WO2024208314A1 - 喜树碱衍生物、药物组合物及其制备方法和应用 - Google Patents
喜树碱衍生物、药物组合物及其制备方法和应用 Download PDFInfo
- Publication number
- WO2024208314A1 WO2024208314A1 PCT/CN2024/085983 CN2024085983W WO2024208314A1 WO 2024208314 A1 WO2024208314 A1 WO 2024208314A1 CN 2024085983 W CN2024085983 W CN 2024085983W WO 2024208314 A1 WO2024208314 A1 WO 2024208314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- mmol
- compound
- reaction
- antibody
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4738—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4745—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/48—Ergoline derivatives, e.g. lysergic acid, ergotamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/22—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
Definitions
- the invention belongs to the field of medicine, and specifically relates to a camptothecin derivative, a pharmaceutical composition, and a preparation method and application thereof.
- ADCs antibody-drug conjugates
- ADCs are composed of monoclonal antibody drugs targeting specific antigens and small molecule cytotoxic drugs coupled through linkers. They have both the powerful killing effect of traditional small molecule chemotherapy and the tumor targeting of antibody drugs.
- Camptothecin is a natural product isolated from Camptotheca acuminata, a plant of the Davidiaceae family. Camptothecin is a five-ring compound consisting of quinoline ring AB, pyrrole ring C, pyridone ring D and ⁇ -hydroxylactone ring E, of which the 20th position is S-configuration (see the structural formula below). Due to its excellent anti-cancer activity, it was introduced to clinical practice in the early 1970s. Later, serious side effects such as diarrhea and hemorrhagic cystitis occurred in the clinic, and clinical trials were terminated.
- camptothecin can form a ternary complex with DNA topoisomerase I in cells, thereby inhibiting the unwinding of DNA, resulting in DNA replication being blocked, thereby causing cell death (Cancer Res. 1989, 49, 6365). Camptothecin and its derivatives have strong anti-tumor activity in animal models such as lung cancer, breast cancer, colorectal cancer, and ovarian cancer (Nature Review Cancer. 2006, 6, 789). Currently, multiple camptothecin drugs have been approved for marketing for tumor treatment (Med Res. Rev. 2015, 35, 753).
- Irinotecan is a drug for the treatment of colorectal cancer; topotecan is used for the treatment of ovarian cancer; belotecan is used for the treatment of ovarian cancer and small cell lung cancer.
- Camptothecin derivatives also include ixitecan, rubitecan, diflutecan, lortotecan, gimatecan, ximintecan, gimitecan, ilotecan, etc. Camptothecin drugs or their derivatives often have blood toxicity caused by bone marrow suppression, such as leukopenia, thrombocytopenia, anemia, neutropenia, etc., as well as gastrointestinal side effects, such as nausea, vomiting, diarrhea, etc.
- camptothecin compounds have found that measures to improve the safety and effectiveness of camptothecin compounds include increasing water solubility, improving their pharmacokinetic properties, increasing activity, reducing dosage, or using their conjugates to form antibody-coupled drugs with antibodies. Therefore, there is still a lot of room for the development of camptothecin compounds and their conjugates with novel structures that can improve effectiveness and improve safety issues. High clinical demand and application value.
- the present invention provides a compound represented by Formula I, its racemate, stereoisomer, tautomer, isotope-labeled substance, solvate, polymorph, pharmaceutically acceptable salt or prodrug compound:
- R 1 , R 2 , and R 3 are the same or different and are independently selected from H, OH, CN, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, halogenated C 1-10 alkyl, halogenated C 1-10 alkoxy, cyano C 1-10 alkyl, cyano C 1-10 alkoxy, and C 3-10 cycloalkyl;
- R4 is selected from H or R 41 is selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered heterocyclyl, C 6-14 aryl and 5-14 membered heteroaryl ;
- R5 is selected from H
- R 51 and R 52 are the same or different and are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered heterocyclyl, C 6-14 aryl and 5-14 membered heteroaryl;
- R 53 is selected from C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6
- X is selected from CH or N;
- Y is selected from -(CH 2 ) m -, -(CH 2 ) m -O-(CH 2 ) p -;
- n is an integer selected from 0 to 6;
- p is selected from an integer of 0-6.
- R 1 is selected from H, OH, CN, halogen, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkane or halogenated C 1-6 alkoxy;
- R 1 is selected from H, OH, Br, methyl, difluoromethoxy, 2,2,2-trifluoroethoxy, vinyl, cyclopropyl or ethynyl.
- R 2 is selected from H, halogen, CN or C 1-6 alkyl
- R 2 is selected from H or F.
- R 3 is selected from H or C 1-6 alkyl
- R 3 is H.
- R4 is selected from H or For example
- R4 is selected from H or
- XR4 is Preferably
- XR 4 is -CH 2 -.
- R5 is selected from H, wherein R 51 is selected from H, methyl, ethyl, isopropyl or cyclopropyl; R 52 is selected from H or methyl; R 53 is selected from methyl; Ring A is selected from C 3-6 cycloalkyl; Ra is selected from H, hydroxyl, CN, halogen, C 1-6 alkyl, C 1-6 haloalkyl; n is selected from 0 or 1; q is selected from 0 or 1;
- Ring A is selected from a cyclobutane ring.
- R5 is selected from H
- R 51 is selected from H, methyl, ethyl, isopropyl or cyclopropyl;
- R 52 is selected from H or methyl;
- R 53 is selected from methyl;
- Ring A is selected from a cyclobutane ring;
- R5 is selected from H
- X is selected from CH or N; and when X is CH, R4 is H; or when X is N, R5 is H;
- m is selected from 0, 1 or 2;
- p is selected from 0, 1 or 2;
- Y is selected from -CH 2 -, -CH 2 -CH 2 -, -CH 2 -O-.
- the compound structure shown in Formula I is as follows:
- R 1 , R 2 , R 3 , R 4 , R 5 , X, and m are independently as defined herein.
- the compound structure shown in Formula I is as follows:
- R 1 , R 2 , R 4 , R 5 , X, and m are independently as defined herein.
- the compound structure shown in Formula I is as follows:
- R 1 , R 2 , and R 5 are independently defined as described herein.
- the compound structure shown in Formula I is as follows:
- R 1 , R 2 , R 51 , R 52 , Ring A, Ra, m, n, and q are independently defined as described herein.
- the present invention also provides a compound represented by formula V, its racemate, stereoisomer, tautomer, isotope-labeled substance, solvate, polymorph, pharmaceutically acceptable salt or prodrug compound thereof: ML 1 -L 2 -D (Formula V)
- M is a linker site with an antibody or an antigen-binding fragment thereof
- L 1 is a peptide residue; preferably, selected from glycine-glycine-phenylalanine-glycine (GGFG), glutamic acid-valine-citrulline (EVC), valine-citrulline (VC), aspartic acid-valine-citrulline (DVC), glutamic acid-glycine-glycine-phenylalanine-glycine (EGGFG), aspartic acid-glycine-glycine-phenylalanine-glycine (DGGFG);
- L2 is a linking group between the peptide residue and D; preferably, it is selected from a chemical bond, -NH-C 1-6 alkyl-, Preferably, L 2 is selected from -NH-CH 2 -;
- D is a structural fragment of a biologically active molecule.
- D is selected from the structure of the compound of Formula I described herein after dehydrogenation.
- the structure of D is as follows:
- M is selected from the following structures:
- Lg does not exist or is a leaving group, wherein the leaving group is selected from halogen, sulfone, trifluoromethanesulfonyl, and methanesulfonyl;
- Ring B is selected from a 5-14 membered heteroaromatic ring and a 3-14 membered heterocyclic ring;
- L m1 is absent or selected from the following groups which are unsubstituted or optionally substituted by one, two or more R m1 : C 6-14 aryl, 5-14 membered heteroaryl, 3-14 membered heterocyclyl; each R m1 is the same or different and is independently selected from H, halogen, cyano, C 1-6 alkyl or HOOC-C 1-3 alkylene;
- r is an integer selected from 0 to 6;
- s is an integer selected from 0 to 6;
- t is an integer selected from 0-6.
- Ring B is selected from a 5-6 membered N-containing heteroaromatic ring, a 3-6 membered N-containing heterocyclic ring;
- ring B is selected from a pyrimidine ring, a pyridine ring, a triazine ring (such as ),
- L m1 is absent or is selected from the following groups which are unsubstituted or optionally substituted with one, two or more R m1 : phenyl, piperidinyl or piperazinyl;
- R m1 is selected from -CH 2 COOH
- L m1 is selected from
- each R m2 is the same or different and is independently selected from -C 1-3 alkylene-COOH, wherein the alkylene is optionally interrupted by O or NH;
- each R m2 is the same or different and is independently selected from
- M is selected from
- L1 is glycine-glycine-phenylalanine-glycine (GGFG), i.e.
- L 2 is -NH-CH 2 -.
- ML 1 -L 2 are selected from the following groups:
- the compound represented by formula V is selected from the following structures:
- the present invention also provides an antibody-drug conjugate as shown in Formula VI,
- Ab is an antibody or an antigen-binding fragment thereof
- D has the definition as described in the text of the present application
- L is a linker connecting Ab and D
- ⁇ is selected from an integer or decimal between 1-10.
- Ab is an antibody or an antigen-binding fragment, wherein the antigen-binding fragment is selected from Fab, Fab', (Fab') 2 , Fd, Fv, disulfide-linked Fv, scFv, di-scFv, (scFv) 2 , diabody and single domain antibody (sdAb); and/or, the antibody is a murine antibody, a humanized antibody, a chimeric antibody, a bispecific antibody or a multispecific antibody.
- the antigen-binding fragment is selected from Fab, Fab', (Fab') 2 , Fd, Fv, disulfide-linked Fv, scFv, di-scFv, (scFv) 2 , diabody and single domain antibody (sdAb); and/or, the antibody is a murine antibody, a humanized antibody, a chimeric antibody, a bispecific antibody or a multispecific antibody.
- Ab is an anti-HER 2 antibody or an antigen-binding fragment thereof, for example, Ab is trastuzumab or an antigen-binding fragment thereof.
- ⁇ is selected from an integer or decimal between 4 and 9 (e.g., 7, 7.71, 7.84, 7.92, 7.94, 7.97, 7.98, 7.99, 8, 8.02, 8.06, or 8.14).
- L is selected from M'-L 1 -L 2 , wherein M' is a linker site with an antibody or an antigen-binding fragment thereof, formed by coupling M defined in the present application with an antibody or an antigen-binding fragment thereof, and L 1 and L 2 have the definitions described in the present application;
- M' is selected from
- the carbonyl linking position in M' is linked to L1 , and the linking position on the heterocyclic or heteroaromatic ring is linked to Ab.
- L is selected from:
- position 1 is connected to Ab and position 2 is connected to D.
- LD is selected from:
- the antibody-drug conjugate of formula VI is selected from the following structures:
- the present invention also provides a method for preparing the compound of formula I, comprising the following scheme 1 or scheme 2:
- Solution 1 includes the following steps:
- R 1 , R 2 , R 3 , R 4 , R 5 , X, and m have the definitions described herein;
- Y is selected from a leaving group, such as OH, Cl, Br, and I;
- PG 4 is selected from an amino protecting group, such as Fmoc, Boc, Bn, and Cbz.
- Solution 2 includes the following steps:
- R 1 , R 2 , R 3 , R 4 , R 5 , R 51 , X, m, n have the meanings as described herein;
- Y is selected from leaving groups such as OH, Cl, Br, I;
- PG 5 is selected from amino protecting groups such as Fmoc, Boc, Bn, Cbz.
- the present invention also provides a pharmaceutical composition
- a pharmaceutical composition comprising a therapeutically effective amount of at least one of the compounds represented by Formula I or Formula V, their racemates, stereoisomers, tautomers, isotope-labeled substances, solvates, polymorphs, pharmaceutically acceptable salts or prodrug compounds thereof.
- the present invention also provides a pharmaceutical composition comprising a therapeutically effective amount of the antibody-drug conjugate shown in Formula VI.
- the pharmaceutical composition further comprises one or more pharmaceutically acceptable excipients.
- the pharmaceutical composition may further contain one or more additional therapeutic agents.
- the present invention also provides a method for treating tumor diseases, comprising administering to a patient a preventive or therapeutically effective amount of a compound represented by Formula I or Formula V, its racemate, stereoisomer, tautomer, isotope-labeled substance, solvate, polymorph, pharmaceutically acceptable salt or at least one of its prodrug compounds.
- the present invention also provides a method for treating tumor diseases, comprising administering to a patient an effective amount of the above-mentioned pharmaceutical composition for prevention or treatment.
- the tumor disease is selected from breast cancer, gastric cancer, lung cancer, colorectal cancer, large intestine cancer, ovarian cancer, liver cancer, kidney cancer, esophageal cancer, cervical cancer, bladder cancer, pancreatic cancer, prostate cancer, nasopharyngeal cancer, melanoma or leukemia.
- the patient comprises a mammal, preferably a human.
- the present invention also provides at least one of the compounds represented by Formula I, Formula V or the antibody-drug conjugate represented by Formula VI, their racemates, stereoisomers, tautomers, isotope-labeled substances, solvates, polymorphs, pharmaceutically acceptable salts or prodrug compounds for treating tumor diseases, or a pharmaceutical composition thereof.
- the present invention also provides the use of at least one of the compounds represented by Formula I, Formula V or the antibody-drug conjugate represented by Formula VI, their racemates, stereoisomers, tautomers, isotope-labeled substances, solvates, polymorphs, pharmaceutically acceptable salts or prodrug compounds thereof, or the above-mentioned pharmaceutical compositions in the preparation of topoisomerase I inhibitors and/or in the preparation of drugs for preventing or treating diseases or conditions associated with topoisomerase I.
- the disease or condition is a tumor
- the tumor includes breast cancer, gastric cancer, lung cancer, colorectal cancer, large intestine cancer, ovarian cancer, liver cancer, kidney cancer, esophageal cancer, cervical cancer, bladder cancer, pancreatic cancer, prostate cancer, nasopharyngeal cancer, melanoma or leukemia.
- the present invention also provides a compound represented by Formula I', its racemate, stereoisomer, tautomer, isotope-labeled substance, solvate, polymorph, pharmaceutically acceptable salt or prodrug compound:
- R 1 , R 2 , and R 3 are the same or different and are independently selected from H, OH, CN, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, halogenated C 1-10 alkyl, halogenated C 1-10 alkoxy, cyano C 1-10 alkyl, cyano C 1-10 alkoxy, and C 3-10 cycloalkyl;
- R4 is selected from H or R 41 is selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered heterocyclyl, C 6-14 aryl and 5-14 membered heteroaryl ;
- R5 is selected from H
- R 51 and R 52 are the same or different and are independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered heterocyclyl, C 6-14 aryl and 5-14 membered heteroaryl;
- R 53 is selected from C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6
- X is selected from CH or N;
- Y is selected from -(CH 2 ) m -O-(CH 2 ) p -;
- n is an integer selected from 0 to 6;
- p is selected from an integer of 0-6.
- R 1 is selected from H, OH, CN, halogen, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl or halogenated C 1-6 alkoxy;
- R 1 is selected from H, OH, Br, methyl, difluoromethoxy, 2,2,2-trifluoroethoxy, vinyl, cyclopropyl or ethynyl;
- R 2 is selected from H, halogen, CN or C 1-6 alkyl;
- R 2 is selected from H or F;
- R 3 is selected from H or C 1-6 alkyl
- R3 is H.
- R4 is selected from H or For example
- R4 is selected from H or
- XR 4 is Preferably
- XR 4 is -CH 2 -;
- Y is selected from -CH2 -O-.
- R5 is selected from H, wherein R 51 is selected from H, methyl, ethyl, isopropyl or cyclopropyl; R 52 is selected from H or methyl; R 53 is selected from methyl; Ring A is selected from C 3-6 cycloalkyl; Ra is selected from H, hydroxyl, CN, halogen, C 1-6 alkyl, C 1-6 haloalkyl; n is selected from 0 or 1; q is selected from 0 or 1;
- ring A is selected from a cyclobutane ring
- R5 is selected from H,
- R 51 is selected from H, methyl, ethyl, isopropyl or cyclopropyl;
- R 52 is selected from H or methyl;
- R 53 is selected from methyl;
- Ring A is selected from cyclobutane ring;
- R5 is selected from H,
- X is selected from CH or N; and when X is CH, R4 is H; or when X is N, R5 is H;
- the compound structure shown in Formula I' is as follows:
- R 1 , R 2 , R 51 , R 52 and n are independently as defined above.
- the compound structure shown in Formula I' is as follows:
- the present invention also provides a compound represented by Formula I", its racemate, stereoisomer, tautomer, isotope-labeled substance, solvate, polymorph, pharmaceutically acceptable salt or prodrug compound:
- R 1 , R 2 , and R 3 are the same or different and are independently selected from H, OH, CN, halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, halogenated C 1-10 alkyl, halogenated C 1-10 alkoxy, cyano C 1-10 alkyl, cyano C 1-10 alkoxy, and C 3-10 cycloalkyl;
- R4 is selected from H or R 41 is selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered heterocyclyl, C 6-14 aryl and 5-14 membered heteroaryl ;
- R 52 is selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered heterocyclyl, C 6-14 aryl and 5-14 membered heteroaryl ;
- R 20 is selected from H or an amino protecting group
- R 20 is selected from Fmoc, Boc, Bn, Cbz;
- X is selected from CH or N;
- Y is selected from -(CH 2 ) m -O-(CH 2 ) p -;
- n is an integer selected from 0 to 6;
- p is an integer selected from 0 to 6;
- R 1 is selected from H, OH, CN, halogen, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl or halogenated C 1-6 alkoxy;
- R 1 is selected from H, OH, Br, methyl, difluoromethoxy, 2,2,2-trifluoroethoxy, vinyl, cyclopropyl or ethynyl;
- R 2 is selected from H, halogen, CN or C 1-6 alkyl;
- R 2 is selected from H or F;
- R 3 is selected from H or C 1-6 alkyl
- R 3 is H
- R4 is selected from H
- the compound of formula I" is:
- the present invention also provides a compound represented by formula MII
- Lg is a leaving group, and the leaving group is selected from halogen, sulfone, trifluoromethanesulfonyl or mesyl; preferably, Lg is mesyl;
- Ring B is selected from a 5-6 membered N-containing heteroaromatic ring or a 3-6 membered N-containing heterocyclic ring;
- ring B is selected from a pyrimidine ring, a pyridine ring or a triazine ring;
- L m1 is absent or selected from the following groups which are unsubstituted or optionally substituted by one, two or more R m1 : C 6-14 aryl, 5-14 membered heteroaryl, 3-14 membered heterocyclyl; each R m1 is the same or different and is independently selected from H, halogen, cyano, C 1-6 alkyl, HOOC-C 1-3 alkylene;
- L m1 is absent or is selected from the following groups which are unsubstituted or optionally substituted with one, two or more R m1 : phenyl, piperidinyl or piperazinyl;
- L m1 is selected from
- Each R m2 is the same or different and is independently selected from H, halogen, cyano, C 1-6 alkyl or -C 1-6 alkylene-COOH, wherein the alkylene is optionally interrupted by one, two or more of the following groups: O, NH;
- each R m2 is the same or different and is independently selected from -C 1-3 alkylene-COOH, wherein the alkylene is optionally interrupted by O or NH;
- R m2 is selected from
- r is an integer selected from 0 to 6;
- s is an integer selected from 0 to 6;
- t is an integer selected from 0 to 6;
- Rz is selected from hydroxyl, halogen, active ester, carboxyl protecting group, amino acid, peptide fragment or hydrophilic fragment;
- the amino acid is the N-terminal amino acid of L 1
- the peptide fragment is a subfragment of L 1 formed from 2, 3 or 4 amino acids at the N-terminus or is L 1 ;
- the C-terminus of the peptide fragment is a hydroxyl group, an active ester, a carboxyl protecting group or
- the hydrophilic segment comprises a polyhydroxy group, a polyethylene glycol segment, a polybetaine segment or a polycreatine segment;
- formula MII is the following formula MII-1:
- R 21 and R 22 are each independently selected from H, halogen, cyano, oxo ( ⁇ O), C 1-6 alkyl, halogenated C 1-6 alkyl, hydroxy C 1-6 alkyl, C 1-6 alkoxy, C 3-8 cycloalkyl, 3-8 membered heterocyclyl, C 1-6 alkyl-OC 1-6 alkyl; provided that when Z is N, R 21 is not H;
- Rz is OH or halogen
- t is an integer from 2 to 4
- Z is N and R 21 is selected from cyano, C 1-6 alkoxy, C 3-4 cycloalkyl or -C 1-6 alkyl-OC 1-6 alkyl, or R 21 is H, Z is CR 22 and R 22 is cyano or trifluoromethyl;
- the compound of formula MII is:
- the present invention also provides compounds represented by formula (L'-1)-(L'-3):
- Lg is a leaving group, and the leaving group is selected from halogen, sulfone, trifluoromethanesulfonyl or mesyl; preferably, Lg is mesyl;
- Ring B is selected from a 5-6 membered N-containing heteroaromatic ring or a 3-6 membered N-containing heterocyclic ring;
- ring B is selected from a pyrimidine ring, a pyridine ring or a triazine ring;
- L m1 is absent or is selected from the following groups which are unsubstituted or optionally substituted by one, two or more R m1 : C 6-14 aryl, 5-14 membered heteroaryl, 3-14 membered heterocyclyl; each R m1 is the same or different and is independently selected from H, halogen, cyano, C 1-6 alkyl, HOOC-C 1-3 alkylene;
- L m1 is absent or is selected from the following groups which are unsubstituted or optionally substituted with one, two or more R m1 : phenyl, piperidinyl or piperazinyl;
- L m1 is selected from
- Each R m2 is the same or different and is independently selected from H, halogen, cyano, C 1-6 alkyl or -C 1-6 alkylene-COOH, wherein the alkylene is optionally interrupted by one, two or more of the following groups: O, NH;
- each R m2 is the same or different and is independently selected from -C 1-3 alkylene-COOH, wherein the alkylene is optionally interrupted by O or NH;
- R m2 is selected from
- r is an integer selected from 0 to 6;
- s is an integer selected from 0 to 6;
- t is an integer selected from 0 to 6;
- Rz2 is selected from hydroxyl, halogen, active ester or carboxyl protecting group
- R 51 is independently selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, 3-6 membered heterocyclyl, C 6-14 aryl and 5-14 membered heteroaryl;
- R 53 is selected from C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkyl-NH-, (C 1-6 alkyl) 2 N-, C 1-6 alkyl-NH-C 1-6 alkyl, (C 1-6 alkyl) 2 N-C 1-6 alkyl, C 1-6 alkoxyalkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6
- L 1 is a peptide residue; preferably, selected from glycine-glycine-phenylalanine-glycine (GGFG), glutamic acid-valine-citrulline (EVC), valine-citrulline (VC), aspartic acid-valine-citrulline (DVC), glutamic acid-glycine-glycine-phenylalanine-glycine (EGGFG), aspartic acid-glycine-glycine-phenylalanine-glycine (DGGFG); preferably, L 1 is selected from glycine-glycine-phenylalanine-glycine (GGFG);
- L2 is a linking group between the peptide residue and D; preferably, it is selected from a chemical bond, -NH-C 1-6 alkyl-, Preferably, L 2 is selected from -NH-CH 2 -;
- (L'-1)-(L'-3) are preferably:
- the present invention also provides a synthesis method of formula (L'), wherein L2 is -NH- CH2- , comprising the steps of the following reaction formula:
- Rz2 is a hydroxyl group, an active ester or a carboxyl protecting group, and the remaining groups have the definitions described herein.
- the present invention also provides a method for synthesizing a coupling intermediate compound, including the first scheme or the second scheme:
- the first option is selected from the following steps:
- Rz2 is selected from hydroxyl, halogen, active ester or carboxyl protecting group, and the remaining groups have the definitions described herein;
- the second solution includes the following steps:
- the camptothecin compounds provided by the present invention have good tumor inhibition effects and can be used to treat or prevent cancer (such as breast cancer or gastric cancer), as well as to prepare drugs for treating or preventing such conditions and diseases.
- the cytotoxic drug-linker compounds provided by the present invention can be smoothly coupled with antibodies to obtain antibody-drug conjugates.
- the antibody-drug conjugates provided by the present invention have good tumor inhibition effects and selectivity.
- linker refers to a chemical structure fragment or bond that is connected to an antibody at one end and to a drug (drug compound) at the other end, and may also be connected to other linkers before being connected to a drug compound.
- the linker structure of the present invention can be synthesized by methods known in the art, or by the methods described in the present invention.
- antibody-drug conjugate refers to a targeting moiety connected to a biologically active drug via a stable linker.
- biologically active molecules refer to cytotoxic drugs, which are chemical molecules that can strongly destroy the normal growth of tumor cells.
- the numerical ranges recorded in this specification and claims are equivalent to recording at least each specific integer value therein.
- the numerical range "1-12” is equivalent to recording each integer value in the numerical range "1-12", namely 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
- certain numerical ranges are defined as "numbers", it should be understood that the two endpoints of the range, each integer in the range, and each decimal in the range are recorded.
- integer from 0 to 6 means 0, 1, 2, 3, 4, 5, 6.
- halogen refers to fluorine, chlorine, bromine and iodine.
- C 1-10 alkyl means straight chain and branched alkyl groups having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms
- C 1-8 alkyl means straight chain and branched alkyl groups having 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms
- C 1-6 alkyl means straight chain and branched alkyl groups having 1, 2, 3, 4, 5 or 6 carbon atoms.
- the alkyl group is, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, 2-methylbutyl, 1-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, neopentyl, 1,1-dimethylpropyl, 4-methylpentyl, 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 2-ethylbutyl, 1-ethylbutyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2,3-dimethylbutyl, 1,3-dimethylbutyl or 1,2-dimethylbutyl or the like or isomers thereof.
- C2-10 alkenyl is understood to preferably mean a straight or branched monovalent hydrocarbon radical containing one or more double bonds and having 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, more preferably " C2-8 alkenyl".
- C2-10 alkenyl is understood to preferably mean a straight or branched monovalent hydrocarbon radical containing one or more double bonds and having 2, 3, 4, 5, 6, 7 or 8 carbon atoms, for example, having 2, 3, 4, 5 or 6 carbon atoms (i.e., C2-6 alkenyl), having 2 or 3 carbon atoms (i.e., C2-3 alkenyl).
- alkenyl contains more than one double bond
- the alkenyl group is, for example, vinyl, allyl, (E)-2-methylvinyl, (Z)-2-methylvinyl, (E)-but-2-enyl, (Z)-but-2-enyl, (E)-but-1-enyl, (Z)-but-1-enyl, pent-4-enyl, (E)-pent-3-enyl, (Z)-pent-3-enyl, (E)-pent-2-enyl, (Z)-pent-2-enyl, (E)- Pent-1-enyl, (Z)-pent-1-enyl, hex-5-enyl, (E)-hex-4-enyl, (Z)-hex-4-enyl, (E)-hex-3-enyl, (Z)-hex-3-enyl, (E)-hex-3-enyl, (E)-hex-3-enyl,
- C 2-10 alkynyl is to be understood as preferably meaning a straight or branched monovalent hydrocarbon radical comprising one or more triple bonds and having 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, for example, having 2, 3, 4, 5, 6, 7 or 8 carbon atoms (i.e., "C 2-8 alkynyl"), having 2, 3, 4, 5 or 6 carbon atoms (i.e., "C 2-6 alkynyl”), having 2 or 3 carbon atoms ("C 2-3 alkynyl").
- the alkynyl group is, for example, ethynyl, prop-1-ynyl, prop-2-ynyl, but-1-ynyl, but-2-ynyl, but-3-ynyl, pent-1-ynyl, pent-2-ynyl, pent-3-ynyl, pent-4-ynyl, hex-1-ynyl, hex-2-ynyl, hex-3-ynyl, hex-4-ynyl, hex-5-ynyl, 1-methylprop-2-ynyl, 2-methylbut-3-ynyl, 1-methylbut-3-ynyl, 2-methylprop-3-ynyl, 2 ...
- the alkynyl group is ethynyl, prop-1-ynyl or prop-2-ynyl.
- C 3-10 cycloalkyl is understood to mean a saturated monovalent monocyclic, bicyclic (eg bridged, spiro) hydrocarbon ring or tricyclic alkane having 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms.
- the C3-10 cycloalkyl group may be a monocyclic hydrocarbon group, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclodecyl, or a bicyclic hydrocarbon group, such as borneol, indolyl, hexahydroindolyl, tetrahydronaphthyl, decahydronaphthyl, bicyclo[2.1.1]hexyl, bicyclo[2.2.1]heptyl, bicyclo[2.2.1]heptenyl, 6,6-dimethylbicyclo[3.1.1]heptyl, 2,6,6-trimethylbicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, 2,7-diazaspiro[3,5]nonanyl, 2,6-diaza
- 3-6 membered heterocyclyl refers to a saturated or unsaturated non-aromatic ring or ring system, for example, a 4-, 5- or 6-membered monocyclic ring, and contains at least one, for example 1, 2, 3, 4, 5 or more heteroatoms selected from O, S and N, wherein N and S may also be optionally oxidized to various oxidation states to form nitrogen oxides, -S(O)- or -S(O) 2 -states.
- the heterocyclyl may include fused or bridged rings and spirocyclic rings.
- the heterocyclyl may include, but is not limited to, a 4-membered ring, such as azetidinyl, oxetanyl; a 5-membered ring, such as tetrahydrofuranyl, dioxolyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, pyrrolinyl; or a 6-membered ring, such as tetrahydropyranyl, piperidinyl, morpholinyl, dithianyl, thiomorpholinyl, piperazinyl or trithianyl.
- a 4-membered ring such as azetidinyl, oxetanyl
- a 5-membered ring such as tetrahydrofuranyl, dioxolyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, pyrrolinyl
- C 6-14 aryl is to be understood as preferably meaning a monovalent aromatic or partially aromatic monocyclic, bicyclic or tricyclic hydrocarbon ring (“C 6-14 aryl") having 6, 7, 8, 9, 10, 11, 12, 13 or 14 carbon atoms, in particular a ring having 6 carbon atoms (“C 6 aryl”), such as phenyl; or biphenyl, or a ring having 9 carbon atoms (“C 9 aryl”), such as indanyl or indenyl, or a ring having 10 carbon atoms (“C 10 aryl”), such as tetrahydronaphthyl, dihydronaphthyl or naphthyl, or a ring having 13 carbon atoms (“C 13 aryl”), such as fluorenyl, or a ring having 14 carbon atoms (“C 14 aryl”), such as anthracenyl.
- C 6-20 aryl When the C 6-20 aryl is substituted, it may be mono
- heteroaryl is to be understood as including monovalent monocyclic, bicyclic or tricyclic aromatic ring systems having 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 ring atoms, in particular 5 or 6 or 9 or 10 carbon atoms, and which contain 1 to 5, preferably 1 to 3 heteroatoms each independently selected from N, O and S and which, in addition, in each case may be benzo-fused.
- Heteroaryl also refers to radicals in which a heteroaromatic ring is fused to one or more aryl, alicyclic or heterocyclyl rings, wherein the radical or point of attachment is on the heteroaromatic ring.
- Non-limiting examples include 1-, 2-, 3-, 5-, 6-, 7-, or 8-indolizinyl, 1-, 3-, 4-, 5-, 6-, or 7-isoindolyl, 2-, 3-, 4-, 5-, 6-, or 7-indolyl, 2-, 3-, 4-, 5-, 6-, or 7-indazolyl, 2-, 4-, 5-, 6-, 7-, or 8-purinyl, 1-, 2-, 3-, 4-, 6-, 7-, 8-, or 9-quinolizinyl, 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolyl, 1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolyl, 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl, 2-, 3-, 4-, 5-, or 6-naphthyl 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7- or 8-carbazoly
- Typical fused heteroaryl groups include, but are not limited to, 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolyl, 1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolyl, 2-, 3-, 4-, 5-, 6-, or 7-indolyl, 2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl, 2-, 4-, 5-, 6-, or 7-benzoxazolyl, 2-, 4-, 5-, 6-, or 7-benzimidazolyl, and 2-, 4-, 5-, 6-, or 7-benzothiazolyl.
- the 5-20 membered heteroaryl group When the 5-20 membered heteroaryl group is connected to other groups to form the compound of the present invention, it can be a carbon atom on the 5-20 membered heteroaryl ring connected to other groups, or it can be a heteroatom on the 5-20 membered heteroaryl ring connected to other groups.
- the 5-20 membered heteroaryl group When the 5-20 membered heteroaryl group is substituted, it can be monosubstituted or polysubstituted.
- substitution site for example, a hydrogen atom connected to a carbon atom on a heteroaryl ring may be substituted, or a hydrogen atom connected to a heteroatom on a heteroaryl ring may be substituted.
- spirocyclic refers to a ring system in which two rings share one ring-forming atom.
- fused ring refers to a ring system in which two rings share two ring atoms.
- bridged ring refers to a ring system in which two rings share three or more ring atoms.
- heterocyclic groups, heteroaryls or heteroarylene groups include all possible isomeric forms thereof, such as positional isomers thereof.
- pyridin-2-yl may include pyridin-2-yl, pyridin-2-ylene, pyridin-3-yl, pyridin-3-ylene, pyridin-4-ylene and pyridin-4-ylene;
- thienyl or thienylene groups include thien-2-yl, thien-2-ylene, thien-3-ylene and thien-3-ylene; pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl.
- alkyloxy refers to -O-(alkyl), wherein alkyl is as defined above.
- alkoxy include: methoxy, ethoxy, propoxy, butoxy.
- Alkoxy can be optionally substituted or unsubstituted, and when substituted, the substituent is preferably one or more of the following groups, which are independently selected from alkyl, alkenyl, alkynyl, alkyloxy, alkylamino, halogen, mercapto, hydroxyl, nitro, cyano, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkyloxy or heterocycloalkyloxy.
- alkylamino refers to -NH-(alkyl), wherein alkyl is as defined above.
- alkylamino include methylamino, ethylamino, propylamino, isopropylamino, butylamino, and the like.
- (alkyl) 2amino refers to -N-(alkyl) 2 , wherein alkyl is as defined above.
- Non-limiting examples of (alkyl) 2amino include dimethylamino, methylethylamino, diethylamino, dipropylamino, methylpropylamino, diisopropylamino, dibutylamino, and the like.
- Haloalkyl refers to an alkyl group substituted with one or more halogens, wherein alkyl is as defined above.
- antibody refers to an immunoglobulin-derived molecule that can specifically bind to a target antigen, and the immunoglobulin-derived molecule binds to the target antigen through at least one antigen binding site located in its variable region.
- antibody includes not only complete antibodies, but also antigen binding fragments that can specifically bind to a target antigen.
- “Complete antibodies” are typically composed of two pairs of polypeptide chains, each pair having a light chain (LC) and a heavy chain (HC). Antibody light chains can be classified as ⁇ (kappa) and ⁇ (lambda) light chains.
- Heavy chains can be classified as ⁇ , ⁇ , ⁇ , ⁇ or ⁇ , and the isotype of the antibody is defined as IgM, IgD, IgG, IgA and IgE, respectively.
- the variable and constant regions are connected by a "J" region of about 12 or more amino acids, and the heavy chain also includes a "D" region of about 3 or more amino acids.
- Each heavy chain consists of a heavy chain variable region (VH) and a heavy chain constant region (CH).
- the heavy chain constant region consists of three domains (CH1, CH2 and CH3).
- Each light chain consists of a light chain variable region (VL) and a light chain constant region (CL).
- the light chain constant region consists of one domain, CL.
- the constant domain is not directly involved in the binding of antibodies to antigens, but exhibits a variety of effector functions, such as mediating the binding of immunoglobulins to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (C1q) of the classical complement system.
- the VH and VL regions can also be subdivided into highly variable regions (called complementary determining regions (CDRs)), interspersed with more conservative regions called framework regions (FRs).
- CDRs complementary determining regions
- FRs framework regions
- Each VH and VL consists of three CDRs and four FRs arranged from the amino terminus to the carboxyl terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- variable regions (VH and VL) of each heavy chain/light chain pair form antigen binding sites, respectively.
- the distribution of amino acids in various regions or domains can follow the definitions of Kabat, Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), or Chothia & Lesk (1987) J. Mol. Biol. 196: 901-917; Chothia et al. (1989) Nature 342: 878-883.
- CDR complementarity determining region refers to the amino acid residues in the variable region of an antibody that are responsible for antigen binding.
- variable region of each heavy chain and light chain contains three CDRs, named CDR1, CDR2 and CDR3.
- CDR1, CDR2 and CDR3 The precise boundaries of these CDRs can be defined according to various numbering systems known in the art, such as the Kabat numbering system (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md., 1991), the Chothia numbering system (Chothia & Lesk (1987) J. Mol. Biol. 196: 901-917; Chothia et al. (1989) Nature 342: 878-883), or the IMGT numbering system (Lefranc et al., Dev. Comparat. Immunol.
- the CDR contained in the antibody or antigen-binding fragment thereof of the present invention can be determined according to various numbering systems known in the art. In certain embodiments, the CDR contained in the antibody or antigen-binding fragment thereof of the present invention is preferably determined by the Kabat numbering system.
- the term "framework region” or "FR" residues refers to those amino acid residues in the variable region of an antibody other than the CDR residues defined above.
- the term “antibody” is not limited to any particular method for producing antibodies. For example, it includes recombinant antibodies, monoclonal antibodies and polyclonal antibodies.
- the antibody can be an antibody of different isotypes, for example, IgG (for example, IgG1, IgG2, IgG3 or IgG4 subtypes), IgA1, IgA2, IgD, IgE or IgM antibodies.
- antibody refers to an antibody of a different isotype, for example, an IgG (for example, IgG1, IgG2, IgG3 or IgG4 subtype), an IgA1, an IgA2, an IgD, an IgE or an IgM antibody.
- IgG for example, IgG1, IgG2, IgG3 or IgG4 subtype
- IgA1 an IgA2
- IgD an IgE or an IgM antibody.
- immunoglobulfin binding fragment refers to a polypeptide comprising a fragment of a full-length antibody that retains the ability to specifically bind to the same antigen bound by the full-length antibody and/or competes with the full-length antibody for specific binding to the antigen, which is also referred to as an "antigen binding portion". See generally, Fundamental Immunology, Ch.
- Antigen binding fragments of antibodies can be produced by recombinant DNA technology or by enzymatic or chemical cleavage of intact antibodies.
