118と、画像光を反射して投影するための反射部材として作用するウインドシールド126とを有して構成される。画像表示部112は、液晶ディスプレイ等の画像表示装置129と、投影レンズ131とを有して構成される。
 HUD100において、画像表示部112,反射ミラー116および凹面ミラー118はHUDのプロジェクターを構成するものであり、自動車等の車両のダッシュボード120の下部に収容される。
FIG. 5 conceptually illustrates an example of a typical HUD.
The HUD 100 in the illustrated example includes an image display unit 112, a reflecting mirror 116, a concave mirror 118, and a windshield 126 that acts as a reflecting member for reflecting and projecting the image light. The image display unit 112 includes an image display device 129 such as a liquid crystal display, and a projection lens 131.
In the HUD 100, the image display unit 112, the reflecting mirror 116, and the concave mirror 118 constitute a projector of the HUD, and are housed under a dashboard 120 of a vehicle such as an automobile.

 HUD100において、画像表示装置129が表示した画像すなわち画像光は、投影レンズ131によって投影され、反射ミラー116および凹面ミラー118によって所定の光路に反射されて、ダッシュボード120に設けられた透過窓124を透過して、ウインドシールド126に入射して、反射、投影され、投影像として使用者Oによって観察される。
 このようなHUD100では、使用者Oは、ウインドシールド126に投影された画像の虚像を観察している。
In the HUD 100, the image displayed by the image display device 129, i.e., the image light, is projected by the projection lens 131, reflected along a predetermined optical path by the reflecting mirror 116 and the concave mirror 118, passes through a transparent window 124 provided in the dashboard 120, enters the windshield 126, is reflected and projected, and is observed by the user O as a projected image.
In such a HUD 100 , the user O observes a virtual image of the image projected onto the windshield 126 .

 ここで、HUD100に用いられるプロジェクターは、上述のように、車両のダッシュボードの下に収納されるので、サイズ的な制約が大きい。そのため、従来のHUD用のプロジェクターは、複数のミラーを用いて、光路を折り返すことにより、必要な光路長を確保している。
 そのため、HUD100に用いられるプロジェクターは、構造が複雑になりやすい。しかも、上述のように、ダッシュボードの下部はスペースが小さいため、プロジェクターの設計上の自由度は低い。
Here, as described above, the projector used in the HUD 100 is housed under the dashboard of the vehicle, and is therefore subject to significant size restrictions. For this reason, conventional HUD projectors use multiple mirrors to fold the optical path, thereby ensuring the necessary optical path length.
Therefore, the structure of the projector used in the HUD 100 tends to be complicated. Moreover, as described above, the space below the dashboard is small, so the degree of freedom in designing the projector is low.

 このような問題を解決した、小型かつ簡易な構成のHUDとして、特許文献1に記載されるような、導光板(光導波体)と回折素子(ホログラム)とを組み合わせたHUDが知られている。
 図6に、その一例を概念的に示す。
As a small-sized and simply configured HUD that solves these problems, a HUD that combines a light guide plate (optical waveguide) and a diffraction element (hologram), as described in Patent Document 1, is known.
FIG. 6 conceptually shows one example of this.

 図6に示すように、このHUD130は、導光板132と、入射回折素子134と、出射回折素子136を有する。
 HUD130においては、図示しない画像表示装置から出射された画像光Gを、入射回折素子134によって回折して、全反射する角度で導光板132に入射する。導光板132に入射した画像光Gは、図中左方向に向かう矢印に示すように、全反射を繰り返して導光板132内を導光(伝播)する。
 ここで、導光板132の図中上面(以下、出射面ともいう)には、出射回折素子136が設けられている。導光板132内を導光する光の一部は、出射回折素子136に入射して回折され、出射面から上方に出射する。導光板132から出射した画像光Gは、先と同様、ウインドシールド126に入射して、反射、投影されて、投影像として使用者Oによって観察される。
As shown in FIG. 6, the HUD 130 includes a light guide plate 132 , an input diffraction element 134 , and an output diffraction element 136 .
In the HUD 130, image light G emitted from an image display device (not shown) is diffracted by an incident diffraction element 134 and enters the light guide plate 132 at an angle at which the light is totally reflected. The image light G that enters the light guide plate 132 is guided (propagated) within the light guide plate 132 by repeating total reflection, as indicated by the arrow pointing leftward in the figure.
Here, an output diffraction element 136 is provided on the upper surface (hereinafter also referred to as the output surface) of the light guide plate 132 in the figure. A part of the light guided within the light guide plate 132 is incident on the output diffraction element 136, diffracted, and output upward from the output surface. As before, the image light G output from the light guide plate 132 is incident on the windshield 126, reflected, and projected, and is observed by the user O as a projected image.

 このような導光板132を用いるHUD130は、例えば導光板132を自動車等のダッシュボード上等に配置することができるので、図5に示すような従来のHUD100に比して、サイズ的な制約が、大幅に少なくなる。
 また、ミラーによる光路の折り返し等を行う必要がなく、導光板132のサイズに応じた投影光を出射できるので、HUDの装置構成も簡略化できる。
In the HUD 130 using such a light guide plate 132, the light guide plate 132 can be disposed, for example, on the dashboard of an automobile or the like, and size restrictions are significantly reduced compared to the conventional HUD 100 as shown in FIG.
Furthermore, since there is no need to use a mirror to fold the optical path, and projection light can be emitted according to the size of the light guide plate 132, the device configuration of the HUD can be simplified.

特表2021ー528681号公報Special table 2021-528681 publication

 ここで、特許文献1に示されるような、導光板132と回折素子とを用いるHUD130では、太陽光等の外光が導光板132に入射して、導光されて出射されることにより、妨害光として使用者Oによって観察されるという問題がある。 Here, in a HUD 130 using a light guide plate 132 and a diffraction element as shown in Patent Document 1, there is a problem in that external light such as sunlight enters the light guide plate 132, is guided, and is emitted, which is observed by the user O as interfering light.

 ずなわち、図7に概念的に示すように、HUD130において、太陽光等の外光(破線)は、ウインドシールド126を透過して車内に侵入し、導光板132に至る。
 ここで、導光板132の出射面には、出射回折素子136が設けられている。そのため、外光は出射回折素子136によって回折され、入射方向によっては、全反射する角度で導光板132に入射する。
 このようにして導光板132に入射した外光は、図中左方向に向かう矢印に示す画像光Gとは逆に、図中右方向に向かう矢印で示すように、導光板132内で全反射を繰り返して導光し、一部が、出射回折素子136によって回折されて、画像光と共に導光板132から出射する。導光板132から出射した画像光および外光は、先と同様、ウインドシールド126に入射して、反射、投影(投影)され、妨害光Dとして使用者Oによって観察される。その結果、使用者Oが観察する画像にギラツキが生じ、また、妨害光Dによって使用者Oが幻惑される。
That is, as conceptually shown in FIG. 7 , in the HUD 130 , external light (dashed line) such as sunlight passes through the windshield 126 , enters the vehicle interior, and reaches the light guide plate 132 .
Here, an output diffraction element 136 is provided on the output surface of the light guide plate 132. Therefore, external light is diffracted by the output diffraction element 136, and depending on the incident direction, the light enters the light guide plate 132 at an angle that causes total reflection.
The external light thus incident on the light guide plate 132 is guided by repeated total reflection within the light guide plate 132 as indicated by the arrow pointing to the right in the figure, in contrast to the image light G indicated by the arrow pointing to the left in the figure, and a part of the light is diffracted by the output diffraction element 136 and emitted from the light guide plate 132 together with the image light. As before, the image light and external light emitted from the light guide plate 132 are incident on the windshield 126, reflected and projected (projected), and observed by the user O as interference light D. As a result, the image observed by the user O is glaring, and the interference light D dazzles the user O.

 さらに、導光板132に入射して、導光されて出射した外光は、導光板132への入射角によっては、ウインドシールド126に入射せず、導光板132から出射して、妨害光Dとして、直接、使用者Oに至る場合もある。 Furthermore, depending on the angle of incidence on the light guide plate 132, the external light that enters the light guide plate 132, is guided, and then exits may not enter the windshield 126, but may exit the light guide plate 132 and reach the user O directly as interfering light D.

 このような問題を解決するために、特許文献1では、図6に破線で示すように、回折素子の出射面側に画像光Gの波長以外の波長の光を吸収する光学フィルタ138(バンドパスフィルタ)を設けている。
 特許文献1では、これにより、導光板132に太陽光等の外光が入射することを防止して、妨害光Dによる使用者Oが観察する画像のギラツキを抑制し、また、使用者Oが妨害光Dによって幻惑されることを抑制している。
In order to solve this problem, in Patent Document 1, an optical filter 138 (bandpass filter) that absorbs light of wavelengths other than the wavelength of the image light G is provided on the exit surface side of the diffraction element, as shown by the dashed line in Figure 6.
In Patent Document 1, this prevents external light such as sunlight from entering the light guide plate 132, suppresses glare in the image observed by the user O caused by the interfering light D, and also suppresses the user O from being dazzled by the interfering light D.

 また、昨今、ヘッドアップディスプレイシステムにおいては、画像表示に利用可能な角度範囲である画角を大きくすることが望まれている。つまり、ヘッドアップディスプレイシステムにおいて、ウインドシールドガラスにおける投影光の照射領域の拡大が望まれている。この点を考慮して、凹面ミラー118および出射回折素子136での集光は、従来よりも強くなっている。
 そのため、太陽光等の外光が凹面ミラー118や出射回折素子136を介してプロジェクター内部に侵入した場合に、HUD100およびHUD130等に与える熱ダメージの対策も必要となる。
In addition, in recent years, in head-up display systems, it is desirable to increase the angle of view, which is the angular range available for image display. In other words, in head-up display systems, it is desirable to expand the irradiation area of the projection light on the windshield glass. In consideration of this, the light concentration at the concave mirror 118 and the output diffraction element 136 is stronger than before.
Therefore, when external light such as sunlight enters the inside of the projector via the concave mirror 118 or the output diffraction element 136, measures must be taken to prevent thermal damage to the HUD 100, HUD 130, etc.

 本発明の課題は、特許文献1のような導光板と回折素子とを用いるHUD用のプロジェクターにおいて、妨害光が使用者に観察されることを抑制し、熱ダメージの対策が為されたプロジェクター、および、このプロジェクターを用いるHUDを提供することにある。 The object of the present invention is to provide a projector for a HUD that uses a light guide plate and a diffraction element as in Patent Document 1, which prevents the user from observing interfering light and has measures in place to prevent heat damage, and to provide a HUD that uses this projector.

 上記目的を達成するために、本発明は、以下の構成を有する。
[1]ヘッドアップディスプレイ用のプロジェクターであって、
画像光を出射する画像表示装置と、画像表示装置が出射した画像光を導光する導光板と、
導光板を導光する画像光を導光板から出射する出射素子と、
出射素子の画像光の出射側に設けられる、直線偏光を反射する選択反射フィルムと、を有する、プロジェクター。
[2]出射素子が回折素子である、[1]に記載のプロジェクター。
[3]直線偏光を反射する選択反射フィルムは、可視光を反射する、[1]または[2]に記載のプロジェクター。
[4]直線偏光を反射する選択反射フィルムは、可視光と赤外光とを反射する、[1]~[3]のいずれかに記載のプロジェクター。
[5]画像光がP偏光であって、直線偏光を反射する選択反射フィルムはS偏光を反射するフィルムである、[1]~[4]のいずれかに記載のプロジェクター。
[6]画像光がS偏光であって、直線偏光を反射する選択反射フィルムはP偏光を反射するフィルムである、[1]~[4]のいずれかに記載のプロジェクター。
[7]直線偏光を反射する選択反射フィルムは、位相差層と、コレステリック液晶相を固定してなるコレステリック液晶層と、位相差層とを、この順で有する、[1]~[6]のいずれかに記載のプロジェクター。
[8]直線偏光を反射する選択反射フィルムは、位相差層とコレステリック液晶相を固定してなるコレステリック液晶層と、偏光変換層とを、この順で有する、[1]~[7]のいずれかに記載のプロジェクター。
[9][1]~[8]のいずれかに記載のプロジェクターと、プロジェクターより出射された投影光が照射されるウインドシールドガラスと、を含む、ヘッドアップディスプレイシステム。
In order to achieve the above object, the present invention has the following configuration.
[1] A projector for a head-up display,
an image display device that emits image light; and a light guide plate that guides the image light emitted by the image display device;
an emission element that emits the image light guided through the light guide plate from the light guide plate;
a selective reflection film that reflects linearly polarized light and is provided on the image light emission side of the emission element.
[2] The projector according to [1], wherein the output element is a diffraction element.
[3] The projector according to [1] or [2], wherein the selective reflection film that reflects linearly polarized light reflects visible light.
[4] The projector according to any one of [1] to [3], wherein the selective reflection film that reflects linearly polarized light reflects visible light and infrared light.
[5] The projector according to any one of [1] to [4], wherein the image light is P-polarized light, and the selective reflection film that reflects linearly polarized light is a film that reflects S-polarized light.
[6] The projector according to any one of [1] to [4], wherein the image light is S-polarized light, and the selective reflection film that reflects linearly polarized light is a film that reflects P-polarized light.
[7] A projector described in any one of [1] to [6], in which the selective reflection film that reflects linearly polarized light has, in this order, a retardation layer, a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase, and a retardation layer.
[8] A projector described in any one of [1] to [7], in which the selective reflection film that reflects linearly polarized light has, in this order, a retardation layer, a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase, and a polarization conversion layer.
[9] A head-up display system including the projector according to any one of [1] to [8] and a windshield glass onto which the projection light emitted from the projector is irradiated.

 本発明によれば、導光板と回折素子とを用いるHUD用のプロジェクターにおいて、新規な方法で、妨害光が使用者に観察されること、および、プロジェクター内部の昇温に起因する熱ダメージを抑制できる。 The present invention uses a new method to prevent interference light from being observed by the user in a HUD projector that uses a light guide plate and a diffraction element, and to suppress thermal damage caused by temperature rise inside the projector.

図1は、本発明のプロジェクターおよびHUDの一例を概念的に示す図である。FIG. 1 is a diagram conceptually showing an example of a projector and HUD of the present invention. 図2は、図1に示すプロジェクターを説明するための概略斜視図である。FIG. 2 is a schematic perspective view for explaining the projector shown in FIG. 図3は、本発明のプロジェクターの別の例を概念的に示す斜視図である。FIG. 3 is a perspective view conceptually showing another example of a projector according to the invention. 図4は、図1に示すプロジェクターに用いられる直線偏光を反射する選択反射フィルムの一例を示す図である。FIG. 4 is a diagram showing an example of a selective reflection film that reflects linearly polarized light and is used in the projector shown in FIG. 図5は、一般的なプロジェクターの一例を概念的に示す図である。FIG. 5 is a diagram conceptually illustrating an example of a typical projector. 図6は、従来のプロジェクターの一例を概念的に示す図である。FIG. 6 is a diagram conceptually illustrating an example of a conventional projector. 図7は、図6に示すプロジェクターの作用を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining the operation of the projector shown in FIG.

 以下、本発明のプロジェクターおよびヘッドアップディスプレイシステム(HUD)について、添付の図面に示される好適実施例を基に詳細に説明する。 Below, the projector and head-up display system (HUD) of the present invention will be described in detail based on the preferred embodiment shown in the attached drawings.

 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。 In this specification, "~" is used to mean that the numbers before and after it are included as lower and upper limits.

 本明細書において、可視光は、電磁波のうち、ヒトの目で見える波長の光であり、380~780nmの波長域の光を示す。非可視光は、380nm未満の波長域または780nmを超える波長域の光である。
 また、これに限定されるものではないが、可視光のうち、420~490nmの波長域の光は青色光(B光)であり、495~570nmの波長域の光は緑色光(G光)であり、620~750nmの波長域の光は赤色光(R光)である。さらに、これに限定されるものではないが、赤外線とは、非可視光のうち、780nm超2000nm以下の波長域を示す。
 また、本発明において、平行、垂直および直交などに関しては、技術分野で一般的に許容される誤差範囲を含むものとする。具体的には、平行、垂直および直交などは、厳密な一致との差異が5°未満の範囲内であることを意味する。厳密な一致との差異は、4°未満が好ましく、3°未満がより好ましい。
In this specification, visible light refers to electromagnetic waves having wavelengths visible to the human eye, in the wavelength range of 380 to 780 nm, while non-visible light refers to light having a wavelength range of less than 380 nm or more than 780 nm.
In addition, although not limited thereto, light in the visible light wavelength range of 420 to 490 nm is blue light (B light), light in the wavelength range of 495 to 570 nm is green light (G light), and light in the wavelength range of 620 to 750 nm is red light (R light). Furthermore, although not limited thereto, infrared light refers to a wavelength range of non-visible light exceeding 780 nm and not exceeding 2000 nm.
In the present invention, the terms parallel, perpendicular, and orthogonal include the error range generally accepted in the technical field. Specifically, the terms parallel, perpendicular, and orthogonal mean that the difference from strict agreement is within a range of less than 5°. The difference from strict agreement is preferably less than 4°, and more preferably less than 3°.

 図1に、本発明のプロジェクターの一例を利用する、本発明のHUDの一例を概念的に示す。
 図1に示す例では、本発明のプロジェクターと、ウインドシールドガラス30とで、本発明のHUD10を構成する。
 図1に示すプロジェクターは、HUD用のプロジェクターであって、導光板12と、出射回折素子14と、直線偏光を反射する選択反射フィルム16と、画像表示装置18と、入射回折素子20とを有する。また、プロジェクターは、一例として、自動車等の車両のウインドシールド30を用いて、使用者Oに向けて画像を表示(投影)する。出射回折素子14は、本発明における出射素子である。なお、図1には示さないが、図示例のプロジェクターは、さらに、入射回折素子20の図中奥手側に中間回折素子24を有する(図2参照)。
FIG. 1 conceptually shows an example of a HUD of the present invention that uses an example of a projector of the present invention.
In the example shown in FIG. 1, the projector of the present invention and a windshield glass 30 constitute a HUD 10 of the present invention.
The projector shown in Fig. 1 is a projector for a HUD, and includes a light guide plate 12, an output diffraction element 14, a selective reflection film 16 that reflects linearly polarized light, an image display device 18, and an input diffraction element 20. As an example, the projector uses a windshield 30 of a vehicle such as an automobile to display (project) an image toward a user O. The output diffraction element 14 is the output element of the present invention. Although not shown in Fig. 1, the projector in the illustrated example further includes an intermediate diffraction element 24 on the rear side of the input diffraction element 20 in the figure (see Fig. 2).

 このプロジェクターは、太陽光等の外光を吸収することで妨害光を抑制する光学フィルタ138に変えて直線偏光を反射する選択反射フィルム16を有する以外、基本的に、図6に概念的に示す特許文献1に記載される虚像表示装置(虚像(VB)を生成する装置)と同様のものである。
 従って、このプロジェクターも、上述した図6に示すHUD130と同様、画像表示装置18が出射した画像光Gを、入射回折素子20によって回折して、全反射する角度で導光板12に入射させる。導光板12に入射した画像光Gは、中間回折素子24によって開設されて、図中左に向かう矢印で示すように、全反射を繰り返して、導光板12を導光(伝播)する。
 導光板12の出射面(図中上面)には、出射回折素子14が貼着されている。導光板12内を導光する光の一部は、出射回折素子14に入射して回折されて、導光板12から出射する。導光板12から出射した画像光は、ウインドシールド30に入射して、反射、投影され、使用者Oによって観察される。使用者Oは、ウインドシールド30に投影された画像の虚像を観察しているのは、公知のHUD(プロジェクター)と同様である。
 また、図1に示すHUDにおいても、上述した図6(図7)に示すHUD130と同様、太陽光等の外光が、ウインドシールド30を透過して車内に侵入し、出射回折素子136によって回折されて導光板12に入射し、図中右方向に向かう矢印で示すように、導光板12内で全反射を繰り返して導光し、画像のギラツキ、妨害光、および、プロジェクター内部の熱ダメージの原因となる。
 しかしながら、本発明のプロジェクターは、出射回折素子14の画像光Gの出射側に、選択反射フィルム16を有する。そのため、本発明のプロジェクター(HUD)においては、導光板12に入射する外光を低減して、画像のギラツキ、妨害光、および、プロジェクター内部の熱ダメージを低減できる。この点に関しては、後に詳述する。
This projector is basically the same as the virtual image display device (a device that generates a virtual image (VB)) described in Patent Document 1, which is conceptually shown in Figure 6, except that it has a selective reflection film 16 that reflects linearly polarized light instead of an optical filter 138 that suppresses interfering light by absorbing external light such as sunlight.
6 described above, this projector also diffracts the image light G emitted by the image display device 18 by the incident diffraction element 20 and causes the image light G to enter the light guide plate 12 at an angle at which the image light G is totally reflected. The image light G that enters the light guide plate 12 is diffused by the intermediate diffraction element 24 and, as indicated by the arrow pointing left in the figure, is guided (propagated) through the light guide plate 12 by repeating total reflection.
An output diffraction element 14 is attached to the output surface (top surface in the figure) of the light guide plate 12. A portion of the light guided within the light guide plate 12 enters the output diffraction element 14, is diffracted, and is output from the light guide plate 12. The image light output from the light guide plate 12 enters the windshield 30, is reflected and projected, and is observed by the user O. The user O observes a virtual image of the image projected on the windshield 30, similar to a known HUD (projector).
1 as well, similarly to the HUD 130 shown in FIG. 6 (FIG. 7) described above, external light such as sunlight passes through the windshield 30 and enters the vehicle interior, is diffracted by the output diffraction element 136, and enters the light guide plate 12. As indicated by the arrow pointing to the right in the figure, the light is guided by repeated total reflection within the light guide plate 12, causing glare in the image, interfering light, and thermal damage inside the projector.
However, the projector of the present invention has a selective reflection film 16 on the output side of the output diffraction element 14 from which the image light G is output. Therefore, in the projector (HUD) of the present invention, it is possible to reduce external light incident on the light guide plate 12, thereby reducing glare on the image, disturbing light, and thermal damage inside the projector. This will be described in detail later.

 図2に、導光板12の概略斜視図を示す。
 図2に示すように、導光板12は主面が矩形の板状物で、1つの主面の1つの角部近傍に、入射回折素子20が設けられる。また、入射回折素子20に近接して、長手方向の端部近傍に、短手方向に長尺な中間回折素子24が設けられる。さらに、導光板12において、この主面の入射回折素子20および中間回折素子24が設けられていない領域には、略全面を覆うように、出射回折素子14が設けられる。
 なお、主面とは、板状物(シート状物、フィルム、層)の最大面で、通常、板状物の厚さ方向の両面である。
 また、以下の説明では、便宜的に、導光板12の紙面上下方向をY方向、紙面横方向をX方向とする。従って、図1においては、図中左方向がX方向で、紙面に垂直で、かつ、奥手に向かう方向がY方向となる。
FIG. 2 shows a schematic perspective view of the light guide plate 12. As shown in FIG.
2, the light guide plate 12 is a plate-like object with a rectangular main surface, and an incident diffraction element 20 is provided near one corner of one of the main surfaces. An intermediate diffraction element 24 that is elongated in the short side direction is provided near an end in the longitudinal direction, close to the incident diffraction element 20. Furthermore, in the light guide plate 12, an exit diffraction element 14 is provided so as to cover substantially the entire surface of an area of the main surface where the incident diffraction element 20 and the intermediate diffraction element 24 are not provided.
The main surface refers to the largest surface of a plate-like object (sheet, film, layer), and usually refers to both surfaces in the thickness direction of the plate-like object.
In the following description, for convenience, the vertical direction of the light guide plate 12 on the paper surface is defined as the Y direction, and the horizontal direction on the paper surface is defined as the X direction. Therefore, in Fig. 1, the left direction in the figure is the X direction, and the direction perpendicular to the paper surface and toward the back is the Y direction.

 図6に示すHUD130と同様、入射回折素子20は、画像表示装置18が出射した画像光Gを導光板12内に入射するための回折素子である。
 入射回折素子20は、導光板12内を全反射する角度で、かつ、Y方向に導光するように、画像表示装置18が出射した画像光Gを回折する。
Similar to the HUD 130 shown in FIG. 6 , the incident diffraction element 20 is a diffraction element for making the image light G emitted from the image display device 18 incident on the light guide plate 12 .
The incident diffraction element 20 diffracts the image light G emitted from the image display device 18 at an angle that causes total reflection within the light guide plate 12 and guides the light in the Y direction.

 入射回折素子20によって導光板12に入射された画像光Gは、矢印に示すように、導光板12内で全反射を繰り返しつつ、X方向の端部近傍をY方向に導光され、一部が中間回折素子24に入射する。この画像光GのY方向への導光によって、画像表示装置18が出射した画像光(画像)が、Y方向に拡大される。
 中間回折素子24は、導光板12内における画像光Gの導光方向を偏向するための回折素子である。X方向の端部近傍をY方向に導光される画像光Gの一部は、中間回折素子24に入射して、矢印に示すように、導光板12内を全反射する角度で、かつ、導光板12のX方向(図1の図中左方向)すなわち出射回折素子14に向けて回折される。なお、図2には、矢印を1本しか示していないが、中間回折素子24から出射回折素子14に向かう画像光Gの回折は、導光板12のY方向に長尺な中間回折素子24の長手方向の全域で行われる。
The image light G incident on the light guide plate 12 by the incident diffraction element 20 is guided in the Y direction near the end in the X direction while repeatedly undergoing total reflection within the light guide plate 12, as indicated by the arrow, and a part of the light is incident on the intermediate diffraction element 24. By guiding this image light G in the Y direction, the image light (image) emitted by the image display device 18 is expanded in the Y direction.
The intermediate diffraction element 24 is a diffraction element for deflecting the light guide direction of the image light G in the light guide plate 12. A part of the image light G guided in the Y direction near the end in the X direction is incident on the intermediate diffraction element 24 and diffracted at an angle that causes total reflection in the light guide plate 12 toward the X direction of the light guide plate 12 (the left direction in FIG. 1), i.e., the output diffraction element 14, as shown by the arrow. Note that although only one arrow is shown in FIG. 2, the diffraction of the image light G from the intermediate diffraction element 24 toward the output diffraction element 14 is performed over the entire longitudinal area of the intermediate diffraction element 24 that is elongated in the Y direction of the light guide plate 12.

 中間回折素子24によって回折された画像光Gは、導光板12内を全反射してX方向(図1の図中左方向)に導光され、一部が出射回折素子14に入射する。
 図6に示すHUD130と同様、出射回折素子14は、導光板12から画像光Gを出射するための回折素子である。導光板12内を全反射してX方向に導光される画像光Gの一部は、出射回折素子14に入射して回折され、図中上方に向かう矢印および上述した図1に示すように、画像光Gを導光板12から出射する。また、この画像光GのX方向への導光によって、画像表示装置18が出射した画像光(画像)が、X方向に拡大される。
 導光板12から出射した画像光Gは、上述のように、ウインドシールド30に入射して、反射、投影され、使用者Oによって観察される。なお、図2では、画像光の矢印を1本しか示していないが、出射回折素子14による導光板12からの画像光の出射は、出射回折素子14の全面で行われる。
The image light G diffracted by the intermediate diffraction element 24 is totally reflected within the light guide plate 12 and guided in the X direction (the left direction in FIG. 1 ), and a part of it enters the output diffraction element 14 .
6, the output diffraction element 14 is a diffraction element for outputting image light G from the light guide plate 12. A part of the image light G that is totally reflected within the light guide plate 12 and guided in the X direction is incident on the output diffraction element 14 and diffracted, and as shown by the arrow pointing upward in the figure and as shown in Fig. 1 described above, the image light G is output from the light guide plate 12. Furthermore, by guiding this image light G in the X direction, the image light (image) output from the image display device 18 is expanded in the X direction.
As described above, the image light G emitted from the light guide plate 12 enters the windshield 30, is reflected and projected, and is observed by the user O. Note that, although only one arrow of the image light is shown in Fig. 2, the image light is emitted from the light guide plate 12 by the output diffraction element 14 from the entire surface of the output diffraction element 14.