- Non-limiting examples of antigen binding fragments include Fab, Fab', F(ab')2, Fd, Fv, disulfide-linked Fv, scFv, di-scFv, diabodies, single domain antibodies, and polypeptides that contain at least a portion of an antibody sufficient to confer specific antigen binding ability to the polypeptide.
- the term “Fd” means an antibody fragment consisting of VH and CH1 domains
- the term “Fab fragment” means an antibody fragment consisting of VL, VH, CL and CH1 domains
- the term “F(ab')2 fragment” means an antibody fragment comprising two Fab fragments connected by a disulfide bridge on the hinge region
- the term “Fab'fragment” means a fragment obtained after reducing the disulfide bonds connecting the two heavy chain fragments in the F(ab')2 fragment, which consists of a complete light chain and the Fd fragment of the heavy chain (consisting of VH and CH1 domains).
- the term “Fv” means an antibody fragment consisting of the VL and VH domains of a single arm of an antibody.
- the Fv fragment is generally considered to be the smallest antibody fragment that can form a complete antigen binding site. It is generally believed that the six CDRs confer antigen binding specificity to the antibody. However, even a single variable region (e.g., Fd Fragments (which contain only three CDRs specific for an antigen) can also recognize and bind to an antigen, although their affinity may be lower than that of the complete binding site.
- the term “Fc” means an antibody fragment formed by the second and third constant regions of the first heavy chain of an antibody and the second and third constant regions of the second heavy chain bound via a disulfide bond.
- the Fc fragment of an antibody has a variety of different functions, but does not participate in the binding of an antigen.
- "Effector functions" mediated by the Fc domain include Fc receptor binding; Clq binding and complement dependent cytotoxicity (CDC); antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; downregulation of cell surface receptors (such as B cell receptors); and B cell activation, etc.
- the Fc domain can include both a native Fc region and a variant Fc region.
- the native Fc region comprises an amino acid sequence consistent with the amino acid sequence of the Fc region found in nature, for example, the native sequence human Fc region includes the native sequence human IgG1 Fc region; native sequence human IgG2 Fc region; native sequence human IgG3 Fc region; and native sequence human IgG4 Fc region, and naturally occurring variants thereof.
- the variant Fc region comprises an amino acid sequence that is different from the amino acid sequence of the native sequence Fc region due to at least one amino acid modification.
- the variant Fc region may have effector functions (e.g., Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function) that are changed compared to the native Fc region.
- scFv refers to a single polypeptide chain comprising VL and VH domains, wherein the VL and VH are connected by a linker.
- Such scFv molecules may have a general structure: NH2-VL-linker-VH-COOH or NH2-VH-linker-VL-COOH.
- Suitable prior art linkers consist of repeated GGGGS amino acid sequences or variants thereof.
- GGGGS amino acid sequence
- scFv may form a di-scFv, which refers to two or more single scFvs in series to form an antibody.
- scFv may form (scFv)2, which refers to two or more single scFvs in parallel to form an antibody.
- the term "diabody” means that its VH and VL domains are expressed on a single polypeptide chain, but a linker that is too short to allow pairing between the two domains of the same chain is used, thereby forcing the domains to pair with the complementary domains of another chain and produce two antigen binding sites (see, e.g., Holliger P.
- single-domain antibody has the meaning generally understood by those skilled in the art, which refers to an antibody fragment composed of a single monomeric variable antibody domain (e.g., a single heavy chain variable region) that retains the ability to specifically bind to the same antigen bound by the full-length antibody.
- bispecific antibody refers to an antibody that has binding specificity for two different antigens (or epitopes).
- multispecific antibody refers to an antibody that has binding specificity for at least two or more (e.g., three or four) different antigens (or epitopes).
- a bispecific antibody or a multispecific antibody comprises multiple antigen binding domains that have binding specificity for different antigens (or epitopes), thereby being able to bind to at least two different binding sites and/or target molecules.
- Each antigen binding domain contained in a bispecific antibody or a multispecific antibody can be independently selected from a full-length antibody (e.g., an IgG antibody) or an antigen binding fragment thereof (e.g., an Fv fragment, a Fab fragment, a F(ab')2 fragment, or a scFv).
- each antigen binding domain is connected by a peptide linker.
- Each of the above-mentioned antibody fragments retains the ability to specifically bind to the same antigen bound by the full-length antibody, and/or competes with the full-length antibody for specific binding to the antigen.
- Antigen binding fragments of antibodies e.g., the above-mentioned antibody fragments
- can be obtained from a given antibody e.g., an antibody provided by the present invention
- conventional techniques known to those skilled in the art e.g., recombinant DNA technology or enzymatic or chemical cleavage methods
- the antigen binding fragments of antibodies can be specifically screened in the same manner as for complete antibodies.
- humanized antibody refers to a non-human antibody that has been genetically engineered, and its amino acid sequence has been modified to increase the homology with the sequence of a human antibody.
- donor antibody non-human antibody
- non-CDR region e.g., variable region FR and/or constant region
- the CDR region of a humanized antibody comes from a non-human antibody (donor antibody), and all or part of the non-CDR region (e.g., variable region FR and/or constant region) comes from a human immunoglobulin (recipient antibody).
- donor antibody e.g., antigen specificity, affinity, reactivity, etc.
- the donor antibody can be a mouse antibody with expected properties (e.g., antigen specificity, affinity, reactivity, etc.).
- the CDR region of a donor antibody can be inserted into a human framework sequence using methods known in the art.
- the human framework sequence may include amino acid mutations replaced by corresponding non-human residues.
- the humanized antibody may also contain residues that are not found in the original donor antibody variable region (e.g., light chain variable region or heavy chain variable region) or human framework sequence to further improve or optimize the performance of the humanized antibody.
- chimeric antibody refers to an antibody in which a portion of its light chain or/and heavy chain is derived from an antibody (which may be derived from a particular species or belong to a particular antibody class or subclass), and another portion of the light chain or/and heavy chain is derived from another antibody (which may be derived from the same or different species or belong to the same or different antibody class or subclass), but in any case, it still retains binding activity to the target antigen.
- the term “chimeric antibody” may include an antibody in which the heavy chain variable region and light chain variable region of the antibody are derived from a first antibody, and the heavy chain constant region and light chain constant region of the antibody are derived from a second antibody.
- the compounds of formula (I) may exist in the form of various pharmaceutically acceptable salts. If these compounds have a basic center, they may form acid addition salts; if these compounds have an acidic center, they may form a base addition salt; if these compounds contain both an acidic center (e.g., a carboxyl group) and a basic center (e.g., an amino group), they may also form an inner salt.
- an acidic center e.g., a carboxyl group
- a basic center e.g., an amino group
- the compounds of the present invention may exist in the form of solvates (e.g., hydrates), wherein the compounds of the present invention contain a polar solvent as a structural element of the crystal lattice of the compound, in particular water, methanol or ethanol.
- a polar solvent as a structural element of the crystal lattice of the compound, in particular water, methanol or ethanol.
- the amount of the polar solvent, in particular water may be present in a stoichiometric or non-stoichiometric ratio.
- the compounds of the present invention may be chiral, and therefore various enantiomeric forms may exist. Thus, these compounds may exist in racemic form or optically active form.
- the compounds of the present invention encompass isomers or mixtures, racemates in which each chiral carbon is in R or S configuration.
- the compounds of the present invention or their intermediates can be separated into enantiomeric compounds by chemical or physical methods known to those skilled in the art, or used in this form for synthesis. In the case of racemic amines, diastereomers are prepared from the mixture by reaction with an optically active resolution agent.
- suitable resolution agents are optically active acids, such as tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid, suitable N-protected amino acids (e.g., N-benzoylproline or N-phenylsulfonylproline) or various optically active camphorsulfonic acids in R and S forms.
- Chromatographic enantiomer resolution can also be advantageously performed with the aid of optically active resolving agents such as dinitrobenzoylphenylglycine, cellulose triacetate or other carbohydrate derivatives or chiral derivatized methacrylate polymers immobilized on silica gel.
- Suitable eluents for this purpose are aqueous or alcoholic solvent mixtures, for example, hexane/isopropanol/acetonitrile.
- the corresponding stable isomers can be separated according to known methods, for example by extraction, filtration or column chromatography.
- patient refers to any animal including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, pigs, cows, sheep, horses or primates, and most preferably humans.
- terapéuticaally effective amount refers to the amount of an active compound or drug that elicits the biological or medical response that a researcher, veterinarian, physician or other clinician is seeking in a tissue, system, animal, individual or human, and includes one or more of the following: (1) Preventing disease: e.g., preventing a disease, disorder or condition in an individual who is susceptible to the disease, disorder or condition but does not yet experience or develop the pathology or symptoms of the disease. (2) Inhibiting disease: e.g., inhibiting a disease, disorder or condition (i.e., preventing further development of the pathology and/or symptoms) in an individual who is experiencing or developing the pathology or symptoms of the disease, disorder or condition. (3) Alleviating disease: e.g., alleviating a disease, disorder or condition (i.e., reversing the pathology and/or symptoms) in an individual who is experiencing or developing the pathology or symptoms of the disease, disorder or condition.
- Preventing disease e.g., preventing a disease,
- Figure 1 Schematic diagram of free toxin release of ADC-5 in mouse, rat, human and monkey plasma;
- Figure 2 Schematic diagram of free toxin release of ADC-10 in mouse, rat, human and monkey plasma;
- Figure 3 Schematic diagram of free toxin release of DS8201 in mouse, rat, human and monkey plasma;
- Figure 4 Schematic diagram of free toxin release of ADC-5, ADC-10, ADC-14, and ADC-15 in mouse plasma;
- Figure 5 Schematic diagram of free toxin release of ADC-5, ADC-10, ADC-14, and ADC-15 in human plasma;
- FIG. 6 Schematic diagram of drug efficacy evaluation in NCI-N87 tumor-bearing mice
- Figure 7 Schematic diagram of drug efficacy evaluation in JIMT-1 tumor-bearing mice.
- NMR nuclear magnetic resonance
- MS mass spectrometry
- ⁇ NMR shifts ( ⁇ ) are given in units of 10 -6 (ppm).
- NMR measurements were performed using a Bruker AVANCE-400 NMR spectrometer, with deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated chloroform (CDCl 3 ), deuterated methanol (CD 3 OD) as the measuring solvent, and tetramethylsilane (TMS) as the internal standard.
- DMSO-d 6 deuterated dimethyl sulfoxide
- CDCl 3 deuterated chloroform
- CD 3 OD deuterated methanol
- TMS tetramethylsilane
- MS was determined using Agilent 1200/1290DAD-6110/6120 Quadrupole MS LC-MS (manufacturer: Agilent, MS model: 6110/6120 Quadrupole MS), Waters ACQuity UPLC-QD/SQD (manufacturer: Waters, MS model: Waters ACQuity Qda Detector/waters SQ Detector), THERMO Ultimate 3000-Q Exactive (manufacturer: THERMO, MS model: THERMO Q Exactive).
- HPLC High performance liquid chromatography
- High performance liquid chromatography was performed using Waters MS-triggered Prep-LC with SQD2 detector, Waters MS-triggered Prep-LC with Acquity QDA detector, Waters MS-triggered Prep-LC with QDA detector and GILSON Prep LC with UV detector.
- the CombiFlash rapid preparation instrument uses Combiflash Rf200 (TELEDYNE ISCO).
- the thin layer chromatography silica gel plate uses Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plate.
- the silica gel plate used in thin layer chromatography (TLC) adopts a specification of 0.15mm-0.2mm, and the specification used for thin layer chromatography separation and purification products is 0.4mm-0.5mm.
- Silica gel column chromatography generally uses Yantai Huanghai Silica Gel 200-300 mesh silica gel as the carrier.
- the average kinase inhibition rate and IC50 value were determined using NovoStar microplate reader (BMG, Germany).
- the known starting materials of the present invention can be synthesized by methods known in the art, or can be purchased from ABCR GmbH & Co. KG, Acros Organics, Aldrich Chemical Company, Accela ChemBio Inc, Darui Chemicals and other companies.
- Argon atmosphere or nitrogen atmosphere means that the reaction bottle is connected to an argon or nitrogen balloon with a volume of about 1L.
- Hydrogen atmosphere means that the reaction bottle is connected to a hydrogen balloon with a capacity of about 1L.
- the pressurized hydrogenation reaction uses a Parr 3916EKX hydrogenator and a Clearland QL-500 hydrogen generator or a HC2-SS hydrogenator.
- the hydrogenation reaction is usually carried out by evacuating the vacuum, filling with hydrogen, and repeating the operation three times.
- Microwave reactions were performed using a CEM Discover-S 908860 microwave reactor.
- the solution refers to an aqueous solution.
- reaction temperature is room temperature, 20°C to 30°C.
- the reaction progress in the embodiment was monitored by thin layer chromatography (TLC), and the developing solvent used in the reaction, the eluent system of column chromatography used for purifying the compound and the developing solvent system of thin layer chromatography included: A: dichloromethane/methanol system, B: normal In the hexane/ethyl acetate system, the volume ratio of the solvent is adjusted according to the polarity of the compound, and a small amount of alkaline or acidic reagents such as triethylamine and acetic acid are optionally added for adjustment.
- TLC thin layer chromatography
- ADC preparation and analysis instruments Eppendoff, 5810R, 5430R, 5418R were used as tabletop centrifuges.
- METTLER TOLEDO Seven Ecellence was used as pH meter, and METTLER TOLEDO, ME1002E was used as electronic scale.
- Thermo Scientific, 2000-C was used as Nanodrop spectrophotometer.
- BioTek, EPOCH2 was used as microplate reader.
- 6224TOF, 6530LC/Q-TOF was used as LC-MS, and Agilent Technologies, 1260Infinity II was used as HPLC.
- reaction solution was quenched by adding saturated ammonium chloride solution, extracted with ethyl acetate (50 mL ⁇ 3), the organic phases were combined, washed with saturated brine, dried, and concentrated. The residue was purified by silica gel column chromatography with eluent system B to obtain the title compound 1f (6 g, yield: 51%).
- Step 6 N-(7-amino-3-fluoro-4-methoxy-8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide 1 g
- Step 7 (9H-fluoren-9-yl)methyl(8-acetylamino-6-fluoro-5-methoxy-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)carbamate 1h
- Step 9 (9H-fluoren-9-yl)methyl ((9S)-9-ethyl-5-fluoro-9-hydroxy-4-methoxy-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinolin-1-yl)carbamate 1k
- Step 10 (9H-fluoren-9-yl)methyl ((9S)-9-ethyl-5-fluoro-4,9-dihydroxy-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinolin-1-yl)carbamate 11
- Step 11 (9S)-1-amino-9-ethyl-5-fluoro-4,9-dihydroxy-1,2,3,9,12,15-hexahydro-10H,13H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-10,13-dione 1m
- Step 12 (1S,9S)-9-ethyl-5-fluoro-9-hydroxy-1-((R)-3-hydroxybutyrylamino)-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinolin-4-yl-(R)-3-hydroxybutyrate 1n
- Example 1 The synthetic route of Example 1 was adopted, the first step raw material was replaced with 3-bromo-4-methoxyaniline 2a (25 g, 0.12 mol), and purification was carried out by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150*19 mm, 5 ⁇ m; mobile phase 1: water (0.1% TFA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 23%-33%, flow rate: 20 mL/min) to obtain the title products 2-1 (19 mg, yield: 28%) and 2-2 (30 mg, yield: 44%).
- high performance liquid chromatography Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150*19 mm, 5 ⁇ m; mobile phase 1: water (0.1% TFA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 23%-33%
- the aqueous phase was adjusted to pH 2 to 3 with hydrochloric acid and extracted with ethyl acetate for 5 to 7 times, and the organic phase was collected, dried over anhydrous sodium sulfate, and the solvent was spin-dried to obtain a crude product compound 3d (17 g).
- Step 4 4-(5-Acetylamino-2-bromo-3-fluorophenyl)butyric acid 3e
- Step 6 (Z)-N-(4-bromo-3-fluoro-7-(hydroxyimino)-8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide 3 g
- Step 7 N-(7-amino-4-bromo-3-fluoro-8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide 3h
- Step 8 (9H-fluoren-9-yl)methyl (8-acetylamino-5-bromo-6-fluoro-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)carbamate 3i
- Step 10 ((9H-fluoren-9-yl)methyl ((9S)-4-bromo-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinolin-1-yl)carbamate 3k
- Step 11 (9S)-1-amino-4-bromo-9-ethyl-5-fluoro-9-hydroxy-1,2,3,9,12,15-hexahydro-10H,13H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-10,13-dione 31
- Example 3 The synthetic route of Example 3 was adopted, 3-fluoro-5-iodoaniline (25 g, 105.5 mmol) was used as the starting material, and high performance liquid chromatography (Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2*250 mm, 10 ⁇ m; mobile phase 1: water (0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 38%-48%, flow rate: 25 mL/min) was used for purification to obtain the title products 4-1 (2.5 mg, yield: 12%) and 4-2 (3.1 mg, yield: 15%).
- high performance liquid chromatography Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2*250 mm, 10 ⁇ m; mobile phase 1: water (0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 3
- Step 1 (9H-fluoren-9-yl)methyl ((9S)-4-(difluoromethoxy)-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinolin-1-yl)carbamate 5a
- Step 2 (9S)-1-amino-4-(difluoromethoxy)-9-ethyl-5-fluoro-9-hydroxy-1,2,3,9,12,15-hexahydro-10H,13H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-10,13-dione 5b
- the crude product 5b (90 mg, 0.18 mmol) was dissolved in N, N-dimethylformamide (1 mL), and (R)-3-hydroxybutyric acid (23 mg, 0.22 mmol), 2-(7-azobenzotriazole)-N, N, N', N'-tetramethyluronium hexafluorophosphate (105 mg, 0.28 mmol) and N, N-diisopropylethylamine (48 mg, 0.37 mmol) were added. The reaction was stirred at room temperature for 1 hour.
- reaction solution cooled to room temperature was added dropwise to ice water, extracted with toluene, and the organic phases were combined, washed with sodium sulfite solution, water, and saturated brine in sequence, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain the title compound 6b (30.0 g), which was directly used in the next step without purification.
- N-(3-bromo-5-fluoro-4-methylphenyl)acetamide 6d (10.0 g, 40.8 mmol) was dissolved in dioxane (40 mL) and water (10 mL), and pent-4-enoic acid (6.1 g, 61.20 mmol), palladium acetate (0.7 g, 4.10 mmol), tri(o-methylphenyl)phosphine (2.5 g, 8.20 mmol) and N, N-diisopropylethylamine (15.9 g, 122.01 mmol) were added thereto. The reaction solution was stirred at 100 ° C for 16 hours.
- the subsequent synthetic route adopts the synthetic route of Example 3, and the intermediate 3d of Example 3 is replaced by the intermediate 6e (10 g, 0.04 mol).
- the final product is prepared by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150*19 mm, 5 ⁇ m; mobile phase 1: water (0.1% TFA); mobile phase 2: acetonitrile; 15 minutes gradient, gradient ratio: acetonitrile phase 37%-47%, flow rate: 20 mL/min) to obtain the title product 6-1 (12.6 mg, yield: 14%), 6-2 (17.2 mg, yield: 19%).
- Step 1 (9H-fluoren-9-yl)methyl ((9S)-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-4-vinyl-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinolin-1-yl)carbamate 7a
- reaction solution was concentrated and purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150*19mm, 5 ⁇ m; mobile phase 1: water (containing 0.1% formic acid); mobile phase 2: acetonitrile; 15 minute gradient, gradient ratio: acetonitrile phase 43%-53%, flow rate: 20mL/min) to obtain the title compound 7-1 (176 mg, yield: 10%) and the title compound 7-2 (2.31 mg, yield: 10%).
- high performance liquid chromatography Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150*19mm, 5 ⁇ m; mobile phase 1: water (containing 0.1% formic acid); mobile phase 2: acetonitrile; 15 minute gradient, gradient ratio: acetonitrile phase 43%-53%, flow rate: 20mL/min
- Step 1 (9H-fluoren-9-yl)methyl ((9S)-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-4-(2,2,2-trifluoroethoxy)-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinolin-1-yl)carbamate 8a
- Step 2 (9S)-1-Amino-9-ethyl-5-fluoro-9-hydroxy-4-(2,2,2-trifluoroethoxy)-1,2,3,9,12,15-hexahydro-10H,13H-benzo[de]pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-10,13-dione 8b
- Step 1 8-amino-5-methoxy-3,4-dihydronaphthalen-1(2H)-one 9a
- Compound 6m (700 mg) was prepared by high performance liquid chromatography (GILSON Prep LC with UV detector, chromatographic column: Xbridge 5 ⁇ m C18 150x30mm; mobile phase 1: water (0.1% TFA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 22%-32%, flow rate: 50mL/min), to obtain compound 6m-1 (290 mg, shorter retention time), 6m-2 (300 mg, longer retention time).
- Compound 7b (500 mg) was prepared by high performance liquid chromatography (GILSON Prep LC with UV detector, chromatographic column: Xbridge 5 ⁇ m C18 150x 30mm; mobile phase 1: water (0.1% TFA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 22%-32%, flow rate: 50 mL/min) to obtain compounds 7b-1 (180 mg, shorter retention time) and 7b-2 (195 mg, longer retention time).
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge 5 ⁇ m C18 150x 19mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 10 min gradient, gradient ratio: acetonitrile phase 45%-100%, flow rate: 20 mL/min) to obtain compound 12 (3 mg, yield: 11%).
- Step 4 Benzyl (5S, 13R)-5-benzyl-1-(9H-fluoren-9-yl)-13-methyl-3,6,9-trioxo-2,12-dioxo-4,7,10-triazinepentadecan-15-carboxylic acid 13f
- Step 5 13 g of (R)-3-((2-((S)-2-amino-3-phenylpropionamido)acetamido)methoxy)butyric acid benzyl ester
- Step 6 (11S, 19R)-11-benzyl-1-(9H-fluoren-9-yl)-19-methyl-3,6,9,12,15-pentaoxo-2,18-dioxo-4,7,10,13,16-pentaazabenzofuran-21-oic acid benzyl ester 13h
- Step 7 (11S, 19R)-11-benzyl-1-(9H-fluoren-9-yl)-19-methyl-3,6,9,12,15-pentaoxo-2,18-dioxo-4,7,10,13,16-pentaazabenzofuran-21-carboxylic acid 13i
- Step 8 (7S, 15R)-1-amino-7-benzyl-15-methyl-2,5,8,11-tetraoxo-14-oxo-3,6,9,12-tetraazaheptadecan-17-carboxylic acid 13j
- Step 9 (3R, 11S)-11-benzyl-3-methyl-24-(2-(methylsulfonyl)pyrimidin-5-yl)-7,10,13,16,19-pentaoxo-4-oxo-6,9,12,15,18-pentaazatetracarbonyl-23-enoic acid 131
- the crude product was purified by HPLC (GILSON Prep LC with UV detector, chromatographic column: Xtimate 10 ⁇ m C18 250 x 30 mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 25%-95%, flow rate: 50 mL/min) to give the title compound 131 (100 mg, 21%).
- HPLC GILSON Prep LC with UV detector, chromatographic column: Xtimate 10 ⁇ m C18 250 x 30 mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 25%-95%, flow rate: 50 mL/min
- Step 10 N-((7S,15R)-7-benzyl-17-(((1S,10S)-10-ethyl-6-fluoro-10-hydroxy-5-methyl-11,14-dioxo-1,2,3,4,10,11,14,16-octahydro-13H-cyclohepta[de]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)amino)-15-methyl-2,5,8,11,17-pentaoxo-14-oxo-3,6,9,12-tetraazaheptadecanyl)-6-(2-(methylsulfonyl)pyrimidin-5-yl)hex-5-ynamide 13
- the crude product was purified by HPLC (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge 5 ⁇ m C18 150x 19 mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 40%-100%, flow rate: 20 mL/min) to give the title compound 13 (10 mg, yield: 6%).
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with QDA detector, chromatographic column: Xbridge 5 ⁇ m C18 150x 19mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 10 min gradient, gradient ratio: acetonitrile phase 25%-35%, flow rate: 25 mL/min) to obtain the title compound 14a (110 mg, yield: 39%).
- Step 2 N-((7S,15R)-7-benzyl-17-((1S,10S)-10-ethyl-6-fluoro-10-hydroxy-5-methyl-11,14-dioxo-1,2,3,4,10,14,16-octahydro-13H-cyclohepta[de]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)amino)-15-methyl-2,5,8,11,17-pentaoxo-14-oxa-3,6,9,12-tetraazaheptadecanyl)-6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanamide 14
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge 5 ⁇ m C18 150x19 mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 12 min gradient, gradient ratio: acetonitrile phase 41%-51%, flow rate: 20 mL/min) to obtain compound 14 (46 mg, yield: 39%).
- Step 1 N-((7S,15R)-7-benzyl-17-((1S,9S)-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-4-vinyl-2,3,9,10,13,15-hexahydro-1H,12H-benzo[d]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)amino)-15-methyl-2,5,8,11,17-pentaoxo-14-oxa-3,6,9,12-tetraazaheptadecanyl)-6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanamide 15
- Example 13 The same synthetic route as Example 13 was adopted, and the first step raw material (R)-3-hydroxybutyric acid was replaced by (1S, 3S)-3-hydroxycyclobutane-1-carboxylic acid 16a (10 g, 86.20 mmol). After eight steps of reaction, compound 16i (2.8 g, yield: 30%) was obtained.
- Step 9 (1R, 3S)-3-(((S)-7-benzyl-20-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-3,6,9,12,15-pentaoxo-2,7,8,11,14-pentaazaicosyl)oxy)cyclobutane-1-carboxylic acid 16j
- reaction solution was purified by high performance liquid chromatography (GILSON Prep LC with UV detector, chromatographic column: Xtimate 10 ⁇ m C18 250x 30 mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 minutes gradient, gradient ratio: acetonitrile phase 20%-95%, flow rate: 50 mL/min) to obtain compound 16j (150 mg, yield: 13%).
- GILSON Prep LC with UV detector, chromatographic column: Xtimate 10 ⁇ m C18 250x 30 mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 minutes gradient, gradient ratio: acetonitrile phase 20%-95%, flow rate: 50 mL/min to obtain compound 16j (150 mg, yield: 13%).
- Step 10 (1R,3R)-3-(((S)-7-benzyl-20-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-3,6,9,12,15-pentaoxo-2,7,8,11,14-pentaazadicarbonyl)oxy)-N-((1S,9S)-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-4-vinyl-2,3,9,10,13,15-hexahydro-1H,12H-benzo[d]pyrano[3′,4′:6,7]indolizine[1,2-b]quinolin-1-yl)cyclobutane-1-carboxamide 16
- Step 2 (Z)-N-(4-cyclopropyl-3-fluoro-7-(hydroxyimino)-8-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)acetamide 17b
- Step 4 (9H-fluoren-9-yl)methyl (8-acetylamino-5-cyclopropyl-6-fluoro-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)carbamate 17d
- the filtrate obtained in the previous step was adjusted to pH 8-9 using saturated sodium carbonate solution, and then Fmoc-Cl (1.19 g, 4.6 mmol) was added.
- the reaction was stirred at room temperature for 1 hour.
- the system was extracted with ethyl acetate, the organic phase was washed with saturated brine, the organic phase was collected, dried over anhydrous sodium sulfate, and the solvent was dried to obtain a crude product.
- the crude product was subjected to silica gel column chromatography system A to obtain compound 17d (1 g, yield: 48%).
- Step 6 (9H-fluoren-9-yl)methyl((9S)-4-cyclopropyl-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[d]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)carbamate 17 g
- Step 7 (9S)-1-amino-4-cyclopropyl-9-ethyl-5-fluoro-9-hydroxy-1,2,3,9,12,15-hexahydro-10H,13H-benzo[d]pyrano[3′,4′:6,7-indolizino[1,2-b]quinoline-10,13-dione 17h
- Step 8 (R)-N-((1R,9S)-4-cyclopropyl-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[d]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)-3-hydroxybutyramide
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge 5 ⁇ m C18 150x 19mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15-minute gradient, gradient ratio: acetonitrile phase 38%-48%, flow rate: 20mL/min) to obtain compounds 17-1 (6 mg, yield: 11%) and 17-2 (4 mg, yield: 8%).
- Single configuration compound 17-1 (shorter retention time):
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2x 250mm 10 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 18-minute gradient, gradient ratio: acetonitrile phase 35%-65%, flow rate: 20mL/min) to obtain 18-1 (4 mg, yield: 6%) and 18-2 (2.4 mg, yield: 4%).
- high performance liquid chromatography Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2x 250mm 10 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 18-minute gradient, gradient ratio: acetonitrile phase 35%-65%, flow rate: 20mL/min
- the subsequent synthetic route adopts the same synthetic route as Example 17, replacing compound 3f with 19d (720 mg, 2.3 mmol).
- the final product was prepared by high performance liquid chromatography (Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2x 250mm 10 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 minutes gradient, gradient ratio: acetonitrile phase 40%-95%, flow rate: 30mL/min) to obtain product 19-1 (6.5 mg, yield: 9%), 19-2 (11 mg, yield: 16%).
- Step 3 N-((7S,15R)-7-benzyl 17-(((1S,9S)-4-cyclopropyl-9-ethyl-5-fluoro-9-hydroxy-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[d]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)amino)-15-methyl-2,5,8,11,17-pentaoxo-14-oxo-3,6,9,12-tetraazaheptadecanyl)-6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanamide 21
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 5 ⁇ m 150x 19mm; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 42%-100%, flow rate: 20 mL/min) to obtain compound 22 (20 mg, yield: 22%).
- N-(3-Fluoro-5-iodo-4-methylphenyl)acetamide 24a (7 g, 23.9 mmol) was dissolved in 1,4-dioxane (70 mL), and diboric acid pinacol ester (12.14 g, 47.8 mmol), Pd(dppf)Cl2 (3.47 g, 4.78 mmol) and potassium acetate (7.04 g, 71.7 mmol) were added. The reaction was stirred at 110°C for 16 hours under nitrogen protection. After the reaction was completed, the filtrate was filtered, the filtrate was collected, and the solvent was dried to obtain a crude product. The crude product was purified by column chromatography separation system B to obtain the title compound 24b (4.1 g, yield: 59%). MS m/z (ESI): 294.1 (M+1) + .
- Step 4 4-(5-Acetylamino-3-fluoro-2-methylphenoxy)butyric acid 24e
- Step 6 (Z)-N-(8-fluoro-4-(hydroxyimino)-9-methyl-5-oxo-2,3,4,5-tetrahydrobenzo[b]oxane-6-yl)acetamide 24 g
- Tetrahydrofuran (20 mL) and tert-butanol (5 mL) were added to the flask, the mixture was cooled to 0°C, and potassium tert-butoxide (806 mg, 6.43 mmol) was added.
- Compound 24f (900 mg, 3.59 mmol) was then slowly added, and the reactants were stirred at 0°C for 10 minutes.
- Isoamyl nitrite (631 mg, 5.39 mmol) was then added, and the reaction was stirred at 0°C for 1 hour.
- hydrochloric acid was added to adjust the pH to 4-5, and the mixture was extracted with ethyl acetate. The organic phase was washed with brine and dried over anhydrous sodium sulfate, concentrated, and the solvent was spin-dried to obtain a crude product 24 g (900 mg), which was used directly in the next step without purification.
- Step 7 (9H-fluoren-9-yl)methyl (6-acetylamino-8-fluoro-9-methyl-5-oxo-2,3,4,5-tetrahydrobenzo[b]oxetane-4-yl)carbamate 24h
- Step 8 (9H-fluoren-9-yl)methyl (6-acetylamino-8-fluoro-9-methyl-5-oxo-2,3,4,5-tetrahydrobenzo[b]oxetane-4-yl)carbamate 24i
- Step 9 (9H-fluoro-9-yl)methyl((10S)-10-ethyl-6-fluoro-10-hydroxy-5-methyl-11,14-dioxo-2,3,10,11,14,16-hexahydro-1H,13H-oxepin[4,3,2-de]pyrano[3',4':6,7]indolizino[1,2-b]quinolin-1-yl)carbamate 24j
- Step 10 (10S)-1-amino-10-ethyl-6-fluoro-10-hydroxy-5-methyl-1,2,3,10,13,16-hexahydro-11H,14H-oxepinano[4,3,2-de]pyrano[3',4':6,7]indolizino[1,2-b]quinolin-11,14-one 24k
- 6-(5-cyano-6-(methylthio)pyridin-3-yl)hexyl-5-ynoic acid 26d (0.7 g, 2.7 mmol) was dissolved in methanol (10 mL) and water (10 mL), and potassium peroxymonosulfonate (9.3 g, 27 mmol) was added. The reaction was stirred at room temperature for two hours. After the reaction was completed, it was filtered, the mother liquor was poured into water, extracted three times with dichloromethane, dried over anhydrous sodium sulfate, and the organic phases were combined and concentrated. The filtrate was collected to obtain a crude product 26e (815 mg), which was used directly in the next step without purification.
- the crude product 26e (815 mg) was dissolved in dichloromethane (10 mL), and N-hydroxysuccinimide (345 mg, 3.0 mmol) and 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.04 g, 5.4 mmol) were added and stirred at room temperature for 2 hours. The reaction was completed. Afterwards, the reaction solution was poured into water, extracted three times with dichloromethane, dried over anhydrous sodium sulfate, and the organic phases were combined and concentrated. The obtained concentrate was purified by silica gel column chromatography system B to obtain the title compound 26f (400 mg, yield: 37%).
- Step 5 (3R, 11S)-11-benzyl-24-(5-cyano-6-(methylsulfonyl)pyridin-3-yl)-3-methyl-7,10,13,16,19-pentaoxo-4-oxa-6,9,12,15,18-pentaazatetracarbonyl-23-enoic acid 26g
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150x 19 mm, 5 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15-minute gradient, gradient ratio: acetonitrile phase 30%-40%, flow rate: 20 mL/min) to obtain the title compound 26g (80 mg, yield: 21%).
- high performance liquid chromatography Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150x 19 mm, 5 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15-minute gradient, gradient ratio: acetonitrile phase 30%-40%, flow rate: 20 mL/min
- Step 6 N-((7S,15R)-7-benzyl-17-(((1S,10S)-10-ethyl-6-fluoro-10-hydroxy-5-methyl-11,14-dioxo-1,2,3,4,10,14,16-octahydro-13H-cyclohepta[de]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)amino)-15-methyl-2,5,8,11,17-pentaoxo-14-oxa-3,6,9,12-tetraazaheptadecanyl)-6-(5-cyano-6-(methylsulfonyl)pyridin-3-yl)hex-5-ynamide 26
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2x 250mm 10 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15-minute gradient, gradient ratio: acetonitrile phase 45%-55%, flow rate: 30mL/min) to obtain the title compound 026 (20 mg, yield: 51.7%). MS m/z (ESI): 1157.3 (M+1) + .
- 5-Bromo-2-chloropyrimidine 27a (8.50 g, 43.94 mmol) was added to water (50 mL), cyclopropylcarboxylic acid (4.54 g, 52.73 mmol), silver nitrate (1.49 g, 8.79 mmol) and trifluoroacetic acid (2.51 g, 21.97 mmol) were added, the reaction was heated to 70 ° C and stirred, ammonium persulfate (20.01 g, 87.89 mmol) was slowly added, and the reaction was continued to stir for 2 hours.
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150 x 19 mm, 5 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 10 minutes gradient, gradient ratio: acetonitrile phase 40%-50%, flow rate: 20 mL/min) to obtain the title compound 27g (50 mg, yield: 34%).
- high performance liquid chromatography Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: Xbridge C18 150 x 19 mm, 5 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 10 minutes gradient, gradient ratio: acetonitrile phase 40%-50%, flow rate: 20 mL/min
- Step 7 N-((7S,15R)-7-benzyl-17-(((1S,10S)-10-ethyl-6-fluoro-10-hydroxy-5-methyl-11,14-dioxo-1,2,3,4,10,14,16-octahydro-13H-cyclohepta[de]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)amino)-15-methyl-2,5,8,11,17-pentaoxo-14-oxa-3,6,9,12-tetraazaheptadecanyl)-6-(4-cyclopropyl-2-(methylsulfonyl)pyrimidin-5-yl)hex-5-ynamide 27
- the title compound 27 (18 mg, yield: 46%) was purified by HPLC-MS preparation (Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2*250 mm, 10 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 10 min gradient, gradient ratio: acetonitrile phase 40%-70%, flow rate: 30 mL/min).
- 5-Bromo-2,4-dichloropyrimidine 28a (5.0 g, 22 mmol) was dissolved in methanol (60 mL), and a methanol solution of sodium methoxide (30%, 4.0 g, 22.0 mol) was added to the solution. The reaction solution was stirred at room temperature for 2 hours. After the reaction was completed, the reaction solution was concentrated, acetic acid was used to suppress the extraction, and the organic phase was dried and concentrated to obtain the title compound 28b (5.0 g, yield: 100%).
- Step 4 5-bromo-2,4-dichloropyrimidine-6-(4-methoxy-2-(methylsulfonyl)pyrimidin-5-yl)hexyl-5-ynoic acid 28e
- N, N-diisopropylcarbodiimide (434 mg, 3.45 mmol) was added to a tetrahydrofuran (10 mL) solution of compound 28e (700 mg, 2.3 mmol) and N-hydroxysuccinimide (396 mg, 3.45 mmol), and the reaction was stirred at room temperature for 3 hours. After the reaction, the reaction solution was directly concentrated to obtain a crude product which was purified by silica gel column chromatography system B to obtain the title compound 28f (600 mg, yield: 60%).
- Step 6 (3R, 11S)-11-benzyl-24-(4-methoxy-2-(methylsulfonyl)pyrimidin-5-yl)-3-methyl-7,10,13,16,19-pentaoxo-4-oxa-6,9,12,15,18-pentaazatetracarbonyl-23-enoic acid 28g
- the crude product was concentrated to obtain a crude product, which was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with QDA detector, chromatographic column: Xbridge C18 150x 19 mm, 5 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 minutes gradient, gradient ratio: acetonitrile phase 29%-100%, flow rate: 25 mL/min) to obtain the title compound 28g (350 mg, yield: 35%).