 図2に示す例では、導光板12を1枚、有する。
 しかしながら、本発明は、これに制限はされず、例えば、HUD10が赤色(R)、緑色(G)および青色(B)のフルカラー画像を表示する場合には、図3に概念的に示すように、それぞれの色に応じて、Rの画像光を導光する導光板12R、Gの画像光を導光する導光板12G、および、Bの画像光を導光する導光板12Bを設けてもよい。
 なお、各導光板の積層順は、図3の例に制限はされない。
In the example shown in FIG. 2, one light guide plate 12 is provided.
However, the present invention is not limited to this. For example, in the case where the HUD 10 displays a full-color image of red (R), green (G), and blue (B), a light guide plate 12R that guides the R image light, a light guide plate 12G that guides the G image light, and a light guide plate 12B that guides the B image light may be provided according to the respective colors, as conceptually shown in FIG. 3 .
The stacking order of the light guide plates is not limited to the example shown in FIG.

 導光板12R、導光板12Gおよび導光板12Bには、それぞれに、入射回折素子20、中間回折素子24、および、出射回折素子14が設けられる。
 各導光板に設けられる回折素子において、少なくとも入射回折素子20および出射回折素子14は、波長依存性(波長選択性)を有し、対応する色の画像光のみを回折して、導光板に入射させる。さらに、中間回折素子24も、波長依存性を有し、対応する色の画像光のみを回折するのが好ましい。なお、この際において、入射するのが単色光である回折素子は、波長依存性を有さなくてもよい。すなわち、本例においては、導光板12Bに設けられる回折素子は、波長依存性を有さなくてもよい。
 しかしながら、複数の導光板を有する構成では、各導光板に設けられる回折素子は、いずれも、波長依存性を有するのが好ましい。
Light guide plate 12R, light guide plate 12G and light guide plate 12B are provided with an input diffraction element 20, an intermediate diffraction element 24 and an output diffraction element 14, respectively.
Among the diffraction elements provided in each light guide plate, at least the input diffraction element 20 and the output diffraction element 14 have wavelength dependency (wavelength selectivity) and diffract only the image light of the corresponding color to be incident on the light guide plate. Furthermore, it is preferable that the intermediate diffraction element 24 also has wavelength dependency and diffracts only the image light of the corresponding color. In this case, the diffraction element that receives monochromatic light does not need to have wavelength dependency. That is, in this example, the diffraction element provided in the light guide plate 12B does not need to have wavelength dependency.
However, in a configuration having a plurality of light guide plates, it is preferable that the diffraction elements provided on each light guide plate all have wavelength dependency.

 図3に示す例においては、画像表示装置18が出射した画像光は、ミラー34によって導光板12Rに向けて偏向される。
 ミラー34で偏向された画像光のうち、R画像光は導光板12Rに設けられた入射回折素子20によって回折され、導光板12Rに入射する。G画像光およびB画像光は、この入射回折素子20を透過する。
 また、G画像光は、導光板12Gに設けられた入射回折素子20によって回折され、導光板12Gに入射する。B画像光は、この入射回折素子を透過する。
 さらに、B画像光は、導光板12Bに設けられた入射回折素子20によって回折され、導光板12Bに入射する。
In the example shown in FIG. 3, the image light emitted from the image display device 18 is deflected by the mirror 34 toward the light guide plate 12R.
Of the image light deflected by the mirror 34, the R image light is diffracted by the incident diffraction element 20 provided in the light guide plate 12 R and enters the light guide plate 12 R. The G image light and the B image light pass through this incident diffraction element 20.
The G image light is diffracted by the incident diffraction element 20 provided in the light guide plate 12G and enters the light guide plate 12G. The B image light passes through this incident diffraction element.
Furthermore, the B image light is diffracted by the incident diffraction element 20 provided in the light guide plate 12B, and enters the light guide plate 12B.

 それぞれ、対応する導光板に入射した画像光は、図2と同様、Y方向(導光板の短手方向)に導光されて、中間回折素子24によってX方向(導光板の長手方向)に導光方向を偏向され、出射回折素子14によって、ウインドシールド30に向かって導光板から出射される。
 ここで、導光板12Bから出射したB画像光は、導光板12Gおよび導光板12Rに設けられた出射回折素子14を透過して、ウインドシールド30に向かって出射される。また、導光板12Gから出射したG画像光は、導光板12Rに設けられた出射回折素子14を透過して、ウインドシールド30に向かって出射される。
The image light incident on each corresponding light guide plate is guided in the Y direction (short direction of the light guide plate) as in FIG. 2, deflected in the light guide direction in the X direction (longitudinal direction of the light guide plate) by the intermediate diffraction element 24, and emitted from the light guide plate toward the windshield 30 by the emission diffraction element 14.
Here, the B image light emitted from the light guide plate 12B passes through the emission diffraction element 14 provided on the light guide plate 12G and the light guide plate 12R, and is emitted toward the windshield 30. The G image light emitted from the light guide plate 12G passes through the emission diffraction element 14 provided on the light guide plate 12R, and is emitted toward the windshield 30.

 本発明のHUD10(プロジェクター)において、画像表示装置18、導光板12、および、各回折素子には制限はなく、公知のものが各種利用可能である。
 例えば、画像表示装置18としては、液晶表示装置、LCOS(Liquid Crystal on Silicon)、有機エレクトロルミネッセンス(有機EL)ディスプレイ、および、DMD(Digital Micromirror Device)を用いるDLP(Digital Light Processing)等、公知の画像表示装置が、各種、利用可能である。これらの画像表示装置には、必要に応じて、投影レンズを組み合わせてもよい。
In the HUD 10 (projector) of the present invention, there are no limitations on the image display device 18, the light guide plate 12, and each diffraction element, and various known elements can be used.
For example, various known image display devices such as a liquid crystal display device, a liquid crystal on silicon (LCOS), an organic electroluminescence (organic EL) display, and a digital light processing (DLP) using a digital micromirror device (DMD) can be used as the image display device 18. A projection lens may be combined with these image display devices as necessary.

 導光板12も、ガラス製の導光板、アクリル樹脂等のプラスチック製の導光板など、液晶表示装置のバックライトユニットおよびARグラス等に用いられる公知の導光板が、各種、利用可能である。 For the light guide plate 12, various types of well-known light guide plates such as those used in backlight units of liquid crystal display devices and AR glasses can be used, such as light guide plates made of glass or plastic such as acrylic resin.

 さらに、回折素子も、液晶回折素子、ホログラフィック回折素子(ホログラム)、体積ホログラム回折素子、および、表面レリーフ回折素子等の公知の回折素子が、各種、利用可能である。
 なお、回折素子は、反射型でも透過型でもよい。図示例においては、回折素子は透過型である。回折素子が反射型である場合には、回折素子は、導光板の透過型の回折素子とは逆側の面に配置される。
 また、各回折素子は、OCA(Optical Clear Adhesive)を用いる方法等、公知の方法で導光板12に貼着すればよい。
Furthermore, as for the diffraction element, various known diffraction elements such as a liquid crystal diffraction element, a holographic diffraction element (hologram), a volume hologram diffraction element, and a surface relief diffraction element can be used.
The diffraction element may be of a reflective type or a transmissive type. In the illustrated example, the diffraction element is of a transmissive type. When the diffraction element is of a reflective type, the diffraction element is disposed on the surface of the light guide plate opposite to the transmissive diffraction element.
Moreover, each diffraction element may be attached to the light guide plate 12 by a known method, such as a method using an OCA (Optical Clear Adhesive).

 なお、図示例のHUD10においては、導光板12から画像光Gを出射させるための出射素子として回折素子14を用いているが、本発明は、これに制限はされない。
 例えば、特許文献1の図4に示されるように、導光板12の中に、主面に対して傾斜するハーフミラーを、画像光Gの導光方向に、複数枚、設け、このハーフミラーを導光板から画像光Gを出射させる出射素子としてもよい。
In the illustrated example of the HUD 10, the diffraction element 14 is used as an output element for outputting the image light G from the light guide plate 12, but the present invention is not limited to this.
For example, as shown in FIG. 4 of Patent Document 1, a plurality of half mirrors inclined with respect to the main surface may be provided in the light guide plate 12 in the light guide direction of the image light G, and these half mirrors may be used as emission elements that emit the image light G from the light guide plate.

 図示例のHUD10は、ウインドシールド30に画像光Gを入射して、反射、投影しているが、本発明は、これに制限はされない。
 すなわち、本発明のHUD10(プロジェクター)は、画像を反射するためのハーフミラー等のコンバイナーを用い、導光板12から出射した画像光Gをコンバイナーに入射して、反射、投影してもよい。また、ウインドシールド30の中に、画像光Gを反射するためのコンバイナーを設けてもよい。
The HUD 10 in the illustrated example causes image light G to be incident on the windshield 30 and then reflected and projected, but the present invention is not limited to this.
That is, the HUD 10 (projector) of the present invention may use a combiner such as a half mirror for reflecting an image, and the image light G emitted from the light guide plate 12 may be incident on the combiner, reflected, and projected. Also, a combiner for reflecting the image light G may be provided inside the windshield 30.

 本発明のHUD10において、ウインドシールド30に入射する画像光Gすなわち画像表示装置18が出射する画像光には制限はなく、無偏光でも偏光でもよいが、直線偏光であるのが好ましい。また、画像光Gが直線偏光である場合には、直線偏光はS偏光またはP偏光であるのが好ましい。
 ここで、S偏光およびP偏光とは、ウインドシールド30に入射する直線偏光の偏光方向である。
In the HUD 10 of the present invention, there is no limitation on the image light G incident on the windshield 30, i.e., the image light emitted by the image display device 18, and the image light may be unpolarized or polarized, but is preferably linearly polarized. Furthermore, when the image light G is linearly polarized, the linearly polarized light is preferably S-polarized or P-polarized.
Here, S-polarized light and P-polarized light refer to the polarization directions of linearly polarized light that is incident on the windshield 30.

 図1に示すように、本発明のHUD10(本発明のプロジェクター)は、出射回折素子14の画像光Gの出射側に、直線偏光を反射する選択反射フィルム16を有する。直線偏光を反射する選択反射フィルム16は、画像表示装置18が出射する直線偏光を透過し、画像表示装置18が出射する直線偏光に直交する直線偏光は反射する、偏光選択性を有する反射層である。
 従って、画像表示装置18が出射する画像光GがP偏光である場合は、選択反射フィルム16はS偏光を反射し、P偏光を透過する様に構成する。
 画像表示装置18が出射する画像光GがS偏光である場合は、選択反射フィルム16はP偏光を反射し、S偏光を透過する様に構成する。
1, the HUD 10 of the present invention (the projector of the present invention) has a selective reflection film 16 that reflects linearly polarized light on the output side of the image light G of the output diffraction element 14. The selective reflection film 16 that reflects linearly polarized light is a reflective layer having polarization selectivity that transmits the linearly polarized light output from the image display device 18 and reflects the linearly polarized light orthogonal to the linearly polarized light output from the image display device 18.
Therefore, when the image light G emitted by the image display device 18 is P-polarized light, the selective reflection film 16 is configured to reflect S-polarized light and transmit P-polarized light.
When the image light G emitted from the image display device 18 is S-polarized light, the selective reflection film 16 is configured to reflect P-polarized light and transmit S-polarized light.

 本発明のHUD10は、出射回折素子14の画像光Gの出射側に、このような直線偏光を反射する選択反射フィルム16を有することにより、太陽光等の外光が導光板12に入射することを抑制して、外光が妨害光として使用者Oに観察されることを抑制する。
 また、選択反射フィルム16は、外光が妨害光として、プロジェクター内部に侵入することを抑制し、画像表示装置が焼けるなどの熱問題を解決する。
 さらに、選択反射フィルム16は、画像表示装置18が出射する偏光光を透過するため、画像表示の明るさを損なうことがない。
The HUD 10 of the present invention has a selective reflection film 16 that reflects such linearly polarized light on the output side of the image light G of the output diffraction element 14, thereby preventing external light such as sunlight from entering the light guide plate 12 and preventing the user O from observing the external light as interfering light.
Moreover, the selective reflection film 16 prevents external light from entering the inside of the projector as interfering light, and solves heat problems such as burning of the image display device.
Furthermore, the selective reflection film 16 transmits the polarized light emitted from the image display device 18, and therefore does not impair the brightness of the image display.

 図4に、直線偏光を反射する選択反射フィルム16の一例を示す。図4に示す直線偏光を反射する選択反射フィルム16は、図中下方から、偏光変換層60と、選択反射層62と、位相差層64と、透明基材66と、をこの順に有する。
 なお、図示例の選択反射フィルム16は、透明基材66側を導光板12に向けて配置してよく、透明基材66をウインドシールドガラス30側に向けて配置してもよい。選択反射フィルム16を保護する観点では、透明基材66をウインドシールドガラス30側に向けて配置するのが好ましい。この際には、透明基材66が紫外線吸収剤等を有してもよい。この点に関しては、後述する構成でも同様である。
An example of a selective reflection film 16 that reflects linearly polarized light is shown in Fig. 4. The selective reflection film 16 that reflects linearly polarized light shown in Fig. 4 has, from the bottom in the figure, a polarization conversion layer 60, a selective reflection layer 62, a retardation layer 64, and a transparent substrate 66, in this order.
In addition, the selective reflection film 16 in the illustrated example may be disposed with the transparent substrate 66 facing the light guide plate 12, or the transparent substrate 66 may be disposed facing the windshield glass 30. From the viewpoint of protecting the selective reflection film 16, it is preferable to dispose the transparent substrate 66 facing the windshield glass 30. In this case, the transparent substrate 66 may contain an ultraviolet absorbing agent or the like. This point is the same in the configuration described later.

 また、本発明のHUD(プロジェクター)において、直線偏光を反射する選択反射フィルムは、図4に示す構成に制限はされない。
 例えば、選択反射フィルムは、位相差層64と、選択反射層62と、位相差層64と、透明基材66と、をこの順に有するものであってもよい。あるいは、選択反射フィルムは、偏光変換層60と、選択反射層62と、偏光変換層60と、透明基材66と、をこの順に有するものであってよい。
 また、選択反射フィルムは、必用に応じて、図示した層(板)以外に、必要に応じて、配向膜、貼着層(接着層/粘着層)、各層を支持する支持板(透明基材)、反射防止層(画像光の強度を向上するため)、および、ハードコート層等を有してもよい。
In the HUD (projector) of the present invention, the selective reflection film that reflects linearly polarized light is not limited to the configuration shown in FIG.
For example, the selective reflection film may have, in this order, a retardation layer 64, a selective reflection layer 62, a retardation layer 64, and a transparent substrate 66. Alternatively, the selective reflection film may have, in this order, a polarization conversion layer 60, a selective reflection layer 62, a polarization conversion layer 60, and a transparent substrate 66.
In addition, the selective reflection film may have, in addition to the layers (plates) shown in the figures, an alignment film, an attachment layer (adhesive layer/sticky layer), a support plate (transparent substrate) that supports each layer, an anti-reflection layer (to improve the intensity of image light), and a hard coat layer, etc., as necessary.

 本発明のHUD10(プロジェクター)において、選択反射フィルム16は、導光板12の一部を覆うように設けられればよいが、少なくとも出射回折素子14の全面を覆うように設けられるのが好ましく、出射回折素子14および中間回折素子24の全面を覆うように設けられるのがより好ましく、全ての回折素子を覆うように設けられるのがさらに好ましく、導光板12の全面を覆うように設けられるのが特に好ましい。
 また、画像表示装置18が出射する画像光Gは、選択反射フィルム16を透過して入射回折素子20に入射してもよく、あるいは、選択反射フィルム16を透過しないで入射回折素子20に入射してもよい。
In the HUD 10 (projector) of the present invention, the selective reflection film 16 may be arranged so as to cover a portion of the light guide plate 12, but it is preferable that the selective reflection film 16 is arranged so as to cover at least the entire surface of the output diffraction element 14, more preferable that the selective reflection film 16 is arranged so as to cover the entire surfaces of the output diffraction element 14 and the intermediate diffraction element 24, even more preferable that the selective reflection film 16 is arranged so as to cover all of the diffraction elements, and it is particularly preferable that the selective reflection film 16 is arranged so as to cover the entire surface of the light guide plate 12.
Furthermore, the image light G emitted from the image display device 18 may be transmitted through the selective reflection film 16 and then incident on the incident diffraction element 20 , or may be incident on the incident diffraction element 20 without transmitting through the selective reflection film 16 .

 以下に直線偏光を反射する選択反射フィルム16を構成する部材について、詳細に説明する。
(偏光変換層)
 偏光変換層60は、可視光に対して旋光性および複屈折性を示すものであり、入射した光の偏光状態を変換するものである。
 偏光変換層60は、画像光Gすなわち画像表示装置18が出射する直線偏光と直交する直線偏光を、後述する選択反射層62のコレステリック液晶層が反射する円偏光に変換する機能を有する。すなわち、偏光変換層60は、画像光Gすなわち画像表示装置18が出射する直線偏光を、選択反射層62のコレステリック液晶層を透過する円偏光に変換する。
 また、偏光変換層60は、選択反射層62のコレステリック液晶層を透過した円偏光を、画像光Gと同じ直線偏光に変換し、選択反射層62のコレステリック液晶層が反射する円偏光を画像光Gと直交する直線偏光に変換する。
 例えば、画像光GがP偏光である場合には、偏光変換層60は、S偏光を選択反射層62のコレステリック液晶層が反射する円偏光に変換し、P偏光を選択反射層62のコレステリック液晶層を透過する円偏光に変換する。また、偏光変換層60は、選択反射層62のコレステリック液晶層が反射する円偏光をS偏光に変換し、選択反射層62のコレステリック液晶層を透過する円偏光をP偏光に変換する。
The members constituting the selective reflection film 16 that reflects linearly polarized light will be described in detail below.
(Polarization conversion layer)
The polarization conversion layer 60 exhibits optical rotation and birefringence for visible light, and converts the polarization state of incident light.
The polarization conversion layer 60 has a function of converting linearly polarized light orthogonal to the image light G, i.e., the linearly polarized light emitted by the image display device 18, into circularly polarized light that is reflected by the cholesteric liquid crystal layer of the selective reflection layer 62, which will be described later. In other words, the polarization conversion layer 60 converts the image light G, i.e., the linearly polarized light emitted by the image display device 18, into circularly polarized light that passes through the cholesteric liquid crystal layer of the selective reflection layer 62.
In addition, the polarization conversion layer 60 converts the circularly polarized light that has passed through the cholesteric liquid crystal layer of the selective reflection layer 62 into linearly polarized light that is the same as the image light G, and converts the circularly polarized light reflected by the cholesteric liquid crystal layer of the selective reflection layer 62 into linearly polarized light that is perpendicular to the image light G.
For example, when the image light G is P-polarized light, the polarization conversion layer 60 converts S-polarized light into circularly polarized light that is reflected by the cholesteric liquid crystal layer of the selective reflection layer 62, and converts P-polarized light into circularly polarized light that is transmitted through the cholesteric liquid crystal layer of the selective reflection layer 62. The polarization conversion layer 60 also converts circularly polarized light that is reflected by the cholesteric liquid crystal layer of the selective reflection layer 62 into S-polarized light, and converts circularly polarized light that is transmitted through the cholesteric liquid crystal layer of the selective reflection layer 62 into P-polarized light.

 偏光変換層60は、液晶化合物の螺旋配向構造を固定化した層であるのが好ましい。
 特に、偏光変換層60は、液晶化合物の厚さ方向の螺旋配向構造を固定化した層であって、螺旋配向構造のピッチ数xおよび偏光変換層の膜厚y(単位μm)が下記関係式(a)~(c)の全てを満足するものであるのが好ましい。
   0.1≦x≦1.0 ・・・ 式(a)
   0.5≦y≦3.0 ・・・ 式(b)
   3000≦(1560×y)/x≦50000 ・・・ 式(c)
 なお、液晶化合物の螺旋構造の1ピッチは、液晶化合物の螺旋の巻き数1回分である。すなわち、螺旋配向される液晶化合物のダイレクター(棒状液晶であれば長軸方向)が、360°回転した状態をピッチ数1とする。
The polarization conversion layer 60 is preferably a layer in which the helical alignment structure of a liquid crystal compound is fixed.
In particular, the polarization conversion layer 60 is a layer in which a helical orientation structure of a liquid crystal compound is fixed in the thickness direction, and it is preferable that the pitch number x of the helical orientation structure and the film thickness y (unit: μm) of the polarization conversion layer satisfy all of the following relationship formulas (a) to (c):
0.1≦x≦1.0... Formula (a)
0.5≦y≦3.0... Formula (b)
3000≦(1560×y)/x≦50000... Formula (c)
One pitch of the helical structure of a liquid crystal compound is one turn of the helix of the liquid crystal compound. That is, one pitch is defined as a state in which the director of the helically aligned liquid crystal compound (the long axis direction in the case of a rod-shaped liquid crystal) rotates 360°.

 偏光変換層60は液晶化合物の螺旋構造を有していると、赤外域の反射ピーク波長よりも短波長である可視光に対して旋光性と複屈折性を示す。そのため、可視域の偏光を制御できる。偏光変換層60の螺旋配向構造のピッチ数xおよび偏光変換層60の膜厚yを上記の範囲とすることで、選択反射フィルム16に入射した直線偏光を円偏光に変換する機能を付与することができる。 When the polarization conversion layer 60 has a helical structure of a liquid crystal compound, it exhibits optical rotation and birefringence for visible light, which has a shorter wavelength than the reflection peak wavelength in the infrared range. This allows for control of polarization in the visible range. By setting the pitch number x of the helical orientation structure of the polarization conversion layer 60 and the film thickness y of the polarization conversion layer 60 within the above ranges, it is possible to impart the function of converting linearly polarized light incident on the selective reflection film 16 into circularly polarized light.

 液晶化合物が関係式(a)~(c)を満たす螺旋構造を有することにより、偏光変換層60は可視光に対して旋光性および複屈折性を示す。特に、偏光変換層60の螺旋構造のピッチPを、選択反射中心波長が長波長の赤外域であるコレステリック液晶層のピッチPに対応する長さとすることにより、短波長である可視光に対して、高い旋光性と複屈折性を示す。 The liquid crystal compound has a helical structure that satisfies the relational expressions (a) to (c), so that the polarization conversion layer 60 exhibits optical rotation and birefringence for visible light. In particular, by setting the pitch P of the helical structure of the polarization conversion layer 60 to a length that corresponds to the pitch P of the cholesteric liquid crystal layer, whose selective reflection center wavelength is in the long-wavelength infrared range, the layer exhibits high optical rotation and birefringence for visible light, which has a short wavelength.

 偏光変換層60の螺旋構造のピッチ数xは、0.1~0.8がより好ましく、膜厚yは、0.6~2.6μmがより好ましい。また、「(1560×y)/x」は、5000~13000がより好ましい。 The pitch number x of the helical structure of the polarization conversion layer 60 is more preferably 0.1 to 0.8, and the film thickness y is more preferably 0.6 to 2.6 μm. In addition, "(1560×y)/x" is more preferably 5000 to 13000.

 このような偏光変換層60は、基本的に、公知のコレステリック液晶層と同様に形成できる。 Such a polarization conversion layer 60 can basically be formed in the same way as a known cholesteric liquid crystal layer.

 液晶化合物の螺旋配向構造(螺旋構造)を固定化した層は、いわゆるコレステリック液晶層であり、コレステリック液晶相を固定した層を意味する。
 コレステリック液晶層は、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよい。コレステリック液晶層は、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射および加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、また外場または外力によって配向形態に変化を生じさせることがない状態に変化した層であればよい。なお、コレステリック液晶層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、層中の液晶化合物は、もはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
A layer in which a helical orientation structure (helical structure) of a liquid crystal compound is fixed is a so-called cholesteric liquid crystal layer, which means a layer in which a cholesteric liquid crystal phase is fixed.
The cholesteric liquid crystal layer may be a layer in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. The cholesteric liquid crystal layer may be a layer in which the polymerizable liquid crystal compound is oriented in the cholesteric liquid crystal phase, polymerized and cured by ultraviolet irradiation and heating, etc., to form a layer with no fluidity, and at the same time, changed to a state in which the orientation form is not changed by an external field or external force. In the cholesteric liquid crystal layer, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer does not need to exhibit liquid crystallinity anymore. For example, the polymerizable liquid crystal compound may be polymerized by a curing reaction and no longer have liquid crystallinity.

(選択反射層)
 図示例の選択反射フィルム16において、選択反射層62は、3層のコレステリック液晶層(68R、68G、68B)を有する。
 3層のコレステリック液晶層は選択反射中心波長が互いに異なっている。図示例においては、赤色の波長領域に選択反射中心波長を有するコレステリック液晶層68Rと、緑色の波長領域に選択反射中心波長を有するコレステリック液晶層68Gと、青色の波長領域に選択反射中心波長を有するコレステリック液晶層68Bと、をこの順に有する。また、図示例においては、各コレステリック液晶層は、他のいずれかのコレステリック液晶層と直接接触している。
(Selective Reflection Layer)
In the illustrated selective reflection film 16, the selective reflection layer 62 has three cholesteric liquid crystal layers (68R, 68G, 68B).
The three cholesteric liquid crystal layers have different selective reflection center wavelengths. In the illustrated example, the cholesteric liquid crystal layer 68R having a selective reflection center wavelength in the red wavelength region, the cholesteric liquid crystal layer 68G having a selective reflection center wavelength in the green wavelength region, and the cholesteric liquid crystal layer 68B having a selective reflection center wavelength in the blue wavelength region are arranged in this order. In the illustrated example, each cholesteric liquid crystal layer is in direct contact with any of the other cholesteric liquid crystal layers.

 コレステリック液晶層は、液晶化合物がコレステリック液晶相の螺旋構造の配向状態で固定化された層であり、螺旋構造のピッチに応じた波長の円偏光を反射し、他の波長域の光を透過する。
 また、コレステリック液晶層は、特定の波長において左右いずれかの円偏光に対して選択反射性を示す。
A cholesteric liquid crystal layer is a layer in which liquid crystal compounds are fixed in an oriented state of a helical structure of a cholesteric liquid crystal phase, and it reflects circularly polarized light of a wavelength corresponding to the pitch of the helical structure and transmits light of other wavelength ranges.
Furthermore, the cholesteric liquid crystal layer exhibits selective reflectivity for either left-handed or right-handed circularly polarized light at a specific wavelength.

 また、図示例においては、選択反射層62は、選択反射中心波長の異なる3層のコレステリック液晶層を有する構成としたが、これに限定はされず、選択反射層62は、1層のコレステリック液晶層を有するものであってもよいし、2層または4層以上のコレステリック液晶層を有するものであってもよい。
 例えば、選択反射層に、可視光を選択的に反射するコレステリック液晶層に、さらに、赤外光を選択的に反射するコレステリック液晶層を加えることにより、さらに広い波長域の太陽光をカットすることができる。
In addition, in the illustrated example, the selective reflection layer 62 has a configuration including three cholesteric liquid crystal layers having different selective reflection center wavelengths, but this is not limited to this, and the selective reflection layer 62 may have one cholesteric liquid crystal layer, or two or four or more cholesteric liquid crystal layers.
For example, by adding a cholesteric liquid crystal layer that selectively reflects infrared light to a selective reflection layer, it is possible to block sunlight over an even wider wavelength range.