- high performance liquid chromatography Waters MS-triggered Prep-LC with QDA detector, chromatographic column: Xbridge C18 150x 19 mm, 5 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 minutes gradient, gradient ratio: acetonitrile phase 29%-100%, flow rate: 25 mL/min
- Step 7 N-((7S,15R)-7-benzyl-17-(((1S,10S)-10-ethyl-6-fluoro-10-hydroxy-5-methyl-11,14-dioxo-1,2,3,4,10,14,16-octahydro-13H-cyclohepta[de]pyrano[3′,4′:6,7]indolizino[1,2-b]quinolin-1-yl)amino)-15-methyl-2,5,8,11,17-pentaoxo-14-oxa-3,6,9,12-tetraazaheptadecanyl)-6-(4-methoxy-2-(methylsulfonyl)pyrimidin-5-yl)hex-5-ynamide 28
- 4-Iodopiperidine-1-carboxylic acid tert-butyl ester 29a (4 g, 12.86 mmol) was added to a reaction flask, and a 4M hydrochloric acid solution in 1,4-dioxane (20 ml) was added at room temperature, and the mixture was reacted for one hour at room temperature. After the reaction was completed, the solvent was dried to obtain crude 4-iodopiperidine hydrochloride 29b (2.7 g, yield: 100%).
- Nickel chloride dimethoxyethane (299 mg, 1.37 mmol) and 2-amidinopyridine hydrochloride (215 mg, 1.37 mmol) were added to a reaction bottle, dimethylacetamide (10 ml) was added under a nitrogen atmosphere, and the mixture was stirred at room temperature for half an hour.
- Compound 29c (1.7 g, 5.46 mmol), 5-bromo-2-(methylthio)pyrimidine (1.1 g, 5.46 mmol), manganese (75 mg, 1.37 mmol), tetrabutylammonium iodide (2.0 g, 5.46 mmol) were added to another reaction bottle, and N, N-dimethylacetamide (10 ml) was added to replace nitrogen three times.
- the nickel ligand compound was transferred to the system with a syringe, and the reaction was reacted at 60°C for 3 hours. After the reaction was completed, ethyl acetate (200 ml) and water (400 ml) were added to the system for extraction. The organic phase was dried, concentrated, and purified using silica gel column chromatography system B to obtain the title compound 29d (1.5 g, yield: 89%).
- Step 5 3-(4-(2-(methylsulfonyl)pyrimidin-5-yl)piperidin-1-yl)propanoic acid 29f
- Step 6 (3R, 11S)-11-benzyl-3-methyl-21-(4-(2-(methylsulfonyl)pyrimidin-5-yl)piperidin-1-yl)-7,10,13,16,19-pentaoxo-4-oxa-6,9,12,15,18-pentaazaeicosanoic acid 29h
- Step 7 (R)-3-(((S)-7-benzyl-17-(4-(2-(methylsulfonyl)pyrimidin-5-yl)piperidin-1-yl)-3,6,9,12,15-pentaoxo-2,5,8,11,14-pentaazaheptadecyl)oxy)-N-((1S,10S)-10-ethyl-6-fluoro-10-hydroxy-5-methyl-11,14-dioxo-1,3,4,10,11,14,16-octahydro-13H-cycloheptane[de]pyrano[3′,4′:6,7]indolizino[1,b]quinolin-1-yl)butanamide
- reaction solution was purified by HPLC (Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: WELCH Xtimate C18 21.2 x 250mm 10um; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 42%-52%, flow rate: 20 mL/min) to obtain the title compound 31 (28 mg, yield: 40%).
- HPLC Waters MS-triggered Prep-LC with SQD2 detector, chromatographic column: WELCH Xtimate C18 21.2 x 250mm 10um; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 42%-52%, flow rate: 20 mL/min
- reaction solution was purified by high performance liquid chromatography (Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2 x 250mm 10 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 46%-100%, flow rate: 30mL/min) to obtain products 33-1 (4.1 mg, yield: 17.2%) and 33-2 (1.7 mg, yield: 6.9%).
- high performance liquid chromatography Waters MS-triggered Prep-LC with QDA detector, chromatographic column: WELCH Xtimate C18 21.2 x 250mm 10 ⁇ m; mobile phase 1: water (containing 0.1% FA); mobile phase 2: acetonitrile; 15 min gradient, gradient ratio: acetonitrile phase 46%-100%, flow rate: 30mL/min
- SFC 80 chromatographic column: Daicel CHIRALCEL OD, 250mm x 30mm ID, 10 ⁇ m; mobile phase: CO2/MeOH [0.2% NH3 (7M Solution in MeOH)] 70/30, flow rate: 70g/min
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
本发明涉及通式I所示的喜树碱衍生物、药物组合物及其制备方法和应用。所述喜树碱衍生物具有良好的肿瘤抑制活性,可用于治疗或预防肿瘤,以及制备用于治疗或预防肿瘤疾病的药物。
Description
相关申请的交叉引用
本申请要求2023年4月7日提交的申请号为202310367781.7、2023年6月21日提交的申请号为202310743291.2、2023年7月28日提交的申请号为202310941713.7、2023年9月12日提交的申请号为202311173712.9、2023年11月21日提交的申请号为202311558824.6以及2023年12月25日提交的申请号为202311802330.8,发明名称皆为“喜树碱衍生物、药物组合物及其制备方法和应用”的六件申请的优先权。
本发明属于医药领域,具体涉及一种喜树碱衍生物、药物组合物及其制备方法和应用。
肿瘤治疗领域中,抗体药物偶联物(antibody-drugcconjugate,ADC)由靶向特异性抗原的单克隆抗体药物和小分子细胞毒药物通过连接子偶联而成,兼具传统小分子化疗的强大杀伤效应及抗体药物的肿瘤靶向性。
喜树碱(Camptothecin,CPT)是从珙桐科植物喜树(Camptotheca acuminata)中分离得到的一种天然产物,喜树碱是由喹啉环AB、吡咯环C、吡啶酮环D和α-羟基内酯环E组成的一种五并环化合物,其中20位为S构型(见下文结构式)。由于其优异的抗癌活性,20世纪70年代初被推上临床,后来在临床上出现腹泻、出血性膀胱炎等严重的药物副作用,而终止了临床试验。
研究数据表明,喜树碱可与细胞中DNA拓扑异构酶I形成三元复合物,从而抑制DNA的解旋,导致DNA复制受阻,从而造成细胞死亡(Cancer Res.1989,49,6365)。喜树碱及其衍生物在肺癌、乳腺癌、结直肠癌、卵巢癌等动物体内模型中具有很强的抗肿瘤活性(Nature Review Cancer.2006,6,789)。目前已有多个喜树碱类药物被批准上市用于肿瘤治疗(Med Res.Rev.2015,35,753)。伊立替康为结直肠癌治疗药物;拓扑替康用于卵巢癌的治疗;贝洛替康用于卵巢癌和小细胞肺癌的治疗。喜树碱衍生物还有依喜替康、鲁比特康、二氟替康、勒托替康、吉马替康、希明替康、吉米替康、依洛替康等。喜树碱类药物或衍生物多存在骨髓抑制导致的血液毒性,比如白细胞减少、血小板减少、贫血、中性粒细胞减少等,以及胃肠道副作用,比如恶心、呕吐、腹泻等。临床研究发现提升喜树碱类化合物安全性和有效性的措施包括增加水溶性,改善其药代性质、提升活性、减少用量或者利用其缀合物与抗体形成抗体偶联药物等。因此,研发结构新颖并能够提升有效性、改善安全性问题的喜树碱类化合物及其缀合物仍有很
高的临床需求和应用价值。
发明内容
本发明提供了一种式I所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物:
其中,R1、R2、R3相同或不同,彼此独立地选自H、OH、CN、卤素、C1-10烷基、C2-10烯基、C2-10炔基、C1-10烷氧基、卤代C1-10烷基、卤代C1-10烷氧基、氰基C1-10烷基、氰基C1-10烷氧基、C3-10环烷基;
R4选自H或R41选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;
R5选自H、R51、R52相同或不同,彼此独立地选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R53选自C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;环A选自C3-8环烷基或3-8元杂环基,Ra选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0、1或2;q选自0、1或2;
X选自CH或N;
Y选自-(CH2)m-、-(CH2)m-O-(CH2)p-;
m选自0-6的整数;
p选自0-6的整数。
根据一些实施方案,R1选自H、OH、CN、卤素、C1-6烷基、C2-6烯基、C2-6炔基、C3-6环烷
基或卤代C1-6烷氧基;
根据一些实施方案,R1选自H、OH、Br、甲基、二氟甲氧基、2,2,2-三氟乙氧基、乙烯基、环丙基或乙炔基。
根据一些实施方案,R2选自H、卤素、CN或C1-6烷基;
根据一些实施方案,R2选自H或F。
根据一些实施方案,R3选自H或C1-6烷基;
根据一些实施方案,R3为H。
根据一些实施方案,X-R4为-CH2-。
根据一些实施方案,R5选自H、其中,R51选自H、甲基、乙基、异丙基或环丙基;R52选自H或甲基;R53选自甲基;环A选自C3-6环烷基;Ra选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0或1;q选自0或1;
根据一些实施方案,环A选自环丁烷环。
根据一些实施方案,R51选自H、甲基、乙基、异丙基或环丙基;R52选自H或甲基;R53选自甲基;环A选自环丁烷环;
根据一些实施方案,X选自CH或N;且当X为CH时,R4为H;或者当X为N时,R5为H;
根据一些实施方案,m选自0、1或2;
根据一些实施方案,p选自0、1或2;
根据一些实施例,Y选自-CH2-、-CH2-CH2-、-CH2-O-。
其中,R1、R2、R3、R4、R5、X、m彼此独立地具有本文中所述的定义。
其中,R1、R2、R4、R5、X、m彼此独立地具有本文中所述的定义。
其中,R1、R2、R5彼此独立地具有本文中所述的定义。
其中,R1、R2、R51、R52、环A、Ra、m、n、q彼此独立地具有本文中所述的定义。
本发明还提供式V所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物:
M-L1-L2-D (式V)
M-L1-L2-D (式V)
其中,M是和抗体或其抗原结合片段的接头部位;
L1为肽残基;优选地,选自甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(GGFG)、谷氨酸-缬氨酸-瓜氨酸(EVC)、缬氨酸-瓜氨酸(VC)、天冬氨酸-缬氨酸-瓜氨酸(DVC)、谷氨酸-甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(EGGFG)、天冬氨酸-甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(DGGFG);
D为生物活性分子的结构片段。
根据一些实施方案,D选自本文中所述的式I所示化合物去氢之后的结构。
Lg不存在,或者为离去基团,所述离去基团选自卤素、砜基、三氟甲磺酰基、甲磺酰基;
环B选自5-14元杂芳环、3-14元杂环;
每个Rb相同或不同,彼此独立地选自如下基团:卤素、氰基、氧代(=O)、C1-6烷基、卤代C1-6烷基、羟基C1-6烷基、C1-6烷氧基、C3-8环烷基、3-8元杂环基、C1-6烷基-O-C1-6烷基-、C1-6烷基-(5-6元)杂芳基-;
Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的如下基团:C6-14芳基、5-14元杂芳基、3-14元杂环基;每个Rm1相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基或HOOC-C1-3亚烷基;
Lm2选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-(CH2)s-(C=O)-、-C≡C-(CH2)t-(C=O)-;每个Rm2相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基或-C1-6亚烷基-COOH,所述亚烷基任选地被一个、两个或更多个下列基团所间隔:O、NH;
r选自0-6的整数;
s选自0-6的整数;
t选自0-6的整数。
根据一些实施方案,环B选自5-6元含N杂芳环、3-6元含N杂环;
根据一些实施方案,Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的下列基团:苯基、哌啶基或哌嗪基;
根据一些实施方案,Rm1选自-CH2COOH;
根据一些实施方案,Lm2选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-CH2-(C=O)-、-(CH2)2-(C=O)-、-(CH2)5-(C=O)-、-C≡C-(CH2)3-(C=O)-;
根据一些实施方案,每个Rm2相同或不同,彼此独立地选自-C1-3亚烷基-COOH,所述亚烷基任选地被O或NH所间隔;
根据一些实施方案,L2为-NH-CH2-。
根据一些实施方案,式V所示的化合物选自以下结构:
本发明还提供一种式VI所示抗体药物偶联物,
Ab-[L-D]β (式VI)
其中,Ab为抗体或其抗原结合片段,D具有如本申请文本中所述的定义,L是连接Ab和D的连接子,β选自1-10之间的整数或小数。
根据一些实施方案,Ab为抗体或抗原结合片段,所述抗原结合片段选自Fab、Fab’、(Fab')2、Fd、Fv、二硫键连接的Fv、scFv、di-scFv、(scFv)2、双抗体(diabody)和单域抗体(sdAb);和/或,所述抗体为鼠源抗体、人源化抗体、嵌合抗体、双特异性抗体或多特异性抗体。
根据一些实施方案,Ab为抗HER 2的抗体或其抗原结合片段,例如,Ab是曲妥珠单抗或其抗原结合片段。
根据一些实施方案,β选自4-9之间的整数或小数(例如7、7.71、7.84、7.92、7.94、7.97、7.98、7.99、8、8.02、8.06或8.14)。
根据一些实施方案,L选自M'-L1-L2,其中,M’是和抗体或其抗原结合片段的接头部位,由本申请文本定义的M与抗体或其抗原结合片段偶联形成,L1、L2具有如本申请文本中所述的定义;
根据一些实施方案,M’选自
优选地,M’中的羰基连接位置与L1连接,杂环或杂芳环上的连接位置与Ab连接。根据一些实施方案,L选自:
其中,1位与Ab相连,2位与D相连。
根据一些实施方案,L-D选自:
根据一些实施方案,式VI所示的抗体-药物偶联物选自以下结构:
本发明还提供式I化合物的制备方法,包括以下方案一或方案二:
方案一:包括以下步骤:
(1)化合物I-41脱除保护基PG4得到化合物I-42;
(2)化合物I-42与化合物I-43反应得到式I所示化合物;
其中,R1、R2、R3、R4、R5、X、m具有本文中所述的定义;Y选自离去基团,例如OH、Cl、Br、I;PG4选自氨基保护基,例如Fmoc、Boc、Bn、Cbz。
方案二:包括以下步骤:
(1)化合物I-51脱除保护基PG5得到化合物I-52;
(2)化合物I-52与化合物I-53反应得到式I所示化合物;
其中,R1、R2、R3、R4、R5、R51、X、m、n具有本文中所述的定义;Y选自离去基团,例如OH、Cl、Br、I;PG5选自氨基保护基,例如Fmoc、Boc、Bn、Cbz。
本发明还提供一种药物组合物,其包含治疗有效量的式I或式V所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物中的至少一种。
本发明还提供一种药物组合物,其包含治疗有效量的式VI所示抗体药物偶联物。
根据本发明的实施方案,所述药物组合物还包括一种或多种药学上可接受的辅料。
根据本发明的实施方案,所述药物组合物还可以进一步含有一种或多种额外的治疗剂。
本发明还提供治疗肿瘤疾病的方法,包括给予患者预防或治疗有效量的式I或式V所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物中的至少一种。
本发明还提供治疗肿瘤疾病的方法,包括给予患者预防或治疗有效量的上述药物组合物。
所述肿瘤疾病选自乳腺癌、胃癌、肺癌、结直肠癌、大肠癌、卵巢癌、肝癌、肾癌、食管癌、宫颈癌、膀胱癌、胰腺癌、前列腺癌、鼻咽癌、黑色素瘤或白血病。
在一些实施方案中,所述患者包括哺乳动物,优选是人。
本发明还提供用于治疗肿瘤疾病的式I、式V所示的化合物或式VI所示的抗体药物偶联物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物中的至少一种,或其药物组合物。
本发明还提供式I、式V所示的化合物或式VI所示的抗体药物偶联物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物中的至少一种或上述的药物组合物在制备拓扑异构酶I抑制剂中的用途和/或在制备预防或治疗与拓扑异构酶I相关的疾病或病症的药物中的用途。
在一些实施方案中,所述的疾病或病症为肿瘤,所述肿瘤包括乳腺癌、胃癌、肺癌、结直肠癌、大肠癌、卵巢癌、肝癌、肾癌、食管癌、宫颈癌、膀胱癌、胰腺癌、前列腺癌、鼻咽癌、黑色素瘤或白血病。
本发明还提供式I’所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物:
其中,R1、R2、R3相同或不同,彼此独立地选自H、OH、CN、卤素、C1-10烷基、C2-10烯基、C2-10炔基、C1-10烷氧基、卤代C1-10烷基、卤代C1-10烷氧基、氰基C1-10烷基、氰基C1-10烷氧基、C3-10环烷基;
R4选自H或R41选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;
R5选自H、R51、R52相同或不同,彼此独立地选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R53选自C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;环A选自C3-8环烷基、C3-8杂环基,Ra选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0、1或2;q选自0、1或2;
X选自CH或N;
Y选自-(CH2)m-O-(CH2)p-;
m选自0-6的整数;
p选自0-6的整数。
根据一些实施方案,R1选自H、OH、CN、卤素、C1-6烷基、C2-6烯基、C2-6炔基、C3-6环烷基或卤代C1-6烷氧基;
优选地,R1选自H、OH、Br、甲基、二氟甲氧基、2,2,2-三氟乙氧基、乙烯基、环丙基或乙炔基;
优选地,R2选自H、卤素、CN或C1-6烷基;
优选地,R2选自H或F;
优选地,R3选自H或C1-6烷基;
优选地,R3为H。
根据一些实施方案,R4选自H或例如
优选地,R4选自H或
优选地,X-R4为优选为
优选地,X-R4为-CH2-;
优选地,Y选自-CH2-O-。
根据一些实施方案,R5选自H、其中,R51选自H、甲基、乙基、异丙基或环丙基;R52选自H或甲基;R53选自甲基;环A选自C3-6环烷基;Ra选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0或1;q选自0或1;
优选地,环A选自环丁烷环;
优选地,R5选自H、
优选地,R51选自H、甲基、乙基、异丙基或环丙基;R52选自H或甲基;R53选自甲基;环A选自环丁烷环;
优选地,R5选自H、
根据一些实施方案,X选自CH或N;且当X为CH时,R4为H;或者当X为N时,R5为H;
优选地,m选自0、1或2;还优选地,m+p=2。
根据一些实施方案,式I’所示的化合物结构如下所示:
其中,R1、R2、R51、R52、n彼此独立地具有如上所述的定义。
根据一些实施方案,式I’所示的化合物结构如下所示:
本发明还提供式I”所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物:
其中,R1、R2、R3相同或不同,彼此独立地选自H、OH、CN、卤素、C1-10烷基、C2-10烯基、C2-10炔基、C1-10烷氧基、卤代C1-10烷基、卤代C1-10烷氧基、氰基C1-10烷基、氰基C1-10烷氧基、C3-10环烷基;
R4选自H或R41选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;
R52选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;
R20选自H或氨基保护基;
优选地,R20选自Fmoc、Boc、Bn、Cbz;
X选自CH或N;
Y选自-(CH2)m-O-(CH2)p-;
m选自0-6的整数;
p选自0-6的整数;
优选地,R1选自H、OH、CN、卤素、C1-6烷基、C2-6烯基、C2-6炔基、C3-6环烷基或卤代C1-6烷氧基;
优选地,R1选自H、OH、Br、甲基、二氟甲氧基、2,2,2-三氟乙氧基、乙烯基、环丙基或
乙炔基;
优选地,R2选自H、卤素、CN或C1-6烷基;
优选地,R2选自H或F;
优选地,R3选自H或C1-6烷基;
优选地,R3为H;
R4选自H;
优选地,式I”为下述化合物:
本发明还提供式MII所示的化合物
Lg为离去基团,所述离去基团选自卤素、砜基、三氟甲磺酰基或甲磺酰基;优选地,Lg为甲磺酰基;
环B选自5-6元含N杂芳环或3-6元含N杂环;
更优选地,环B选自嘧啶环、吡啶环或三嗪环;
每个Rb相同或不同,彼此独立地选自如下基团:卤素、氰基、氧代(=O)、C1-6烷基、卤代C1-6烷基、羟基C1-6烷基、C1-6烷氧基或C3-8环烷基、3-8元杂环基、C1-6烷基-O-C1-6烷基-、C1-6烷基-(5-6元)杂芳基-;
优选地,每个Rb相同或不同,彼此独立地选自氰基、氧代(=O)、甲氧基、环丙基、三氟甲基、
Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的如下基团:C6-14芳基、5-14元杂芳基、3-14元杂环基;每个Rm1相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基、HOOC-C1-3亚烷基;
优选地,Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的下列基团:苯基、哌啶基或哌嗪基;
更优选地,Lm1选自
Rm20选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-(CH2)s-(C=O)-RZ、-乙炔基-(CH2)t-(C=O)-RZ;
优选地,Rm20选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-CH2-(C=O)-RZ、-(CH2)2-(C=O)-RZ、-(CH2)5-(C=O)-RZ、-乙炔基-(CH2)3-(C=O)-RZ;
每个Rm2相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基或-C1-6亚烷基-COOH,所述亚烷基任选地被一个、两个或更多个下列基团所间隔:O、NH;
优选地,每个Rm2相同或不同,彼此独立地选自-C1-3亚烷基-COOH,所述亚烷基任选地被O或NH所间隔;
更优选地,Rm2选自、
r选自0-6的整数;
s选自0-6的整数;
t选自0-6的整数;
Rz选自羟基、卤素、活性酯、羧基保护基、氨基酸、肽片段或亲水片段;
所述氨基酸为L1的N端氨基酸,所述肽片段为L1自N端的2个、3个或4个氨基酸形成的子片段或为L1;
所述肽片段的C端为羟基、活性酯、羧基保护基或
优选地,所述亲水片段包含多羟基基团、聚乙二醇片段、聚甜菜碱片段或聚肌酸片段;
优选地,式MII为如下式MII-1:
其中,t和Rz如上述定义,Z为N或CR22,R21和R22各自独立选自H、卤素、氰基、氧代(=O)、C1-6烷基、卤代C1-6烷基、羟基C1-6烷基、C1-6烷氧基、C3-8环烷基、3-8元杂环基、C1-6烷基-O-C1-6烷基;条件是当Z为N时,R21不为H;
优选地,Rz为OH或卤素,t为2-4的整数,Z为N并且R21选自氰基、C1-6烷氧基、C3-4环烷基或-C1-6烷基-O-C1-6烷基,或R21为H、Z为CR22并且R22为氰基或三氟甲基;
优选地,式MII为如下化合物:
本发明还提供式(L’-1)-(L’-3)所示的化合物:
Lg为离去基团,所述离去基团选自卤素、砜基、三氟甲磺酰基或甲磺酰基;优选地,Lg为甲磺酰基;
环B选自5-6元含N杂芳环或3-6元含N杂环;
更优选地,环B选自嘧啶环、吡啶环或三嗪环;
每个Rb相同或不同,彼此独立地选自如下基团:卤素、氰基、氧代(=O)、C1-6烷基、卤代C1-6烷基、羟基C1-6烷基、C1-6烷氧基或C3-8环烷基、3-8元杂环基、C1-6烷基-O-C1-6烷基-、C1-6烷基-(5-6元)杂芳基-;
优选地,每个Rb相同或不同,彼此独立地选自氰基、氧代(=O)、甲氧基、环丙基、三氟甲基、
Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的如下基团:C6-14芳基、
5-14元杂芳基、3-14元杂环基;每个Rm1相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基、HOOC-C1-3亚烷基;
优选地,Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的下列基团:苯基、哌啶基或哌嗪基;
更优选地,Lm1选自
Lm2选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-(CH2)s-(C=O)-、-乙炔基-(CH2)t-(C=O)-;
优选地,Lm2选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-CH2-(C=O)-、-(CH2)2-(C=O)-、-(CH2)5-(C=O)-、-乙炔基-(CH2)3-(C=O)-;
每个Rm2相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基或-C1-6亚烷基-COOH,所述亚烷基任选地被一个、两个或更多个下列基团所间隔:O、NH;
优选地,每个Rm2相同或不同,彼此独立地选自-C1-3亚烷基-COOH,所述亚烷基任选地被O或NH所间隔;
更优选地,Rm2选自、
r选自0-6的整数;
s选自0-6的整数;
t选自0-6的整数;
Rz2选自羟基、卤素、活性酯或羧基保护基;
优选地,其中片段具有下式所示结构:
其中各基团具有本文所述的定义;
R51彼此独立地选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R53选自C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;环A选自C3-8环烷基或3-8元杂环基,Ra
选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0、1或2;q选自0、1或2;
L1为肽残基;优选地,选自甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(GGFG)、谷氨酸-缬氨酸-瓜氨酸(EVC)、缬氨酸-瓜氨酸(VC)、天冬氨酸-缬氨酸-瓜氨酸(DVC)、谷氨酸-甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(EGGFG)、天冬氨酸-甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(DGGFG);优选地,L1选自甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(GGFG);
L2为肽残基与D的连接基团;优选地,选自化学键、-NH-C1-6烷基-、
优选地,L2选自-NH-CH2-;
(L’-1)-(L’-3)优选地为:
本发明还提供式(L’)的合成方法,其中所述L2为-NH-CH2-,包括如下反应式的步骤:
其中Rz2为羟基、活性酯或羧基保护基,其余各基团具有本文所述的定义。
本发明还提供偶联中间体化合物的合成方法,包括第一方案或第二方案:
第一方案选自如下步骤:
Rz2选自羟基、卤素、活性酯或羧基保护基,其余基团具有本文所述的定义;
第二方案包括如下步骤:
与如上所述式I化合物(其中R5不为H)反应的步骤。
本发明提供的喜树碱类化合物具有良好的肿瘤抑制作用,可用于治疗或预防癌症(如乳腺癌或胃癌),以及制备用于治疗或预防此类病症和疾病的药物。本发明提供的细胞毒性药物-连接子类化合物可以顺利与抗体偶联得到抗体-药物偶联物。本发明提供的抗体药物偶联物具备良好的肿瘤抑制作用和选择性。
术语定义与说明
除非另有说明,本申请说明书和权利要求书中记载的基团和术语定义,包括其作为实例的定义、示例性的定义、优选的定义、表格中记载的定义、实施例中具体化合物的定义等,可以彼此之间任意组合和结合。这样的组合和结合后的基团定义及化合物结构,应当被理解为本申请说明书和/或权利要求书记载的范围内。
本发明所述“接头”、“接头结构”或“连接子”或“连接单元”是指一端与抗体连接而另一端与药物(药物化合物)相连的化学结构片段或键,也可以连接其它接头后再与药物化合物相连。本发明的接头结构可以通过本领域已知方法合成,也可使用本发明所述的方法进行合成。
本发明所述“抗体-药物偶联物”,即ADC,指靶向部分通过稳定的连接单元与具有生物活性的药物相连。
本发明所述“生物活性分子”,是指细胞毒性药物,能在肿瘤细胞内具有较强破坏其正常生长的化学分子。
除非另有说明,本说明书和权利要求书记载的数值范围相当于至少记载了其中每一个具体的整数数值。例如,数值范围“1-12”相当于记载了数值范围“1-12”中的每一个整数数值即1、2、3、4、5、6、7、8、9、10、11、12。此外,当某些数值范围被定义为“数”时,应当理解为记载了该范围的两个端点、该范围内的每一个整数以及该范围内的每一个小数。
术语“0-6的整数”表示0、1、2、3、4、5、6。
术语“卤素”表示氟、氯、溴和碘。
“C1-10烷基”表示具有1、2、3、4、5、6、7、8、9或10个碳原子的直链和支链烷基,“C1-8烷基”表示具有1、2、3、4、5、6、7或8个碳原子的直链和支链烷基,“C1-6烷基”表示具有1、2、3、4、5或6个碳原子的直链和支链烷基。所述烷基是例如甲基、乙基、丙基、丁基、戊基、己基、异丙基、异丁基、仲丁基、叔丁基、异戊基、2-甲基丁基、1-甲基丁基、1-乙基丙基、1,2-二甲基丙基、新戊基、1,1-二甲基丙基、4-甲基戊基、3-甲基戊基、2-甲基戊基、1-甲基戊基、2-乙基丁基、1-乙基丁基、3,3-二甲基丁基、2,2-二甲基丁基、1,1-二甲基丁基、2,3-二甲基丁基、1,3-二甲基丁基或1,2-二甲基丁基等或它们的异构体。
“C2-10烯基”应理解为优选表示直连或支链的一价烃基,其包含一个或多个双键并且具有2、3、4、5、6、7、8、9或10个碳原子,更优选“C2-8烯基”。“C2-10烯基”应理解为优选表示直连或支链的一价烃基,其包含一个或多个双键并且具有2、3、4、5、6、7或8个碳原子,例如,具有2、3、4、5或6个碳原子(即,C2-6烯基),具有2或3个碳原子(即,C2-3烯基)。应理解,在所述烯基包含多于一个双键的情况下,所述双键可相互分离或者共轭。所述烯基是例如乙烯基、烯丙基、(E)-2-甲基乙烯基、(Z)-2-甲基乙烯基、(E)-丁-2-烯基、(Z)-丁-2-烯基、(E)-丁-1-烯基、(Z)-丁-1-烯基、戊-4-烯基、(E)-戊-3-烯基、(Z)-戊-3-烯基、(E)-戊-2-烯基、(Z)-戊-2-烯基、(E)-戊-1-烯基、(Z)-戊-1-烯基、己-5-烯基、(E)-己-4-烯基、(Z)-己-4-烯基、(E)-己-3-烯基、(Z)-己-3-烯基、(E)-己-2-烯基、(Z)-己-2-烯基、(E)-己-1-烯基、(Z)-己-1-烯基、异丙烯基、2-甲基丙-2-烯基、1-甲基丙-2-烯基、2-甲基丙-1-烯基、(E)-1-甲基丙-1-烯基、(Z)-1-甲基丙-1-烯基、3-甲基丁-3-烯基、2-甲基丁-3-烯基、1-甲基丁-3-烯基、3-甲基丁-2-烯基、(E)-2-甲基丁-2-烯基、(Z)-2-甲基丁-2-烯基、(E)-1-甲基丁-2-烯基、(Z)-1-甲基丁-2-烯基、(E)-3-甲基丁-1-烯基、(Z)-3-甲基丁-1-烯基、(E)-2-甲基丁-1-烯基、(Z)-2-甲基丁-1-烯基、(E)-1-甲基丁-1-烯基、(Z)-1-甲基丁-1-烯基、1,1-二甲基丙-2-烯基、1-乙基丙-1-烯基、1-丙基乙烯基、1-异丙基乙烯基。
术语“C2-10炔基”应理解为优选表示直连或支链的一价烃基,其包含一个或多个三键并且具有2、3、4、5、6、7、8、9或10个碳原子,例如,具有2、3、4、5、6、7或8个碳原子(即,“C2-8炔基”),具有2、3、4、5或6个碳原子(即,“C2-6炔基”),具有2或3个碳原子(“C2-3炔基”)。所述炔基是例如乙炔基、丙-1-炔基、丙-2-炔基、丁-1-炔基、丁-2-炔基、丁-3-炔基、戊-1-炔基、戊-2-炔基、戊-3-炔基、戊-4-炔基、己-1-炔基、己-2-炔基、己-3-炔基、己-4-炔基、己-5-炔基、1-甲基丙-2-炔基、2-甲基丁-3-炔基、1-甲基丁-3-炔基、1-甲基丁-2-炔基、3-甲基丁-1-炔基、1-乙基丙-2-炔基、3-甲基戊-4-炔基、2-甲基戊-4-炔基、1-甲基戊-4-炔基、2-甲基戊-3-炔基、1-甲基戊-3-炔基、4-甲基戊-2-炔基、1-甲基戊-2-炔基、4-甲基戊-1-炔基、3-甲基戊-1-炔基、2-
乙基丁-3-炔基、1-乙基丁-3-炔基、1-乙基丁-2-炔基、1-丙基丙-2-炔基、1-异丙基丙-2-炔基、2,2-二甲基丁-3-炔基、1,1-二甲基丁-3-炔基、1,1-二甲基丁-2-炔基或3,3-二甲基丁-1-炔基。特别地,所述炔基是乙炔基、丙-1-炔基或丙-2-炔基。
术语“C3-10环烷基”应理解为表示饱和的一价单环、双环(如桥环、螺环)烃环或三环烷烃,其具有3、4、5、6、7、8、9或10个碳原子。所述C3-10环烷基可以是单环烃基,如环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基或环癸基,或者是双环烃基如龙脑基、吲哚基、六氢吲哚基、四氢萘基、十氢萘基、二环[2.1.1]己基、二环[2.2.1]庚基、二环[2.2.1]庚烯基、6,6-二甲基二环[3.1.1]庚基、2,6,6-三甲基二环[3.1.1]庚基、二环[2.2.2]辛基、2,7-二氮杂螺[3,5]壬烷基、2,6-二氮杂螺[3,4]辛烷基,或者是三环烃基如金刚烷基。
除非另有定义,术语“3-6元杂环基”是指饱和的或不饱和的非芳族的环或环系,例如,其是4-、5-或6-元的单环,并且含有至少一个,例如1、2、3、4、5个或更多个选自O、S和N的杂原子,其中N和S还可以任选被氧化成各种氧化状态,以形成氮氧化物、-S(O)-或-S(O)2-的状态。所述杂环基可以包括稠合的或桥连的环以及螺环的环。特别地,所述杂环基可以包括但不限于:4元环,如氮杂环丁烷基、氧杂环丁烷基;5元环,如四氢呋喃基、二氧杂环戊烯基、吡咯烷基、咪唑烷基、吡唑烷基、吡咯啉基;或6元环,如四氢吡喃基、哌啶基、吗啉基、二噻烷基、硫代吗啉基、哌嗪基或三噻烷基。
术语“C6-14芳基”应理解为优选表示具有6、7、8、9、10、11、12、13或14个碳原子的一价芳香性或部分芳香性的单环、双环或三环烃环(“C6-14芳基”),特别是具有6个碳原子的环(“C6芳基”),例如苯基;或联苯基,或者是具有9个碳原子的环(“C9芳基”),例如茚满基或茚基,或者是具有10个碳原子的环(“C10芳基”),例如四氢化萘基、二氢萘基或萘基,或者是具有13个碳原子的环(“C13芳基”),例如芴基,或者是具有14个碳原子的环(“C14芳基”),例如蒽基。当所述C6-20芳基被取代时,其可以为单取代或者多取代。并且,对其取代位点没有限制,例如可以为邻位、对位或间位取代。
术语“5-14元杂芳基”应理解为包括这样的一价单环、双环或三环芳族环系:其具有5、6、7、8、9、10、11、12、13或14个环原子,特别是5或6或9或10个碳原子,且其包含1-5个,优选1-3各独立选自N、O和S的杂原子并且,另外在每一种情况下可为苯并稠合的。“杂芳基”还指其中杂芳族环与一个或多个芳基、脂环族或杂环基环稠合的基团,其中所述连接的根基或点在杂芳族环上。非限制性实例包括1-、2-、3-、5-、6-、7-或8-吲嗪基、1-、3-、4-、5-、6-或7-异吲哚基、2-、3-、4-、5-、6-或7-吲哚基、2-、3-、4-、5-、6-或7-吲唑基、2-、4-、5-、6-、7-或8-嘌呤基、1-、2-、3-、4-、6-、7-、8-或9-喹嗪基、2-、3-、4-、5-、6-、7-或8-喹啉基、1-、3-、4-、5-、6-、7-或8-异喹啉基、1-、4-、5-、6-、7-或8-酞嗪基(phthalazinyl)、2-、3-、4-、5-或6-萘啶基、2-、3-、5-、6-、7-或8-喹唑啉基、3-、4-、5-、6-、7-或8-噌啉基、2-、4-、6-或7-蝶啶基、1-、2-、3-、4-、5-、6-、7-或8-4aH咔唑基、1-、2-、3-、4-、5-、6-、7-或8-咔唑基、1-、3-、4-、5-、6-、7-、8-或9-咔啉基、1-、2-、3-、4-、6-、7-、8-、9-或10-菲啶基、1-、2-、3-、4-、5-、6-、7-、8-或9-吖啶基、1-、2-、4-、5-、6-、7-、8-或9-啶基、2-、3-、4-、5-、
6-、8-、9-或10-菲咯啉基、1-、2-、3-、4-、6-、7-、8-或9-吩嗪基、1-、2-、3-、4-、6-、7-、8-、9-或10-吩噻嗪基、1-、2-、3-、4-、6-、7-、8-、9-或10-吩嗪基、2-、3-、4-、5-、6-或1-、3-、4-、5-、6-、7-、8-、9-或10-苯并异喹啉基、2-、3-、4-或噻吩并[2,3-b]呋喃基、2-、3-、5-、6-、7-、8-、9-、10-或11-7H-吡嗪并[2,3-c]咔唑基、2-、3-、5-、6-或7-2H-呋喃并[3,2-b]-吡喃基、2-、3-、4-、5-、7-或8-5H-吡啶并[2,3-d]-邻-嗪基、1-、3-或5-1H-吡唑并[4,3-d]-唑基、2-、4-或54H-咪唑并[4,5-d]噻唑基、3-、5-或8-吡嗪并[2,3-d]哒嗪基、2-、3-、5-或6-咪唑并[2,1-b]噻唑基、1-、3-、6-、7-、8-或9-呋喃并[3,4-c]噌啉基、1-、2-、3-、4-、5-、6-、8-、9-、10或11-4H-吡啶并[2,3-c]咔唑基、2-、3-、6-或7-咪唑并[1,2-b][1,2,4]三嗪基、7-苯并[b]噻吩基、2-、4-、5-、6-或7-苯并唑基、2-、4-、5-、6-或7-苯并咪唑基、2-、4-、4-、5-、6-或7-苯并噻唑基、1-、2-、4-、5-、6-、7-、8-或9-苯并氧杂基(benzoxapinyl)、2-、4-、5-、6-、7-或8-苯并嗪基、1-、2-、3-、5-、6-、7-、8-、9-、10-或11-4H-吡咯并[1,2-b][2]苯并氮杂基(benzazapinyl)。典型的稠合杂芳基包括但不限于2-、3-、4-、5-、6-、7-或8-喹啉基、1-、3-、4-、5-、6-、7-或8-异喹啉基、2-、3-、4-、5-、6-或7-吲哚基、2-、3-、4-、5-、6-或7-苯并[b]噻吩基、2-、4-、5-、6-或7-苯并唑基、2-、4-、5-、6-或7-苯并咪唑基和2-、4-、5-、6-或7-苯并噻唑基。当所述5-20元杂芳基与其它基团相连构成本发明的化合物时,可以为5-20元杂芳基环上的碳原子与其它基团相连,也可以为5-20元杂芳基环上的杂原子与其它基团相连。当所述5-20元杂芳基被取代时,其可以为单取代或者多取代。并且,对其取代位点没有限制,例如可以为杂芳基环上与碳原子相连的氢被取代,或者杂芳基环上与杂原子相连的氢被取代。
术语“螺环”是指两个环共用1个成环原子的环系。
术语“稠环”是指两个环共用2个成环原子的环系。
术语“桥环”是指两个环共用3个以上成环原子的环系。
与化学键相交的波浪线用于表示基团与通式结构中其他原子或基团的连接位置。
除非另有说明,杂环基、杂芳基或亚杂芳基包括其所有可能的异构形式,例如其位置异构体。因此,对于一些说明性的非限制性实例,可以包括在其1-、2-、3-、4-、5-、6-、7-、8-、9-、10-、11-、12-位等(如果存在)中的1、2个或更多个位置上取代或与其他基团键合的形式,包括吡啶-2-基、亚吡啶-2-基、吡啶-3-基、亚吡啶-3-基、吡啶-4-基和亚吡啶-4-基;噻吩基或亚噻吩基包括噻吩-2-基、亚噻吩-2-基、噻吩-3-基和亚噻吩-3-基;吡唑-1-基、吡唑-3-基、吡唑-4-基、吡唑-5-基。