 選択反射層62(コレステリック液晶層)は、厚いほど反射率が高くなるため太陽光をカットしやすい。その反面、厚すぎると選択反射層62に斜めに入射した光の偏光状態が変わってしまうため、厚すぎない方が好ましい。
 その観点から、選択反射層62の合計の厚さは、1~50μmが好ましく、1.5~40μmがより好ましく、2~30μmがさらに好ましい。
The thicker the selective reflection layer 62 (cholesteric liquid crystal layer), the higher the reflectance and the easier it is to block sunlight. On the other hand, if the layer is too thick, the polarization state of light that is obliquely incident on the selective reflection layer 62 changes, so it is preferable that the layer is not too thick.
From this viewpoint, the total thickness of the selective reflection layer 62 is preferably from 1 to 50 μm, more preferably from 1.5 to 40 μm, and even more preferably from 2 to 30 μm.

(位相差層)
 位相差層64は、直交する2つの偏光成分に位相差(光路差)をつけて、入射した偏光の状態を変えるものである。
 位相差層64が、車外側に配置され光学補償するものである場合には、位相差層64の正面位相差は、光学補償できる位相差とすればよい。
 この場合、位相差層64は、波長550nmにおける正面リタデーションが50~160nmであることが好ましい。
(Retardation Layer)
The retardation layer 64 changes the state of the incident polarized light by imparting a phase difference (optical path difference) to two orthogonal polarized light components.
In the case where the retardation layer 64 is disposed on the outer side of the vehicle and provides optical compensation, the front retardation of the retardation layer 64 may be set to a retardation that provides optical compensation.
In this case, the retardation layer 64 preferably has a front retardation of 50 to 160 nm at a wavelength of 550 nm.

 また、位相差層64が直線偏光を円偏光に変換するものである場合には、位相差層64の面内レタデーションは、λ/4を与えるもので構成されることが好ましく、面内レタデーションとして3λ/4を与えるもので構成してもよい。また、位相差層64の遅相軸の角度は、入射する直線偏光を円偏光に変える向きとなるように配置すればよい。 In addition, when the retardation layer 64 converts linearly polarized light into circularly polarized light, the retardation layer 64 is preferably configured to provide an in-plane retardation of λ/4, and may be configured to provide an in-plane retardation of 3λ/4. The angle of the slow axis of the retardation layer 64 may be arranged so as to be oriented in such a way that it converts the incident linearly polarized light into circularly polarized light.

 この場合、位相差層64は、例えば、波長550nmにおける面内レタデーションが100~450nmの範囲であるのが好ましく、120~200nmまたは300~400nmの範囲であることがより好ましい。 In this case, the retardation layer 64 preferably has an in-plane retardation in the range of 100 to 450 nm at a wavelength of 550 nm, more preferably in the range of 120 to 200 nm or 300 to 400 nm.

 直線偏光を反射する選択反射フィルム16において、位相差層64は、基本的に、上述した偏光変換層60と同様の作用を発現するものである。
 具体的には、位相差層64は、画像光Gすなわち画像表示装置18が出射する直線偏光と直交する直線偏光を、選択反射層62のコレステリック液晶層が反射する円偏光に変換する。すなわち、偏光変換層60は、画像光Gすなわち画像表示装置18が出射する直線偏光を、選択反射層62のコレステリック液晶層を透過する円偏光に変換する。
 また、位相差層64は、選択反射層62のコレステリック液晶層を透過した円偏光を、画像光Gと同じ直線偏光に変換し、選択反射層62のコレステリック液晶層が反射する円偏光を、画像光Gと直交する直線偏光に変換する。
 例えば、画像光GがP偏光である場合には、位相差層64は、S偏光を選択反射層62のコレステリック液晶層が反射する円偏光に変換し、P偏光を選択反射層62のコレステリック液晶層を透過する円偏光に変換する。また、位相差層64は、選択反射層62のコレステリック液晶層が反射する円偏光をS偏光に変換し、選択反射層62のコレステリック液晶層を透過する円偏光をP偏光に変換する。
In the selective reflection film 16 that reflects linearly polarized light, the retardation layer 64 basically exhibits the same function as the polarization conversion layer 60 described above.
Specifically, the retardation layer 64 converts the linearly polarized light orthogonal to the image light G, i.e., the linearly polarized light emitted by the image display device 18, into circularly polarized light that is reflected by the cholesteric liquid crystal layer of the selective reflection layer 62. In other words, the polarization conversion layer 60 converts the image light G, i.e., the linearly polarized light emitted by the image display device 18, into circularly polarized light that passes through the cholesteric liquid crystal layer of the selective reflection layer 62.
In addition, the retardation layer 64 converts the circularly polarized light that has passed through the cholesteric liquid crystal layer of the selective reflection layer 62 into linearly polarized light that is the same as the image light G, and converts the circularly polarized light reflected by the cholesteric liquid crystal layer of the selective reflection layer 62 into linearly polarized light that is perpendicular to the image light G.
For example, when the image light G is P-polarized light, the retardation layer 64 converts S-polarized light into circularly polarized light reflected by the cholesteric liquid crystal layer of the selective reflection layer 62, and converts P-polarized light into circularly polarized light transmitted through the cholesteric liquid crystal layer of the selective reflection layer 62. In addition, the retardation layer 64 converts circularly polarized light reflected by the cholesteric liquid crystal layer of the selective reflection layer 62 into S-polarized light, and converts circularly polarized light transmitted through the cholesteric liquid crystal layer of the selective reflection layer 62 into P-polarized light.

 位相差層64の種類は特に制限されず、目的に応じて適宜選択できる。
 位相差層64としては、例えば、延伸されたポリカーボネートフィルム、延伸されたノルボルネン系ポリマーフィルム、炭酸ストロンチウムのような複屈折を有する無機粒子を含有して配向させた透明フィルム、支持体上に無機誘電体を斜め蒸着した薄膜、重合性液晶化合物を一軸配向させて配向固定したフィルム、および、液晶化合物を一軸配向させて配向固定したフィルム等が挙げられる。
The type of the retardation layer 64 is not particularly limited and can be appropriately selected depending on the purpose.
Examples of the retardation layer 64 include a stretched polycarbonate film, a stretched norbornene-based polymer film, a transparent film containing and oriented inorganic particles having birefringence such as strontium carbonate, a thin film formed by obliquely depositing an inorganic dielectric onto a support, a film in which a polymerizable liquid crystal compound is uniaxially oriented and fixed in orientation, and a film in which a liquid crystal compound is uniaxially oriented and fixed in orientation.

 位相差層64の厚さは特に制限されないが、0.2~300μmが好ましく、0.5~150μmがより好ましく、1.0~80μmがさらに好ましい。 The thickness of the retardation layer 64 is not particularly limited, but is preferably 0.2 to 300 μm, more preferably 0.5 to 150 μm, and even more preferably 1.0 to 80 μm.

(透明基材)
 直線偏光を反射する選択反射フィルム16において、透明基材66は、選択反射フィルム16の各層を支持するものである。また、透明基材66は、選択反射層62を形成する際の基板として使用することもできる。
 選択反射層62の形成のために用いられる透明基材66は、選択反射層62の形成後に剥離される、仮支持体であってもよい。
(Transparent substrate)
In the selective reflection film 16 that reflects linearly polarized light, the transparent substrate 66 supports each layer of the selective reflection film 16. The transparent substrate 66 can also be used as a substrate when the selective reflection layer 62 is formed.
The transparent substrate 66 used for forming the selective reflection layer 62 may be a temporary support that is peeled off after the selective reflection layer 62 is formed.

 透明基材66の材料は特に制限されず、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、および、シリコーン等のプラスチックフィルムが挙げられる。 The material of the transparent substrate 66 is not particularly limited, and examples include polyesters such as polyethylene terephthalate (PET), polycarbonate, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, and plastic films such as silicone.

 透明基材66の厚さには制限はないが、5.0~1000μm程度であればよく、10~250μmが好ましく、15~90μmがより好ましい。 There are no restrictions on the thickness of the transparent substrate 66, but it should be approximately 5.0 to 1000 μm, preferably 10 to 250 μm, and more preferably 15 to 90 μm.

 以下、直線偏光を反射する選択反射フィルムの作用を説明することにより、本発明のプロジェクターおよびHUDについて、詳細に説明する。
 以下の例は、一例として、画像光Gすなわち画像表示装置18が照射する画像光はP偏光とする。従って、選択反射フィルム16は、S偏光を選択的に反射する。
 また、選択反射層62の各コレステリック液晶層は、特定波長域の右円偏光を選択的に反射して、左円偏光を透過するものとする。従って、偏光変換層60および位相差層64は、P偏光を左円偏光に変換し、S偏光を右円偏光に変換する。すなわち、偏光変換層60および位相差層64は、左円偏光をP偏光に変換し、右円偏光をS偏光に変換する。
 さらに、本例においては、偏光変換層60を、出射回折素子14側にして、選択反射フィルム16を配置したとする。従って、画像光Gは、偏光変換層60側から選択反射フィルム16に入射し、太陽光等の外光は、透明基材66側から選択反射フィルム16に入射する。
Hereinafter, the projector and HUD of the present invention will be described in detail by explaining the function of the selective reflection film that reflects linearly polarized light.
In the following example, it is assumed that the image light G, that is, the image light irradiated by the image display device 18, is P-polarized light. Therefore, the selective reflection film 16 selectively reflects S-polarized light.
Moreover, each cholesteric liquid crystal layer of the selective reflection layer 62 selectively reflects right-handed circularly polarized light in a specific wavelength range and transmits left-handed circularly polarized light. Therefore, the polarization conversion layer 60 and the retardation layer 64 convert P-polarized light into left-handed circularly polarized light and S-polarized light into right-handed circularly polarized light. That is, the polarization conversion layer 60 and the retardation layer 64 convert left-handed circularly polarized light into P-polarized light and right-handed circularly polarized light into S-polarized light.
Furthermore, in this example, the selective reflection film 16 is disposed with the polarization conversion layer 60 facing the output diffraction element 14. Therefore, the image light G is incident on the selective reflection film 16 from the polarization conversion layer 60 side, and external light such as sunlight is incident on the selective reflection film 16 from the transparent substrate 66 side.

 なお、選択反射フィルム16の作用は、透明基材66を出射回折素子側にした場合でも同様である。また、選択反射フィルムの作用は、偏光変換層60を位相差層64に変更した場合すなわち位相差層64を2層用いた場合、および、位相差層64を偏光変換層60に変更した場合すなわち変更変換層60を2層用いた場合でも、同様である。
 さらに、画像光がS偏光である場合、および/または、選択反射層62の各コレステリック液晶層が、左円偏光を選択的に反射して右円偏光を透過する場合でも、偏光変換層60および/または位相差層64が、画像光Gをコレステリック液晶層を透過する円偏光に変換し、画像光Gと直交する直線偏光をコレステリック液晶層が反射する円偏光に変換すれば、選択反射フィルムの作用は、同じである。
The function of the selective reflection film 16 is the same even when the transparent substrate 66 is on the output diffraction element side. The function of the selective reflection film is also the same when the polarization conversion layer 60 is changed to the retardation layer 64, i.e., when two retardation layers 64 are used, and when the retardation layer 64 is changed to the polarization conversion layer 60, i.e., when two polarization conversion layers 60 are used.
Furthermore, even when the image light is S-polarized light and/or each cholesteric liquid crystal layer of the selective reflection layer 62 selectively reflects left-handed circularly polarized light and transmits right-handed circularly polarized light, the function of the selective reflection film will be the same if the polarization conversion layer 60 and/or the phase difference layer 64 converts the image light G into circularly polarized light that transmits through the cholesteric liquid crystal layer and converts linearly polarized light perpendicular to the image light G into circularly polarized light that is reflected by the cholesteric liquid crystal layer.

 上述のように、画像表示装置18が出射した画像光G(P偏光)は、入射回折素子20によって回折されて導光板12に入射して、導光板12内を矢印Y方向に伝搬する。さらに、矢印Y方向に伝搬した画像光Gは、中間回折素子24によって回折されて、伝搬方向を矢印X方向すなわち図1の図中左方向に変更する。
 矢印X方向に伝搬した画像光Gは、出射回折素子14によって回折されて、導光板12から出射して、選択反射フィルム16の偏光変換層60に入射する。
As described above, the image light G (P-polarized light) emitted from the image display device 18 is diffracted by the incident diffraction element 20, enters the light guide plate 12, and propagates in the direction of the arrow Y inside the light guide plate 12. Furthermore, the image light G propagated in the direction of the arrow Y is diffracted by the intermediate diffraction element 24, and changes its propagation direction to the direction of the arrow X, i.e., to the left in FIG.
The image light G propagating in the direction of the arrow X is diffracted by the output diffraction element 14 , exits the light guide plate 12 , and enters the polarization conversion layer 60 of the selective reflection film 16 .

 上述のように、画像光GはP偏光である。
 また、偏光変換層60は、画像光GすなわちP偏光を左円偏光に変換する。
 さらに、選択反射層62の各コレステリック液晶層は、右円偏光を選択的に反射し、左円偏光を透過する。
 従って、導光板12から出射して、選択反射フィルム16に入射したP偏光の画像光Gは、偏光変換層60によって左円偏光に変換され、選択反射層62を透過して、位相差層64に入射する。
As described above, the image light G is P-polarized light.
Moreover, the polarization conversion layer 60 converts the image light G, that is, P-polarized light, into left-handed circularly polarized light.
Furthermore, each cholesteric liquid crystal layer of the selective reflection layer 62 selectively reflects right-handed circularly polarized light and transmits left-handed circularly polarized light.
Therefore, the P-polarized image light G that is emitted from the light guide plate 12 and enters the selective reflection film 16 is converted into left-handed circularly polarized light by the polarization conversion layer 60 , passes through the selective reflection layer 62 , and enters the retardation layer 64 .