术语“烷基氧基(烷氧基)”指-O-(烷基),其中烷基的定义如上所述。烷氧基的非限制性实例包括:甲氧基、乙氧基、丙氧基、丁氧基。烷氧基可以是任选取代的或非取代的,当被取代时,取代基优选为一个或多个以下基团,其独立地选自烷基、烯基、炔基、烷基氧基、烷基氨基、卤素、巯基、羟基、硝基、氰基、环烷基、杂环烷基、芳基、杂芳基、环烷基氧基或杂环烷基氧基。
术语“烷基氨基”指-NH-(烷基),其中烷基的定义如上所述。烷基氨基的非限制性实例包括:甲氨基、乙基氨基、丙基氨基、异丙基氨基、丁基氨基等。
术语“(烷基)2氨基”指-N-(烷基)2,其中烷基的定义如上所述。(烷基)2氨基的非限制性实例包括:二甲基氨基、甲基乙基氨基、二乙基氨基、二丙基氨基、甲基丙基氨基、二异丙基氨基、二丁基氨基等。
“卤代烷基”指被一个或多个卤素取代的烷基,其中烷基如上所定义。
术语“抗体”是指能够特异性结合靶抗原的源自免疫球蛋白的分子,所述源自免疫球蛋白的分子通过位于其可变区中的至少一个抗原结合位点来结合所述靶抗原。当提及术语“抗体”时,除非上下文明确指出,其不仅包括完整抗体,而且包括能够特异性结合靶抗原的抗原结合片段。“完整抗体”典型地由两对多肽链(每对具有一条轻链(LC)和一条重链(HC))组成。抗体轻链可分类为κ(kappa)和λ(lambda)轻链。重链可分类为μ、δ、γ、α或ε,并且分别将抗体的同种型定义为IgM、IgD、IgG、IgA和IgE。在轻链和重链内,可变区和恒定区通过大约12或更多个氨基酸的“J”区连接,重链还包含大约3个或更多个氨基酸的“D”区。各重链由重链可变区(VH)和重链恒定区(CH)组成。重链恒定区由3个结构域(CH1、CH2和CH3)组成。各轻链由轻链可变区(VL)和轻链恒定区(CL)组成。轻链恒定区由一个结构域CL组成。恒定结构域不直接参与抗体与抗原的结合,但展现出多种效应子功能,如可介导免疫球蛋白与宿主组织或因子,包括免疫系统的各种细胞(例如,效应细胞)和经典补体系统的第一组分(C1q)的结合。VH和VL区还可被细分为具有高变性的区域(称为互补决定区(CDR)),其间散布有较保守的称为框架区(FR)的区域。各VH和VL由按下列顺序:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4从氨基末端至羧基末端排列的3个CDR和4个FR组成。各重链/轻链对的可变区(VH和VL)分别形成抗原结合部位。氨基酸在各区域或结构域的分配可遵循Kabat,Sequences of Proteins of Immunological Interest(National Institutes of Health,Bethesda,Md.(1987 and 1991)),或Chothia&Lesk(1987)J.Mol.Biol.196:901-917;Chothia等人(1989)Nature 342:878-883的定义。如本文中所使用的,术语“互补决定区”或“CDR”是指抗体可变区中负责抗原结合的氨基酸残基。在重链和轻链的可变区中各含有三个CDR,命名为CDR1、CDR2和CDR3。这些CDR的精确边界可根据本领域已知的各种编号系统进行定义,例如可按照Kabat编号系统(Kabat et al.,Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service,National Institutes of Health,Bethesda,Md.,1991)、Chothia编号系统(Chothia&Lesk(1987)J.Mol.Biol.196:901-917;Chothia等人(1989)Nature 342:878-883)或IMGT编号系统(Lefranc et al.,Dev.Comparat.Immunol.27:55-77,2003)中的定义。对于给定的抗体,本领域技术人员将容易地鉴别各编号系统所定义的CDR。并且,不同编号系统之间的对应关系是本领域技术人员熟知的(例如,可参见Lefranc et al.,Dev.Comparat.Immunol.27:55-77,2003)。在本发明中,本发明的抗体或其抗原结合片段含有的CDR可根据本领域已知的各种编号系统确定。在某些实施方案中,本发明的抗体或其抗原结合片段含有的CDR优选地通过Kabat编号系统确定。如本文中所使用的,术语“框架区”或“FR”残基是指,抗体可变区中除了如上定义的CDR残基以外的那些氨基酸残基。术语“抗体”不受任何特定的产生抗体的方法限制。例如,其包括,重组抗体、单克隆抗体和多克隆抗体。抗体可以是不同同种型的抗体,例如,IgG(例如,IgG1,IgG2,IgG3或IgG4亚型),IgA1,IgA2,IgD,IgE或IgM抗体。如本文中所使用的,术语抗体的“抗
原结合片段”是指包含全长抗体的片段的多肽,其保持特异性结合全长抗体所结合的相同抗原的能力,和/或与全长抗体竞争对抗原的特异性结合,其也被称为“抗原结合部分”。通常参见,Fundamental Immunology,Ch.7(Paul,W.,ed.,第2版,Raven Press,N.Y.(1989),其以其全文通过引用合并入本文,用于所有目的。可通过重组DNA技术或通过完整抗体的酶促或化学断裂产生抗体的抗原结合片段。抗原结合片段的非限制性实例包括Fab、Fab’、F(ab’)2、Fd、Fv、二硫键连接的Fv、scFv、di-scFv、双抗体(diabody)、单域抗体(singledomain antibody)和这样的多肽,其包含足以赋予多肽特异性抗原结合能力的抗体的至少一部分。工程改造的抗体变体综述于Holliger等,2005;Nat Biotechnol,23:1126-1136中。如本文中所使用的,术语“Fd”意指由VH和CH1结构域组成的抗体片段;术语“Fab片段”意指由VL、VH、CL和CH1结构域组成的抗体片段;术语“F(ab’)2片段”意指包含通过铰链区上的二硫桥连接的两个Fab片段的抗体片段;术语“Fab’片段”意指还原连接F(ab’)2片段中两个重链片段的二硫键后所获片段,由一条完整的轻链和重链的Fd片段(由VH和CH1结构域组成)组成。如本文中所使用的,术语“Fv”意指由抗体的单臂的VL和VH结构域组成的抗体片段。Fv片段通常被认为是,能形成完整的抗原结合位点的最小抗体片段。一股认为,六个CDR赋予抗体的抗原结合特异性。然而,即便是一个可变区(例如Fd片段,其仅仅含有三个对抗原特异的CDR)也能够识别并结合抗原,尽管其亲和力可能低于完整的结合位点。如本文中所使用的,术语“Fc”意指,由抗体的第一重链的第二、第三恒定区与第二重链的第二、第三恒定区经二硫键结合而形成的抗体片段。抗体的Fc片段具有多种不同的功能,但不参与抗原的结合。由Fc结构域介导的“效应子功能”包括Fc受体结合;Clq结合和补体依赖性细胞毒性(CDC);抗体依赖性细胞介导的细胞毒性(ADCC);噬菌作用;对细胞表面受体(例如B细胞受体)的下调;和B细胞活化等。Fc结构域既可以包括天然Fc区,也可以包括变异Fc区。天然Fc区包含与自然界中发现的Fc区的氨基酸序列一致的氨基酸序列,例如天然序列人类Fc区包括天然序列人类IgG1 Fc区;天然序列人类IgG2 Fc区;天然序列人类IgG3 Fc区;及天然序列人类IgG4 Fc区,以及其天然存在的变异体。变异Fc区包含因至少一个氨基酸修饰而与天然序列Fc区的氨基酸序列不同的氨基酸序列。在一些实施方案中,变异Fc区可具备相比于天然Fc区改变的效应子功能(例如Fc受体结合、抗体糖基化、半胱氨酸残基的数目、效应细胞功能或补体功能)。如本文中所使用的,术语“scFv”是指,包含VL和VH结构域的单个多肽链,其中所述VL和VH通过接头(linker)相连。此类scFv分子可具有一般结构:NH2-VL-接头-VH-COOH或NH2-VH-接头-VL-COOH。合适的现有技术接头由重复的GGGGS氨基酸序列或其变体组成。例如,可使用具有氨基酸序列(GGGGS)4的接头,但也可使用其变体。在一些情况下,scFv的VH与VL之间还可以存在二硫键。在本发明的某些实施方案中,scFv可形成di-scFv,其指的是两个或两个以上单个scFv串联而形成抗体。在本发明的某些实施方案中,scFv可形成(scFv)2,其指的是两个或两个以上单个scFv并联而形成抗体。如本文中所使用的,术语“双抗体”意指,其VH和VL结构域在单个多肽链上表达,但使用太短的连接体以致不允许在相同链的两个结构域之间配对,从而迫使结构域与另一条链的互补结构域配对并且产生两个抗原结合部位(参
见,例如,Holliger P.等人,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993),和PoljakR.J.等人,Structure 2:1121-1123(1994))。如本文中所使用的,术语“单域抗体(single-domain antibody,sdAb)”具有本领域技术人员通常理解的含义,其是指由单个单体可变抗体结构域(例如单个重链可变区)所组成的抗体片段,其保持特异性结合全长抗体所结合的相同抗原的能力。如本文中所使用的,术语“双特异性抗体”是指对两种不同抗原(或表位)具有结合特异性的抗体。术语“多特异性抗体”是指对至少两种以上(例如三种或四种)不同抗原(或表位)具有结合特异性的抗体。双特异性抗体或多特异性抗体包含对不同抗原(或表位)具有结合特异性的多个抗原结合结构域,从而能够结合至少两个不同的结合位点和/或靶分子。双特异性抗体或多特异性抗体所包含的各个抗原结合结构域可以各自独立地选自全长抗体(例如IgG抗体)或其抗原结合片段(例如Fv片段、Fab片段、F(ab’)2片段或scFv)。在一些情况下,各个抗原结合结构域通过肽接头连接。上述各个抗体片段均保持了特异性结合全长抗体所结合的相同抗原的能力,和/或与全长抗体竞争对抗原的特异性结合。可使用本领域技术人员已知的常规技术(例如,重组DNA技术或酶促或化学断裂法)从给定的抗体(例如本发明提供的抗体)获得抗体的抗原结合片段(例如,上述抗体片段),并且以与用于完整抗体的方式相同的方式就特异性筛选抗体的抗原结合片段。如本文中所使用的,术语“人源化抗体”是指,经基因工程改造的非人源抗体,其氨基酸序列经修饰以提高与人源抗体的序列的同源性。通常而言,人源化抗体的全部或部分CDR区来自于非人源抗体(供体抗体),全部或部分的非CDR区(例如,可变区FR和/或恒定区)来自于人源免疫球蛋白(受体抗体)。在某些实施方案中,人源化抗体的CDR区来自于非人源抗体(供体抗体),全部或部分的非CDR区(例如,可变区FR和/或恒定区)来自于人源免疫球蛋白(受体抗体)。人源化抗体通常保留了供体抗体的预期性质,包括但不限于,抗原特异性、亲和性、反应性等。在本申请中,供体抗体可以是有预期性质(例如,抗原特异性、亲和性、反应性等)的鼠源抗体。为制备人源化抗体,可以使用本领域已知的方法将供体抗体的CDR区插入人源框架序列。在一些情形中,所述人源框架序列可以包含由相应非人类残基替换的氨基酸突变。此外,人源化抗体还可包含在初始供体抗体可变区(例如,轻链可变区或重链可变区)或人源框架序列中均未发现的残基,以进一步改进或优化该人源化抗体的性能。如本文中所使用的,术语“嵌合抗体(Chimeric antibody)”是指,这样的抗体,其轻链或/和重链的一部分源自一个抗体(其可以源自某一特定物种或属于某一特定抗体类或亚类),且轻链或/和重链的另一部分源自另一个抗体(其可以源自相同或不同的物种或属于相同或不同的抗体类或亚类),但无论如何,其仍保留对目标抗原的结合活性。在某些实施方案中,术语“嵌合抗体”可包括这样的抗体,其中抗体的重链可变区和轻链可变区来自第一抗体,而抗体的重链恒定区和轻链恒定区来自第二抗体。
本领域技术人员可以理解,式(I)所示化合物可以以各种药学上可接受的盐的形式存在。如果这些化合物具有碱性中心,则其可以形成酸加成盐;如果这些化合物具有酸性中心,则其可以形成碱加成盐;如果这些化合物既包含酸性中心(例如羧基)又包含碱性中心(例如氨基),则其还可以形成内盐。
本发明的化合物可以溶剂合物(如水合物)的形式存在,其中本发明的化合物包含作为所述化合物晶格的结构要素的极性溶剂,特别是例如水、甲醇或乙醇。极性溶剂特别是水的量可以化学计量比或非化学计量比存在。
根据其分子结构,本发明的化合物可以是手性的,因此可能存在各种对映异构体形式。因而这些化合物可以以消旋体形式或光学活性形式存在。本发明的化合物涵盖了各手性碳为R或S构型的异构体或其混合物、消旋体。本发明的化合物或其中间体可以通过本领域技术人员公知的化学或物理方法分离为对映异构体化合物,或者以此形式用于合成。在外消旋的胺的情况中,通过与光学活性的拆分试剂反应,从混合物制得非对映异构体。适当的拆分试剂的示例是光学活性的酸,例如R和S形式的酒石酸、二乙酰酒石酸、二苯甲酰酒石酸、扁桃酸、苹果酸、乳酸、适当的N-保护的氨基酸(例如N-苯甲酰脯氨酸或N-苯磺酰基脯氨酸)或各种光学活性的樟脑磺酸。借助光学活性的拆分试剂(例如固定在硅胶上的二硝基苯甲酰基苯基甘氨酸、三乙酸纤维素或其它碳水化合物的衍生物或手性衍生化的异丁烯酸酯聚合物),也可有利地进行色谱对映体拆分。用于此目的的适当的洗脱剂是含水或含醇的溶剂混合物,例如,己烷/异丙醇/乙腈。
可以根据已知的方法,例如通过萃取、过滤或柱层析来分离相应的稳定异构体。
术语“患者”是指包括哺乳动物在内的任何动物,优选小鼠、大鼠、其它啮齿类动物、兔、狗、猫、猪、牛、羊、马或灵长类动物,最优选人。
术语“治疗有效量”是指研究人员、兽医、医师或其它临床医师正在组织、系统、动物、个体或人中寻找的引起生物学或医学反应的活性化合物或药物的量,它包括以下一项或多项:(1)预防疾病:例如在易感染疾病、紊乱或病症但尚未经历或出现疾病病理或症状的个体中预防疾病、紊乱或病症。(2)抑制疾病:例如在正经历或出现疾病、紊乱或病症的病理或症状的个体中抑制疾病、紊乱或病症(即阻止病理和/或症状的进一步发展)。(3)缓解疾病:例如在正经历或出现疾病、紊乱或病症的病理或症状的个体中缓解疾病、紊乱或病症(即逆转病理和/或症状)。
图1:ADC-5在小鼠、大鼠、人、猴血浆中游离毒素释放示意图;
图2:ADC-10在小鼠、大鼠、人、猴血浆中游离毒素释放示意图;
图3:DS8201在小鼠、大鼠、人、猴血浆中游离毒素释放示意图;
图4:ADC-5、ADC-10、ADC-14、ADC-15在小鼠血浆中游离毒素释放示意图;
图5:ADC-5、ADC-10、ADC-14、ADC-15在人血浆中游离毒素释放示意图;
图6:NCI-N87荷瘤小鼠药效评价示意图;
图7:JIMT-1荷瘤小鼠药效评价示意图。
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明
上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
化合物的结构是通过核磁共振(NMR)或/和质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用Bruker AVANCE-400核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6)、氘代氯仿(CDCl3)、氘代甲醇(CD3OD),内标为四甲基硅烷(TMS)。
MS的测定用Agilent 1200/1290DAD-6110/6120Quadrupole MS液质联用仪(生产商:Agilent,MS型号:6110/6120Quadrupole MS)。waters ACQuity UPLC-QD/SQD(生产商:waters,MS型号:waters ACQuity Qda Detector/waters SQ Detector),THERMO Ultimate 3000-Q Exactive(生产商:THERMO,MS型号:THERMO Q Exactive)。
高效液相色谱法(HPLC)分析使用Agilent 1260II HPLC、Waters Acquity UPLC H-Class高效液相色谱仪。
手性HPLC分析测定使用Waters Acquity UPCC高效液相色谱仪。
高效液相制备使用Waters MS-triggered Prep-LC with SQD2 detector、Waters MS triggered Prep-LC with Acquity QDA detector、Waters MS-triggered Prep-LC with QDA detector和GILSON Prep LC with UV detector制备型色谱仪。
CombiFlash快速制备仪使用Combiflash Rf200(TELEDYNE ISCO)。
薄层层析硅胶板使用烟台黄海HSGF254或青岛GF254硅胶板,薄层色谱法(TLC)使用的硅胶板采用的规格是0.15mm~0.2mm,薄层层析分离纯化产品采用的规格是0.4mm~0.5mm。
硅胶柱色谱法一般使用烟台黄海硅胶200~300目硅胶为载体。
激酶平均抑制率及IC50值的测定用NovoStar酶标仪(德国BMG公司)。
本发明已知的起始原料可以采用或按照本领域已知的方法来合成,或可购买自ABCR GmbH&Co.KG,Acros Organics,Aldrich Chemical Company,韶远化学科技(Accela ChemBio Inc)、达瑞化学品等公司。
实施例中无特殊说明,反应均能够在氩气氛或氮气氛下进行。
氩气氛或氮气氛是指反应瓶连接一个约1L容积的氩气或氮气气球。
氢气氛是指反应瓶连接一个约1L容积的氢气气球。
加压氢化反应使用Parr 3916EKX型氢化仪和清蓝QL-500型氢气发生器或HC2-SS型氢化仪。
氢化反应通常抽真空,充入氢气,反复操作3次。
微波反应使用CEM Discover-S 908860型微波反应器。
实施例中无特殊说明,溶液是指水溶液。
实施例中无特殊说明,反应的温度为室温,为20℃~30℃。
实施例中的反应进程的监测采用薄层色谱法(TLC),反应所使用的展开剂,纯化化合物采用的柱层析的洗脱剂的体系和薄层色谱法的展开剂体系包括:A:二氯甲烷/甲醇体系,B:正
己烷/乙酸乙酯体系,溶剂的体积比根据化合物的极性不同而进行调节,任选加入少量的三乙胺和醋酸等碱性或酸性试剂进行调节。
ADC制备分析仪器:台式离心机采用Eppendoff,5810R,5430R,5418R。pH计采用METTLER TOLEDO,Seven Ecellence,电子称采用METTLER TOLEDO,ME1002E。恒温混匀仪采用eppendorf,5382KN644547。颠倒混匀器采用IKA,LoopSTER。Nanodrop分光光度计采用Thermo Scientific,2000-C。酶标仪采用BioTek,EPOCH2。LC-MS采用6224TOF,6530LC/Q-TOF,HPLC采用Agilent Technologies,1260Infinity II。
实施例1
(R)-N-((1S,9S)-9-乙基-5-氟-4,9-二羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-9-乙基-5-氟-4,9-二羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步N-(3-溴-5-氟-4-甲氧基苯基)乙酰胺1b
将3-溴-5-氟-4-甲氧基苯胺1a(20g,90.8mmol)溶于二氯甲烷(40mL),降温至0℃后,缓慢加入乙酰氯(14.3g,181.6mmol)和三乙胺(27.6mg,272.4mmol)。反应液置于0℃下搅拌0.5小时。反应结束后,反应液中加入水(30mL),用二氯甲烷(50mL×3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1b(20g,产率:84%)。
MS m/z(ESI):262.1(M+H)+。
第二步(E)-4-(5-乙酰氨基-3-氟-2-甲氧基苯基)丁-3-烯酸1c
将化合物1b(20g,76.3mmol)溶于二氧六环(30mL)和水(10mL),向其中加入丁-3-烯酸(7.23g,83.9mmol)、醋酸钯(1.71g,7.6mmol)、三(邻甲基苯基)磷(4.64g,15.2mmol)和N,N-二异丙基乙胺(30mg,229mmol)。反应液置于100℃下搅拌16小时。反应结束后,反应液过滤,用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1c(20g,产率:87%)。
MS m/z(ESI):268.1(M+H)+。
第三步4-(5-乙酰氨基-3-氟-2-甲氧基苯基)丁酸1d
将化合物1c(20g,74.8mmol)溶于四氢呋喃(50mL),加入10%Pd/C(0.8g,7.4mmol)。反应液置于氢气气氛下室温搅拌2小时。反应结束后,反应液过滤,滤液减压浓缩得到粗产品,用硅胶柱色谱法以洗脱剂体系A纯化所得残余物,得到标题化合物1d(20g,产率:99%)。
MS m/z(ESI):270.1(M+1)+。
第四步N-(3-氟-4-甲氧基-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺1e
将化合物1d(20g,74.4mmol)溶于三氟乙酸(60mL),降温至0℃后,缓慢加入三氟乙酸酐(31.24g,148.8mmol)。反应液置于室温下搅拌7小时。反应结束后,反应液缓慢倒入水(50mL)中,用乙酸乙酯(50mL×3)萃取,合并有机相,用饱和碳酸氢钠水溶液洗涤至中性,再用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1e(9.2g,产率:46%)。
MS m/z(ESI):252.1(M+1)+。
第五步(Z)-N-(3-氟-7-(羟基亚氨基)-4-甲氧基-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺1f
将叔丁醇钾(9.83g,87.5mmol)溶于四氢呋喃(40mL)和叔丁醇(10mL),降温至0℃,然后将N-(3-氟-4-甲氧基-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺1e(10g,39.8mmol)溶于四氢呋喃(10mL)并将其缓慢加入反应液中,十分钟后再加入亚硝酸异戊酯(7.46g,63.6mmol)。反应液置于0℃下搅拌1小时。反应结束后,反应液加入饱和氯化铵溶液淬灭,用乙酸乙酯(50mL×3)萃取,合并有机相,再用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1f(6g,产率:51%)。
MS m/z(ESI):281.1(M+1)+。
第六步N-(7-氨基-3-氟-4-甲氧基-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺1g
将(Z)-N-(3-氟-7-(羟基亚氨基)-4-甲氧基-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺1f(6g,21.4mmol)溶于二氧六环(60mL)和2N盐酸溶液(20mL),加入10%Pd/C(1.13g,10.7mmol)。反应液置于氢气气氛下室温搅拌5小时。反应结束后,反应液过滤,浓缩,得到粗产品1g(5g),产物不经纯化直接用于下一步。
MS m/z(ESI):267.1(M+1)+。
第七步(9H-芴-9-基)甲基(8-乙酰氨基-6-氟-5-甲氧基-1-氧代-1,2,3,4-四氢萘-2-基)氨基甲酸酯1h
将上一步得到的化合物1g(5g,18.8mmol)溶解在二氧六环(50mL)中,用碳酸氢钠调至pH=7~8后,缓慢加入9-芴甲基-N-丁二酰亚胺基碳酸酯(6.36g,18.8mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液缓慢倒入水(40mL)中,用乙酸乙酯(40mL×3)萃取,合并有机相,用饱和食盐水洗,干燥,浓缩。
用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1h(5.3g,产率:54%)。
MS m/z(ESI):489.2(M+1)+。
第八步(9H-芴-9-基)甲基(8-氨基-6-氟-5-甲氧基-1-氧代-1,2,3,4-四氢萘-2-基)氨基甲酸酯1i
将化合物1h(5g,10.25mmol)溶于二氧六环(50mL)和12N盐酸(10mL)。反应液置于60℃下搅拌2小时。反应结束后,反应液缓慢倒入水(50mL)中,用乙酸乙酯(40mL×3)萃取,合
并有机相,用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1i(3.75g,产率:78%)。
MS m/z(ESI):447.2(M+1)+。
第九步(9H-芴-9-基)甲基((9S)-9-乙基-5-氟-9-羟基-4-甲氧基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯1k
将化合物1i(3g,6.6mmol)溶于甲苯(30mL),加入(S)-4-乙基-4-羟基-7,8-二氢-1H-吡喃吲哚嗪-3,6,10(4H)-三酮1j(2.61g,9.9mmol)和对甲苯磺酸(2.52g,13.2mmol)。反应液置于110℃下搅拌5小时。反应结束后,用乙酸乙酯(30mL×3)萃取,合并有机相,用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1k(1.8g,产率:36%)。
MS m/z(ESI):674.2(M+1)+。
第十步(9H-芴-9-基)甲基((9S)-9-乙基-5-氟-4,9-二羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯1l
将化合物1k(1.8g,2.7mmol)溶于40%的氢溴酸(40mL)。反应液置于100℃下搅拌2小时。反应结束后,反应液用乙酸乙酯(50mL×3)萃取,合并有机相,用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1l(1.08g,产率:60%)。
MS m/z(ESI):660.2(M+1)+.
第十一步(9S)-1-氨基-9-乙基-5-氟-4,9-二羟基-1,2,3,9,12,15-六氢-10H,13H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-10,13-二酮1m
将化合物1l(500mg,0.7mmol)溶于N,N-二甲基甲酰胺(5mL),加入二乙胺(166mg,2.3mmol)。反应液置于室温下搅拌1小时。反应结束后,将反应液中的二乙胺用油泵旋干,旋干得到的粗品1m,用乙酸乙酯打浆得到的固体直接投入下一步反应。
MS m/z(ESI):438.1(M+1)+。
第十二步(1S,9S)-9-乙基-5-氟-9-羟基-1-((R)-3-羟基丁酰氨基)-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-4-基-(R)-3-羟基丁酸酯1n
将化合物1m(100mg,0.2mmol)溶于N,N-二甲基甲酰胺(3mL),加入(R)-3-羟基丁酸(36mg,0.34mmol)、2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(174mg,0.46mmol)和N,N-二异丙基乙胺(88mg,0.68mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液用乙酸乙酯(50mL×3)萃取,合并有机相,用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物1n(90mg,产率:64%)。
MS m/z(ESI):610.2(M+1)+.
第十三步
(R)-N-((1S,9S)-9-乙基-5-氟-4,9-二羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-9-乙基-5-氟-4,9-二羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
将化合物1n(90mg,0.15mmol)溶于甲醇(5mL)中,室温下加入1M氢氧化锂的水溶液(2mL)。反应在室温搅拌15分钟。反应结束后,旋走甲醇,剩余水相冻干得到粗品,粗品采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge C18 150*19mm,5μm;流动相1:水(含0.1%TFA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相23%-33%,流速:20mL/min)纯化得到化合物1-1(35mg,产率:30%)和化合物1-2(28mg,产率:24%)。
单一构型化合物1-1(较短保留时间):
MS m/z(ESI):524.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ10.42(s,1H),8.39(d,J=8.8Hz,1H),7.84(d,J=11.6Hz,1H),7.26(s,1H),6.50(s,1H),5.57-5.49(m,1H),5.41(s,2H),5.27-5.11(m,2H),4.04(dd,J=13.2,6.0Hz,1H),3.18-3.04(m,2H),2.36-2.17(m,2H),2.15-1.96(m,2H),1.92-1.77(m,2H),1.08(d,J=6.4Hz,3H),0.93-0.81(m,3H)。
单一构型化合物1-2(较长保留时间):
MS m/z(ESI):524.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ10.42(s,1H),8.42(d,J=8.8Hz,1H),7.84(d,J=11.6Hz,1H),7.26(s,1H),5.59-5.51(m,1H),5.42(s,2H),5.29-5.14(m,2H),4.04(dd,J=13.2,6.4Hz,1H),3.17(dd,J=12.0,4.8Hz,1H),3.10-2.92(m,1H),2.28(dd,J=13.6,7.2Hz,1H),2.18(dd,J=13.6,5.6Hz,1H),2.13-1.95(m,2H),1.93-1.78(m,2H),1.08(d,J=6.0Hz,3H),0.91-0.82(m,3H).
实施例2
(R)-N-((1S,9S)-9-乙基-4,9-二羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-9-乙基-4,9-二羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
采用实施例1的合成路线,将第一步原料替换为3-溴-4-甲氧基苯胺2a(25g,0.12mol),采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge C18 150*19mm,5μm;流动相1:水(0.1%TFA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相23%-33%,流速:20mL/min)纯化,得到标题产物2-1(19mg,产率:28%),2-2(30mg,产率:44%)。
单一构型化合物2-1(较短保留时间):
MS m/z(ESI):506(M+1)+。
1H NMR(400MHz,DMSO-d6)δ10.21(s,1H),8.39-8.37(m,1H),7.92-7.90(m,1H),7.51-7.50(m,1H),7.24(s,1H),6.49(s,1H),5.57-5.48(m,1H),5.41(s,2H),5.27-5.11(m,2H),4.65(s,1H),4.09-3.98(m,1H),3.09-2.96(m,2H),2.25-2.23(m,2H),2.05-2.00(m,2H),1.95-1.77(m,2H),1.23(s,2H),1.08-1.07(m,3H),0.86-0.85(m,3H)。
单一构型化合物2-2(较长保留时间):
MS m/z(ESI):506(M+1)+。
1H NMR(400MHz,DMSO-d6)δ10.22(s,1H),8.42-8.40(d,J=8.4Hz,1H),7.93-7.90(d,J
=8.4Hz,1H),7.51-7.50(m,1H),7.25(s,1H),5.58-5.46(m,1H),5.42(s,2H),5.21-5.20(m,2H),4.04-4.01(m,1H),2.96-2.94(m,2H),2.28(s,2H),2.10-1.97(m,2H),1.86(s,2H),1.23(s,2H),1.08-1.06(m,3H),0.87-0.85(m,3H)。
实施例3
(R)-N-((1S,9S)-4-溴-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-4-溴-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步4-溴-3-氟-5-碘苯胺3b
将3-氟-5-碘苯胺3a(50g,210.95mmol)溶于DMF(250mL)中,冰浴条件下缓慢加入NBS(41.30g,232.04mmol)。该反应在室温下搅拌16小时。反应结束后,加入水,体系利用二
氯甲烷萃取,有机相利用饱和食盐水洗涤,收集有机相,无水硫酸钠干燥,旋干溶剂得到粗产品3b(66g)。
MS m/z(ESI):315.9,317.9(M+1)+。
1H NMR(400MHz,DMSO-d6)δ7.01(d,1H),6.47(dd,1H),5.74(s,2H)。
第二步N-(4-溴-3-氟-5-碘苯基)乙酰胺3c
将化合物3b(66g,208.92mmol)溶于二氯甲烷(660mL),加入三乙胺(42.28g,417.84mmol)。将体系降至0℃后,缓慢滴加乙酰氯(19.68g,250.70mmol)。滴加完毕后,将体系在室温下搅拌4小时。反应结束后,旋干溶剂得到粗产品,粗产品重新溶于乙酸乙酯后,体系利用稀盐酸将pH调至2~3,随后体系利用乙酸乙酯萃取,饱和食盐水洗涤,收集有机相,无水硫酸钠干燥。旋干溶剂得到粗产品,粗产品利用二氯甲烷/甲醇(10∶1)的混合溶剂打浆得到标题化合物3c(60g,产率:80%)。
MS m/z(ESI):357.9,359.9(M+1)+。
1H NMR(400MHz,DMSO-d6)δ10.27(s,1H),7.96(s,1H),7.66(dd,1H),2.06(s,3H)。
第三步(E)-4-(5-乙酰氨基-2-溴-3-氟苯基)丁-3-烯酸3d
将化合物3c(20g,55.87mmol)溶于二氧六环(200mL)和水(40mL)的混合溶剂中,加入丁-3-烯酸(4.81g,55.87mmol),DIPEA(14.45g,111.74mmol),醋酸钯(630mg,2.79mmol)和三(邻甲基苯基)磷(1.7g,5.59mmol)。氮气保护下,该反应在100℃下搅拌16小时。反应结束后,加入水和二氯甲烷,体系利用饱和碳酸氢钠溶液洗涤3~5遍,收集水相。水相利用盐酸将pH调至2~3并利用乙酸乙酯萃取5~7遍,收集有机相,无水硫酸钠干燥,旋干溶剂得到粗产品化合物3d(17g)。
MS m/z(ESI):316.0,317.9(M+1)+。
第四步4-(5-乙酰氨基-2-溴-3-氟苯基)丁酸3e
将化合物3d(8g,25.3mmol)溶于甲醇(80mL),加入铂碳催化剂(800mg)。在氢气环境下,该反应在室温下搅拌两小时。反应结束后,过滤,收集滤液,旋干溶剂得到粗品3e(8g)。粗品不经纯化直接用于下一步反应。
MS m/z(ESI):318.0,320.0(M+1)+。
1H NMR(400MHz,DMSO-d6)δ12.14(s,1H),10.24(s,1H),7.63(dd,1H),7.25(s,1H),2.75-2.67(m,2H),2.29(t,2H),2.05(s,3H),1.79(dd,2H)。
第五步N-(4-溴-3-氟-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺3f
将化合物3e(8g,25.1mmol)溶于三氟乙酸(80mL)中,冰浴条件下缓慢加入三氟乙酸酐(15.82g,75.3mmol)。该反应在0℃搅拌4小时。反应结束后,在冰浴下加入水,体系的pH利用15%氢氧化钠溶液调至9~10,随后利用二氯甲烷萃取,有机相利用饱和食盐水洗涤,收集有机相,无水硫酸钠干燥,旋干溶剂得到化合物3f(4.8g,产率:53%)。
MS m/z(ESI):329.0,331.0(M+1)+。
第六步(Z)-N-(4-溴-3-氟-7-(羟基亚氨基)-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺3g
将叔丁醇钾(1.62g,14.4mmol)溶于四氢呋喃(80mL)和叔丁醇(20mL)的混合溶剂,冰浴下
缓慢加入化合物3f(2.15g,7.2mmol)的四氢呋喃溶液(20mL)。反应在0℃下搅拌10分钟后,加入亚硝酸异戊酯(1.27g,10.8mmol),反应继续在0℃下搅拌50分钟。反应结束后,加入稀盐酸将体系的pH调至4~5,利用乙酸乙酯萃取,有机相利用饱和食盐水洗涤,收集有机相,无水硫酸钠干燥,旋干溶剂得到粗产品,粗产品利用甲基叔丁基醚打浆得到标题化合物3g(1.1g,产率:46%)。
MS m/z(ESI):329.0,331.0(M+1)+。
1H NMR(400MHz,CD3OD)δ8.52(d,1H),3.21(dd,2H),3.07(dd,2H),2.24(s,3H)。
第七步N-(7-氨基-4-溴-3-氟-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺3h
将化合物3g(500mg,1.52mmol)溶于二氧六环(10mL),加入1mL 1M盐酸和铂碳催化剂(100mg)。在氢气的环境下,该反应在室温下搅拌4小时。反应结束后,过滤,收集滤液,浓缩,得到粗品3h(500mg)直接用于下一步反应。
MS m/z(ESI):315.1,317.1(M+1)+。
第八步(9H-芴-9-基)甲基(8-乙酰氨基-5-溴-6-氟-1-氧代-1,2,3,4-四氢萘-2-基)氨基甲酸酯3i
将化合物3h(500mg)溶解在二氧六环(10mL)中,利用饱和碳酸钠溶液将第七步的滤液的pH调至8~9,随后加入芴甲氧羰酰氯(432mg,1.67mmol)。该反应在室温下搅拌1小时。反应结束后,体系利用乙酸乙酯萃取,有机相利用饱和食盐水洗涤,收集有机相,无水硫酸钠干燥,旋干溶剂得到粗产品。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物3i(300mg,产率:37%)。
MS m/z(ESI):537.0,539.0(M+1)+。
第九步(9H-芴-9-基)甲基(8-氨基-5-溴-6-氟-1-氧代-1,2,3,4-四氢萘-2-基)氨基甲酸酯3j
将化合物3i(700mg,1.30mmol)溶于甲醇(10mL)中,加入浓盐酸(12mol/L,2mL)。该反应在60℃下搅拌1小时。反应结束后,用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物3j(500mg,产率:77%)。
第十步((9H-芴-9-基)甲基((9S)-4-溴-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯3k
将化合物3j(200mg,0.40mmol)溶于甲苯(5mL)中,加入(S)-4-乙基-4-羟基-7,8-二氢-1H-吡喃[3,4-f]中氮茚-3,6,10(4H)-三酮1j(117mg,0.44mmol)和对甲苯磺酸一水合物(77mg,0.40mmol)。该反应在120℃下搅拌2小时。反应结束后,旋干溶剂得到粗产品,用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物3k(250mg,产率:86%)。
MS m/z(ESI):722.0,724.0(M+1)+。
1H NMR(400MHz,CDCl3)δ8.19-7.31(m,9H),5.68(dd,1H),5.33-5.18(m,2H),4.66(s,2H),4.34(d,1H),4.21-4.04(m,2H),3.26(s,1H),3.00-2.94(m,1H),2.04(s,2H),1.81(s,2H),1.70-1.50(m,2H),1.27(dd,3H)。
第十一步(9S)-1-氨基-4-溴-9-乙基-5-氟-9-羟基-1,2,3,9,12,15-六氢-10H,13H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-10,13-二酮3l
将化合物3k(200mg,0.28mmol)溶于DMF(1mL)中,加入二乙胺(0.1mL)。该反应在室温
下搅拌30分钟。反应结束后,用硅胶柱色谱法以洗脱剂体系A纯化所得残余物,得到标题化合物3l(100mg,产率:72%)。
MS m/z(ESI):500.0,502.1(M+1)+。
第十二步
(R)-N-((1S,9S)-4-溴-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-4-溴-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
将化合物3l(100mg,0.20mmoL)溶于DMF(2mL)中,加入(R)-3-羟基丁酸(25mg,0.24mmol),2-(7-偶氮苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(114mg,0.30mmol)和N,N-二异丙基乙胺(52mg,0.40mmol)。该反应在室温下搅拌1小时,反应结束后,采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C 1821.2*250mm,10μm;流动相1:水(0.1%FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相38%-48%,流速:25mL/min)纯化,得到化合物3-1(1.62mg,产率:6%)和化合物3-2(1.32mg,产率:7.4%)。
单一构型化合物3-1(较短保留时间):
MS m/z(ESI):586.0,588.0(M+1)+。
1H NMR(400MHz,CD3OD)δ8.10(d,J=10.0Hz,1H),7.90(s,1H),5.96-5.88(m,1H),5.83(d,J=16.4Hz,1H),5.71-5.48(m,4H),4.52-4.46(m,1H),2.71-2.65(m,2H),2.59-2.52(m,2H),2.23-2.18(m,3H),1.49(d,J=6.4Hz,3H),1.25(t,J=7.2Hz,3H)。
单一构型化合物3-2(较长保留时间):
MS m/z(ESI):586.0,588.0(M+1)+。
1H NMR(400MHz,CD3OD)δ7.79(d,J=9.6Hz,1H),7.59(s,1H),5.67-5.59(m,1H),5.52(d,J=16.4Hz,1H),5.41-5.33(m,2H),5.32-5.23(m,2H),4.24-4.18(m,1H),2.34(d,J=6.8Hz,2H),2.28-2.21(m,2H),1.93-1.86(m,3H),1.17(d,J=6.4Hz,3H),0.94(t,J=7.2Hz,3H)。
实施例4
(R)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
采用实施例3的合成路线,以3-氟-5-碘苯胺(25g,105.5mmol)为起始原料,采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2*250mm,10μm;流动相1:水(0.1%FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相38%-48%,流速:25mL/min)纯化,得到标题产物4-1(2.5mg,产率:12%),4-2(3.1mg,产率:15%)。
单一构型化合物4-1(较短保留时间):
MS m/z(ESI):508.1(M+1)+。
1H NMR(400MHz,CD3OD)δ7.65(d,J=10.2Hz,2H),7.37(d,J=8.8Hz,1H),5.66(s,1H),5.56(d,J=16.4Hz,1H),5.40-5.20(m,4H),4.28-4.21(m,1H),2.47-2.39(m,2H),2.27(s,2H),1.98-1.90(m,2H),1.24(d,J=6.4Hz,4H),0.99(t,J=7.2Hz,3H).
单一构型化合物4-2(较长保留时间):
MS m/z(ESI):508.1(M+1)+。
1H NMR(400MHz,CD3OD)δ7.57(d,J=6.2Hz,2H),7.30(d,J=8.0Hz,1H),5.60(d,J=6.0Hz,1H),5.48(d,J=16.4Hz,1H),5.36-5.15(m,5H),4.22-4.15(m,1H),2.36-2.30(m,2H),2.18(t,J=6.4Hz,3H),1.90-1.83(m,2H),1.15(d,J=6.4Hz,3H),0.91(t,J=7.2Hz,3H)。
实施例5
(R)-N-((1S,9S)-4-(二氟甲氧基)-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-4-(二氟甲氧基)-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步(9H-芴-9-基)甲基((9S)-4-(二氟甲氧基)-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯5a
将化合物1l(200mg,0.30mmol)溶于DMF(5mL)中,冰浴下加入碳酸铯(198mg,0.61mmol)和(溴二氟甲基)膦酸二乙酯(121mg,0.45mmol)。该反应在0℃下搅拌1小时。反应结束后,加入水,体系利用乙酸乙酯萃取,有机相利用饱和食盐水洗涤,收集有机相,无水硫酸钠干燥,旋干溶剂得到粗产品。粗产品通过柱色谱分离提纯得到标题化合物5a(200mg,产率:93%)。
MS m/z(ESI):711.2(M+1)+。
第二步(9S)-1-氨基-4-(二氟甲氧基)-9-乙基-5-氟-9-羟基-1,2,3,9,12,15-六氢-10H,13H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-10,13-二酮5b
将化合物5a(140mg,0.20mmol)溶于N,N-二甲基甲酰胺(1mL),加入二乙胺(0.1mL)。该反应在室温下搅拌1小时。反应结束后,反应液利用油泵真空下旋干溶剂得到标题化合物粗品5b(90mg)。粗产品不经纯化直接用于下一步反应。
MS m/z(ESI):488.1(M+1)+.
第三步
(R)-N-((1S,9S)-4-(二氟甲氧基)-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-4-(二氟甲氧基)-9-乙基-5-氟-9-羟基-10,13-二氧代-2,3,9,10,13,15-六氢
-1H,12H-苯并[de]吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
将粗品5b(90mg,0.18mmol)溶于N,N-二甲基甲酰胺(1mL)中,加入(R)-3-羟基丁酸(23mg,0.22mmol),2-(7-偶氮苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(105mg,0.28mmol)和N,N-二异丙基乙胺(48mg,0.37mmol)。该反应在室温下搅拌1小时。反应结束后,旋干溶剂得到粗产品,采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:Xtimate C18 250*30mm,10μm;流动相1:水(0.1%FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相37%-47%,流速:50mL/min)纯化,得到标题化合物5-1(8.6mg,产率:16%)和标题化合物5-2(7.8mg,产率:14.7%)。
单一构型化合物5-1(较短保留时间):
MS m/z(ESI):574.1(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.49(d,J=8.4Hz,2H),8.06(d,J=11.2Hz,1H),7.34(s,1H),7.31(t,J=72.8Hz,1H)6.54(s,1H),5.63-5.54(m,1H),5.43(s,2H),5.32-5.16(m,2H),4.68(d,J=4.4Hz,1H),4.05(s,1H),3.23(d,J=5.6Hz,1H),2.36-2.19(m,2H),2.19-2.05(m,2H),1.93-1.78(m,2H),1.10(d,J=6.4Hz,3H),0.88(t,J=7.2Hz,3H)。
单一构型化合物5-2(较长保留时间):
MS m/z(ESI):574.1(M+1)+.
1H NMR(400MHz,DMSO-d6)δ8.52(d,J=8.8Hz,2H),8.10-8.04(m,1H),7.35(s,1H),7.32(t,J=72.8Hz,1H)6.55(s,1H),5.66-5.58(m,1H),5.43(d,J=16.8Hz,2H),5.26(t,J=12.0Hz,2H),4.66(d,J=4.4Hz,1H),4.14-4.01(m,1H),3.25(s,1H),2.34-2.20(m,2H),2.16-2.07(m,2H),1.92-1.80(m,2H),1.10(d,J=6.4Hz,3H),0.89(t,J=7.2Hz,3H).
实施例6
(R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步1-溴-3-氟-2-甲基-5-硝基苯6b
将2-氟-1-甲基-4-硝基苯6a(20.0g,0.13mol)溶于正庚烷(50mL)中,加入浓硫酸(50mL),加热至60℃,该温度下分批次加入N-溴代丁二酰亚胺(35.6g,0.20mol),保持60℃反应2小时。将冷却至室温的反应液滴加入冰水中,甲苯萃取,合并有机相,依次经亚硫酸钠溶液,水,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩得到标题化合物6b(30.0g),产物不经纯化直接用于下一步反应。
MS m/z(ESI):233.9(M+1)+。
1H NMR(400MHz,CDCl3)δ8.29-8.23(m,1H),7.88(dd,1H),2.44(d,3H)。
第二步3-溴-5-氟-4-甲基苯胺6c
将化合物6b(30.0g,0.13mol)溶于甲醇(200mL)中,加入铂碳(3.0g,含量5%),氢气置换后在氢气气氛下室温反应16小时。反应结束后,将反应液过滤,滤液浓缩,得到标题化合物6c(20.0g,黄色油状物),产物不经纯化直接用于下一步反应。
MS m/z(ESI):204.0(M+1)+。
第三步N-(3-溴-5-氟-4-甲基苯基)乙酰胺6d
冰浴条件下,将3-溴-5-氟-4-甲基苯胺6c(20.0g,0.10mol)溶于二氯甲烷(100mL)中,加入三乙胺(20.2g,0.20mol)和乙酰氯(11.8g,0.15mol),保持冰浴条件反应3小时。反应完毕
后,向反应液加入水淬灭反应,乙酸乙酯萃取,合并有机相,经无水硫酸钠干燥,减压浓缩得到粗品,粗品经二氯甲烷和石油醚混合溶剂(V/V=10∶1)打浆得到标题化合物6d(10.0g,收率:32%)。
MS m/z(ESI):246.0(M+1)+。
第四步(E)-5-(5-乙酰氨基-3-氟-2-甲基苯基)戊-4-烯酸6e
将N-(3-溴-5-氟-4-甲基苯基)乙酰胺6d(10.0g,40.8mmol)溶于二氧六环(40mL)和水(10mL),向其中加入戊-4-烯酸(6.1g,61.20mmol),醋酸钯(0.7g,4.10mmol),三(邻甲基苯基)磷(2.5g,8.20mmol)和N,N-二异丙基乙胺(15.9g,122.01mmol)。反应液置于100℃下搅拌反应16小时。反应结束后,加入水和二氯甲烷,体系利用饱和碳酸氢钠溶液洗涤3次,收集水相。水相利用盐酸将pH调至2~3并利用乙酸乙酯萃取3次,收集有机相,无水硫酸钠干燥,旋干溶剂得到标题化合物6e(10g)。产物不经纯化直接进行下一步反应。
MS m/z(ESI):266.1(M+1)+。
后续的合成路线采用实施例3的合成路线,将实施例3的中间体3d替换为中间体6e(10g,0.04mol)。终产物采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge C18 150*19mm,5μm;流动相1:水(0.1%TFA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相37%-47%,流速:20mL/min)纯化,得到标题产物6-1(12.6mg,产率:14%),6-2(17.2mg,产率:19%)。
单一构型化合物6-1(较短保留时间):
MS m/z(ESI):536(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.60-8.55(m,1H),7.73-7.72(m,1H),7.28(s,1H),6.51(s,1H),5.54-5.53(m,1H),5.42(s,2H),5.32-5.26(m,1H),5.24-5.22(m,1H),4.65(s,1H),4.01(s,1H),3.22-3.18(m,2H),2.42-2.40(m,3H),2.28-2.24(m,4H),2.10-1.67(m,6H),1.06(d,J=6.0Hz,3H),0.85-0.82(m,3H)。
单一构型化合物6-2(较长保留时间):
MS m/z(ESI):536(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.67-8.66(m,1H),7.73-7.71(m,1H),7.28(s,1H),6.49(s,1H),5.53-5.52(m,1H),5.41-5.40(m,3H),5.35-5.33(m,1H),4.67-4.65(m,1H),4.03-3.96(m,1H),3.22-3.18(m,2H),2.42(s,4H),2.40-2.15(m,4H),2.11-1.52(m,6H),1.08-1.07(m,3H),0.87-0.85(m,3H)。
实施例7
(R)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步(9H-芴-9-基)甲基((9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯7a
将化合物3k(140mg,0.20mmol)和乙烯三氟硼酸钾(54mg,0.40mmol)溶于二氧六环(16mL)和水(4mL)中,加入磷酸钾(128mg,0.60mmol)和甲磺酸(2-二环己基膦基-2′,6′-二异丙氧基-1,1′-联苯基)(2-氨基-1,1′-联苯-2-基)钯(II)(34mg,0.04mmol),氮气置换。反应液在100℃下搅拌5小时。反应结束后,反应液中加入水(20mL),用二氯甲烷(15mL×3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物7a(80mg,产率:60%)。
MS m/z(ESI):670.2(M+1)+。
第二步(S)-1-氨基-9-乙基-5-氟-9-羟基-4-乙烯基-1,2,3,9,12,15-六氢-10H,13H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-10,13-二酮的制备
将化合物7a(80mg,0.12mmol)溶于N,N-二甲基甲酰胺(10mL)中,加入二乙胺(1mL)反应液在室温下搅拌1小时。反应结束后,真空浓缩,用乙酸乙酯进行打浆,过滤得到标题化合物7b(30mg,产率率:51%)。
MS m/z(ESI):448.2(M+1)+。
第三步
(R)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
将化合物7b(30mg,0.07mmol)和(R)-3-羟基丁酸(8mg,0.08mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入N,N-二异丙基乙胺(18.2mg,0.14mmol)和2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(39.9mg,0.11mmol)。反应液在25℃下搅拌5小时。反应结束后,将反应液浓缩,采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge C18 150*19mm,5μm;流动相1:水(含0.1%的甲酸);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相43%-53%,流速:20mL/min)纯化,得到标题化合物7-1(176mg,产率:10%)和标题化合物7-2(2.31mg,产率:10%)。
单一构型化合物7-1(较短保留时间):
MS m/z(ESI):534.2(M+1)+.
1H NMR(400MHz,DMSO-d6)δ8.51(d,J=8.8Hz,1H),8.48(s,1H),7.84(d,J=12.0Hz,1H),7.32(s,1H),6.97(dd,J=18.0,12.0Hz,1H),6.58(s,1H),5.91-5.77(m,2H),5.61-5.50(m,1H),5.43(s,2H),5.22(q,J=19.2Hz,2H),4.72(s,1H),4.04(dd,J=12.4,6.4Hz,1H),3.27(d,J=4.8Hz,1H),2.30-2.20(m,2H),2.11(t,J=9.2Hz,2H),1.90-1.80(m,2H),1.09(d,J=6.4Hz,3H),0.87(t,J=7.2Hz,3H)。
单一构型化合物7-2(较长保留时间):
MS m/z(ESI):534.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.55(d,J=8.8Hz,1H),8.47(s,1H),7.85(d,J=12.0Hz,1H),7.32(s,1H),6.97(dd,J=18.0,12.0Hz,1H),6.62(s,1H),5.82(dd,J=24.8,14.0Hz,2H),5.57(dt,J=8.8,4.4Hz,1H),5.43(d,J=1.2Hz,2H),5.24(s,2H),4.72(s,1H),4.03(dt,J=12.8,6.4Hz,1H),3.27(d,J=5.4Hz,1H),2.23(ddd,J=18.4,13.2,6.4Hz,2H),2.08(dd,J=26.4,10.0Hz,2H),1.87(tt,J=14.0,7.2Hz,2H),1.08(d,J=6.0Hz,3H),0.87(s,3H)。
实施例8
(R)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-(2,2,2-三氟乙氧基)-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-(2,2,2-三氟乙氧基)-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步(9H-芴-9-基)甲基((9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-(2,2,2-三氟乙氧基)-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯8a
将化合物1l(200mg,0.30mmol)溶于N,N-二甲基甲酰胺(3mL),缓慢加入2,2,2-三氟乙基三氟甲磺酸酯(141mg,0.60mmol)和碳酸铯(296mg,0.90mmol)。反应液置于室温下搅拌10分钟。反应结束后,加入水(10mL)稀释,乙酸乙酯(10mL×3)萃取,合并有机相,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化所得残余物,得到标题化合物8a(180mg,产率:75%)。
MS m/z(ESI):742.2(M+H)+。
第二步(9S)-1-氨基-9-乙基-5-氟-9-羟基-4-(2,2,2-三氟乙氧基)-1,2,3,9,12,15-六氢-10H,13H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-10,13-二酮8b
将化合物8a(180mg,0.24mmol)溶于N,N-二甲基甲酰胺(3mL),向其中加入二乙胺(35mg,0.48mmol)。反应液室温下反应1小时。反应结束后,反应液减压浓缩,得到粗产物8b(100mg),产物不经纯化直接用于下一步反应。
MS m/z(ESI):520.1(M+H)+。
第三步
(R)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-(2,2,2-三氟乙氧基)-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-(2,2,2-三氟乙氧基)-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
将化合物8b(50mg,0.09mmol)溶于N,N-二甲基甲酰胺(2mL),加入(R)-3-羟基丁酸(15mg,0.14mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(73mg,0.19mmol)和N,N-二异丙基乙胺(37mg,0.28mmol)。室温下搅拌反应1小时。反应结束后,减压浓缩得到粗产品,采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:Xtimate C18 150*19mm,10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相38%-48%,流速:50mL/min)得到标题化合物8-1(2.5mg,产率:4.6%),标题化合物8-2(3.5mg,产率:6.4%)。
单一构型化合物8-1(较短保留时间):
MS m/z(ESI):606.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.43(d,J=8.8Hz,1H),7.98(d,J=12.0Hz,1H),7.31(s,1H),6.52(s,1H),5.59-5.53(m,1H),5.42(s,2H),5.23(s,2H),4.93-4.85(m,2H),4.66(d,J=4.8Hz,1H),4.08-4.03(m,1H),3.21(d,J=6.0Hz,2H),2.34-2.27(m,1H),2.22(d,J=8.4Hz,1H),2.10(dd,J=12.4,5.6Hz,2H),1.89-1.81(m,2H),1.10(d,J=6.4Hz,3H),0.90-0.84(m,3H)。
单一构型化合物8-2(较长保留时间):
MS m/z(ESI):606.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.45(d,J=8.8Hz,1H),7.98(d,J=12.4Hz,1H),7.32(s,1H),6.52(s,1H),5.63-5.55(m,1H),5.43(s,2H),5.33-5.18(m,2H),4.88(dd,J=18.0,9.2Hz,2H),4.65(d,J=4.4Hz,1H),4.09-4.00(m,1H),3.24-3.12(m,2H),2.28(dd,J=13.6,7.6Hz,1H),2.19(dd,J=13.6,5.6Hz,1H),2.09(dd,J=16.8,4.8Hz,2H),1.93-1.78(m,2H),1.09(d,J=6.4Hz,3H),0.94-0.78(m,3H)。
实施例9
第一步8-氨基-5-甲氧基-3,4-二氢萘-1(2H)-酮9a
将化合物2e(500mg,2.14mmol)溶于甲醇和浓盐酸的混合溶剂(36mL,V/V=5∶1)中。反应液在60℃下反应2小时。反应结束后,将反应液直接浓缩得到标题化合物9a(400mg,产率:88%)。
MS m/z(ESI):192.1(M+1)+。
第二步(S)-9-乙基-9-羟基-4-甲氧基-1,2,3,9,12,15-六氢-10H,13H-苯并吡喃并[3′,4′,6,7]中氮茚并[1,2-b]喹啉-10,13-二酮9b
将化合物9a(400mg,2.09mmol)溶于甲苯(15mL)中,加入化合物1j(661mg,2.51mmol)。反应液在110℃下搅拌16小时。反应结束后,反应液中加入水(20mL),用二氯甲烷(15mL×3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩。用硅胶柱色谱法以洗脱剂体系B纯化得到标题化合物9b(698mg,产率:80%)。
MS m/z(ESI):419.1(M+1)+。
第三步(S)-9-乙基-4,9-二羟基-1,2,3,9,12,15-六氢-10H,13H-苯并吡喃[3′,4′,6,7]中氮茚并[1,2-b]喹啉-10,13-二酮9
将化合物9b(100mg,0.24mmol)溶于氢溴酸(30mL)中。反应液在100℃下反应2小时。反应结束后,将反应液直接浓缩后采用高效液相色谱制备(Waters MS triggered Prep-LC with Acquity QDA detector,色谱柱:Welch C18 250×21.2mm,10μm;流动相1:水(含0.1%氨水);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相10%-30%,流速:25mL/min)纯化,得到标题化合物9(19.4mg,20%)。
MS m/z(ESI):405.1(M+1)+。
1H NMR(400MHz,CD3OD)δ7.79-7.71(m,2H),7.29(d,J=9.0Hz,1H),5.01(d,J=4.0Hz,2H),4.95(d,J=13.6Hz,2H),3.01-2.86(m,4H),2.43-2.35(m,1H),2.28-2.19(m,1H),2.06-2.00(m,2H),1.10-1.00(m,3H).
实施例10
(1S,3R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
第一步
(1R,10S)-1-氨基-10-乙基-6-氟-10-羟基-5-甲基-2,3,4,10,13,16-六氢-14H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-11,14-(1H)-二酮
(1S,10S)-1-氨基-10-乙基-6-氟-10-羟基-5-甲基-2,3,4,10,13,16-六氢-14H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-11,14-(1H)-二酮
将化合物6m(700mg)采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:
Xbridge 5μm C18 150x30mm;流动相1:水(0.1%TFA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相22%-32%,流速:50mL/min),得到化合物6m-1(290mg,较短保留时间),6m-2(300mg,较长保留时间)。
MS m/z(ESI):450.2(M+H)+
第二步
(1S,3R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺10
将化合物6m-2(30mg,0.06mmol)溶于N,N-二甲基甲酰胺(3mL),加入(1S,3S)-3-羟基环丁烷-1-甲酸(8.5mg,0.07mmol)和2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(38mg,0.10mmol)和N,N-二异丙基乙胺(17.2mg,0.13mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液中加入水(10mL)稀释,乙酸乙酯(10mL×3)萃取,合并有机相并用饱和食盐水洗涤,干燥,浓缩,得到粗产品。粗产品采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:Xbridge 5μm C18 150x 30mm;流动相1:水(含0.1%的TFA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相30%-95%,流速:50mL/min)纯化得到化合物10(2mg,产率:5%)。
MS m/z(ESI):548.2(M+H)+。
1H NMR(400MHz,CD3OD)δ8.71(d,1H),7.57-7.48(m,2H),5.65(s,1H),5.55(d,1H),5.35(dd,2H),5.10(d,1H),4.13(dd,1H),2.73(dd,1H),2.61-2.33(m,8H),2.20-2.08(m,4H),1.96(dd,4H),1.02-0.97(m,3H)。
实施例11
(R)-2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
(S)-2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
第一步2-环丙基-2-羟基乙酸11b
将2-环丙基-2-羟基乙酸甲酯11a(50mg,0.38mmol)溶于四氢呋喃(6mL),加入水(0.5mL)和氢氧化锂(27mg,1.15mmol)。该反应在室温下搅拌1小时。反应结束后,旋干溶剂得到粗产品2-环丙基-2-羟基乙酸11b(50mg,白色固体),粗产品不经纯化直接用于下一步反应。
MS m/z(ESI):117.1(M+H)+。
第二步
(R)-2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
(S)-2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
将化合物6m-2(50mg,0.11mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入2-环丙基-2-羟基乙酸11b(44mg,0.38mmol),N,N-二异丙基乙胺(29mg,0.22mmol)和2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(63mg,0.17mmol),该反应在室温下搅拌15分钟,反应结束后,采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;10分钟梯度,梯度配比:乙腈相40%-50%,流速:20mL/min)纯化得到化合物11-1(2.3mg,产率:4%)和化合物11-2(2.5mg,产率:4%)。
单一构型化合物(保留时间较短的化合物)
MS m/z(ESI):548.2(M+H)+。
1H NMR(400MHz,DMSO-d6)δ8.49(d,1H),7.74(d,1H),7.28(s,1H),6.50(s,1H),5.56(s,1H),5.49-5.40(m,4H),5.29(d,1H),3.61(t,1H),3.22(s,2H),2.42(s,3H),2.12-1.63(m,6H),1.11(d,1H),0.87(t,3H),0.47-0.27(m,4H)。
单一构型化合物(保留时间较长的化合物)
MS m/z(ESI):548.2(M+H)+。
1H NMR(400MHz,DMSO-d6)δ8.43(d,1H),7.74(d,1H),7.28(s,1H),6.51(s,1H),5.54(s,1H),5.42(t,4H),5.31(d,1H),3.68-3.53(m,1H),3.22(s,2H),2.42(s,3H),2.12-1.66(m,6H),1.10(d,1H),0.87(t,3H),0.48-0.28(m,4H)。
实施例12
(1S,3R)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
第一步
(1R,9S)-1-氨基-9-乙基-5-氟-9-羟基-4-乙烯基-1,2,3,9,12,15-六氢-10H,13H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-10,13-二酮
(1S,9S)-1-氨基-9-乙基-5-氟-9-羟基-4-乙烯基-1,2,3,9,12,15-六氢-10H,13H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-10,13-二酮
将化合物7b(500mg)采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:Xbridge 5μm C18 150x 30mm;流动相1:水(0.1%TFA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相22%-32%,流速:50mL/min),得到化合物7b-1(180mg,较短保留时间),7b-2(195mg,较长保留时间)。
MS m/z(ESI):448.2(M+H)+。
第二步
(1S,3R)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺12
将化合物7b-2(22mg,0.05mmol)溶于N,N-二甲基甲酰胺(0.5mL)中,加入(1S,3S)-3-羟基环丁烷-1-甲酸(7mg,0.06mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(30mg,0.08mmol)和N,N-二异丙基乙胺(13mg,0.10mmol)。该反应在室温下搅拌15分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;10分钟梯度,梯度配比:乙腈相45%-100%,流速:20mL/min)纯化得到化合物12(3mg,产率:11%)。
MS m/z(ESI):546.2(M+H)+。
1H NMR(400MHz,CD3OD)δ8.50(s,1H),7.71(d,1H),7.64(s,1H),6.95(dd,1H),5.83(dd,2H),5.67-5.61(m,1H),5.57(d,1H),5.39(d,1H),5.24(d,2H),4.16-4.05(m,1H),3.45-3.35(m,2H),2.73-2.42(m,4H),2.29-2.17(m,4H),2.01-1.91(m,2H),1.00(t,3H)。
实施例13
N-((7S,15R)-7-苄基-17-(((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧代-3,6,9,12-四氮杂十七烷基)-6-(2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺13
第一步(R)-3-羟基丁酸苄酯13b
将(R)-3-羟基丁酸13a(50g,0.48mol)溶于N,N-二甲基甲酰胺(100mL),加入苄溴(90g,0.52mol)和碳酸铯(312.8g,0.96mol),反应液置于室温下反应12小时。反应结束后,反应液中加入水(1000mL),用乙酸乙酯(100mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩。粗产品经硅胶柱层析体系B纯化得到标题化合物13b(40g,产率:40%)。
MS m/z(ESI):217.1(M+Na)+。
第二步(R)-1-(9H-芴-9-基)-10-甲基-3,6-二氧代-2,9-二氧杂-4,7-二氮杂十二烷-12-酸苄酯13d
将(2-((((9H-芴-9-基)甲氧基)羰基)氨基)乙酰胺)乙酸甲酯13c(15g,40.6mmol)溶于二氯甲烷(150mL),加入化合物13b(39g,203.2mmol)和4-甲基苯磺酸吡啶(2g,8.1mmol)。反应液置于40摄氏度下反应12小时。反应结束后,减压浓缩,将得到的浓缩物经硅胶柱层析体系B纯化得到标题化合物13d(10g,产率:50%)。
MS m/z(ESI):525.2(M+Na)+。
第三步(R)-3-((2-氨基乙酰胺基)甲氧基)丁酸苄酯13e
将化合物13d(10g,19.9mmol)溶于N,N-二甲基甲酰胺(50mL),加入二乙胺(3g,39.8mmol),反应液置于室温下搅拌1小时。反应结束后,浓缩,得到粗产物13e(5g),产物不经纯化直接用于下一步反应。
MS m/z(ESI):281.1(M+H)+。
第四步苄基(5S,13R)-5-苄基-1-(9H-芴-9-基)-13-甲基-3,6,9-三氧-2,12-二氧-4,7,10-三氮十五烷-15-羧酸13f
将化合物13e(5g,17.8mmol)溶于N,N-二甲基甲酰胺(20mL)中,加入(S)-2,5-二氧代吡咯烷-1-基2-((((9H-芴-9-基)甲氧基)羰基)氨基)-3-苯基丙酸酯(7g,19.5mmol)和N,N-二异丙基乙胺(4.5g,35.6mmol)。反应液置于室温下搅拌反应2小时。反应结束后,浓缩,得到粗产物13f
(10g),产物不经纯化直接用于下一步反应。
MS m/z(ESI):672.3(M+Na)+。
第五步(R)-3-((2-((S)-2-氨基-3-苯基丙酰胺基)乙酰胺基)甲氧基)丁酸苄酯13g
将化合物13f(10g,15.4mmol)溶于N,N-二甲基甲酰胺(50mL),加入二乙胺(2g,30.8mmol)。反应液置于室温下搅拌反应1小时。反应结束后,向体系中加入水(100mL)稀释,用乙酸乙酯(100mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩。将得到的浓缩物经硅胶柱层析体系A纯化得到产物13g(4g,产率:61%)。
MS m/z(ESI):428.1(M+H)+。
第六步(11S,19R)-11-苄基-1-(9H-芴-9-基)-19-甲基-3,6,9,12,15-五氧代-2,18-二氧代-4,7,10,13,16-五氮杂苯并呋喃-21-酸苄酯13h
将化合物13g(4g,9.3mmol)溶于N,N-二甲基甲酰胺(30mL),加入(((9H-芴-9-基)甲氧基)羰基)甘氨酰甘氨酸(3.6g,10.2mmol),N,N,N’,N’-四甲基-O-(7-氮杂苯并三唑-1-基)六氟磷酸脲(5.3g,13.9mmol)和N,N-二异丙基乙胺(2.3g,18.6mmol)。反应液置于室温下搅拌反应1小时。反应结束后,反应液中加入水(100mL)稀释,用乙酸乙酯(50mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩。将得到的粗产品经硅胶柱层析体系A纯化得到标题化合物13h(3g,,收率:42%)。
MS m/z(ESI):786.3(M+H)+。
第七步(11S,19R)-11-苄基-1-(9H-芴-9-基)-19-甲基-3,6,9,12,15-五氧代-2,18-二氧代-4,7,10,13,16-五氮杂苯并呋喃-21-羧酸13i
将化合物13h(3g,3.9mmol)溶于乙醇(20mL)和乙酸乙酯(10mL),加入钯/碳(2g,19.5mmol),置换氢气,反应液置于室温氢气气氛下搅拌2小时。反应结束后,通过硅藻土过滤,滤饼用乙酸乙酯洗涤,合并滤液减压浓缩,得到标题化合物13i粗品(2g),产物不经纯化直接用于下一步反应。
MS m/z(ESI):696.3(M+H)+。
第八步(7S,15R)-1-氨基-7-苄基-15-甲基-2,5,8,11-四氧代-14-氧代-3,6,9,12-四氮杂十七烷-17-羧酸13j
将化合物13i(2g,3mmol)溶于N,N-二甲基甲酰胺(20mL),加入二乙胺(0.44g,6mmol),反应液置于室温下搅拌反应1小时。反应结束后,反应液中加入四氢呋喃(20mL),析出的固体过滤收集滤饼,得到标题化合物13j(1g,收率:76%)。
MS m/z(ESI):452.2(M+H)+。
第九步(3R,11S)-11-苄基-3-甲基-24-(2-(甲基磺酰基)嘧啶-5-基)-7,10,13,16,19-五氧代-4-氧代-6,9,12,15,18-五氮杂四羰基-23-烯酸13l
将化合物13j(300mg,0.66mmol)溶于N,N-二甲基甲酰胺(10mL),加入2,5-二氧代吡咯烷-1-基-6-(2-(甲基磺酰基)嘧啶-5-基)己-5-炔酸盐(267mg,0.72mmol)和N,N-二异丙基乙胺(171mg,1.32mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液中加入水(50mL)稀释,
用乙酸乙酯(30mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩,得到的粗产品采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:Xtimate 10μm C18 250x 30mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相25%-95%,流速:50mL/min)纯化得到标题化合物13l(100mg,21%)。
MS m/z(ESI):724.3(M+Na)+。
第十步N-((7S,15R)-7-苄基-17-(((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧代-3,6,9,12-四氮杂十七烷基)-6-(2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺13
将化合物13l(100mg,0.14mmol)溶于N,N-二甲基甲酰胺(6mL),加入化合物6m-2(64mg,0.14mmol),4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(84mg,0.28mmol)和三乙胺(29mg,0.28mmol)。反应液置于室温下搅拌反应1小时。反应结束后,反应液中加入水(20mL)稀释,用乙酸乙酯(20mL x 3)萃取,合并有机相并用饱和食盐水洗涤,干燥,浓缩,得到的粗产品采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相40%-100%,流速:20mL/min)纯化,得到标题化合物13(10mg,收率:6%)。
MS m/z(ESI):1133.3(M+H)+。
1H NMR(400MHz,CD3OD)δ8.92(s,1H),7.60(d,2H),7.16(dd,6H),5.57(d,5H),5.36(s,2H),4.70(d,2H),4.57(d,2H),4.45(d,2H),3.80-3.72(m,4H),3.48(s,2H),3.13(s,2H),2.60-2.51(m,4H),2.47-2.40(m,6H),1.93(d,6H),1.30(d,2H),1.23(d,3H),1.01-0.96(m,3H)。
实施例14
N-((7S,15R)-7-苄基-17-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酰胺
第一步(3R,11S)-11-苄基-24-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)-3-甲基-7,10,13,16,19-五氧代-4-氧杂-6,9,12,15,18-五氮杂四烷酸14a
将化合物13j(200mg,0.44mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入2,5-二氧代吡咯烷-1-基6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酸酯(136mg,0.44mmol)和N,N-二异丙基乙胺(114mg,0.88mmol),反应在室温下搅拌1小时。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:Xbridge 5μm C18 150x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;10分钟梯度,梯度配比:乙腈相25%-35%,流速:25mL/min)纯化得到标题化合物14a(110mg,产率:39%)。
MS m/z(ESI):667.1(M+Na)+。
第二步N-((7S,15R)-7-苄基-17-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酰胺14
将化合物6m-2(50mg,0.11mmol)溶于N,N-二甲基甲酰胺(0.5mL)中,加入化合物13b(72mg,0.11mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(62mg,0.08mmol)和N,N-二异丙基乙胺(28mg,0.22mmol)。该反应在室温下搅拌15分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150x19 mm;流动相1:水(含0.1%的FA);流动相2:乙腈;12分钟梯度,梯度配比:乙腈相41%-51%,流速:20mL/min)纯化得到化合物14(46mg,产率:39%)。
MS m/z(ESI):1076.3(M+H)+。
1H NMR(400MHz,DMSO-d6)δ8.65(d,1H),8.47(s,1H),8.26(d,1H),8.09(d,1H),8.05(s,1H),7.98(d,1H),7.30(s,1H),7.22-7.16(m,5H),6.99(s,2H),5.53(s,1H),5.42(s,2H),5.29(s,2H),4.57(d,1H),4.54-4.44(m,2H),3.99(d,1H),3.73-3.55(m,8H),3.02(d,1H),2.80-2.72(m,1H),2.69-2.54(m,4H),2.45-2.31(m,4H),2.09(t,3H),1.94-1.76(m,4H),1.46(dd,4H),1.23-1.15(m,2H),1.13(d,3H),0.86(t,3H)。
实施例15
N-((7S,15R)-7-苄基-17-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酰胺
第一步N-((7S,15R)-7-苄基-17-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酰胺15
将(1S,9S)-1-氨基-9-乙基-5-氟-9-羟基-4-乙烯基-1,2,3,9,12,15-六氢-10H,13H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-10,13-二酮7b-2(20mg,0.04mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(23mg,0.06mmol)和N,N-二异丙基乙胺(11mg,0.09mmol)。该反应在室温下搅拌30分钟。反应结束后,粗品采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;12分钟梯度,梯度配比:乙腈相44%-54%,流速:20mL/min)纯化得到化合物15(6mg,产率:14%)。
MS m/z(ESI):1074.3(M+1)+。
1H NMR(400MHz,CD3OD)δ7.57-7.50(m,2H),7.19-7.09(m,6H),6.93(dd,1H),6.76(s,2H),5.81(dd,2H),5.66(t,1H),5.55(d,1H),5.37-5.26(m,3H),4.70(d,2H),4.50(dd,1H),4.27(d,1H),3.77(q,4H),3.45(dd,2H),3.10(dd,2H),2.88-2.81(m,1H),2.51-2.45(m,2H),2.30-2.18(m,5H),1.89(q,2H),1.57(t,5H),1.28(d,6H),0.98(t,3H)。
实施例16
(1R,3R)-3-(((S)-7-苄基-20-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)-3,6,9,12,15-五氧代-2,7,8,11,14-五氮杂二羰基)氧基)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚[1,2-b]喹啉-1-基)环丁烷-1-甲酰胺
采用和实施例13相同的合成路线,将第一步原料(R)-3-羟基丁酸替换为(1S,3S)-3-羟基环丁烷-1-羧酸16a(10g,86.20mmol),经过八步反应,得到化合物16i(2.8g,产率:30%)。
MS m/z(ESI):464.2(M+1)+。
第九步(1R,3S)-3-(((S)-7-苄基-20-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)-3,6,9,12,15-五氧代-2,7,8,11,14-五氮杂二十基)氧基)环丁烷-1-甲酸16j
将化合物16i(750mg,1.62mmol)溶于DMF(5mL)中,加入2,5-二氧代吡咯烷-1-基6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酸酯(499mg,1.62mmol)和N,N-二异丙基乙胺(209mg,1.62mmol)。该反应在室温下搅拌1小时。反应结束后,反应液采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:Xtimate 10μm C18 250x 30mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相20%-95%,流速:50mL/min)纯化得到化合物16j(150mg,产率:13%)。
MS m/z(ESI):679.2(M+23)+。
第十步(1R,3R)-3-(((S)-7-苄基-20-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)-3,6,9,12,15-五氧代-2,7,8,11,14-五氮杂二羰基)氧基)-N-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚[1,2-b]喹啉-1-基)环丁烷-1-甲酰胺16
将化合物7b-2(20mg,0.04mmol),化合物16j(33mg,0.05mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(23mg,0.06mmol)和N,N-二异丙基乙胺(11mg,0.09mmol)。该反应在室温下搅拌30分钟。反应结束后,粗品采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150x 19mm,;流动相1:水(含0.1%的FA);流动相2:乙腈;12分钟梯度,梯度配比:乙腈相40%-55%,流速:20mL/min)纯化得到化合物16(10mg,产率:23%)。
MS m/z(ESI):1086.2(M+H)+。
1H NMR(400MHz,CDOD)δ8.52(s,2H),7.71(d,1H),7.63(s,1H),7.29-7.15(m,4H),6.94(dd,1H),6.76(s,1H),5.90-5.78(m,2H),5.64(s,1H),5.54(d,1H),5.35(d,1H),5.24(d,1H),4.72-4.63(m,2H),4.49-4.44(m,1H),4.04(s,1H),3.96-3.85(m,2H),3.83-3.69(m,4H),3.49-3.46(m,1H),3.46-3.41(m,2H),3.15(s,1H),3.14-3.11(m,1H),2.96(s,1H),2.70(s,1H),2.66-2.54(m,2H),2.50-2.45(m,1H),2.34-2.26(m,2H),2.26-2.17(m,3H),1.99-1.91(m,2H),1.63-1.48(m,4H),1.28(d,3H),1.00(t,3H)。
实施例17
(R)-N-((1R,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步N-(4-环丙基-3-氟-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺17a
将化合物3f(1.5g,5.02mmol),环丙基硼酸(1.3g,15.06mmol),1,1-双(二苯基膦)二荗铁二氯化钯(2.2g,3.01mmol)和碳酸铯(1.6g,15.06mmol)溶于二氧六环(15mL)中。在微波反应器110℃下搅拌反应2小时。反应结束后,反应液倒入水中,用乙酸乙酯萃取三次,无水硫酸钠干燥,合并有机相浓缩。采用硅胶柱层析体系B纯化得到标题化合物17a(1.1g,产率:84%)。
MS m/z(ESI):262.1(M+1)+。
第二步(Z)-N-(4-环丙基-3-氟-7-(羟基亚氨基)-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺17b
将叔丁醇钾(0.94g,8.4mmol)溶于四氢呋喃和叔丁醇(50mL,V/V=4∶1)的混合溶剂,将化合物17a(1.1g,4.2mmol)溶解在10mL的四氢呋喃溶液中,0℃下缓慢加入到反应体系中。反应在0℃下搅拌10分钟后,加入亚硝酸异戊酯(0.74g,6.3mmol),反应继续在0℃下搅拌反应50分钟。反应结束后,加入稀盐酸将体系的pH调至4~5,用乙酸乙酯萃取3次,有机相利用饱和食盐水洗涤,收集有机相,无水硫酸钠干燥,旋干溶剂得到粗产品17b,产物不经纯化直接用于下一步反应。
MS m/z(ESI):291.0(M+1)+。
第三步N-(7-氨基-4-环丙基-3-氟-8-氧代-5,6,7,8-四氢萘-1-基)乙酰胺17c
将化合物17b溶于甲醇(50mL),加入钯碳催化剂(500mg)。在氢气环境下,该反应在室温下搅拌两小时。反应结束后,过滤,收集滤液得到粗品17c,粗品不经纯化直接用于下一步反应。
MS m/z(ESI):277.1(M+1)+。
第四步(9H-芴-9-基)甲基(8-乙酰氨基-5-环丙基-6-氟-1-氧代-1,2,3,4-四氢萘-2-基)氨基甲酸酯17d
将上步得到的滤液利用饱和碳酸钠溶液PH调至8~9,随后加入Fmoc-Cl(1.19g,4.6mmol)。
该反应在室温下搅拌1小时。反应结束后,体系利用乙酸乙酯萃取,有机相利用饱和食盐水洗涤,收集有机相,无水硫酸钠干燥,旋干溶剂得到粗产品。粗产品利用硅胶柱层析体系A得到化合物17d(1g,产率:48%)。
MS m/z(ESI):499.1(M+1)+。
第五步(9H-芴-9-基)甲基(8-氨基-5-环丙基-6-氟-1-氧代-1,2,3,4-四氢萘-2-基)氨基甲酸酯17e
将化合物17e(1g,2.01mmol)溶于二氧六环(20mL)中,加入浓盐酸(12mol/L,5mL)。该反应在60℃下搅拌1小时。反应结束后,旋干溶剂得到粗产品,粗产品利用硅胶柱层析体系A纯化得到化合物17f(700mg,产率:77%)。
MS m/z(ESI):457.1(M+1)+。
第六步(9H-芴-9-基)甲基((9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯17g
将化合物17f(700mg,1.54mmol)溶于甲苯(10mL)中,加入(S)-4-乙基-4-羟基-7,8-二氢-1H-吡喃[3,4-f]中氮茚-3,6,10(4H)-三酮(484mg,1.84mmol)和对甲苯磺酸一水合物(292mg,1.54mmol)。该反应体系在140℃下搅拌反应4小时。反应结束后,旋干溶剂得到粗产品,粗产品通过硅胶柱层析体系Achu纯化得到标题化合物17g(700mg,产率:66%)。
MS m/z(ESI):684.2(M+1)+。
第七步(9S)-1-氨基-4-环丙基-9-乙基-5-氟-9-羟基-1,2,3,9,12,15-六氢-10H,13H-苯并[d]吡喃并[3′,4′:6,7中氮茚并[1,2-b]喹啉-10,13-二酮17h
将化合物17g(100mg,0.15mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入二乙胺(0.5mL)。该反应在室温下搅拌30分钟。反应结束后,真空浓缩得到粗产品化合物17h(60mg),粗产品不经纯化,直接进行下一步反应。
MS m/z(ESI):462.1(M+1)+。
第八步(R)-N-((1R,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
将化合物17h(60mg,0.13mmol)溶于DMF(5mL)中,随后加入(R)-3-羟基丁酸(19mg,0.18mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(87mg,0.23mmol)和N,N-二甲基乙酰胺(59mg,0.45mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相38%-48%,流速:20mL/min)纯化得到化合物17-1(6mg,产率:11%)和17-2(4mg,产率:8%)。单一构型化合物17-1(较短保留时间):
MS m/z(ESI):548.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.44(d,1H),7.75(d,1H),7.47(d,1H),7.30(s,1H),7.11(d,1H),5.60-5.52(m,1H),5.43(s,2H),5.29-5.13(m,2H),4.09-4.00(m,1H),2.48(s,1H),2.29(s,2H),
2.24-2.18(m,1H),2.14(d,2H),1.99-1.92(m,1H),1.91-1.79(m,2H),1.15-1.10(m,2H),1.09(d,3H),0.87(s,3H),0.76(s,2H)。
单一构型化合物17-2(较长保留时间):
MS m/z(ESI):548.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.46(d,1H),7.76(d,1H),7.47(d,1H),7.30(s,1H),7.13-7.06(m,1H),5.59(dd,1H),5.43(d,2H),5.24(d,2H),4.05(dd,1H),2.29(t,1H),2.25(d,1H),2.19(d,1H),2.18-2.06(m,3H),1.95(d,1H),1.85(dd,2H),1.16-1.10(m,2H),1.08(d,3H),0.87(s,4H),0.76(d,2H)。
实施例18
(1S,3S)-N-((1R,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
(1S,3R)-N-((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
第一步
(1S,3S)-N-((1R,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
(1S,3R)-N-((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
将化合物17g(69mg,0.15mmol)溶于N,N-二甲基甲酰胺(5mL)加入(1S,3S)-3-羟基环丁烷-1-甲酸(21mg,0.18mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(87mg,0.23mmol)和N,N-二甲基乙酰胺(59mg,0.45mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;18分钟梯度,梯度配比:乙腈相35%-65%,流速:20mL/min)纯化得到18-1(4mg,产率:6%)和18-2(2.4mg,产率:4%:)
单一构型化合物18-1(较短保留时间):
MS m/z(ESI):560.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.44(d,1H),7.71(d,1H),7.29(d,1H),6.54(d,1H),5.56(s,1H),5.42(s,2H),5.17-5.09(m,3H),3.94(d,1H),2.44-2.30(m,4H),2.08-2.03(m,4H),1.94-1.84(m,4H),1.11(d,2H),0.87(t,3H),0.76(s,2H)。
单一构型化合物18-2(较长保留时间):
MS m/z(ESI):560.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.45(d,1H),7.74(d,1H),7.30(s,1H),6.53(s,1H),5.57(s,1H),5.43(s,2H),5.14(dd,3H),3.97-3.91(m,1H),2.40-2.27(m,4H),2.15-2.05(m,4H),1.96-1.84(m,4H),1.11(d,2H),0.87(t,3H),0.75(d,2H)。
实施例19
(R)-N-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1R,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步5-(5-乙酰氨基-2-溴-3-氟苯基)戊-4-烯酸19b
将化合物19a(7.0g,19.5mmol)溶于二氧六环(60mL)和水(15mL)中,向溶液中依次加入戊-4-烯酸(2.2g,22.0mol),双三苯基膦二氯化钯(700mg,1.0mmol),碳酸钠(6.2g,58.4mmol)。反应液在氮气保护下置于90℃下搅拌16小时。反应结束后,反应液用硅藻土过滤,乙酸乙酯洗涤,得到的滤液直接浓缩。将粗品用水(200mL)稀释并用乙醚萃取3次(100mL x 3),水相用稀盐酸调节至pH=2并用乙酸乙酯萃取(100mL x 3),合并有机相,浓缩,得到粗品19b(6.0g)。MS m/z(ESI):330.1(M+1)+.