 上述のように、位相差層64も、偏光変換層60と同様、P偏光を左円偏光に変換し、左円偏光をP偏光に変換する。
 従って、位相差層64に入射した左円偏光の画像光は、位相差層64によってP偏光に変換され、透明基材66を透過して、P偏光の画像光Gとして選択反射フィルム16すなわちプロジェクターから出射する。
 プロジェクターから出射したP偏光の画像光Gは、ウインドシールドガラス30に入射して、反射され、HUDの投影像として使用者Oによって観察される。
As described above, like the polarization conversion layer 60, the retardation layer 64 also converts P-polarized light into left-handed circularly polarized light and converts left-handed circularly polarized light into P-polarized light.
Therefore, the left-handed circularly polarized image light incident on the retardation layer 64 is converted into P-polarized light by the retardation layer 64, passes through the transparent substrate 66, and exits from the selective reflection film 16, i.e., the projector, as P-polarized image light G.
The P-polarized image light G emitted from the projector is incident on the windshield glass 30, is reflected, and is observed by the user O as a projected image of the HUD.

 一方、太陽光などの外光がウインドシールドガラス30を透過して車内に入射して選択反射フィルム16に入射した場合、外光は、透明基材66を透過して位相差層64に入射する。
 ここで、外光(太陽光)は、無偏光であるので、位相差層64では、何も変換されることなく、そのまま透過して、選択反射層62に入射する。
 上述のように、選択反射層62を構成する各コレステリック液晶層は、右円偏光を選択的に反射する。従って、選択反射層62に入射した外光は、右円偏光の成分が選択反射層62によって反射され、左円偏光の成分は、選択反射層62を透過する。
 すなわち、選択反射層62に入射した外光は、半分が選択反射層62によって反射される。
On the other hand, when external light such as sunlight passes through the windshield glass 30 and enters the vehicle interior and then enters the selective reflection film 16 , the external light passes through the transparent substrate 66 and enters the retardation layer 64 .
Here, since the external light (sunlight) is unpolarized, it is not converted by the retardation layer 64 and passes through as it is to enter the selective reflection layer 62 .
As described above, each cholesteric liquid crystal layer constituting the selective reflection layer 62 selectively reflects right-handed circularly polarized light. Therefore, of the external light incident on the selective reflection layer 62, the right-handed circularly polarized component is reflected by the selective reflection layer 62, and the left-handed circularly polarized component is transmitted through the selective reflection layer 62.
That is, half of the external light incident on the selective reflection layer 62 is reflected by the selective reflection layer 62 .

 選択反射層62によって反射された右円偏光の外光は、位相差層64に再入射する。
 上述のように、位相差層64は、左円偏光をP偏光に、P偏光を左円偏光に変換する。従って、位相差層64に入射した右円偏光の外光は、位相差層64によって、S偏光に変換され、透明基材66を透過して、選択反射フィルム16から出射される。
 すなわち、選択反射フィルム16は、入射した外光のS偏光の成分を、選択的に反射する。これにより、選択反射フィルム16は、選択反射層62に入射した外光の半分を、反射する。
The right-handed circularly polarized external light reflected by the selective reflection layer 62 enters the retardation layer 64 again.
As described above, the retardation layer 64 converts left-handed circularly polarized light into P-polarized light and P-polarized light into left-handed circularly polarized light. Therefore, the right-handed circularly polarized external light incident on the retardation layer 64 is converted into S-polarized light by the retardation layer 64, passes through the transparent substrate 66, and is emitted from the selective reflection film 16.
In other words, the selective reflection film 16 selectively reflects the S-polarized component of the incident external light. As a result, the selective reflection film 16 reflects half of the external light that is incident on the selective reflection layer 62.

 他方、選択反射層62を透過した外光の左円偏光の成分は、位相差層64と同様に左円偏光をP偏光にP偏光を左円偏光に変換する偏光変換層60に入射して、P偏光に変換され、選択反射フィルム16から出射されて、一部が出射回折素子14に入射する。
 この外光のP偏光は、一部が上述のように出射回折素子14によって回折されて、導光板12に入射する。
On the other hand, the left-handed circularly polarized component of the external light that has passed through the selective reflection layer 62 enters the polarization conversion layer 60 which, like the phase difference layer 64, converts left-handed circularly polarized light to P-polarized light and P-polarized light to left-handed circularly polarized light, is converted to P-polarized light, and is emitted from the selective reflection film 16, with a portion of it entering the exit diffraction element 14.
A part of this P-polarized external light is diffracted by the output diffraction element 14 as described above, and enters the light guide plate 12 .

 このように導光板12に入射した外光は、上述のように、画像のギラツキ、妨害光、および、プロジェクター内部の熱ダメージの原因となる。
 しかしながら、上述のように、本発明においては、外光の半分を選択反射フィルム16によって反射しているので、選択反射フィルム16を透過するのは、外光の半分である。従って、本発明によれば、導光板12に入射した外光に起因する画像のギラツキ、妨害光、および、プロジェクター内部の熱ダメージを大幅に低減できる。
 また、本発明のプロジェクターにおいて、選択反射フィルムは、反射型である。そのため、吸収型のフィルムに比して、熱が選択反射フィルム内にこもることがなく、選択反射フィルムの熱ダメージを低減できる。また、反射型のフィルムは、反射しない光すなわち画像光Gを、ほぼ100%透過するので、選択反射フィルムに起因してHUDの表示画像が暗くなることも、できる。
As described above, the external light incident on the light guide plate 12 in this manner can cause glare in the image, disturbing light, and thermal damage inside the projector.
However, as described above, in the present invention, half of the external light is reflected by the selective reflection film 16, and therefore only half of the external light passes through the selective reflection film 16. Therefore, according to the present invention, it is possible to significantly reduce glare on an image, disturbing light, and thermal damage inside the projector caused by external light incident on the light guide plate 12.
In the projector of the present invention, the selective reflection film is a reflective film. Therefore, compared with an absorptive film, heat is not trapped in the selective reflection film, and heat damage to the selective reflection film can be reduced. In addition, the reflective film transmits almost 100% of the non-reflected light, i.e., the image light G, so the selective reflection film can prevent the HUD display image from becoming dark.

 ところで、P偏光によって投影像を表示するHUDの場合には、ウインドシールドガラス30に、P偏光を選択的に反射する反射偏光子を設ける場合がある。選択的な反射偏光子としては、位相差板(λ/4板)とコレステリック液晶層との組み合わせのような反射型の円偏光板が例示される。
 このようなP偏光を選択的に反射する反射偏光子を透過した外光は、通常、S偏光になる。すなわち、この場合には、S偏光の外光が、選択反射フィルム16に入射する。
 上述のように、選択反射フィルム16に入射した外光は、位相差層64に入射する。位相差層64は、P偏光を左円偏光に変換し、左円偏光をP偏光に変換する。また、選択反射層62を構成するコレステリック液晶層は、右円偏光を選択的に反射する。
 従って、位相差層64に入射したS偏光の外光は、右円偏光に変換され、選択反射層62のコレステリック液晶層によって反射され、位相差層64に再入射して、S偏光に変換されて、選択反射フィルム16から出射される。すなわち、選択反射フィルムによって、S偏光の外光が選択的に反射される
Incidentally, in the case of a HUD that displays a projected image using P-polarized light, a reflective polarizer that selectively reflects P-polarized light may be provided on the windshield glass 30. An example of a selective reflective polarizer is a reflective circular polarizer such as a combination of a retardation plate (λ/4 plate) and a cholesteric liquid crystal layer.
External light that passes through such a reflective polarizer that selectively reflects P-polarized light usually becomes S-polarized light. That is, in this case, the external light that is S-polarized is incident on the selective reflection film 16.
As described above, the external light incident on the selective reflection film 16 is incident on the retardation layer 64. The retardation layer 64 converts P-polarized light into left-handed circularly polarized light and converts left-handed circularly polarized light into P-polarized light. The cholesteric liquid crystal layer constituting the selective reflection layer 62 selectively reflects right-handed circularly polarized light.
Therefore, the S-polarized external light incident on the retardation layer 64 is converted into right-handed circularly polarized light, reflected by the cholesteric liquid crystal layer of the selective reflection layer 62, re-incident on the retardation layer 64, converted into S-polarized light, and emitted from the selective reflection film 16. That is, the selective reflection film selectively reflects the S-polarized external light.

 以上の例は、画像表示装置18がP偏光の画像光Gを出射し、直線偏光を反射する選択反射フィルム16から出射する画像光GすなわちHUDの投影光もP偏光であり、選択反射フィルム16が反射するのはS偏光であるが、本発明は、これに制限はされない。
 例えば、本発明においては、画像表示装置18がS偏光の画像光Gを出射し、直線偏光を反射する選択反射フィルム16から出射する画像光GすなわちHUDの投影光もS偏光として、選択反射フィルム16がP偏光を反射してもよい。
In the above example, the image display device 18 emits P-polarized image light G, and the image light G emitted from the selective reflection film 16 that reflects linearly polarized light, i.e., the projection light of the HUD, is also P-polarized light, and the selective reflection film 16 reflects S-polarized light, but the present invention is not limited to this.
For example, in the present invention, the image display device 18 may emit S-polarized image light G, and the image light G emitted from the selective reflection film 16 that reflects linearly polarized light, i.e., the projection light of the HUD, may also be S-polarized light, and the selective reflection film 16 may reflect P-polarized light.

 このような本発明のプロジェクターは、例えば、自動車および電車などの車両、航空機、ならびに、船舶等の各種の交通機関に搭載されるHUDに、好適に利用される。
 なお、本発明のプロジェクターおよびHUDは、このような交通機関のみならず、各種の用途に利用可能である。
Such a projector of the present invention can be suitably used in HUDs mounted on various types of transportation, such as automobiles, trains, airplanes, and ships.
The projector and HUD of the present invention can be used for a variety of purposes, in addition to such transportation.

 以上、本発明のプロジェクターおよびヘッドマウントディスプレイシステム(HUD)について詳細に説明したが、本発明は、上述の実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を加えてもよいのは、もちろんである。 The projector and head mounted display system (HUD) of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various improvements and modifications may of course be made without departing from the spirit of the present invention.

 以下に本発明の実施例を挙げて本発明をさらに具体的に説明する。以下の実施例、比較例、作製例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は、以下の実施例、および、参考例に限定されるものではない。 The present invention will be explained in more detail below with reference to examples. The materials, reagents, amounts of substances and their ratios, operations, etc. shown in the following examples, comparative examples, and preparation examples can be modified as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the following examples and reference examples.

<直線偏光を反射する選択反射フィルムの作製>
 国際公開第2014/112575号の実施例20と同一の作製方法で、厚さ40μmセルロースアシレートフィルムを作製した。なお、このセルロースアシレートフィルムには、紫外線吸収剤として、帝盛化工社製のUV-531を添加した。添加量は、3phr(per hundred resin)とした。
 作製したセルロースアシレートフィルムを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した。その後、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14mL/m2で塗布し、110℃に加熱したスチーム式遠赤外ヒーター(ノリタケカンパニーリミテド社製)の下に、10秒間滞留させた。
 次いで、同じくバーコーターを用いて、純水を3mL/m2塗布した。
 次いで、ファウンテンコーターによる水洗とエアナイフによる水切りとを、3回繰り返した後に、70℃の乾燥ゾーンに5秒間滞留させて乾燥し、鹸化処理したセルロースアシレートフィルムを作製した。
 鹸化処理したセルロースアシレートフィルムの面内レタデーションをAxoScanで測定したところ、1nmであった。
<Preparation of selective reflection film that reflects linearly polarized light>
A 40 μm thick cellulose acylate film was produced by the same production method as in Example 20 of International Publication No. 2014/112575. In addition, UV-531 manufactured by Teisei Kako Co., Ltd. was added to this cellulose acylate film as an ultraviolet absorbent. The amount added was 3 phr (per hundred resin).
The prepared cellulose acylate film was passed through a dielectric heating roll at 60° C. to raise the film surface temperature to 40° C. Then, an alkaline solution having the composition shown below was applied to one side of the film with a coating amount of 14 mL/ m2 using a bar coater, and the film was allowed to remain under a steam type far-infrared heater (manufactured by Noritake Co., Ltd.) heated to 110° C. for 10 seconds.
Next, 3 mL/m 2 of pure water was applied using the same bar coater.
Next, washing with water using a fountain coater and draining with an air knife were repeated three times, and then the film was allowed to stay in a drying zone at 70° C. for 5 seconds and dried to prepare a saponified cellulose acylate film.
The in-plane retardation of the saponified cellulose acylate film was measured by AxoScan and found to be 1 nm.

-アルカリ溶液の組成-
・水酸化カリウム                  4.7質量部
・水                       15.7質量部
・イソプロパノール                64.8質量部
・界面活性剤(C1633O(CH2CH2O)10H)     1.0質量部
・プロピレングリコール              14.9質量部
- Composition of alkaline solution -
· Potassium hydroxide 4.7 parts by mass · Water 15.7 parts by mass · Isopropanol 64.8 parts by mass · Surfactant ( C16H33O ( CH2CH2O ) 10H ) 1.0 part by mass · Propylene glycol 14.9 parts by mass

 鹸化処理したセルロースアシレートフィルム(透明支持体)の鹸化処理面に、下記に示す組成の配向膜形成用塗布液を、ワイヤーバーコーターで24mL/m2塗布し、100℃の温風で120秒乾燥した。 On the saponified surface of the saponified cellulose acylate film (transparent support), a coating solution for forming an alignment layer having the composition shown below was applied by a wire bar coater at 24 mL/m 2 , and dried with hot air at 100° C. for 120 seconds.