第二步5-(5-乙酰氨基-2-溴-3-氟苯基)戊酸19c
将化合物19b(6.0g,18.2mmol)溶于无水甲醇(100mL)中,向其中加入铂/碳(5%,600mg)。反应液用氢气置换三次并在室温下搅拌反应16小时。反应结束后,反应液用硅藻土过滤,乙酸乙酯洗涤,得到的滤液直接浓缩得到粗产物化合物19c(5.0g)。
MS m/z(ESI):332.0(M+1)+。
第三步N-(4-溴-3-氟-9-氧代-6,7,8,9-四氢-5H-苯并[7]环烯-1-基)乙酰胺19d
将化合物19c(2.5g,3.3mmol)溶于多聚磷酸(25mL)中。反应液置于140℃下搅拌反应2
小时。反应结束后,向反应液中加入水(100mL)并搅拌4小时,水相用乙酸乙酯萃取(100mL x 3),合并有机相,浓缩得到的粗品经硅胶柱层析体系B纯化得到化合物19d(920mg,产率:39%)。
MS m/z(ESI):314.0(M+1)+。
后续合成路线采用和实施例17的相同的合成路线,将化合物3f替换为19d(720mg,2.3mmol)。终产物采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相40%-95%,流速:30mL/min)纯化得到产物19-1(6.5mg,产率:9%),19-2(11mg,产率:16%)。
单一构型化合物19-1(较短保留时间):
MS m/z(ESI):562.2(M+1)+。
1H NMR(400MHz,CDCl3)δ7.63-7.50(m,3H),7.07(s,1H),5.73-5.69(m,2H),5.43(d,1H),5.36-5.15(m,2H),4.24(s,1H),3.81(s,1H),3.64-3.50(m,1H),3.47-3.32(m,1H),2.52-2.41(m,2H),2.36-2.12(m,3H),1.88-1.83(m,4H),1.25(d,3H),1.19-1.15(m,2H),1.02(t,3H),0.81-0.77(m,2H)。
单一构型化合物19-2(较长保留时间):
MS m/z(ESI):562.2(M+1)+。
1H NMR(400MHz,CDCl3)δ7.50-7.35(m,3H),5.72-5.55(m,1H),5.47-5.29(m,2H),5.26-5.05(m,2H),4.51-4.31(m,1H),4.05-3.91(m,1H),3.70-3.54(m,1H),3.53-3.37(m,1H),2.66-2.50(m,2H),2.49-2.37(m,1H),2.28-2.14(m,1H),2.11-1.75(m,5H),1.41-1.29(m,3H),1.29-1.10(m,2H),1.04-0.95(m,3H),0.88-0.71(m,2H)。
实施例20
(1S,3S)-N-((1R,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
(1S,3S)-N-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
第一步
(1S,3S)-N-((1R,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[de]吡喃[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
(1S,3S)-N-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-
环庚[de]吡喃[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
将化合物19k(75mg,0.16mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入(1S,3S)-3-羟基环丁烷-1-甲酸(22mg,0.19mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(91mg,0.24mmol)和N,N-二异丙基乙胺(171mg,1.32mmol)。反应液置于室温下搅拌反应1小时。反应结束后,反应液中加入水(50mL)稀释,用乙酸乙酯(30mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩,粗产品采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:WELCH Xtimate C18 21.2x 250mm 10μm;流动相1:水(含0.1%的NH3.H2O);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相40%-100%,流速:30mL/min)纯化得到化合物20-1(2.9mg,7%),20-2(1.5mg,2%)。
单一构型化合物20-1(较短保留时间):
MS m/z(ESI):574.7(M+1)+。
1H NMR(400MHz,CDCl3)δ7.59(d,1H),7.53(s,1H),6.49(s,1H),5.72-5.64(m,1H),5.59(d,1H),5.35(d,1H),5.14(d,1H),4.93(d,1H),4.25-4.19(m,1H),3.77(s,1H),3.64-3.52(m,1H),3.46-3.41(m,1H),2.77-2.68(m,,3H),2.42-2.10(m,5H),1.94-1.78(m,4H),1.25-1.75(m,2H),1.05(t,3H),0.87-0.72(m,2H)。
单一构型化合物20-2(较长保留时间):
MS m/z(ESI):574.7(M+1)+。
1H NMR(400MHz,CDCl3)δ7.53(d,1H),7.46(s,1H),6.91(br,1H),5.59(t,1H),5.30-5.19(m,2H),5.11-5.04(m,2H),4.30-4.21(m,1H),3.76(s,1H),3.68(d,1H),3.48-3.34(m,1H),2.88-2.75(m,3H),2.37-2.21(m,5H),1.93(s,3H),1.80-1.72(m,2H),1.23-1.13(m,2H),0.96(t,3H),0.87-0.75(m,2H)。
实施例21
N-((7S,15R)-7-苄基17-(((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧-3,6,9,12-四氮杂十七烷基)-6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酰胺
第一步(9H-芴-9-基)甲基((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯21a
将化合物17f(600mg,1.02mmol)使用Gilson制备仪器和大赛璐手性柱分离手性异构体,(色谱柱:CHIRALPAK IB 3.0cm I.D.×25cm,10μm;流动相1:MeOH;流动相2:DCM;梯度配比:MeOH/DCM=90/10,流速:25mL/min)纯化得到化合物21a(250mg,产率:42%)。第二步(1S,9S)-1-氨基-4-环丙基-9-乙基-5-氟-9-羟基-1,2,3,9,12,15-六氢-10H,13H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-10,13-二酮21b
将化合物21a(50mg,0.07mmol)溶于DMF(5mL)中,加入二乙胺(0.5mL)。该反应在室温下搅拌1小时。反应结束后,真空旋干溶剂,得到标题化合物21b(34mg),产物不经纯化直接用于下一步反应。
MS m/z(ESI):462.1(M+1)+。
第三步N-((7S,15R)-7-苄基17-(((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧-3,6,9,12-四氮杂十七烷基)-6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酰胺21
将化合物21b(34mg)溶于DMF(2mL)中,加入化合物14a(54mg,0.08mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(40mg,0.11mmol)和N,N-二异丙基乙胺(18mg,0.14mmol)。该反应在室温下搅拌30分钟。反应结束后,粗产品采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:Xbridge 5μm C18 150x 19mm,;流动相1:水(含0.1%的FA);流动相2:乙腈;12分钟梯度,梯度配比:乙腈相41%-51%,流速:25mL/min)纯化得到化合物21(20mg,产率:26%)。
MS m/z(ESI):1088.3(M+H)+。
1H NMR(400MHz,CD3OD)δ7.70(d,1H),7.62(t,2H),7.23-7.13(m,8H),6.76(s,2H),5.60(d,2H),5.55(s,1H),5.38(dd,3H),5.23(d,2H),4.41(dd,2H),4.10(d,2H),3.80(dd,5H),3.43(d,2H),3.05(d,1H),3.04-2.96(m,2H),2.56-2.42(m,4H),2.28(d,2H),2.21(d,2H),1.93(dd,2H),1.601.52(m,4H),1.26(d,4H),1.14(d,3H),0.99(t,3H)。
实施例22
(1R,3R)-3-(((S)-7-苄基-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)-3,6,9,12,15-五氧代-2,7,8,11,14-五氮杂二羰基)氧基)-N-((1S,9S)-4-环丙基-9-氟-9-羟基-10,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)环丁烷甲酰胺
第一步(1R,3R)-3-(((S)-7-苄基-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)-3,6,9,12,15-五氧代
-2,7,8,11,14-五氮杂二羰基)氧基)-N-((1S,9S)-4-环丙基-9-氟-9-羟基-10,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)环丁烷甲酰胺
将化合物21b(35mg,0.08mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入化合物16j(60mg,0.09mmol),N,N,N’,N’-四甲基-O-(7-氮杂苯并三唑-1-基)六氟磷酸脲(43mg,0.11mmol)和N,N-二异丙基乙胺(24mg,0.19mmol)。反应液置于室温下搅拌反应1小时。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge C18 5μm 150x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相42%-100%,流速:20mL/min)纯化得到化合物22(20mg,产率:22%)。
MS m/z(ESI):1100.5(M+1)+。
1H NMR(400MHz,CD3OD)δ8.51(d,1H),8.37-8.20(m,2H),7.59-7.52(m,1H),7.29-7.11(m,4H),6.75(s,1H),5.66(d,1H),5.58-5.48(m,1H),5.37-5.14(m,2H),5.09-4.94(m,1H),4.73-4.61(m,2H),4.48(dd,1H),4.09-3.97(m,1H),3.97-3.68(m,5H),3.57-3.46(m,1H),3.45-3.37(m,2H),3.15(dd,1H),3.04-2.91(m,1H),2.75-2.53(m,2H),2.52-2.41(m,1H),2.38-2.15(m,5H),2.01(dd,1H),1.94-1.85(m,2H),1.68-1.44(m,4H),1.38-1.20(m,6H),1.15(d,2H),1.02-0.86(m,3H),0.81(d,2H)。
实施例23
N-((7S,15R)-7-苄基17-(((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧-3,6,9,12-四氮杂十七烷基)-6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酰胺
第一步(9H-氟-9-基)甲基((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯23a
将化合物19j(500mg,0.72mmol)使用Gilson制备仪器和大赛璐手性柱分离手性异构体,(色谱柱:CHIRALPAK IA 3.0cm I.D.×25cm,10μm;流动相1:MeOH;流动相2:DCM;梯度配比:MeOH/DCM=70/30,流速:25mL/min)纯化得到化合物23a(220mg,产率:44%)。
第二步(1S,10S)-1-氨基-5-环丙基-10-乙基-6-氟-10-羟基-2,3,4,10,13,16-六氢-14H-环庚并
[3′,4′:6,7]中氮茚并[1,2-b]喹啉-11,14(1H)-二酮23b
将化合物23a(45mg,0.064mmol)溶于N,N-二甲基甲酰胺和乙二胺的混合溶剂中(7mL,V/V=5∶2)中,反应液在室温下搅拌2小时。反应结束后,反应液直接浓缩得到化合物粗产品23b(30mg),产品不经纯化直接用于下一步反应。
MS m/z(ESI):476.2(M+1)+。
第三步N-((7S,15R)-7-苄基17-(((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧-3,6,9,12-四氮杂十七烷基)-6-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)己酰胺23
将化合物23b(30mg)溶于N,N-二甲基甲酰胺中(5mL),加入化合物14a(43mg,0.064mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(37mg,0.096mmol)和N,N-二异丙基乙胺(171mg,1.32mmol)。反应液置于室温下搅拌2小时。反应结束后,反应液中加入水(50mL),用乙酸乙酯(30mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩,得到粗产品。粗产品通过采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相47%-95%,流速:30mL/min)纯化得到标题化合物23(10.03mg,产率:13.5%)。
MS m/z(ESI):1102.2(M+1)+。
1H NMR(400MHz,CDCl3)δ8.94(s,1H),8.18-8.14(m,2H),7.65-7.53(m,2H),7.43(s,1H),7.25-7.19(m,6H),6.66(s,2H),6.59(s,1H),5.75-5.63(m,3H),5.32-5.13(m,3H),4.51(d,2H),4.08(s,4H),3.89(s,3H),3.75-3.61(m,2H),3.48(t,2H),3.42-3.31(m,1H),3.08(d,2H),2.38-2.11(m,7H),1.89-1.85(m,2H),1.30-1.25(m,7H),1.20-1.17(m,1H),1.49-1.09(m,1H),1.02(t,3H),0.88-0.75(m,6H)。
实施例24
(R)-N-((1R,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃[3’,4’:6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃[3’,4’:6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
第一步N-(3-氟-4-甲基-5-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苯基)乙酰胺24b
将N-(3-氟-5-碘-4-甲基苯基)乙酰胺24a(7g,23.9mmol)溶于1,4-二氧六环(70mL)中,加入联硼酸频那醇酯(12.14g,47.8mmol),Pd(dppf)Cl2(3.47g,4.78mmol)和醋酸钾(7.04g,71.7mmol)。氮气保护下,该反应在110℃下搅拌16小时。反应结束后,过滤,收集滤液,旋干溶剂得到粗产品。粗产品利用柱层析分离体系B纯化得到标题化合物24b(4.1g,产率:59%)。MS m/z(ESI):294.1(M+1)+。
第二步N-(3-氟-5-羟基-4-甲基苯基)乙酰胺24c
将化合物24b(4.1g,14mmol)溶于四氢呋喃和水的混合溶剂(40mL,V/V=1∶1)中,加入亚氯酸钠(1.52g,16.8mmol)。该反应在室温下搅拌30分钟。反应结束后,加入乙酸乙酯,有机相利用氢氧化钠水溶液(15%wt)洗涤3次,收集水相,利用盐酸将pH调到3~5,随后利用二氯甲烷萃取,收集有机相。旋干溶剂得到粗产品。粗产品采用硅胶柱层析分离体系B纯化得到标题化合物24c(1.9g,产率:74%)。
MS m/z(ESI):184.0(M+1)+。
第三步4-(5-乙酰氨基-3-氟-2-甲基苯氧基)丁酸甲酯24d
将化合物24c(1.9g,10.4mmol)溶于N,N-二甲基甲酰胺(20mL)中,加入4-溴丁酸甲酯(2.82g,15.6mmol),碳酸钾(2.87g,20.8mmol)和碘化钾(2.59g,15.6mmol)。该反应在85℃下搅拌16小时。反应结束后,加入乙酸乙酯,体系利用饱和食盐水洗涤三次,收集有机相。旋干溶剂得到粗产品,粗产品利用硅胶柱层析分离体系B纯化,得到标题化合物24d(2g,产率:68%)。
MS m/z(ESI):284.0(M+1)+。
第四步4-(5-乙酰氨基-3-氟-2-甲基苯氧基)丁酸24e
将化合物24d(2g,7.1mmol)溶于四氢呋喃和水的混合溶剂(20mL,V/V=1∶1)中,将氢氧化
锂(340mg,14.2mmol)加入到上述体系中。该反应在室温下搅拌2小时。反应结束后,加入稀盐酸将体系的pH调至3~5,加入乙酸乙酯萃取,收集有机相,无水硫酸钠干燥。旋干溶剂得到粗品24e(1.4g,产率:73%),产物不经纯化直接用于下一步反应。
MS m/z(ESI):270.0(M+1)+。
第五步N-(8-氟-9-甲基-5-氧代-2,3,4,5-四氢苯并[b]氧杂环己烷-6-基)乙酰胺24f
将化合物24e(1.4g,5.2mmol)溶于三氟乙酸(20mL),加入三氟乙酸酐(3.28g,15.6mmol)。该反应在40℃下搅拌1小时。反应完成后,缓慢加入水(10mL)并继续在40℃下搅拌1小时。反应结束后,体系利用乙酸乙酯萃取,收集有机相。旋干溶剂得到粗产品,粗产品采用硅胶柱层析分离体系B纯化得到化合物24f(900mg,产率:69%)。
MS m/z(ESI):252.1(M+1)+。
1H NMR(400MHz,CDCl3)δ11.24(s,1H),8.10(d,1H),4.15(t,2H),2.84-2.77(m,2H),2.17-2.10(m,5H),2.07(d,3H)。
第六步(Z)-N-(8-氟-4-(羟基亚氨基)-9-甲基-5-氧代-2,3,4,5-四氢苯并[b]氧杂环己烷-6-基)乙酰胺24g
向烧瓶中加入四氢呋喃(20mL)和叔丁醇(5mL),将混合物冷却至0℃,加入叔丁醇钾(806mg,6.43mmol)。然后缓慢加入化合物24f(900mg,3.59mmol),将反应物在0℃下搅拌10分钟。然后加入亚硝酸异戊酯(631mg,5.39mmol),反应在0℃搅拌1小时。反应结束后,加入盐酸调节pH值至4~5,用乙酸乙酯萃取混合物。有机相用盐水洗涤并用无水硫酸钠干燥,浓缩,旋干溶剂得到粗产品24g(900mg),粗产品不经纯化直接用于下一步。
MS m/z(ESI):281.0(M+1)+。
第七步(9H-芴-9-基)甲基(6-乙酰氨基-8-氟-9-甲基-5-氧代-2,3,4,5-四氢苯并[b]氧杂环丁烷-4-基)氨基甲酸酯24h
将化合物24g(900mg,3.21mmol)溶于二氧六环(10mL),加入钯碳催化剂(200mg)和1M稀盐酸(2mL)。在氢气的环境下,该反应在室温下搅拌2小时。反应完成后,过滤,收集滤液,加入饱和碳酸氢钠水溶液将pH调至10,随后加入氯甲酸-9-芴基甲酯(929mg,3.59mmol),反应在室温下搅拌1小时。反应结束后,体系利用二氯甲烷萃取,收集有机相,旋干溶剂得到粗产品,粗产品采用硅胶柱层析体系B纯化得到标题化合物24h(500mg,产率:29%)。
MS m/z(ESI):489.1(M+1)+。
第八步(9H-芴-9-基)甲基(6-乙酰氨基-8-氟-9-甲基-5-氧代-2,3,4,5-四氢苯并[b]氧杂环丁烷-4-基)氨基甲酸酯24i
将化合物24h(500mg,1.02mmol)溶于二氯甲烷(5mL),加入4M氯化氢的甲醇溶液(5mL)。该反应在60℃搅拌2小时。反应结束后,旋干溶剂得到粗产品,粗产品采用硅胶柱层析分离纯化得到标题化合物24i(350mg,收率:77%)。
MS m/z(ESI):447.1(M+1)+。
第九步(9H-氟-9-基)甲基((10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基甲酸酯24j
将化合物24i(350mg,0.78mmol)溶于甲苯(5mL),加入(S)-4-乙基-4-羟基-7,8-二氢-1H-吡喃[3,4-f]中氮茚-3,6,10(4H)-三酮(248mg,0.94mmol)和对甲苯磺酸一水合物(223mg,1.18mmol)。该反应在120℃搅拌2小时。反应结束后,旋干溶剂得到粗产品,粗产品采用硅胶柱层析分离体系B纯化得到标题化合物24j(450mg,产率:85%)。
MS m/z(ESI):674.2(M+1)+。
第十步(10S)-1-氨基-10-乙基-6-氟-10-羟基-5-甲基-1,2,3,10,13,16-六氢-11H,14H-噁庚英并[4,3,2-de]吡喃并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-11,14-酮24k
将化合物24j(100mg,0.15mmol)溶于N,N-二甲基甲酰胺,加入二乙胺(0.6mL).该反应在室温下搅拌30分钟。反应结束后,旋干溶剂得到粗品24k(65mg,产率:97%)。
MS m/z(ESI):452.1(M+1)+。
第十一步
(R)-N-((1R,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃[3’,4’:6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺
(R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃[3’,4’:6,7]中氮茚[1,2-b]喹啉-1-基)-3-羟基丁酰胺24
将化合物24k(65mg,0.14mmol)溶于N,N-二甲基甲酰胺(3mL),加入(R)-3-羟基丁酸(18mg,0.17mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(82mg,0.22mmol)和N,N-二异丙基乙胺(37mg,0.29mmol)。该反应在室温下搅拌15分钟。反应结束后,粗品采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2,色谱柱:Xbridge C18 150x 19mm,10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;10分钟梯度,梯度配比:乙腈相37%-47%,流速:20mL/min)纯化得到标题化合物24-1(7.37mg,产率:10%)和24-2(4.70mg,产率:6%)。
单一构型化合物24-1(较短保留时间)
MS m/z(ESI):538.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.48(d,1H),7.68(d,1H),7.47(d,1H),7.29(s,1H),7.11(d,1H),5.61(dd,1H),5.51-5.39(m,4H),4.61-4.50(m,1H),4.30-4.16(m,1H),3.92-3.80(m,1H),2.35(d,3H),2.29(s,1H),2.20(dd,2H),2.05-1.94(m,1H),1.92-1.77(m,2H),0.87(t,3H),0.82(d,3H)。
单一构型化合物24-2(较长保留时间)
MS m/z(ESI):538.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.48(d,1H),7.68(d,1H),7.47(d,1H),7.29(s,1H),7.11(d,1H),5.68(dd,1H),5.48(d,2H),5.43(s,2H),4.54-4.42(m,1H),4.33-4.24(m,1H),3.92-3.81(m,1H),2.35(d,3H),2.29(s,1H),2.26-2.16(m,2H),2.03-1.93(m,1H),1.92-1.78(m,2H),1.00(d,3H),0.87(t,3H)。
实施例25
(1S,3S)-N-((1R,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁
庚英并[4,3,2-de]吡喃并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
(1S,3R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
第一步
(1S,3S)-N-((1R,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
(1S,3R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基环丁烷-1-甲酰胺
将化合物24k(65mg,0.14mmol)溶于N,N-二甲基甲酰胺(3mL),加入顺式-3-羟基环丁基甲酸(20mg,0.17mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(82mg,0.22mmol)和N,N-二异丙基乙胺(37mg,0.29mmol)。反应体系在室温下搅拌15分钟。反应结束后,粗品采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge C18 150x 19mm,10μm;流动相1:水(含0.1%FA);流动相2:乙腈;18分钟梯度,梯度配比:乙腈相34%-44%,流速:20mL/min)纯化得到标题化合物25-1(6.57mg,产率:9%)和25-2(8.90mg,产率:12%)。
单一构型化合物25-1(较短保留时间)
MS m/z(ESI):550.1(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.40(d,1H),7.67(d,1H),7.29(s,1H),5.65(dd,1H),5.50(d,1H),5.44(s,2H),5.29(d,1H),4.45-4.37(m,1H),4.36-4.25(m,1H),3.95-3.82(m,1H),2.57-2.53(m,1H),2.48-2.44(m,2H),2.35(d,3H),2.30-2.24(m,1H),2.22-2.15(m,1H),2.06-1.69(m,6H),0.86(dd,3H)。
单一构型化合物25-2(较长保留时间)
MS m/z(ESI):550.1(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.41(d,1H),7.68(d,1H),7.29(s,1H),5.67(dd,1H),5.48(d,1H),5.41(d,2H),5.28(d,1H),4.44-4.26(m,2H),3.97-3.85(m,1H),2.59-2.53(m,1H),2.47-2.42(m,2H),2.34(t,3H),2.30-2.25(m,1H),2.24-2.18(m,1H),2.07-1.72(m,6H),0.87(t,3H)。
实施例26
N-((7S,15R)-7-苄基-17-(((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代
-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己-5-炔酰胺
第一步5-溴-2-(甲硫基)烟腈26b
将5-溴-2-氯烟腈26a(2g,9.2mmol)溶于乙二醇二甲醚(20mL)中,冰浴下加入甲硫醇钠(640mg,9.2mmol)。该反应在室温下搅拌4小时。反应结束后,加入氯化铵水溶液淬灭反应,体系用乙酸乙酯萃取三遍,无水硫酸钠干燥,合并有机相浓缩。将得到的浓缩物经硅胶柱层析体系B纯化得到标题化合物26b(1.5g,产率:71%)。
MS m/z(ESI):228.9,230.9(M+1)+。
第二步6-(5-氰基-6-(甲硫基)吡啶-3-基)己基-5-炔酸26d
将5-溴-2-(甲硫基)烟腈26b(1.5g,6.6mmol)溶于四氢呋喃(5mL)和三乙胺(5mL)的混合溶剂,加入己-5-炔酸26c(1.5g,13.2mmol),双三苯基膦二氯化钯(913mg,1.3mmol)和碘化亚铜(133mg,0.7mmol)。反应在70℃下搅拌反应2小时。反应结束后,过滤反应液,母液直接拌样。将得到的粗品经硅胶柱层析体系B纯化得到6-(5-氰基-6-(甲硫基)吡啶-3-基)己基-5-炔酸26d(0.7g,产率:41%)。
MS m/z(ESI):261.1(M+1)+。
第三步6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己基-5-炔酸26e
将6-(5-氰基-6-(甲硫基)吡啶-3-基)己基-5-炔酸26d(0.7g,2.7mmol)溶于甲醇(10mL)和水(10mL),加入过氧单磺酸钾(9.3g,27mmol)。该反应在室温下搅拌两小时。反应结束后,过滤,母液倒入水中,用二氯甲烷萃取三遍,无水硫酸钠干燥,合并有机相浓缩。收集滤液得到粗品26e(815mg),产品不经纯化直接用于下一步反应。
MS m/z(ESI):293.0(M+1)+。
第四步2,5-二氧代吡咯烷-1-基-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己基-5-炔酸酯26f
将粗品26e(815mg)溶于二氯甲烷(10mL),加入N-羟基丁二酰亚胺(345mg,3.0mmol)和1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(1.04g,5.4mmol)室温搅拌反应2小时,反应结束
后,反应液倒入水中,用二氯甲烷萃取三遍,无水硫酸钠干燥,合并有机相浓缩。将得到的浓缩物经硅胶柱层析体系B得到标题化合物26f(400mg,产率:37%)。
MS m/z(ESI):390.0(M+1)+。
第五步(3R,11S)-11-苄基-24-(5-氰基-6-(甲基磺酰基)吡啶-3-基)-3-甲基-7,10,13,16,19-五氧代-4-氧杂-6,9,12,15,18-五氮杂四羰基-23-烯酸26g
将化合物26f(200mg,0.5mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入化合物13j(249mg,0.6mmol)和N,N-二异丙基乙胺(130mg,1mmol),室温搅拌反应2小时。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge C18 150x 19mm,5μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相30%-40%,流速:20mL/min)纯化得到标题化合物26g(80mg,产率:21%)。
MS m/z(ESI):748.3(M+1)+。
第六步N-((7S,15R)-7-苄基-17-(((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己-5-炔酰胺26
将化合物26g(25mg,0.03mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入化合物6m-2(15mg,0.03mmol),O-(7-氮杂苯并三唑-1-基)-N,N,N’,N’-四甲基脲六氟磷酸酯(15mg,0.04mmol)和N,N-二异丙基乙胺(8mg,0.06mmol),反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相45%-55%,流速:30mL/min)纯化得到标题化合物026(20mg,产率:51.7%)。MS m/z(ESI):1157.3(M+1)+。
1H NMR(400MHz,CD3OD)δ8.81(d,1H),8.41(d,1H),7.54(s,1H),7.45(d,1H),7.17(s,5H),5.65(dd,1H),5.57(d,1H),5.43-5.30(m,3H),4.71(dd,2H),4.50(dd,1H),4.22(t,1H),3.81(s,4H),3.64(dd,2H),3.39(s,3H),3.31(s,3H),3.11(dd,1H),2.90(dd,1H),2.64-2.55(m,3H),2.45(d,7H),2.17(dd,1H),2.00-1.86(m,5H),1.28(d,3H),1.00(s,3H)。
实施例27
N-((7S,15R)-7-苄基-17-(((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(4-环丙基-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺
第一步5-溴-2-氯-4-环丙基嘧啶27b
将5-溴-2-氯嘧啶27a(8.50g,43.94mmol)加入水(50mL)中,加入环丙基甲酸(4.54g,52.73mmol),硝酸银(1.49g,8.79mmol)和三氟乙酸(2.51g,21.97mmol),反应升到70℃搅拌,缓慢加入过硫酸铵(20.01g,87.89mmol),随后反应继续搅拌2小时。反应结束后,体系利用乙酸乙酯萃取,收集有机相,利用饱和食盐水洗涤,无水硫酸钠干燥,旋干溶剂得到粗产品,粗产品利用柱层析分离体系B纯化得到标题化合物27b(6g,产率:58%)。
MS m/z(ESI):232.9,235.0,237.0(M+1)+。
第二步6-(2-氯-4-环丙基嘧啶-5-基)己基-5-炔酸27c
将化合物27b(3g,12.85mmol)溶于四氢呋喃(20mL)中,加入5-己炔酸(2.16g,19.28mmol),双(三苯基膦)二氯化钯(1.80g,2.57mmol),碘化亚铜(246mg,1.29mmol)和三乙胺(3.9g,38.55mmol)。在氮气保护下,该反应在70℃下搅拌反应2小时。反应结束后,过滤,收集滤液,旋干溶剂得到粗产品,粗产品利用柱层析分离纯化体系B得到标题化合物27c(1.9g,产率:56%)。
MS m/z(ESI):265.1,267.1(M+1)+。
第三步6-(4-环丙基-2-(甲硫基)嘧啶-5-基)己基-5-炔酸27d
将化合物27c(600mg,2.27mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入甲硫醇钠(191mg,2.72mmol)和无水硫酸镁(644mg,4.54mmol)。该反应在50℃下搅拌反应2小时。随后,体系中加入饱和氯化铵水溶液,利用二氯甲烷萃取,收集有机相,旋干溶剂得到粗产品27d(600mg)。粗产品不经纯化直接用于下一步反应。
MS m/z(ESI):277.0(M+1)+。
第四步6-(4-环丙基-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酸27e
将化合物27d(600mg,2.17mmol)溶于甲醇和水的混合溶剂(V/V=1∶1,10mL)中,加入过氧单磺酸钾(6.67g,10.86mmol)。该反应在室温下反应半小时。反应结束后,过滤,收集滤液。滤液利用二氯甲烷萃取,收集有机相,无水硫酸钠干燥,饱和食盐水洗涤,旋干溶剂得到粗产品,粗产品利用柱层析分离体系B纯化得到标题化合物27e(200mg,产率:30%)。
MS m/z(ESI):309.1(M+1)+。
第五步2,5-二氧代吡咯烷-1-基-6-(4-环丙基-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酸酯27f
将化合物27e(200mg,0.65mmol)溶于二氯甲烷,加入N-羟基丁二酰亚胺(82mg,0.71mmol)和1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(249mg,1.30mmol)。该反应在室温下反应一小时。反应结束后,旋干溶剂得到粗产品,粗产品利用柱层析分离体系B纯化得到标题化合物27f(200mg,产率:76%)。
MS m/z(ESI):406.0(M+1)+。
第六步(3R,11S)-11-苄基-24-(4-环丙基-2-(甲基磺酰基)嘧啶-5-基)-3-甲基-7,10,13,16,19-五氧代-4-氧杂-6,9,12,15,18-五氮杂四羰基-23-烯酸27g
将化合物27f(80mg,0.20mmol)溶于N,N-二甲基甲酰胺(2mL),加入化合物13j(107mg,0.23mmol)和N,N-二异丙基乙胺(51mg,0.39mmol)。该反应在室温下搅拌1小时。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge C18 150 x 19mm,5μm;流动相1:水(含0.1%的FA);流动相2:乙腈;10分钟梯度,梯度配比:乙腈相40%-50%,流速:20mL/min)纯化得到标题化合物27g(50mg,产率:34%)。
MS m/z(ESI):764.2(M+23)+。
第七步N-((7S,15R)-7-苄基-17-(((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(4-环丙基-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺27
将化合物6m-2(15mg,0.03mmol)溶于N,N-二甲基甲酰胺(1mL),加入化合物27g(25mg,0.03mmol),O-(7-氮杂苯并三唑-1-基)-N,N,N’,N’-四甲基脲六氟磷酸酯(15mg,0.04mmol)和N,N-二异丙基乙胺(9mg,0.07mmol),该反应在室温下搅拌15分钟,反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C1821.2*250mm,10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;10分钟梯度,梯度配比:乙腈相40%-70%,流速:30mL/min)纯化得到标题化合物27(18mg,产率:46%)。
MS m/z(ESI):1173.3(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.86(s,1H),8.67(d,1H),8.49(t,1H),8.29(t,1H),8.20(t,1H),8.12(d,1H),8.06(t,1H),7.73(d,1H),7.30(s,1H),7.23-7.17(m,4H),7.17-7.11(m,1H),6.53(s,1H),5.59-5.48(m,1H),5.47-5.37(m,2H),5.29(s,2H),4.63-4.54(m,1H),4.53-4.44(m,2H),4.04-3.94(m,2H),3.74(d,1H),3.71-3.66(m,4H),3.65(d,1H),3.60(d,1H),3.55(d,1H),3.02(dd,2H),2.86-2.72(m,3H),2.41(s,3H),2.28-2.22(m,1H),2.05-1.97(m,1H),1.92-1.88(m,1H),1.87-1.79(m,4H),1.79-1.73(m,1H),1.32-1.26(m,2H),1.23(s,2H),1.20-1.15(m,2H),1.13(d,3H),0.86(t,3H)。
实施例28
N-((7S,15R)-7-苄基-17-(((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代
-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺
第一步5-溴-2-氯-4-甲氧基嘧啶28b
将5-溴-2,4-二氯嘧啶28a(5.0g,22mmol)溶于甲醇(60mL)中,向溶液中加入甲醇钠的甲醇溶液(30%,4.0g,22.0mol)。反应液在室温下搅拌2小时。反应结束后,反应液浓缩,乙酸抑制萃取,有机相干燥浓缩得到标题化合物28b(5.0g,产率:100%)。
MS m/z(ESI):223.1(M+1)+。
第二步5-溴-4-甲氧基-2-(甲硫基)嘧啶28c
向化合物28b(5.0g,22.0mmol)的N,N-二甲基甲酰胺(25mL)中加入甲硫醇钠(1.52g,22mmol),反应液在40℃下搅拌1小时。反应结束后,反应液倒入水中并用乙酸乙酯(50mL x 3)萃取,合并有机相经过干燥,浓缩得到的粗品经硅胶柱层析体系B纯化得到标题化合物28c(3.0g,产率:60%)。
MS m/z(ESI):235.0(M+1)+。
第三步6-(4-甲氧基-2-(甲硫基)嘧啶-5-基)己基-5-炔酸28d
向化合物28c(3.0g,12.8mmol)溶解在异丙醇(20mL)中,加入己-5-炔酸(1.43g,12.8mmol),碘化亚铜(243mg,1.29mmol),[1,1′-双(二苯基膦基)二茂铁]二氯钯(II)(300mg,0.41mmol)和碳酸钠溶液(5M,8mL)。反应液在氮气氛围下置于80℃下搅拌16小时。反应结束后,反应液过滤,滤液用乙酸乙酯萃取(50mL x 3),合并有机相经过干燥,浓缩得到的粗品经硅胶柱层析体系B纯化得到标题化合物28d(3.0g,产率:87%)。
MS m/z(ESI):267.1(M+1)+。
第四步5-溴-2,4-二氯嘧啶6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酸28e
将化合物28d(3.0g,11.2mmol)溶解在甲醇和水的混合溶剂中(40mL,V/V=1∶1),加入过氧硫酸氢钾(11.6g,33.6mmol),反应液在室温下搅拌3小时。反应结束后,反应液倒入水中并用乙酸乙酯(50mL x 3)萃取,合并有机相经污水硫酸钠干燥得到粗品,粗品经硅胶柱层析体系B纯化得到标题化合物28e(2.5g,产率:75%)。
MS m/z(ESI):299.1(M+H)+。
第五步2,5-二氧代吡咯烷-1-基-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酸酯28f
向化合物28e(700mg,2.3mmol)和N-羟基丁二酰亚胺(396mg,3.45mmol)的四氢呋喃(10mL)溶液中加入N,N-二异丙基碳二亚胺(434mg,3.45mmol),反应在室温下搅拌3小时。反应结束后,反应液直接浓缩得到的粗品经硅胶柱层析体系B纯化得到标题化合物28f(600mg,产率:60%)。
MS m/z(ESI):395.5(M+1)+。
第六步(3R,11S)-11-苄基-24-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)-3-甲基-7,10,13,16,19-五氧代-4-氧杂-6,9,12,15,18-五氮杂四羰基-23-烯酸28g
将化合物28f(600mg,1.5mmol)溶解在N,N-二甲基甲酰胺(6mL)中,向溶液中依次加入N,N-二异丙基乙胺(580mg,4.5mmol)和化合物13j(677mg,1.5mmol),反应液在室温搅拌3小时。浓缩得到粗品,粗品采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:Xbridge C18 150x 19mm,5μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相29%-100%,流速:25mL/min)纯化,得到标题化合物28g(350mg,产率:35%)。
MS m/z(ESI):754.1(M+Na)+。
第七步N-((7S,15R)-7-苄基-17-(((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺28
将化合物28g(25mg,0.034mmol)溶于N,N-二甲基甲酰胺(3mL),加入化合物6m-2(15mg,0.033mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(25mg,0.065mmol)和N,N-二异丙基乙胺(171mg,1.32mmol)。反应液置于室温下搅拌3小时。反应结束后,浓缩得到粗品,粗品通过采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2 x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相40%-70%,流速:30mL/min)纯化得到标题化合物28(16mg,产率:42%)。
MS m/z(ESI):1163.2(M+1)+。
1H NMR(400MHz,CDCl3)δ8.56(s,1H),8.43(s,1H),7.52-7.48(m,2H),7.40-7.29(m,3H),7.24-7.04(m,6H),6.94(s,1H),5.60-5.55(m,2H),5.35-5.32(m,1H),5.16(d,2H),5.04-4.56(m,4H),4.25-3.73(m,9H),3.30(s,3H),3.26-2.93(m,4H),2.60-2.42(m,7H),2.26(s,3H),2.17-1.74(m,8H),1.31(d,3H),0.97(t,3H)。
实施例29
(R)-3-(((S)-7-苄基-17-(4-(2-(甲基磺酰基)嘧啶-5-基)哌啶-1-基)-3,6,9,12,15-五氧代-2,5,8,11,14-五氮杂十七烷基)氧基)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,3,4,10,11,14,16-八氢-13H-环庚烷[de]吡喃并[3′,4′:6,7]中氮茚并[1,b]喹啉-1-基)丁酰胺
第一步4-碘哌啶盐酸盐29b
将4-碘哌啶-1-甲酸叔丁酯29a(4g,12.86mmol)加入到反应瓶中,室温下加入4M盐酸的1,4-二氧六环溶液(20ml),室温下反应一小时。反应完成后旋干体系溶剂得到粗品4-碘哌啶盐酸盐29b(2.7g,产率:100%)。
MS m/z(ESI):212.0(M+1)+。
第二步3-(4-碘哌啶-1-基)丙酸乙酯29c
将4-碘哌啶盐酸盐29b(2.7g,10.93mmol),3-溴丙酸乙酯(2.95g,16.40mmol)和碳酸钾(7.54g,54.65mmol)加入到反应瓶中,加入乙腈(50ml)。反应在60℃下反应16小时。反应完成后旋干反应体系中的溶剂,加入甲基叔丁基醚(50mL)打浆半小时,过滤旋干滤液得到粗产品29c(3.1g),产物不经纯化直接用于下一步反应。
MS m/z(ESI):312.1(M+1)+。
第三步3-(4-(2-(甲硫基)嘧啶-5-基)哌啶-1-基)丙酸乙酯29d
将氯化镍二甲氧基乙烷(299mg,1.37mmol)和2-脒基吡啶盐酸盐(215mg,1.37mmol)加入到反应瓶中,在氮气的氛围下加入二甲基乙酰胺(10ml),并将混合物在室温下搅拌半小时。另取一个反应瓶加入化合物29c(1.7g,5.46mmol),5-溴-2-(甲硫基)嘧啶(1.1g,5.46mmol),锰(75mg,1.37mmol),四丁基碘化铵(2.0g,5.46mmol),再加入N,N-二甲基乙酰胺(10ml)置换三次氮气,置换完成后将镍配体化合物用注射器转移到体系中,反应在60℃下反应3小时。反应完成后体系加入乙酸乙酯(200ml)和水(400ml)萃取,有机相干燥,浓缩,采用硅胶柱层析体系B纯化得到标题化合物29d(1.5g,产率:89%)。
MS m/z(ESI):310.2(M+1)+。
第四步3-(4-(2-(甲硫基)嘧啶-5-基)哌啶-1-基)丙酸29e
将化合物29d(1.5g,4.84mmol)加入到四氢呋喃和水的混合溶剂中(15mL,V/V=2∶1),加入氢氧化锂(348mg,14.52mmol),在室温下反应16小时。反应完成后体系过滤,浓缩旋干得到粗产品29e(1.5g),产物不经纯化直接用于下一步反应。
MS m/z(ESI):282.2(M+1)+。
第五步3-(4-(2-(甲基磺酰基)嘧啶-5-基)哌啶-1-基)丙酸29f
将化合物29e(1.1g)溶于三氟乙酸中,加入过量间氯过氧苯甲酸,直到反应在室温下完成。反应完成后,用氮气将体系三氟乙酸吹干,然后加入水(30ml)打浆,过滤,收集滤液并浓缩,用柱层析体系A纯化得到化合物29f(430mg)。
MS m/z(ESI):314.1(M+1)+。
第六步(3R,11S)-11-苄基-3-甲基-21-(4-(2-(甲基磺酰基)嘧啶-5-基)哌啶-1-基)-7,10,13,16,19-五氧代-4-氧杂-6,9,12,15,18-五氮杂二十烷酸29h
将化合物29f(430mg,1.37mmol)和N-羟基丁二酰亚胺(189mg,1.64mmol)溶解在超干的N,N-二甲基甲酰胺(10ml)中,随后加入N,N-二异丙基碳二亚胺(206mg,1.64mmol)反应在室温下搅拌2小时。随后一锅法加入化合物13j(300mg,0.66mmol)和N,N-二异丙基乙胺(213mg,1.65mmol),反应完成后,粗品采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2 x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相40%-95%,流速:30mL/min)纯化得到标题化合物29h(200mg,)。
MS m/z(ESI):747.3(M+1)+。
第七步(R)-3-(((S)-7-苄基-17-(4-(2-(甲基磺酰基)嘧啶-5-基)哌啶-1-基)-3,6,9,12,15-五氧代-2,5,8,11,14-五氮杂十七烷基)氧基)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,3,4,10,11,14,16-八氢-13H-环庚烷[de]吡喃并[3′,4′:6,7]中氮茚并[1,b]喹啉-1-基)丁酰胺
将化合物29h(25mg,0.033mmol),化合物6m-2(15mg,0.033mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(19mg,0.0495mmol)和N,N-二异丙基乙胺(10.6mg,0.0825mmol)加入到超干的N,N-二甲基甲酰胺(5ml)中,反应在室温下进行2小时,反应完成后,终产物采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2 x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相40%-95%,流速:30mL/min)纯化得到标题化合物29(16.7mg,产率:42.3%)。
MS m/z(ESI):1178.4(M+1)+。
1H NMR(400MHz,DMSO-d6)δ9.00(s,2H),8.66(d,1H),8.48(t,1H),8.35(t,1H),8.27(t,1H),8.11(d,1H),8.02(t,1H),7.74(d,1H),7.30(s,1H),7.21(d,4H),7.18-7.12(m,1H),6.51(s,1H),5.53(s,1H),5.42(s,2H),5.29(s,2H),4.58(dd,1H),4.49(dd,2H),3.99(dd,1H),3.78-3.58(m,6H),3.39(s,3H),3.00(t,3H),2.78-2.66(m,2H),2.57(t,3H),2.43(t,4H),2.38-2.21(m,5H),2.02(t,3H),1.82(ddd,8H),1.13(d,3H),0.86(t,3H)。
实施例30
N-((7S,15R)-7-苄基-17-(((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酰胺
第一步
N-((7S,15R)-7-苄基-17-(((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酰胺30将化合物21b(30mg,0.065mmol)溶于无水N,N-二甲基甲酰胺(5mL)中,加入化合物28g(43mg,0.064mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(37mg,0.096mmol)和N,N-二异丙基乙胺(171mg,1.32mmol)。反应液置于室温下搅拌2小时。反应结束后,反应液中加入水(50mL),用乙酸乙酯(30mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩,粗产品通过采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2 x 250mm 10um;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相42%-52%,流速:30mL/min)纯化得到标题化合物30(18.5mg,23.5%)。
MS m/z(ESI):1175.3(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.79(s,1H),8.53-8.45(m,2H),8.30(t,1H),8.17(t,1H),8.12(d,1H),8.05(t,1H),7.74(d,1H),7.30(s,1H),7.27-7.14(m,5H),6.52(s,1H),5.59-5.55(m,1H),5.42(s,2H),5.20(dd,2H),4.55-4.51(m,3H),4.09-3.97(m,4H),3.78-3.54(m,6H),3.39(s,3H),3.31(s,3H),3.04(dd,1H),2.80-2.75(m,1H),2.56-2.53(m,1H),2.46-2.42(m,1H),2.35-2.20(m,4H),2.16-2.12(m,2H),1.94-1.78(m,4H),1.15-1.12(m,5H),0.87(t,3H),0.79-0.72(m,2H)。
实施例31
N-((7S,15R)-7-苄基-17-(((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己基-5-炔酰胺
第一步
N-((7S,15R)-7-苄基-17-(((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代
-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己基-5-炔酰胺31
将化合物26g(50mg,0.06mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入化合物21b(30mg,0.06mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(30mg,0.08mmol)和N,N-二异丙基乙胺(16mg,0.12mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:WELCH Xtimate C18 21.2 x 250mm 10um;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相42%-52%,流速:20mL/min)纯化,得到标题化合物31(28mg,产率:40%)。
MS m/z(ESI):1169.3(M+1)+。
1H NMR(400MHz,CD3OD)δ8.77(d,1H),8.37(d,1H),7.57(s,1H),7.51(d,1H),7.23-7.19(m,2H),7.15(s,3H),5.58(dd,2H),5.38-5.25(m,2H),5.07(d,1H),4.69(d,2H),4.46-4.39(m,1H),4.11(dd,1H),3.85(s,5H),3.59(dd,1H),3.51-3.45(m,1H),3.37(s,3H),2.99(ddd,2H),2.57(t,2H),2.46(dt,4H),2.34-2.22(m,2H),2.01-1.81(m,6H),1.26(d,3H),1.13(d,2H),0.97(s,3H),0.80(s,2H)。
实施例32
N-((7S,15R)-7-苄基-17-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己基-5-酰胺
第一步
N-((7S,15R)-7-苄基-17-((1S,9S)-9-乙基-5-氟-9-羟基-10,13-二氧代-4-乙烯基-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-15-甲基-2,5,8,11,17-五氧代-14-氧杂-3,6,9,12-四氮杂十七烷基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己基-5-酰胺32
将化合物7b-2(20mg,0.04mmol)溶于N,N-二甲基甲酰胺(5mL),加入化合物28g(32mg,0.04mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(23mg,0.06mmol)和N,N-二异丙基乙胺(11mg,0.09mmol)。该反应在室温下搅拌30分钟。反应结束后,粗品采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150 x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;12分钟梯度,梯度配比:乙腈相42%-52%,流速:20mL/min)纯化得到标题化合物32(24mg,产率:46%)。
MS m/z(ESI):1161.4(M+1)+。
1H NMR(400MHz,DMSO-d6)88.79(s,1H),8.52(d,1H),8.31(s,1H),8.16(s,1H),8.10(d,1H),8.04(s,1H),7.85(d,1H),7.34(s,1H),7.25-7.15(m,4H),6.97(dd,2H),6.54(s,1H),5.87-5.80(m,2H),5.59(s,1H),5.43(s,1H),5.32(d,2H),5.18(d,2H),4.65(s,2H),4.52(d,4H),4.06(s,3H),
3.69(d,3H),3.03(d,2H),2.71-2.65(m,4H),2.32(dd,4H),2.11(s,3H),1.91-1.75(m,6H),1.12(d,3H),0.90-0.82(m,3H)。
实施例33
(R)-2-环丙基-N-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
(S)-2-环丙基-N-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
第一步
(R)-2-环丙基-N-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
(S)-2-环丙基-N-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
将化合物23b(20mg,0.042mmol)溶于N,N-二甲基乙酰胺(2mL)中,加入2-环丙基-2-羟基乙酸(5.4mg,0.046mmol),苯并三氮唑-1-基氧基三(二甲基氨基)磷鎓六氟磷酸盐(22mg,0.051mmol)和N,N-二异丙基乙胺(11mg,0.084mmol)。反应液在室温下搅拌3小时。反应结束后,反应液通过采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2 x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相46%-100%,流速:30mL/min)纯化得到产物33-1(4.1mg,收率:17.2%),33-2(1.7mg,产率:6.9%)。
33-1(单一构型化合物,较短保留时间)
MS m/z(ESI):574.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.62-8.37(m,2H),7.69(d,1H),7.28(s,1H),6.53(s,1H),5.59-5.48(m,2H),5.43(d,2H),5.28(d,1H),3.62(d,1H),3.49-3.46(m,1H),2.19-1.72(m,6H),1.69-1.53(m,1H),1.23(s,1H),1.18-1.00(m,3H),0.85(t,3H),0.83-0.77(m,1H),0.74-0.62(m,1H),0.46-0.28(m,4H)。
33-2(单一构型化合物,较长保留时间)
MS m/z(ESI):574.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.45(d,2H),7.69(d,1H),7.28(s,1H),6.53(s,1H),5.60-5.52(m,1H),5.48(s,1H),5.43(d,2H),5.30(d,1H),3.59(d,1H),3.49-3.46(m,1H),2.14-1.79(m,6H),1.75-1.61(m,1H),1.24(s,1H),1.17-1.02(m,3H),0.86(t,J=8Hz,3H),0.83-0.77(m,1H),0.74-0.64(m,1H),0.48-0.29(m,4H)。
实施例34
(S)-3-环丙基-N-((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丙酰胺
(R)-3-环丙基-N-((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丙酰胺
第一步
(S)-3-环丙基-N-((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丙酰胺
(R)-3-环丙基-N-((1S,9S)-4-环丙基-9-乙基-5-氟-9-羟基-10,13-二氧-2,3,9,10,13,15-六氢-1H,12H-苯并[d]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丙酰胺
将化合物21b(30mg,0.065mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入3-环丙基-3-羟基丙酸(15mg,0.098mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(37mg,0.096mmol)和N,N-二异丙基乙胺(171mg,1.32mmol)。反应液置于室温下搅拌2小时。反应结束后,采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2 x 250mm 10μm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相40%-100%,流速:30mL/min)纯化得到产物34-1(4.2mg,产率:11%)和34-2(3.9mg,产率:10%)。
34-1(单一构型化合物,保留时间较短的化合物)
MS m/z(ESI):574.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.53-8.39(m,2H),7.75(d,1H),7.30(s,1H),6.53(s,1H),5.55(dd,1H),5.42(s,2H),5.23(s,2H),4.69(s,1H),2.37(d,2H),2.15(d,2H),2.01-1.77(m,4H),1.17-1.07(m,2H),0.91-0.72(m,6H),0.39-0.12(m,5H)。
34-2(单一构型化合物,保留时间较长的化合物)
MS m/z(ESI):574.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.45(d,2H),7.75(d,1H),7.31(s,1H),6.53(s,1H),5.64-5.54(m,1H),5.43(s,2H),5.24(q,2H),4.65(d,1H),2.33(d,2H),2.27-1.73(m,6H),1.12(dd,2H),0.91-0.70(m,6H),0.39-0.13(m,5H)。
实施例35
(R)-2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
(S)-2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
第一步
(9H-氟-9-基)甲基((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃[3′,4′:6,7]中氮茚[1,2-b]喹啉-1-基)氨基甲酸酯035a
将化合物024j(500mg,0.74mmol)使用Gilson制备仪器和大赛璐手性柱分离手性异构体,(色谱柱:CHIRALPAK IE 3.0cm I.D.×25cm,10μm;流动相1:MeOH;流动相2:DCM;梯度配比:MeOH/DCM=80/20,流速:25mL/min)纯化得到化合物035a(230mg,产率:46%)。
MS m/z(ESI):674.1(M+1)+。
第二步
(1S,10S)-1-氨基-10-乙基-6-氟-10-羟基-5-甲基-1,2,3,10,13,16-六氢-11H,14H-噁庚英并[4,3,2-de]吡喃[3′,4′:6,7]中氮茚并[1,2-b]喹啉-11,14-酮035b
将化合物035a(50mg,0.07mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入二乙胺(0.5mL)。该反应在室温下搅拌1小时。反应结束后,真空旋干溶剂,得到标题化合物035b(34mg),产物不经纯化直接用于下一步反应。
MS m/z(ESI):452.1(M+1)+。
第三步
(R)-2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺(S)-2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺
将化合物035b(35mg,0.08mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入2-环丙基-2-羟基乙酸(11mg,0.09mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(46mg,0.12mmol)和N,N-二异丙基乙胺(21mg,0.16mmol)。该反应在室温下搅拌30分钟。反应结束后,采用高效液相色谱制备Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150 x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配
比:乙腈相40%-60%,流速:20mL/min)纯化得到2-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-2-羟基乙酰胺(15mg)。将样品经过手性拆分(SFC 80色谱柱:Daicel CHIRALCEL OD,250mm x 30mm I.D.,10μm;流动相:CO2/MeOH[0.2%NH3(7M Solution in MeOH)]=70/30,流速:70g/min)得到化合物35-1(5mg,产率:12%)和35-2(5mg,产率:12%)。
35-1(单一构型化合物,保留时间较短的化合物)
MS m/z(ESI):550.1(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.14(d,1H),7.72(d,1H),7.30(s,1H),6.53(s,1H),5.68-5.61(m,1H),5.55-5.52(m,2H),5.44(s,2H),4.67(dd,1H),4.23(dd,1H),3.46(t,1H),2.36(s,3H),2.02-1.97(m,2H),1.92-1.80(m,2H),0.87(t,3H),0.84(d,1H),0.36-0.25(m,4H)。
35-2(单一构型化合物,保留时间较长的化合物)
MS m/z(ESI):550.1(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.17(d,1H),7.71(d,1H),7.30(s,1H),6.53(s,1H),5.62(d,1H),5.49(t,2H),5.44(s,2H),4.62-4.53(m,1H),4.29(dd,1H),3.61(t,1H),2.36(d,3H),2.06-1.94(m,2H),1.85(dd,2H),0.87(t,3H),0.85-0.83(m,1H),0.25-0.19(m,2H),0.08-0.02(m,2H)。
实施例36
(R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基戊酰胺
(S)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基戊酰胺
第一步
(R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基戊酰胺
(S)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基戊酰胺
将化合物6m-2(30mg,0.07mmol)溶于N,N-二甲基甲酰胺(3mL),在加入3-羟基戊酸(9mg,0.07mmol),N,N-二异丙基乙基胺(17mg,0.13mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(38mg,0.10mmol)。反应体系在常温下反应1小时。反应结束后,采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:Xbridge 10μm C18 250 x 30mm,10μm;流动相1:水(含10mmol/L的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相5%-57%,流速:50mL/min)纯化得到化合物36-1(6.98mg,产率:18%)和36-2(6.70mg,产率:18%)。
36-1(单一构型化合物,保留时间较短的化合物)
MS m/z(ESI):550.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.61(d,1H),7.74(d,1H),7.29(s,1H),6.52(s,1H),5.53(s,1H),5.43(s,2H),5.39-5.09(m,2H),4.63(s,1H),2.43(s,3H),2.32(d,3H),2.10-1.93(m,3H),1.92-1.81(m,2H),1.75(s,1H),1.40-1.32(m,2H),1.24(s,2H),0.91-0.76(m,6H)。
36-2(单一构型化合物,保留时间较长的化合物)
MS m/z(ESI):550.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.69(d,1H),7.73(d,1H),7.28(s,1H),6.51(s,1H),5.51(d,2H),5.43(s,2H),5.33(d,1H),4.64(s,1H),2.42(s,4H),2.34-2.22(m,4H),2.08(d,1H),2.01(d,1H),1.92-1.78(m,2H),1.65(s,1H),1.44-1.31(m,2H),1.24(s,1H),0.95-0.66(m,6H)。
实施例37
(S)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基-4-甲基戊酰胺
(R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基-4-甲基戊酰胺
第三步
(S)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基-4-甲基戊酰胺
(R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3’,4’:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基-4-甲基戊酰胺
将化合物6m-2(30mg,0.07mmol)溶于N,N-二甲基甲酰胺(3mL),在加入3-羟基-4-甲基戊酸(9mg,0.07mmol),N,N-二异丙基乙基胺(17mg,0.13mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(38mg,0.10mmol)。反应体系在室温下反应1小时。反应结束后,采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5μm C18 150 x 19mm;流动相1:水(含0.1%FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相42%-100%,流速:20mL/min)纯化得到化合物37-1(6.6mg,产率:18%)和37-2(6.9mg,产率:18%)。
37-1(单一构型化合物,保留时间较短的化合物)
MS m/z(ESI):564.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.68(d,1H),8.48(br,1H),7.73(d,1H),7.28(s,1H),6.56(s,1H),5.60-5.49(m,1H),5.42(s,2H),5.35(d,1H),5.21(d,1H),4.64(s,1H),2.42(s,3H),2.29(d,3H),
2.13-1.91(m,3H),1.90-1.80(m,2H),1.79-1.67(m,1H),1.60-1.47(m,1H),1.23(s,1H),0.87(d,3H),0.82(d,6H)。
37-2(单一构型化合物,保留时间较长的化合物)
MS m/z(ESI):564.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.78(s,1H),8.50(s,1H),7.73(s,1H),7.28(s,1H),6.56(s,1H),5.43(s,3H),5.34(d,2H),4.62(s,2H),2.29(s,3H),2.07(s,2H),2.02-1.97(m,2H),1.92-1.77(m,2H),1.71-1.49(m,1H),1.23(s,1H),0.99-0.66(m,11H)。
实施例38
(R)-3-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丙酰胺
(S)-3-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丙酰胺
(R)-3-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丙酰胺
(S)-3-环丙基-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基丙酰胺
将化合物6m-2(30mg,0.07mmol)溶于N,N-二甲基甲酰胺(3mL),在加入3-环丙基-3-羟基丙酸(18mg,0.14mmol),N,N-二异丙基乙基胺(17mg,0.13mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(38mg,0.10mmol)。反应体系在常温下反应1小时。反应结束后,采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:Xbridge 5μm C18 150 x 19mm;流动相1:水(含0.1%FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相45%-100%,流速:25mL/min)纯化分离得到标题化合物38-1(4mg,产率:11%)和标题化合物38-2(4mg,产率:11%)。
38-1(单一构型化合物,保留时间较短的化合物)
MS m/z(ESI):562.3(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.63(d,1H),7.74(d,1H),7.28(s,1H),6.52(s,1H),5.53(s,1H),5.42(s,4H),4.69(d,1H),3.22(s,2H),2.61(d,1H),2.42(s,3H),2.31(d,1H),2.08-1.69(m,6H),0.87(s,3H),0.81(d,1H),0.37-0.20(m,3H),0.16-0.08(m,1H)。
38-2(单一构型化合物,保留时间较长的化合物)
MS m/z(ESI):562.3(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.71(d,1H),7.73(d,1H),7.27(s,1H),6.51(s,1H),5.43(s,5H),4.64(d,1H),4.55-4.51(m,1H),3.22(s,2H),2.65(d,1H),2.41(s,3H),2.31(d,1H),2.13-1.57(m,6H),0.88(s,3H),0.82(s,1H),0.45(s,1H),0.32-0.13(m,3H)。
实施例39
(2S,3R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基-2-甲基丁酰胺39
第一步
(2S,3R)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚烷并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)-3-羟基-2-甲基丁酰胺39
将化合物6m-2(30mg,0.07mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入(2S,3R)-3-羟基-2-甲基丁酸(12mg,0.10mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(38mg,0.10mmol)。该反应在室温下搅拌15分钟。反应结束后,采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:Xbridge 5μm C18 150 x 19mm,5μm;流动相1:水(含0.1%的FA);流动相2:乙腈;10分钟梯度,梯度配比:乙腈相42%-52%,流速:25mL/min)纯化得到化合物39(2mg,产率:5%)。
MS m/z(ESI):550.0(M+1)+。
1H NMR(400MHz,CDCl3)δ7.73(s,1H),7.42-7.28(m,2H),5.51(s,1H),5.41(d,1H),5.35(t,1H),5.26-5.16(m,2H),5.04(d,1H),4.18-4.00(m,2H),3.33(s,2H),2.65-2.50(m,3H),2.48(s,3H),2.27-2.18(m,1H),2.11-2.04(m,2H),2.03-1.97(m,1H),1.33-1.28(m,6H),0.95(t,3H)。
实施例40
N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[基]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧-5,8,11,14-四氮杂十六烷-16-基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己-5-酰胺
第一步2-环丙基-2-羟基乙酸(40b)的制备
将(S)-2-氨基-2-环丙基乙酸(23g,200mmol)40a溶于2M的硫酸(100mL),冰水浴下加入4M亚硝酸钠水溶液(450ml)反应液置于室温下搅拌16小时。反应结束后,反应液用水稀释,乙酸乙酯洗涤,得到的滤液直接浓缩得到粗产品40b(11.5g)。
MS m/z(ESI):117.1(M+H)+。
第二步2-环丙基-2-羟基乙酸苄酯(40c)的制备
将化合物40b(11.5g,0.099mol)溶于乙腈(50mL)中,依次加入碳酸钾(54.65g,0.396mol),溴化苄(17.03g,0.099mol)和四丁基碘化铵(3.66g,0.0099mol),反应液置于室温下搅拌48小时。反应液硅藻土过滤,滤饼用乙酸乙酯淋洗,滤液浓缩通过硅胶柱体系B纯化得到标题化合物40c(5.8g,产率:28%)。
MS m/z(ESI):207.1(M+H)+。
第三步苄基(R)-2-环丙基-2-羟基乙酸酯(40d)的制备
将化合物40c(12.1g,58.4mmol)使用SFC 150制备仪器和手性柱分离手性异构体(色谱柱:Daicel CHIRALCEL AD,250mm x 30mm I.D.,10μm;流动相C02/MeOH[0.2%NH3(7M Solution in MeOH)]=90/10,流速:120g/min)纯化得到化合物40d(5.8g,产率:48%)。
MS m/z(ESI):207.1(M+H)+。
第四步(R)-10-环丙基-1-(9H-芴-9-基)-3,6-二氧-2,9-二氧-4,7-二氮杂十一烷-11-酸苄酯(40e)的制备
将化合物40d(5.8g,28mmol)溶于二氯甲烷(20mL),加入(2-((((9H-芴-9-基)甲氧基)羰基)氨基)乙酰胺基)乙酸甲酯(5g,14mmol)和4-甲基苯磺酸吡啶(1.4g,5.6mmol)。反应液置于40℃下反应12小时。反应结束后,减压浓缩,将得到的浓缩物经硅胶柱层析体系B纯化得到标题化合物40e(1.2g,收率:30%)。
MS m/z(ESI):537.2(M+Na)+。
第五步(R)-2-((2-氨基乙酰氨基)甲氧基)-2-环丙基乙酸苄酯(40f)制备
将化合物40e(1.2g,2.33mmol)溶于N,N-二甲基甲酰胺(10mL),加入二乙胺(0.34g,4.66mmol)。反应液置于室温下搅拌1小时。反应结束后,产物不经纯化直接进行下一步反应。MS m/z(ESI):293.1(M+H)+。
第六步(5S,13R)-5-苄基-13-环丙基-1-(9H-芴-9-基)-3,6,9-三氧基-2,12-二氧基-4,7,10-三氮杂十四烷-14-酸苄酯(40g)的制备
将化合物40f(0.6g,2.05mmol)溶于N,N-二甲基甲酰胺(5mL)中,加入(((9H-芴-9-基)甲氧基)羰基)-L-苯丙氨酸基甘氨酸(1.09g,2.46mmol)和N,N-二异丙基乙胺(0.53g,4.1mmol)。反应液置于室温下搅拌2小时。反应结束后,产物不经纯化直接进行下一步反应。
MS m/z(ESI):684.3(M+Na)+。
第七步(R)-2-((2-((S)-2-氨基-3-苯基丙酰胺基)乙酰胺基)甲氧基)-2-环丙基乙酸苄酯(40h)的制备
将化合物40g(1.2g,1.8mmol)溶于N,N-二甲基甲酰胺(10mL),加入二乙胺(0.27g,3.6mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液中加入水(20mL),用乙酸乙酯(10mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩。将得到的浓缩物经硅胶柱层析体系B纯化得到标题化合物40h(0.6g,产率:70%)。
MS m/z(ESI):440.2(M+H)+。
第八步(11S,19R)-11-苄基-19-环丙基-1-(9H-氟-9-基)-3,6,9,12,15-五氧代-2,18-二氧-4,7,10,13,16-五氮杂二十碳酸苄酯(40i)的制备
将化合物40h(0.6g,1.36mmol)溶于N,N-二甲基甲酰胺(10mL),加入(((9H-芴-9-基)甲氧基)羰基)甘氨酰甘氨酸(0.58g,1.63mmol),N,N,N’,N’-四甲基-O-(7-氮杂苯并三唑-1-基)六氟磷酸脲(0.78g,2.04mmol)和N,N-二异丙基乙胺(0.38g,2.72mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液中加入水(10mL),用乙酸乙酯(10mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩。将得到的浓缩物经硅胶柱层析体系B纯化得到标题化合物40i(0.8g,产率:76%)。
MS m/z(ESI):798.2(M+H)+。
第九步(11S,19R)-11-苄基-19-环丙基-1-(9H-芴-9-基)-3,6,9,12,15-五氧代-2,18-二氧-4,7,10,13,16-五氮杂二十碳酸苄酯(40j)的制备
将化合物40i(0.8g,1.03mmol)溶于乙醇和乙酸乙酯的混合溶剂中(10mL,V/V=1∶1),加入Pd/C(0.2g,1.03mmol)。反应液置于室温氢气气氛下搅拌2小时。反应结束后,通过硅藻土过滤,滤饼用乙酸乙酯洗涤,合并滤液减压浓缩,得到标题化合物40j(0.55g,产率:71%)。MS m/z(ESI):708.1(M+Na)+。
第十步(2R,10S)-16-氨基-10-苄基-2-环丙基-6,9,12,15-四氧代-3-氧-5,8,11,14-四氮杂十六烷酸(40k)的制备
将化合物40j(0.55g,0.8mmol)溶于N,N-二甲基甲酰胺(10mL),加入二乙胺(117mg,1.6
mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液中加入四氢呋喃(20mL),析出的固体过滤收集滤饼。得到标题化合物40k(0.2g,产率:54%)。
MS m/z(ESI):464.2(M+H)+。
第十一步(2R,10S)-10-苄基-2-环丙基-23-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)-6,9,12,15,18-五氧代-3-氧-5,8,11,14,17-五氮杂三碳-22-炔酸(40l)的制备
将化合物40k(200mg,0.43mmol)溶于N,N-二甲基甲酰胺(10mL),加入2,5-二氧代吡咯烷-1-基-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酸酯28f(152mg,0.39mmol)和N,N-二异丙基乙胺(110mg,0.78mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液中加入水(20mL),用乙酸乙酯(15mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩,得到粗产品,粗产品通过采用高效液相色谱制备(GILSON Prep LC with UV detector,色谱柱:Xtimate 10u C18 250 x 30mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相25%-95%,流速:50mL/min)纯化得到标题化合物40l(100mg,产率:35%)。
MS m/z(ESI):766.2(M+Na)+。
第十二步N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[基]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧-5,8,11,14-四氮杂十六烷-16-基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己-5-酰胺(40)的制备
将化合物40l(60mg,0.08mmol)溶于N,N-二甲基甲酰胺(6mL),加入化合物6m-2(45mg,0.08mmol),4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(61mg,0.16mmol)和三乙胺(26mg,0.16mmol)。反应液置于室温下搅拌1小时。反应结束后,反应液中加入水(20mL),用乙酸乙酯(20mL x 3)萃取,合并有机相并用饱和食盐水洗,干燥,浓缩,粗产品采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5um C18 150 x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相40%-100%,流速:20mL/min)纯化,得到标题化合物40(10mg,产率:6%)。