-配向膜形成用塗布液の組成-
・下記に示す変性ポリビニルアルコール         28質量部
・クエン酸エステル(AS3、三共化学社製)     1.2質量部
・光開始剤(イルガキュア2959、BASF社製) 0.84質量部
・グルタルアルデヒド                2.8質量部
・水                        699質量部
・メタノール                    226質量部
--Composition of coating solution for forming alignment film--
Modified polyvinyl alcohol shown below: 28 parts by weight Citric acid ester (AS3, manufactured by Sankyo Chemical Co., Ltd.) 1.2 parts by weight Photoinitiator (Irgacure 2959, manufactured by BASF) 0.84 parts by weight Glutaraldehyde 2.8 parts by weight Water 699 parts by weight Methanol 226 parts by weight

(変性ポリビニルアルコール)
(Modified polyvinyl alcohol)

 配向膜を形成したセルロースアシレートフィルムを、支持体(透明基材)として用いた。
 支持体の配向膜側の片面に、支持体の長辺方向を基準に反時計回りに45°回転させた方向にラビング処理(レーヨン布、圧力:0.1kgf(0.98N)、回転数:1000rpm(revolutions per minute)、搬送速度:10m/min、回数:1往復)を施した。
The cellulose acylate film having the alignment layer formed thereon was used as a support (transparent substrate).
One surface of the support facing the alignment film was subjected to a rubbing treatment (rayon cloth, pressure: 0.1 kgf (0.98 N), rotation speed: 1000 rpm (revolutions per minute), conveying speed: 10 m/min, number of reciprocations: 1) in a direction rotated 45° counterclockwise from the long side direction of the support.

 支持体上の配向膜のラビングした表面に、下記の位相差層形成用塗布液をワイヤーバーを用いて塗布した後、乾燥させて、位相差層形成用塗布液の塗膜を得た。
-位相差層形成用塗布液の組成-
・混合物1                     100質量部
・フッ素系水平配向剤1(配向制御剤1)      0.05質量部
・フッ素系水平配向剤2(配向制御剤2)      0.01質量部
・重合開始剤IRGACURE OXE01(BASF社製)
                          1.0質量部
・溶媒(メチルエチルケトン)    溶質濃度が20質量%となる量
The following coating liquid for forming a retardation layer was applied to the rubbed surface of the alignment film on the support using a wire bar, and then dried to obtain a coating film of the coating liquid for forming a retardation layer.
--Composition of Coating Solution for Forming Retardation Layer--
Mixture 1: 100 parts by weight Fluorine-based horizontal alignment agent 1 (alignment control agent 1): 0.05 parts by weight Fluorine-based horizontal alignment agent 2 (alignment control agent 2): 0.01 parts by weight Polymerization initiator IRGACURE OXE01 (manufactured by BASF)
1.0 part by mass of solvent (methyl ethyl ketone) - amount to give a solute concentration of 20% by mass


 次いで、得られた塗膜付き支持体を50℃のホットプレート上に置き、酸素濃度1000ppm以下の環境で、フュージョンUVシステムズ社製の無電極ランプ「Dバルブ」(60mW/cm2)を用いて6秒間、紫外線を塗膜に照射し、液晶相を固定した。これによりして、所望の面内レタデーションとなるように厚さを調節した位相差層を得た。
 作製した位相差層の面内レタデーションをAxoScanで測定したところ、138nmであった。
The support with the coating film thus obtained was then placed on a hot plate at 50° C., and the coating film was irradiated with ultraviolet light for 6 seconds using an electrodeless lamp “D bulb” (60 mW/ cm2 ) manufactured by Fusion UV Systems in an environment with an oxygen concentration of 1000 ppm or less, thereby fixing the liquid crystal phase. In this way, a retardation layer with a thickness adjusted to obtain the desired in-plane retardation was obtained.
The in-plane retardation of the produced retardation layer was measured by AxoScan and found to be 138 nm.

 得られた位相差層の表面に、以下のコレステリック液晶層形成用塗布液(B1)を、乾燥後の乾膜の厚さが3.0μmになるようにワイヤーバーを用いて室温にて塗布して塗膜を得た。
 塗膜を室温で30秒間乾燥させた後、85℃の雰囲気で2分間加熱した。その後、酸素濃度1000ppm以下の環境で、60℃でフュージョン社製のDバルブ(90mW/cm2のランプ)を用いて、出力60%で6~12秒間、紫外線を塗膜に照射し、コレステリック液晶相を固定して、厚さ2.5μmのコレステリック液晶層B1を得た。
The following cholesteric liquid crystal layer forming coating solution (B1) was applied to the surface of the obtained retardation layer at room temperature using a wire bar so that the thickness of the dried film after drying would be 3.0 μm, thereby obtaining a coating film.
The coating film was dried at room temperature for 30 seconds, and then heated for 2 minutes in an atmosphere at 85° C. Thereafter, in an environment with an oxygen concentration of 1000 ppm or less, the coating film was irradiated with ultraviolet light at an output of 60% for 6 to 12 seconds using a D bulb (90 mW/ cm2 lamp) manufactured by Fusion Co., Ltd. at 60° C. to fix the cholesteric liquid crystal phase, thereby obtaining a cholesteric liquid crystal layer B1 having a thickness of 2.5 μm.

-コレステリック液晶層形成用塗布液(B1)-
 下記の成分を混合し、下記組成のコレステリック液晶層形成用塗布液(B1)を調製した。なお、右旋回性キラル剤LC756の使用量は、得られるコレステリック液晶層の選択反射中心波長が450nmとなるように調節した。
・混合物1                     100質量部
・フッ素系水平配向剤1(配向制御剤1)      0.05質量部
・フッ素系水平配向剤2(配向制御剤2)      0.02質量部
・右旋回性キラル剤LC756(BASF社製)
・重合開始剤IRGACURE OXE01(BASF社製)
                          1.0質量部
・溶媒(メチルエチルケトン)    溶質濃度が30質量%となる量
--Coating solution for forming cholesteric liquid crystal layer (B1)--
The following components were mixed to prepare a coating solution (B1) for forming a cholesteric liquid crystal layer having the following composition: The amount of right-handed chiral dopant LC756 used was adjusted so that the selective reflection center wavelength of the resulting cholesteric liquid crystal layer was 450 nm.
Mixture 1: 100 parts by mass Fluorine-based horizontal alignment agent 1 (alignment control agent 1): 0.05 parts by mass Fluorine-based horizontal alignment agent 2 (alignment control agent 2): 0.02 parts by mass Right-handed chiral agent LC756 (manufactured by BASF)
Polymerization initiator IRGACURE OXE01 (manufactured by BASF)
1.0 part by mass of solvent (methyl ethyl ketone) - amount to give a solute concentration of 30% by mass

 次に、得られたコレステリック液晶層B1の表面にさらに、以下のコレステリック液晶層形成用塗布液(G1)を用いて同様の工程を繰り返し、厚さ3.0μmのコレステリック液晶層G1を積層した。 Next, the same process was repeated using the following cholesteric liquid crystal layer forming coating liquid (G1) on the surface of the obtained cholesteric liquid crystal layer B1 to form a cholesteric liquid crystal layer G1 having a thickness of 3.0 μm.

-コレステリック液晶層形成用塗布液(G1)-
 コレステリック液晶層形成用塗布液(B1)中の右旋回性キラル剤LC756の使用量を得られるコレステリック液晶層の選択反射中心波長が530nmとなるように調節した以外は、コレステリック液晶層形成用塗布液(B1)と同様の成分を混合して、コレステリック液晶層形成用塗布液(G1)を調製した。
--Cholesteric liquid crystal layer forming coating solution (G1)--
A coating solution (G1) for forming a cholesteric liquid crystal layer was prepared by mixing the same components as those in the coating solution (B1) for forming a cholesteric liquid crystal layer, except that the amount of the right-handed chiral dopant LC756 used in the coating solution (B1) for forming a cholesteric liquid crystal layer was adjusted so that the selective reflection center wavelength of the resulting cholesteric liquid crystal layer was 530 nm.

 次に、得られたコレステリック液晶層G1の表面にさらに、以下のコレステリック液晶層形成用塗布液(R1)を用いて同様の工程を繰り返し、厚さ3.5μmのコレステリック液晶層R1を積層した。 Next, the same process was repeated using the following cholesteric liquid crystal layer forming coating liquid (R1) on the surface of the obtained cholesteric liquid crystal layer G1 to form a cholesteric liquid crystal layer R1 having a thickness of 3.5 μm.

-コレステリック液晶層形成用塗布液(R1)-
 コレステリック液晶層形成用塗布液(B1)中の右旋回性キラル剤LC756の使用量を得られるコレステリック液晶層の選択反射中心波長が630nmとなるように調節した以外は、コレステリック液晶層形成用塗布液(B1)と同様の成分を混合して、コレステリック液晶層形成用塗布液(R1)を調製した。
--Cholesteric liquid crystal layer forming coating solution (R1)--
A coating solution (R1) for forming a cholesteric liquid crystal layer was prepared by mixing the same components as those in the coating solution (B1) for forming a cholesteric liquid crystal layer, except that the amount of the right-handed chiral dopant LC756 used in the coating solution (B1) for forming a cholesteric liquid crystal layer was adjusted so that the selective reflection center wavelength of the resulting cholesteric liquid crystal layer was 630 nm.

 このようにして位相差層の上に、3層のコレステリック液晶層を備える選択反射層を得た。選択反射層のS偏光の反射スペクトルを分光光度計(日本分光社製、V-670)で測定したところ、波長450nm、530nm、630nmで90%の反射スペクトルが得られた。 In this way, a selective reflection layer with three cholesteric liquid crystal layers was obtained on top of the retardation layer. When the reflection spectrum of S-polarized light from the selective reflection layer was measured using a spectrophotometer (V-670, manufactured by JASCO Corporation), a reflection spectrum of 90% was obtained at wavelengths of 450 nm, 530 nm, and 630 nm.

 次に、得られたコレステリック液晶層の表面に、さらに偏光変換層形成用塗布液を、目標の膜厚となるように塗布して、偏光変換層を形成し、実施例1の選択反射フィルムを作製した。
 なお、偏光変換層の形成は、上述したコレステリック液晶層の形成と同様に行った。
 また、偏光変換層は、基材に対して垂直に光を入射した際に、先に形成した位相差層(λ/4波長板)と同様の偏光変換特性になる様に、偏光変換層におけるピッチ数、膜厚、および、選択反射中心波長を調節した。
Next, the coating liquid for forming a polarization conversion layer was further applied to the surface of the obtained cholesteric liquid crystal layer so as to have a target film thickness, thereby forming a polarization conversion layer, and thus the selective reflection film of Example 1 was produced.
The polarization conversion layer was formed in the same manner as the above-mentioned cholesteric liquid crystal layer.
In addition, the pitch number, film thickness, and selective reflection center wavelength of the polarization conversion layer were adjusted so that the polarization conversion layer had the same polarization conversion characteristics as the previously formed retardation layer (λ/4 wavelength plate) when light was incident perpendicularly to the substrate.

-偏光変換層形成用塗布液-
 下記の成分を混合し、下記組成の偏光変換層形成用塗布液を調製した。なお、右旋回性キラル剤LC756の使用量は、上記特性の偏光変換層となるように調節した。
・混合物1                     100質量部
・フッ素系水平配向剤1(配向制御剤1)      0.05質量部
・フッ素系水平配向剤2(配向制御剤2)      0.02質量部
・右旋回性キラル剤LC756(BASF社製)
・重合開始剤IRGACURE OXE01(BASF社製)
                          1.0質量部
・溶媒(メチルエチルケトン)    溶質濃度が20質量%となる量
--Polarization conversion layer forming coating liquid--
The following components were mixed to prepare a coating solution for forming a polarization conversion layer having the following composition: The amount of right-handed chiral agent LC756 used was adjusted so as to obtain a polarization conversion layer with the above characteristics.
Mixture 1: 100 parts by mass Fluorine-based horizontal alignment agent 1 (alignment control agent 1): 0.05 parts by mass Fluorine-based horizontal alignment agent 2 (alignment control agent 2): 0.02 parts by mass Right-handed chiral agent LC756 (manufactured by BASF)
Polymerization initiator IRGACURE OXE01 (manufactured by BASF)
1.0 part by mass of solvent (methyl ethyl ketone) - amount to give a solute concentration of 20% by mass

 上述のように、実施例1の直線偏光を反射する選択反射フィルムを作製した。
 実施例2の直線偏光を反射する選択反射フィルムは、位相差層と選択反射層までを実施例と同様に作製し、上述の配向膜へのラビング処理の角度を時計回りに45°回転した位相差層を作製し、選択反射層上にOCAで貼合して作製した。
 実施例3の直線偏光を反射する選択反射フィルムは、実施例2と選択反射層以外は同様に作製した。選択反射層はコレステリック液晶層3層(B1,G1,R1)の上に選択反射中心波長が850nmであるコレステリック液晶層を同様に積層して、作製した。
 実施例4の直線偏光を反射する選択反射フィルムは、実施例3の位相差層の条件のみを変えて作製した。コレステリック液晶層に接する位相差層は、配向膜へのラビング処理の角度を時計回りに45°回転して作製し、OCAを介してコレステリック液晶層に接着する位相差層は配向膜へのラビング処理角度を反時計回りに45°回転して作製した。本例においては、選択反射フィルムから出射する画像光GすなわちHUDにおける投影光は、S偏光になる。
 比較例1は、直線偏光を反射する選択反射フィルムは作製しなかった。
 比較例2は、実施例1から位相差層および偏光変換層を形成せずに、コレステリック液晶層のみを作製した。表1に直線偏光を反射する選択反射フィルムの構成を示す。
As described above, the selective reflection film of Example 1 that reflects linearly polarized light was prepared.
The selective reflection film of Example 2 that reflects linearly polarized light was produced by preparing the retardation layer and the selective reflection layer in the same manner as in the examples, and then preparing a retardation layer in which the angle of the rubbing treatment on the above-mentioned alignment film was rotated 45° clockwise, and laminating the retardation layer on the selective reflection layer with an OCA.
The selective reflection film of Example 3 that reflects linearly polarized light was prepared in the same manner as in Example 2, except for the selective reflection layer. The selective reflection layer was prepared by similarly laminating a cholesteric liquid crystal layer having a selective reflection center wavelength of 850 nm on three cholesteric liquid crystal layers (B1, G1, R1).
The selective reflection film of Example 4 that reflects linearly polarized light was produced by changing only the conditions of the retardation layer of Example 3. The retardation layer in contact with the cholesteric liquid crystal layer was produced by rotating the rubbing angle of the alignment film by 45° clockwise, and the retardation layer that was bonded to the cholesteric liquid crystal layer via the OCA was produced by rotating the rubbing angle of the alignment film by 45° counterclockwise. In this example, the image light G emitted from the selective reflection film, i.e., the projection light in the HUD, becomes S-polarized light.
In Comparative Example 1, a selective reflection film that reflects linearly polarized light was not produced.
In Comparative Example 2, only a cholesteric liquid crystal layer was prepared without forming the retardation layer and the polarization conversion layer from Example 1. Table 1 shows the structure of the selective reflection film that reflects linearly polarized light.

 [実施例]
 図2に示すような、一面に、入射回折素子、中間回折素子および出射回折素子を有する導光板を用意した。
 導光板は厚さ10mmのアクリル樹脂製で、サイズは200×200mmとした。
 回折素子は、いずれもホログラフィック回折素子で、入射回折素子は10×5mm、中間回折素子は185×10mm、出射回折素子は185×175mmで、図2に準じて配置した。回折素子の固定は、紫外線硬化性の接着剤(東亜合成社製、UVX-5457)を用いて行った。それぞれの回折素子の回折特性は、上述のとおりである。
[Example]
A light guide plate having an entrance diffraction element, an intermediate diffraction element and an exit diffraction element on one surface as shown in FIG. 2 was prepared.
The light guide plate was made of acrylic resin with a thickness of 10 mm and a size of 200×200 mm.
All the diffraction elements were holographic diffraction elements, with the incident diffraction element being 10 x 5 mm, the intermediate diffraction element being 185 x 10 mm, and the exit diffraction element being 185 x 175 mm, and were arranged according to Fig. 2. The diffraction elements were fixed using an ultraviolet-curing adhesive (UVX-5457, manufactured by Toa Gosei Co., Ltd.). The diffraction characteristics of each diffraction element were as described above.

 自動車のダッシュボードの上に、回折素子を設けた導光板を載置した。
 また、入射回折素子から導光板に画像を入射するように、画像表示装置を設けた。画像表示装置は、レーザースキャン方式のプロジェクションユニットを用いた。画像表示装置が出射する直線偏光は、下記の表2に併記する。
 この導光板の出射回折素子の上に、実施例1~4、比較例2の直線偏光を反射する選択反射フィルムをそれぞれ設けて、6種のプロジェクターを作製した。また、比較例1として、出射回折素子の上に何も有さないプロジェクターも作製した。
 上記プロジェクターを実車に組み込み、ウインドシールドガラスに画像を投影するヘッドアップディスプレイシステムを構築した。実施例1~3、および比較例1~2のウインドシールドガラスは、国際公開第2022/123946号に記載のP偏光を反射するウインドシールドガラスを使用した。実施例4のウインドシールドガラスは、くさび型ガラスを使用した。
The light guide plate provided with the diffraction element was placed on the dashboard of a car.
In addition, an image display device was provided so that an image was incident on the light guide plate from the incident diffraction element. A laser scanning projection unit was used as the image display device. The linearly polarized light emitted by the image display device is shown in Table 2 below.
Six types of projectors were produced by providing the selective reflection films for reflecting linearly polarized light of Examples 1 to 4 and Comparative Example 2 on the output diffraction element of this light guide plate. In addition, as Comparative Example 1, a projector having nothing on the output diffraction element was also produced.
The projector was installed in an actual vehicle, and a head-up display system was constructed to project an image onto the windshield glass. The windshield glasses of Examples 1 to 3 and Comparative Examples 1 and 2 were made of windshield glass that reflects P-polarized light, as described in International Publication No. 2022/123946. The windshield glass of Example 4 was made of wedge-shaped glass.

 <太陽光による画像のギラツキの評価>
 屋外の晴天下で、画像表示装置によって、白色画像を表示して、ウインドシールドから投影される画像(投影像)を観察し、下記基準で評価した。
 評価基準
 A:画像に太陽光ノイズが少なく、はっきり見えた。
 B:画像に太陽光ノイズが入り、見えにくい瞬間が多い。
 C:画像に太陽光ノイズが強く入り、見えにくい。
 結果を、下記の表2に示す。
<Evaluation of image glare caused by sunlight>
A white image was displayed on the image display device outdoors under clear skies, and the image projected from the windshield (projected image) was observed and evaluated according to the following criteria.
Evaluation Criteria A: The image had little sunlight noise and was clearly visible.
B: There is sunlight noise in the image, making it difficult to see at many moments.
C: The image has strong sunlight noise and is difficult to see.
The results are shown in Table 2 below.

 <太陽光によるプロジェクター内部の昇温の評価>
 真夏の屋外の晴天下で、画像表示装置の前に熱電対を配置し、温度を測り、下記基準で評価した。
 評価基準
 A:画像表示装置前部の温度は60℃以下。
 B:画像表示装置前部の温度は60℃以上80℃以下。
 C:画像表示装置前部の温度は80℃以上に昇温した(内部の部材がダメージを受ける温度)。
 結果を、下記の表2に併記する。
<Evaluation of temperature rise inside the projector due to sunlight>
A thermocouple was placed in front of the image display device outdoors under a clear sky in midsummer, and the temperature was measured and evaluated according to the following criteria.
Evaluation Criteria A: The temperature at the front of the image display device is 60° C. or less.
B: The temperature at the front of the image display device is 60°C or higher and 80°C or lower.
C: The temperature at the front of the image display device rose to 80° C. or higher (a temperature at which the internal members were damaged).
The results are shown in Table 2 below.

 表2に示すように、実施例1~4のプロジェクターでは、比較例のプロジェクターに比して、太陽光による画像のギラツキおよび幻惑が低減されること、プロジェクター内部温度が低減することが確認できた。
 以上の結果より、本発明の効果は、明らかである。
As shown in Table 2, it was confirmed that the projectors of Examples 1 to 4 reduced glare and illusion of images caused by sunlight, and reduced the internal temperature of the projector, compared to the projector of the comparative example.
From the above results, the effects of the present invention are clear.

 車両などに搭載されるHUD等に、好適に利用可能である。 It can be ideally used in HUDs mounted on vehicles, etc.

 10.100,130 HUD(ヘッドアップディスプレイシステム)
 12,132 導光板
 14,136 出射回折素子
 16 選択反射フィルム
 18,129 画像表示装置
 20,134 入射回折素子
 24 中間回折素子
 30,126 ウインドシールド
 34 ミラー
 60 偏光変換層
 62 選択反射層
 64 位相差層
 66 透明基材
 68B 青光の選択反射層
 68G 緑光の選択反射層
 68R 赤光の選択反射層
 112 画像表示部
 116 反射ミラー
 118 凹面ミラー
 120 ダッシュボード
 124 透過窓
 131 投影レンズ
 138 光学フィルタ
 O 使用者
10.100,130 HUD (Head-up Display System)
12, 132 Light guide plate 14, 136 Exit diffraction element 16 Selective reflection film 18, 129 Image display device 20, 134 Incident diffraction element 24 Intermediate diffraction element 30, 126 Windshield 34 Mirror 60 Polarization conversion layer 62 Selective reflection layer 64 Retardation layer 66 Transparent substrate 68B Blue light selective reflection layer 68G Green light selective reflection layer 68R Red light selective reflection layer 112 Image display unit 116 Reflection mirror 118 Concave mirror 120 Dashboard 124 Transmissive window 131 Projection lens 138 Optical filter O User

Claims (9)

 ヘッドアップディスプレイ用のプロジェクターであって、
 画像光を出射する画像表示装置と、前記画像表示装置が出射した前記画像光を導光する導光板と、
 前記導光板を導光する前記画像光を前記導光板から出射する出射素子と、
 前記出射素子の前記画像光の出射側に設けられる、直線偏光を反射する選択反射フィルムと、を有する、プロジェクター。
A projector for a head-up display,
an image display device that emits image light; and a light guide plate that guides the image light emitted by the image display device;
an emission element that emits the image light guided through the light guide plate from the light guide plate;
a selective reflection film that is provided on the output side of the output element and reflects linearly polarized light.
 前記出射素子が回折素子である、請求項1に記載のプロジェクター。 The projector of claim 1, wherein the output element is a diffraction element.  前記直線偏光を反射する選択反射フィルムは、可視光を反射する、請求項1に記載のプロジェクター。 The projector of claim 1, wherein the selective reflection film that reflects linearly polarized light reflects visible light.  前記直線偏光を反射する選択反射フィルムは、可視光と赤外光とを反射する、請求項1に記載のプロジェクター。 The projector of claim 1, wherein the selective reflection film that reflects linearly polarized light reflects visible light and infrared light.  前記画像光がP偏光であって、前記直線偏光を反射する選択反射フィルムはS偏光を反射するフィルムである、請求項1に記載のプロジェクター。 The projector according to claim 1, wherein the image light is P-polarized light, and the selective reflection film that reflects the linearly polarized light is a film that reflects S-polarized light.  前記画像光がS偏光であって、前記直線偏光を反射する選択反射フィルムはP偏光を反射するフィルムである、請求項1に記載のプロジェクター。 The projector according to claim 1, wherein the image light is S-polarized light, and the selective reflection film that reflects the linearly polarized light is a film that reflects P-polarized light.  前記直線偏光を反射する選択反射フィルムは、位相差層と、コレステリック液晶相を固定してなるコレステリック液晶層と、位相差層とを、この順で有する、請求項1に記載のプロジェクター。 The projector of claim 1, wherein the selective reflection film that reflects the linearly polarized light has a retardation layer, a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed, and a retardation layer, in this order.  前記直線偏光を反射する選択反射フィルムは、位相差層と、コレステリック液晶相を固定してなるコレステリック液晶層と、偏光変換層とを、この順で有する、請求項1に記載のプロジェクター。 The projector according to claim 1, wherein the selective reflection film that reflects the linearly polarized light has, in this order, a retardation layer, a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed, and a polarization conversion layer.  請求項1~8のいずれか1項に記載のプロジェクターと、前記プロジェクターより出射された投影光が照射されるウインドシールドガラスと、を含む、ヘッドアップディスプレイシステム。 A head-up display system comprising the projector according to any one of claims 1 to 8 and a windshield glass onto which the projection light emitted from the projector is irradiated.
PCT/JP2024/016869 2023-05-09 2024-05-02 Projector and head-up display system WO2024232334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-077058 2023-05-09
JP2023077058 2023-05-09

Publications (1)

Publication Number Publication Date
WO2024232334A1 true WO2024232334A1 (en) 2024-11-14

Family

ID=93429972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/016869 WO2024232334A1 (en) 2023-05-09 2024-05-02 Projector and head-up display system

Country Status (1)

Country Link
WO (1) WO2024232334A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125856A1 (en) * 2014-02-20 2015-08-27 富士フイルム株式会社 Reflective member having thermal insulation utility and projector including reflective member
WO2015141759A1 (en) * 2014-03-20 2015-09-24 富士フイルム株式会社 Reflection member, projection screen, combiner, and heat shield member
JP2021528681A (en) * 2018-06-15 2021-10-21 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Optical waveguides for display devices
JP2023506582A (en) * 2020-01-31 2023-02-16 スリーエム イノベイティブ プロパティズ カンパニー Polarizing beam splitters and hot mirrors for head-up displays
US20230139649A1 (en) * 2020-06-27 2023-05-04 Lumus Ltd. Vehicle head-up display (hud)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125856A1 (en) * 2014-02-20 2015-08-27 富士フイルム株式会社 Reflective member having thermal insulation utility and projector including reflective member
WO2015141759A1 (en) * 2014-03-20 2015-09-24 富士フイルム株式会社 Reflection member, projection screen, combiner, and heat shield member
JP2021528681A (en) * 2018-06-15 2021-10-21 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Optical waveguides for display devices
JP2023506582A (en) * 2020-01-31 2023-02-16 スリーエム イノベイティブ プロパティズ カンパニー Polarizing beam splitters and hot mirrors for head-up displays
US20230139649A1 (en) * 2020-06-27 2023-05-04 Lumus Ltd. Vehicle head-up display (hud)

Similar Documents

Publication Publication Date Title
CN111051936B (en) Optical film, optical element, and imaging device
JP7177176B2 (en) Projected image display materials, windshield glass and head-up display systems
JP7313457B2 (en) Head-up display projector
WO2015141759A1 (en) Reflection member, projection screen, combiner, and heat shield member
CN111051961B (en) Half mirror film for projection image display, laminated glass for projection image display, and image display system
US20140307176A1 (en) Light-Transmitting Pane for Displaying an Image of a Head-Up Display for Polarized Sunglasses
KR101944227B1 (en) Half mirror for displaying projected image, method for producing same, and projected image display system
US20210294099A1 (en) Projection image-displaying member, windshield glass, and head-up display system
JP7649800B2 (en) Reflective films, windshield glass and head-up display systems
WO2019049767A1 (en) Projection unit
JP6676154B2 (en) Transparent screen and image display system
JP2019003011A (en) Laminate, laminated glass, windshield glass, video display system
JP7260715B2 (en) Windshield glass and head-up display system
JP7260449B2 (en) Projected image display materials, windshield glass and head-up display systems
WO2024232334A1 (en) Projector and head-up display system
JP2017015766A (en) Image display device
JP2023051434A (en) Head-up display system and transport vehicle having the same
WO2025009413A1 (en) Projector for head-up display, and head-up display system
JP7247068B2 (en) Reflective member for projector and projector for head-up display
CN117897645A (en) Head-up display system and transport aircraft
WO2018199065A1 (en) Imaging device and laminate
WO2021131709A1 (en) Projectional image display system
WO2024232319A1 (en) Retardation layer, projector, and head-up display system
JP2007256479A (en) Optical element, projection screen and system using optical element
CN220752336U (en) Filter film, amplifying reflection element, head-up display and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24803446

Country of ref document: EP

Kind code of ref document: A1