MS m/z(ESI):1175.3(M+H)+。
1H NMR(400MHz,DMSO-d6)δ8.79(s,1H),8.65(d,2H),8.44(s,1H),8.31(s,1H),8.17(d,2H),8.06(s,1H),7.72(d,1H),7.30(s,1H),7.18(dt,5H),6.52(s,1H),5.60(s,1H),5.44(t,3H),5.30(d,1H),4.82(dd,1H),4.59(dd,1H),4.48(dd,1H),4.07(s,3H),3.76-3.66(m,5H),3.60-3.53(m,2H),3.39(s,3H),3.23(s,3H),3.00(dd,1H),2.78(d,1H),2.40(d,3H),2.34-2.22(m,3H),1.86(qdd,9H),1.12-1.03(m,1H),0.86(t,3H),0.45(d,4H)。
实施例41
N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺
第一步N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺
将化合物035b(20mg,0,04mmol)溶于N,N-二甲基甲酰胺(3mL)中,加入化合物40l(33mg,0.04mmol),N,N,N’,N’-四甲基-O-(7-氮杂苯并三唑-1-基)六氟磷酸脲(30mg,0.08mmol)和N,N-二甲基乙二胺(14mg,0.11mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备Waters MS-triggered Prep-LC with QDA detector,色谱柱:Gemini 5u C18 100 x 21.2mm;流动相1:水(含0.1%的NH4);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相45%-75%,流速:30mL/min)纯化得到标题化合物41(18mg,产率:38%)。
MS m/z(ESI):1177(M+1)+。
1H NMR(400MHz,CD3OD)δ8.61(s,1H),7.68-7.52(m,2H),7.31-7.08(m,5H),5.83-5.69(m,2H),5.55(dd,2H),5.40(d,1H),4.68(d,2H),4.60(s,2H),4.44-4.35(m,2H),4.28(d,1H),4.12(s,3H),3.80-3.71(m,4H),3.48(d,2H),3.17-3.06(m,3H),2.97-2.85(m,2H),2.73(s,1H),2.58(dd,4H),2.46-2.41(m,4H),2.01-1.86(m,4H),1.03(dd,3H),0.94(d,1H),0.49-0.40(m,2H),0.34(s,2H)。
实施例42
N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己-5-炔酰胺
第一步5-溴-2-氯-4-(甲氧基甲基)嘧啶(42b)的制备
将5-溴-2-氯嘧啶(10g,0.05mol),硝酸银(36g,0.2mol),过硫酸铵(57g,0.25mol)和2-甲氧基乙酸(5.4g,0.06mol)溶于乙腈(300mL)和水(300mL)在60℃搅拌2小时。将反应液倒入水中用乙酸乙酯萃取三次,用饱和食盐水洗一次,减压浓缩,浓缩得到的粗品经硅胶柱层析体系B纯化得到标题化合物42b(1.2g,产率:13%)。
MS m/z(ESI):236.9(M+1)+。
第二步6-(2-氯-4-(甲氧基甲基)嘧啶-5-基)己基-5-炔酸(42c)的制备
将化合物42b(1.2g,4.5mmol)溶解在四氢呋喃(10mL)中,加入己-5-炔酸(0.76g,6.8mmol),碘化亚铜(86mg,0.45mmol),双三苯基膦二氯化钯(632mg,0.9mmol)和三乙胺(1.4g,13.5mmol)。反应液在氮气氛围下置于60℃下搅拌3小时。反应结束后,反应液过滤,滤液用乙酸乙酯和水分层,水相用乙酸乙酯萃取(20mL x 3),合并有机相经过干燥,浓缩得到的粗品经硅胶柱层析体系A纯化得到标题化合物42c(600mg,产率:50%)。
MS m/z(ESI):269.1(M+1)+。
第三步6-(4-(甲氧基甲基)-2-(甲硫基)嘧啶-5-基)己基-5-炔酸(42d)
将化合物42c(600mg,2.2mmol)溶解在二甲基亚砜(6mL)中,加入甲硫醇钠(154mg,2.2mmol)和无水硫酸镁(528mg,4.4mmol),反应液在50℃下搅拌1小时。反应结束后,反应液倒入水中并用乙酸乙酯萃取(50mLx 3),合并有机相经过干燥,浓缩得到的粗品42d(600mg),不经纯化直接进行下一步反应。
MS m/z(ESI):281.1(M+1)+。
第四步6-(4-(甲氧基甲基)-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酸(42e)的制备
将上一步得到的化合物42d(600mg),溶于丙酮和水的混合溶剂中(20mL,V/V=1∶1),加入过氧单磺酸钾(7.6g,22mmol),在室温搅拌1小时。反应完全后,将反应液倒入水中用乙酸乙酯萃取三次,用饱和食盐水洗一次,减压浓缩,浓缩得到的粗品经硅胶柱层析体系A纯化,
得到标题化合物42e(200mg,产率:30%)。
MS m/z(ESI):313.0(M+1)+。
第五步2,5-二氧代吡咯烷-1-基-6-(4-(甲氧基甲基)-2-(甲基磺酰基)嘧啶-5-基己-5-炔酸酯(42f)的制备
将化合物42e(200mg,0.64mmol)和N-羟基丁二酰亚胺(110mg,0.96mmol)溶解在二氯甲烷(10mL)中,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(246mg,1.28mmol),反应在室温下搅拌2小时。反应结束后,反应液直接浓缩得到的粗品,经硅胶柱层析体系B纯化,得到标题化合物42f(100mg,产率:38%)。
MS m/z(ESI):410.1(M+1)+。
第六步(3R,11S)-11-苄基-24-(4-(甲氧基甲基)-2-(甲基磺酰基)嘧啶-5-基)-3-甲基-7,10,13,16,19-五氧代-4-氧杂-6,9,12,15,18-五氮杂四碳-23-烯酸(42g)的制备
将化合物42f(100mg,0.24mmol)溶解在N,N-二甲基甲酰胺(3mL)中,向溶液中依次加入N,N-二异丙基乙胺(62mg,0.48mmol)和化合物13j(108mg,0.24mmol),反应液在室温搅拌3小时。反应液经高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2detector,色谱柱:Xbridge 5u C18 150 x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相30%-40%,流速:20mL/min)得到标题化合物42g(30mg,产率:17%)。
MS m/z(ESI):768.2(M+Na)+。
第七步N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己-5-炔酰胺(42)
将化合物42g(30mg,0.04mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入化合物6m-2(18mg,0.04mmol),依次加入2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(23mg,0.06mmol)和N,N-二异丙基乙胺(10mg,0.08mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2*250mm 10um;流动相1:水(含0.1%的NH4HCO3);流动相2:乙腈;18分钟梯度,梯度配比:乙腈相38%-48%,流速:30mL/min)纯化,得到标题化合物42(25mg,产率:53%)。
MS m/z(ESI):1177.3(M+1)+。
1H NMR(400MHz,CD3OD)δ8.88(s,1H),7.55(s,1H),7.48(d,1H),7.18(dd,5H),5.65(dd,1H),5.57(d,1H),5.36(s,2H),5.32(s,1H),4.75(s,2H),4.73(d,1H),4.64(d,1H),4.50(dd,1H),3.81(t,4H),3.71-3.66(m,1H),3.58(d,1H),3.50(s,3H),3.39(s,3H),3.29(d,2H),3.10(dd,1H),2.89(dd,1H),2.60(ddd,4H),2.45(s,9H),2.00-1.87(m,6H),1.27(d,3H),1.00(t,3H)。
实施例43
N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代
-1,2,3,4,10,14,16-八氢-13H-环庚[基]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(4-(甲氧基甲基)-2-(甲基磺酰基)嘧啶-5-基)己-5-酰胺
第一步(2R,10S)-10-苄基-2-环丙基-23-(4-(甲氧基甲基)-2-(甲基磺酰基)嘧啶-5-基)-6,9,12,15,18-五氧代-3-氧杂-5,8,11,14,17-五氮杂三碳-22-炔酸(43a)的制备
将化合物42f(25mg,0.06mmol)溶解在N,N-二甲基甲酰胺(3mL)中,向溶液中依次加入N,N-二异丙基乙胺(62mg,0.48mmol)和化合物40k(28mg,0.06mmol),反应液在室温搅拌3小时。反应液经高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5u C18 150 x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;20分钟梯度,梯度配比:乙腈相35%-40%,流速:20mL/min)得到标题化合物43a(7mg,产率:15%)。
MS m/z(ESI):780.2(M+Na)+。
第二步N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[基]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(4-(甲氧基甲基)-2-(甲基磺酰基)嘧啶-5-基)己-5-酰胺
将化合物43a(7mg,0.01mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入化合物23b(5mg,0.01mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(6mg,0.02mmol)和N,N-二异丙基乙胺(4mg,0.03mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2*250mm 10um;流动相1:水(含0.1%的FA);流动相2:乙腈;18分钟梯度,梯度配比:乙腈相35%-65%,流速:30mL/min)纯化得到标题化合物43(5mg,产率:45%)。
MS m/z(ESI):1215.3(M+1)+。
1H NMR(400MHz,CD3OD)δ8.85(s,1H),8.52(s,1H),7.60(s,1H),7.18(dt,4H),5.67(d,2H),5.55(dd,4H),5.42-5.31(m,4H),4.64(d,2H),3.85(d,2H),3.82(s,2H),3.77(d,2H),3.57(s,2H),
3.46(s,3H),3.36(s,4H),2.60(t,2H),2.43(d,2H),2.19(d,2H),1.96-1.89(m,5H),1.16(d,4H),0.98(t,4H),0.88(d,1H),0.81(d,1H),0.72(s,1H),0.62(s,1H),0.49(d,2H),0.37-0.32(m,1H)。
实施例44
N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[基]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酰胺
第一步N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[基]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(4-甲氧基-2-(甲基磺酰基)嘧啶-5-基)己基-5-炔酰胺(44)
将化合物40l(30mg,0.04mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入化合物23b(19.2mg,0.040mmol),卡特缩合剂(21.4mg,0.048mmol)和N,N-二异丙基乙胺(10.4mg,0.081mmol)。反应液在室温下搅拌3小时。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2*250mm 10um;流动相1:水(含0.1%的NH4HCO3);流动相2:乙腈;18分钟梯度,梯度配比:乙腈相46%-100%,流速:30mL/min)纯化得到标题化合物44(4.2mg,产率:9%)。
MS m/z(ESI):1201.4(M+1)+。
1H NMR(400MHz,CD3OD)δ8.56(s,1H),7.59(s,1H),7.57(d,1H),7.24-7.16(m,4H),7.15-7.10(m,1H),5.71-5.66(m,1H),5.60-5.50(m,2H),5.43-5.31(m,2H),4.96(d,2H),4.68-4.57(m,1H),4.51(dd,1H),4.09(s,3H),3.93-3.71(m,6H),3.58(d,3H),3.15-3.10(m,1H),2.97-2.92(m,1H),2.62-2.40(m,5H),2.26-2.14(m,2H),2.02-1.74(m,6H),1.37-1.28(m,2H),1.21-1.09(m,3H),0.98(t,3H),0.86-0.29(m,6H)。
实施例45
N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[基]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧-5,8,11,14-四氮杂十六烷-16-基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己-5-炔酰胺
第一步((2R,10S)-10-苄基-23-(5-氰基-6-(甲基磺酰基)吡啶-3-基)-2-环丙基-6,9,12,15,18-五氧代-3-氧杂-5,8,11,14,17-五氮杂三碳-22-炔酸(45a)的制备
将化合物42f(100mg,0.25mmol)溶于N,N-二甲基甲酰胺(2mL),加入化合物40k(130mg,0.28mmol)和N,N-二异丙基乙胺(66mg,0.51mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with QDA detector,色谱柱:Gemini 5u C18 100 x 21.2mm 10um;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相42%-100%,流速:25mL/min)纯化得到标题化合物45a(100mg,产率:53%)。MS m/z(ESI):760.0(M+Na)+。
第二步N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[基]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧-5,8,11,14-四氮杂十六烷-16-基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己-5-炔酰胺(45)的制备
将化合物45a(115mg,0.16mmol)溶于N,N-二甲基甲酰胺(2mL),加入化合物6m-2(70mg,0.16mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(89mg,0.23mmol)和N,N-二甲基甲酰胺(40mg,0.31mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5um C18 150 x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相50%-65%,流速:20mL/min)纯化得到标题化合物45(60mg,产率:33%)。
MS m/z(ESI):1169.2(M+1)+。
1H NMR(400MHz,DMSO-d6)δ8.96(s,1H),8.70(s,1H),8.67(d,1H),8.57(d,1H),8.34-8.22(m,1H),8.21-8.14(m,1H),8.11(d,1H),8.07-8.00(m,1H),7.72(d,1H),7.30(s,1H),7.25-7.17(m,4H),7.17-7.10(m,1H),6.52(s,1H),5.60(s,1H),5.44(t,2H),5.30(d,1H),4.86-4.78(m,1H),4.63-4.55(m,1H),4.53-4.45(m,1H),3.71-3.66(m,4H),3.60(d,1H),3.55(d,2H),3.44(s,2H),3.24-3.20(m,2H),3.04-2.97(m,2H),2.67(s,1H),2.40(s,3H),2.11-2.04(m,2H),2.03-1.92(m,3H),1.88-1.76(m,4H),1.75-1.62(m,2H),1.46(s,1H),1.13-1.02(m,1H),0.86(t,4H),0.50-0.39(m,4H)。
实施例46
N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己-5-炔酰胺(46)
第一步N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-5-环丙基-10-乙基-6-氟-10-羟基-11,14-二氧代-1,2,3,4,10,14,16-八氢-13H-环庚[de]吡喃并[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(5-氰基-6-(甲基磺酰基)吡啶-3-基)己-5-炔酰胺
将化合物45a(16mg,0.02mmol)溶于N,N-二甲基甲酰胺(2mL)中,加入化合物23b(10mg,0.02mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(11mg,0.03mmol)和N,N-二异丙基乙胺(5mg,0.04mmol)。该反应在室温下搅拌30分钟。反应液采用高效液相色谱制备Waters MS-triggered Prep-LC with QDA detector,色谱柱:WELCH Xtimate C18 21.2*250mm 10um;流动相1:水(含0.1%的NH4HCO3);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相45%-55%,流速:25mL/min)纯化得到标题化合物(9mg,产率:36%)。
MS m/z(ESI):1195.3(M+1)+。
1H NMR(400MHz,CD3OD)δ8.76(dd,1H),8.35(dd,1H),7.62-7.56(m,1H),7.51(d,1H),7.19(s,5H),5.68(s,2H),5.40(t,2H),5.16-5.07(m,2H),4.94(d,2H),4.60(dd,2H),4.46(d,2H),3.86(d,2H),3.75(d,2H),3.68(d,1H),3.59-3.56(m,2H),3.36(d,3H),3.35(s,1H),2.94(dd,2H),2.57-2.53(m,1H),2.44(d,2H),2.34(d,2H),2.20(s,2H),1.91(s,2H),1.80(s,2H),1.04(d,2H),0.99(t,1H),0.81(s,2H),0.72(s,2H),0.50(s,2H),0.36(s,2H)。
实施例47
N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(4-(甲氧基甲基)-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺
第一步N-((2R,10S)-10-苄基-2-环丙基-1-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代
-2,3,10,11,14,16-六氢-1H,13H-噁庚英并[4,3,2-de]吡喃并[3′,4′:6,7]中氮茚[1,2-b]喹啉-1-基)氨基)-1,6,9,12,15-五氧代-3-氧杂-5,8,11,14-四氮杂十六烷-16-基)-6-(4-(甲氧基甲基)-2-(甲基磺酰基)嘧啶-5-基)己-5-炔酰胺
将化合物035b(20mg,0,04mmol)溶于N,N-二甲基甲酰胺(3mL),加入化合物43a(34mg,0.04mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(30mg,0.08mmol)和N,N-二异丙基乙胺(14mg,0.11mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备Waters MS-triggered Prep-LC with QDA detector,色谱柱:Gemini 5u C18 100 x 21.2mm;流动相1:水(含0.1%的NH4);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相30%-60%,流速:30mL/min)纯化得到标题化合物(19mg,产率:40%)。
MS m/z(ESI):1191.2(M+1)+。
1H NMR(400MHz,CD3OD)δ8.85(d,1H),7.56(dd,2H),7.27-7.10(m,5H),5.78-5.67(m,2H),5.52(dd,2H),5.37(d,1H),4.74-4.56(m,7H),4.42-4.23(m,3H),3.75(d,2H),3.72-3.67(m,2H),3.46(d,3H),3.37(s,3H),3.07(dd,1H),2.94-2.86(m,1H),2.77-2.69(m,1H),2.66-2.55(m,3H),2.45-2.39(m,3H),1.97-1.89(m,3H),1.31(d,3H),1.00(dd,3H),0.94-0.88(m,1H),0.43(dd,2H),0.37-0.27(m,2H)。
实施例48
(R)-3-((((S)-7-苄基-17-(4-(2-(甲基磺酰基)-4-(三氟甲基)嘧啶-5-基)哌啶-1-基)-3,6,9,12,15-五氧代-2,5,8,11,14-五氮杂十七烷基)氧基)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)丁酰胺
第一步4-(2-(甲硫基)-4-(三氟甲基)嘧啶-5-基)哌啶-1-甲酸叔丁酯(48a)
将氯化镍二甲氧基乙烷(350mg,1.6mmol)和2-脒基吡啶盐酸盐(250mg,1.6mmol)加入到反应瓶中,在氮气的氛围下加入N,N-二甲基乙酰胺(10ml),并将混合物在室温下搅拌半小时。另取一个反应瓶加入4-碘哌啶-1-甲酸叔丁酯29a(2.0g,6.4mmol),5-溴-2-(甲硫基)-4-(三氟甲基)嘧啶(1.75g,6.4mmol),锰(90mg,1.6mmol),四丁基碘化铵(2.36g,6.4mmol),再加入N,N-
二甲基乙酰胺(10ml),置换三次氮气,置换完成后将镍配体化合物用注射器转移到体系中,反应在60℃下反应3小时。反应完成后体系加入乙酸乙酯(200mL)和水(400mL)萃取,有机相干燥,浓缩,通过硅胶柱层析分离体系B纯化得到标题化合物48a(1.3g,产率:48%)。
MS m/z(ESI):322.0(M-55)+。
第二步2-(甲硫基)-5-(哌啶-4-基)-4-(三氟甲基)嘧啶(48b)
将化合物48a(1.3g,3.4mmol)溶于4N盐酸的1,4-二氧六环溶液(10ml)中。反应在室温下搅拌1小时。反应结束后直接旋干溶剂得到粗品48b(800mg,产率:85%)。
MS m/z(ESI):278.0(M+1)+。
第三步3-(4-(2-(甲硫基)-4-(三氟甲基)嘧啶-5-基)哌啶-1-基)丙酸叔丁酯(48c)
将化合物48b(800mg,2.9mmol)溶于乙腈(10mL)中,加入3-溴丙酸叔丁酯(910mg,4.35mmol)和碳酸钾(1.2g,8.7mmol)。该反应在60℃下搅拌16小时。反应结束后,旋干溶剂得到粗产品,粗产品通过柱层析分离体系B纯化得到标题化合物48c(600mg,产率:51%)。
MS m/z(ESI):406.1(M+1)+。
第四步3-(4-(2-(甲基磺酰基)-4-(三氟甲基)嘧啶-5-基)哌啶-1-基)丙酸(48d)
将化合物48c(600mg,1.48mmol)溶于三氟乙酸(10mL)中,加入间氯过氧苯甲酸(2.55g,14.8mmol)。该反应在40℃反应4小时。反应结束后,浓缩,加入二氯甲烷(80ml)和水(80ml)萃取,水相冻干后反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5u C18 150 x 19mm;流动相1:水(含0.1%的FA);流动相2:乙腈;15分钟梯度,梯度配比:乙腈相10%-20%,流速:20mL/min)纯化得到标题化合物48d(230mg,产率:41%)。
MS m/z(ESI):382.0(M+1)+。
第五步2,5-二氧代吡咯烷-1-基-3-(4-(2-(甲基磺酰基)-4-(三氟甲基)嘧啶-5-基)哌啶-1-基)丙酸酯(48e)
将化合物48d(50mg,0.13mmol)溶于二甲基亚砜(1mL),加入N-羟基丁二酰亚胺(17mg,0.14mmol)和EDCI(38mg,0.20mmol)。该反应在室温下反应16小时。反应结束后,反应液直接用于下一步反应。
MS m/z(ESI):479.1(M+1)+。
第六步(3R,11S)-11-苄基-3-甲基-21-(4-(2-(甲基磺酰基)-4-(三氟甲基)嘧啶-5-基)哌啶-1-基)-7,10,13,16,19-五氧代-4-氧杂-6,9,12,15,18-五氮杂二十烷酸(48f)
将化合物13j(58mg,0.13mmol)加入上一步的反应液中,加入N,N-二异丙基乙胺(17mg,0.26mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Prep-LC with SQD2 detector,色谱柱:Xbridge 5u C18 150 x 19mm 5um;流动相1:水(含0.1%FA);流动相2:乙腈;9.5分钟梯度,梯度配比:乙腈相20%-30%,流速:20mL/min)纯化得到标题化合物48f(20mg,产率:19%)。
MS m/z(ESI):815.2(M+1)+。
第七步(R)-3-((((S)-7-苄基-17-(4-(2-(甲基磺酰基)-4-(三氟甲基)嘧啶-5-基)哌啶-1-
基)-3,6,9,12,15-五氧代-2,5,8,11,14-五氮杂十七烷基)氧基)-N-((1S,10S)-10-乙基-6-氟-10-羟基-5-甲基-11,14-二氧代-1,2,3,4,10,11,14,16-八氢-13H-环庚[3′,4′:6,7]中氮茚并[1,2-b]喹啉-1-基)丁酰胺
将化合物48f(20mg,0.025mmol)溶于N,N-二甲基甲酰胺(1mL)中,加入化合物6m-2(11mg,0.025mmol),2-(7-氮杂苯并三氮唑)-N,N,N′,N′-四甲基脲六氟磷酸酯(14mg,0.037mmol)和N,N-二异丙基乙胺(6mg,0.049mmol)。该反应在室温下搅拌30分钟。反应结束后,反应液采用高效液相色谱制备(Waters MS-triggered Pre LC with QDA detector,色谱柱:Gemini 5u C18 100 x 21.2mm 5um;流动相1:水(含0.1%NH4HCO3);流动相2:乙腈;9.5分钟梯度,梯度配比:乙腈相35%-65%,流速:30mL/min)纯化得到标题化合物48(3.9mg,产率:12%)。
MS m/z(ESI):1246.5(M+1)+。
1H NMR(400MHz,CD3OD)δ9.40(s,1H),7.54(s,1H),7.50(d,1H),7.15-7.07(m,5H),5.64(dd,1H),5.55(d,1H),5.35(s,2H),5.33-5.27(m,1H),4.70(d,1H),4.59(d,1H),4.52(dd,1H),4.2-4.14(m,1H),3.85(s,3H),3.84-3.68(m,3H),3.56(d,1H),3.38(s,3H),3.15-3.12(m,2H),3.09(d,1H),3.05(d,1H),2.85(dd,1H),2.74-2.68(m,2H),2.55(d,1H),2.43(d,4H),2.21-2.10(m,4H),2.06-1.98(m,3H),1.91-1.86(m,2H),1.84-1.78(m,2H),1.60(s,1H),1.34-1.32(m,2H),1.24(d,3H),0.96(t,3H),0.89(d,1H)。
抗体药物偶联物的制备
实施例A-1 ADC-1的制备
将Trastuzumab使用Amicon换液至100mM Pro-Ac,20mM Arg,pH 5.0。取出Trastuzumab加入1M氨丁三醇,pH 7.5,调节pH至7.3。将Trastuzumab(67mg)置于50mL离心管中,加入2801μL 100mM乙酰脯氨酸,20mM精氨酸,pH 7.3、96μL 0.2M EDTA和893μL 5mM TCEP,在37度摇床混匀反应1小时。反应完成后,使用Zeba脱盐柱将Trastuzumab还原物进行纯化。
将Trastuzumab还原物(47.40mg)置于50mL离心管中,冰浴下加入1103.58μL 100mM Pro-Ac,20mM Arg,pH 7.3、94.80μL 0.2M EDTA、790μL DMA和632μL 10mM化合物
21,在22度摇床混匀反应3小时。将反应液用Zeba脱盐柱纯化,样品用Amicon进行浓缩换液至100mM脯氨酸,20mM精氨酸,pH 5.0的缓冲体系中,得到ADC-1(33mg)。用LC-MS方法计算ADC的平均DAR值β=8.14。
参照实施例A-1的方法,将化合物21替换为本申请其它式V所示化合物,制备如下抗体药物偶联物,其结构及DAR值(β)如下表所示
本发明式V所示的细胞毒性药物-连接子类化合物可以顺利与抗体偶联得到抗体药物偶联物。
生物学评价
以下结合测试例进一步描述解释本发明,但这些测试例并非意味着限制本发明的范围。
测试例1化合物对SK-BR-3细胞增殖的抑制实验
1:实验材料
2:实验仪器
3:测试方法
(1)细胞铺板:首先采用相应的培养基培养肿瘤细胞SK-BR-3,用胰酶消化细胞,离心后重悬细胞计数,调整细胞至合适的浓度在384孔板上进行铺板。
(2)化合物和肿瘤细胞共同孵育:待细胞贴壁后,用ECHO向细胞培养板中加100nL稀释好的生物活性物(测试化合物),细胞板孔中DMSO终浓度为0.33%,在37℃,5%CO2的培养箱中孵育72h。
(3)孵育结束后,每孔加入30μL CTG试剂(CelltiterGlo试剂盒),放置快速震荡器震荡2分钟,1000rpm离心1min,室温避光放置30分钟,用Envision仪器读取化学发光信号值。
(4)细胞活性检测:用GraphPad Prism 8软件计算IC50,利用以下非线性拟合公式来得到化合物的IC50(见表1):
1.Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))
2.Y:抑制率;X:化合物浓度log值;
3.抑制率(%)=100-(化合物孔读值-低读值对照孔读值)/(高读值对照孔读值-低读值对照孔读值)*100;
4.高读值对照孔:细胞加100nL DMSO;
5.低读值对照孔:无细胞孔。
表1测试化合物对SK-BR-3增殖抑制活性
结果表明,本发明的化合物对SK-BR-3细胞增殖具有较强的增殖抑制作用。
测试例2测试化合物对MDA-MB-468细胞增殖的抑制实验
1:实验材料
2:实验仪器
3:测试方法
(1)细胞铺板:首先采用相应的培养基培养肿瘤细胞MDA-MB-468,用胰酶消化细胞,离心后重悬细胞计数,调整细胞至合适的浓度在384孔板上进行铺板。
(2)化合物和肿瘤细胞共同孵育:待细胞贴壁后,用ECHO向细胞培养板中加100nL稀释好的生物活性物(测试化合物),细胞板孔中DMSO终浓度为0.33%,在37℃,0%CO2的培养箱中孵育72h。
(3)孵育结束后,每孔加入30μL CTG试剂(CelltiterGlo试剂盒),放置快速震荡器震荡2分钟,1000rpm离心1min,室温避光放置30分钟,用Envision仪器读取化学发光信号值。
(4)细胞活性检测:用GraphPad Prism 8软件计算IC50,利用以下非线性拟合公式来得到化合物的IC50(见表2):
6.Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))
7.Y:抑制率;X:化合物浓度log值;
8.抑制率(%)=100-(化合物孔读值-低读值对照孔读值)/(高读值对照孔读值-低读值对照孔读值)*100;
9.高读值对照孔:细胞加100nL DMSO
10.低读值对照孔:无细胞孔。
表2测试化合物对MDA-MB-468增殖抑制活性
结果表明,测试化合物对MDA-MB-468细胞增殖具有较强的增殖抑制作用。
测试例3测试化合物对NCI-N87细胞增殖的抑制实验
1:实验材料
2:实验仪器
3:测试方法
(1)细胞铺板:首先采用相应的培养基培养肿瘤细胞NCI-N87,用胰酶消化细胞,离心后重悬细胞计数,调整细胞至合适的浓度在384孔板上进行铺板。
(2)化合物和肿瘤细胞共同孵育:待细胞贴壁后,用ECHO向细胞培养板中加100nL稀释好的生物活性物(测试化合物),细胞板孔中DMSO终浓度为0.33%,在37℃,0%CO2的培养箱中孵育72h。
(3)孵育结束后,每孔加入30μL CTG试剂(CelltiterGlo试剂盒),放置快速震荡器震荡2分钟,1000rpm离心1min,室温避光放置30分钟,用Envision仪器读取化学发光信号值。
(4)细胞活性检测:用GraphPad Prism 8软件计算IC50,利用以下非线性拟合公式来得到化合物的IC50(见表3):
11.Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))
12.Y:抑制率;X:化合物浓度log值;
13.抑制率(%)=100-(化合物孔读值-低读值对照孔读值)/(高读值对照孔读值-低读值对照孔读值)*100;
14.高读值对照孔:细胞加100nL DMSO;
15.低读值对照孔:无细胞孔。
表3测试化合物对NCI-N87细胞增殖抑制活性
结果表明,测试化合物对NCI-N87细胞增殖具有较强的增殖抑制作用。
测试例4在PBS 7.4的缓冲液中的动力学溶解度测试
4.1实验步骤
1)储备液的配制
用DMSO分别配制待测物6-2,11-2,17-2,Dxd,对照药孕酮和双氯芬酸的10mM储备液。
2)动力学溶解度测定步骤
取15μL 10mM的待测物储备液,以指定顺序加到对应96孔板的对应位置。在样品板的对应小瓶加入485μL的PBS 7.4的缓冲液。实验为双平行。在每个小瓶中加一根搅拌棒,并盖上瓶塞。随后将样品盘放进恒温混匀仪,以1100转的转速在25℃条件下震荡2个小时。2小时后,去除瓶塞,用一块大磁铁吸走搅拌棒,然后从样品板转移样品至过滤板。用真空泵产生负压,过滤样品。转移5μL滤液和5μL空白DMSO到新的样品板,然后加入490μL包含内标的内标水(乙腈∶水=1∶1)。根据峰形情况,可能用一定比例的内标水来稀释样品稀释液以获得更好的峰形。
3)3μM标准品溶液的配制
从10mM DMSO储备液板转移6μL至一空板中,加入194μL DMSO配成300μM的标准品溶液。从300μM的标准品溶液板转移5μL到另一空板中,再加入5μL空白缓冲液和490μL包含内标的内标水(乙腈∶水=1∶1)至标准品溶液终浓度为3μM。
4)样品分析步骤
将进样板放进自动进样器的进样盘中,通过液质分析评估样品。
4.0数据分析
通过Microsoft Excel进行所有的计算。
样品滤液的分析和定量,是通过使用液质对已知浓度的标准品峰的定性和定量完成的。对照药和待测物的溶解度值计算公式如下:
[Sample]为化合物浓度,DFSample是指样品稀释倍数,[STD]为化合物标品浓度,AREAStd为化合物标品峰面积,AREASample为化合物样品峰面积。
4.2实验结果
实验结果如表4所示。
表4代表性化合物在PBS 7.4的缓冲液中的溶解度
结果表明,本申请代表性化合物6-2,11-2在PBS 7.4的缓冲液中的溶解度明显优于Dxd。
测试例5 SD大鼠药代动力学测试
化合物6-2、11-2、17-2和Dxd在单次静脉注射(剂量为2mpk)雄性SD大鼠后(采血时间点:IV给药后0.083h、0.25h、0.5h、1h、2h、4h、8h和24h共8个采血时间点),血浆中的平均药代动力学参数如表5所示:
表5代表性化合物药代动力学测试结果
结果表明,本申请代表性化合物在大鼠体内快速清除,具有较好的安全性,且药代性质良好。
测试例6化合物对人肝微粒体CYP1A2、CYP2D6和CYP3A4的抑制实验
6.1各亚型阳性对照抑制剂
6.2底物原液的制备
6.3实验过程
孵育在96深孔板中进行。在孵育板的每个孔中加入以下体积:169μL“主液”和1μL多个浓度的测试化合物或阳性对照化合物(DMSO)。将孵育板放入水浴锅中37℃预孵育5分钟。然后向孵育板中加入10μL稀释的底物溶液,在旋涡混合器上混合孵育15秒,再加入20μL 10mM的NADPH溶液,最终浓度为1mM时开始反应。在预定时间点,加入300μL的淬灭液(冷乙腈加3%甲酸、200nM阿普唑仑、200nM盐酸拉贝洛尔、200nM甲苯磺叮脲)淬灭反应。以3220g离心40分钟。将150μL上清液转移到新板上。上清液可用150μL纯水稀释。混合均匀,用LC/MS/MS测定底物代谢产物的含量。
6.4数据分析
对所有样本进行自动峰值积分区域检查。分析峰面积和内标准峰面积导出到excel电子表格。人肝微粒体中每种P450酶的抑制是通过与非抑制对照(=100%活性)相比,标志物代谢物形成活性下降的百分比来测量的。以剩余活性(%)和抑制剂浓度的对数计算IC50值。
计算剩余活性的百分比如下:
面积比=被分析物峰面积/内标物峰面积
剩余活性(%)=面积比待测药/面积比空白对照*100%
利用Excel XLfit 5.5.1.3计算IC50值。
实验结果如表6所示
表6代表性化合物对人肝微粒体抑制实验结果
结果显示,本申请代表性化合物对CYP酶抑制作用弱,安全性较好。
测试例7化合物在人血浆中稳定性测试
7.1实验过程
(1)将199微升的人血浆加入到每个细胞的培养板中,将培养板预热至37℃,保温15分钟。
(2)在预孵育之后,将1微升的1毫摩尔每升测试化合物和1微升的1毫摩尔每升对照化合物加入到199微升的血浆中,以达到最终浓度为5微摩尔每升的测试化合物和5微摩尔每升的对照化合物。有机溶剂的最终浓度为0.5%。该实验将进行两次重复。
(3)反应样本在37℃下孵育。
(4)反应在0、1、2、6和24小时时通过加入含有内标的600μL冷甲醇来停止。所有样品都经过10分钟的涡旋混合,然后以3220g的离心力离心30分钟以沉淀蛋白质。将100μL的上清液转移到新的板中。根据液相色谱-质谱(LC-MS)的信号响应和峰形,上清液将用超纯水稀释。
7.2数据分析
所有计算都是使用MicrosoftExcel进行的。峰面积比是根据提取的离子色谱图确定的。每个时间点剩余化合物的百分比是通过以下公式计算的:
剩余百分比tmin(%)=峰面积比tmin/峰面积t0×100
实验结果如表7所示。
表7代表性化合物在人血浆中稳定性测试结果
结果显示,本申请代表性化合物6-2、11-2、17-2在人血浆中稳定性良好。
测试例8 ADC生物活性检测
1.测试目的
本实验的目的是为了检测ADC化合物对HER2表达的Calu-3细胞,SK-BR-3细胞及HER2阴性的MDA-MB-468细胞体外增殖的抑制活性。以不同浓度的化合物体外处理细胞,经5天培养后,采用CTGLuminescent Cell Viability Assay对细胞的增值进行检测,根据IC50值评价该化合物的体外活性。
2.测试方法:
(1)第一天,肿瘤细胞铺板于96孔平板,每孔接种5000个细胞/100μL培养基,边缘各空孔中分别接种100μL DPBS。在37℃培养箱中孵育过夜。
(2)第二天,首先吸出旧的培养基50μL/孔;加入不同浓度梯度的ADC,ADC的起始浓度为200nM,5倍稀释,9个浓度。加药体积为50μL/孔。
(3)第六天,在4℃解冻CellTiter-Glo Buffer,CellTiter-Glo Substrate试剂。在使用前吸出10ml Buffer加入到Substrate中,混合均匀,平衡至室温。
(4)第七天,将96孔板在室温下平衡30分钟,每孔加入100μL Cell-Titer-Glo。室温避光震荡5分钟后,静置孵育10分钟后,转100μL的孔内液体至白板,然后用酶标仪检测化学发光;
3.数据分析
用Microsoft Excel,Graphpad Prism 5对数据进行处理分析,测试ADC化合物对Calu-3细胞,SK-BR-3细胞,MDA-MB-468细胞体外增殖的抑制活性如下表8所示。
表8
结论:本发明针对HER2靶标的抗体药物偶联物对HER2阳性细胞SK-BR-3和Calu-3具有明显的增殖抑制活性;同时,它们对HER2阴性细胞MDA-MB-468增殖抑制活性弱;具有良好的选择性。
测试例9:Her2-ADC血浆稳定性实验
本实验中使用的小鼠(Mouse)为CD-1小鼠,大鼠(Rat)为SD大鼠,猴(Monkey)为食蟹猴。
(1)游离毒素释放测试及结果
将DS8201样品、ADC-5、ADC-10分别以终浓度200μg/mL加入上述小鼠无菌血浆、大鼠无菌血浆、人无菌血浆、猴无菌血浆中,将ADC-14,ADC-15以终浓度200μg/mL加入上
述小鼠无菌血浆、人无菌血浆中,置于37℃细胞培养箱中孵育,将孵育当天记为第0天,随后分别在第1天、第4天、第7天、第14天和第21天取出样品,进行游离毒素含量的检测。
游离毒素释放结果显示:ADC-5,ADC-10在小鼠,大鼠,人,猴血浆中都相当稳定,游离毒素的释放率最高不超过0.3%,且显著优于参比DS8201,见图1-3。
游离毒素释放结果显示:ADC-5,ADC-10在小鼠和人的血浆中,游离毒素释放率均优于ADC-14,ADC-15,见图4-5。说明在嘧啶环上引入合适的取代基(如甲氧基),能提高ADC在血浆中的稳定性,从而减小ADC因毒素脱落带来的安全性问题。
(2)ADC DAR值测试及结果
将DS8201样品、ADC-5、ADC-10、ADC-13以终浓度200ug/mL加入上述人无菌血浆中,置于37℃细胞培养箱中孵育,将孵育当天记为第0天,随后分别在第1天、第4天、第7天、第14天和第21天取出样品,进行DAR值的变化检测。
ADC DAR值变化实验结果表9显示:本发明的小分子连接子形成的偶联物在人血浆中DAR值的变化要明显小于DS8201,显示出更优的血浆稳定性,进一步证实了本发明小分子连接子的稳定性。
表9:ADC血浆稳定性(DAR值变化)
测试例10:Her2-ADC小鼠PK实验
试验目的以C57BL/6J小鼠为受试动物,评价本申请中的Her2-ADC药代动力学性质。
1、受试药物
ADC-5:10mg/kg
ADC-9:10mg/kg
ADC-10:10mg/kg
ADC-13:10mg/kg
2、配制方法:均用PBS稀释配制。
3、试验方法
通过尾静脉给药15只小鼠,分别采集小鼠0.083,2,8,24,48,96,168,336,504,672小时共10个点的血浆样品。通过ELISA方法测定样品总抗和ADC的浓度。实验结果如表10所示,本申请的ADC分子具有良好的药代动力学性质。
表10:ADC药代动力学数据
测试例11:NCI-N87荷瘤小鼠药效评价
试验目的
以Balb/c nude mice为受试动物,评价本申请中的Her2-ADC药效。
1、受试药物
ADC-3:1.5mg/kg
ADC-5:1.5mg/kg
ADC-10:1.5mg/kg
参照ADC(DS8201):1.5mg/kg
空白对照(Blank):PBS
2、配制方法:均用PBS稀释配制。
3、试验方法
在小鼠右肋部皮下接种NCI-N87细胞,肿瘤生长7天,将动物随机分组,6只/组,共5组(4组实验组+1组空白对照组)。
采用尾静脉注射给药,共给药1次。每周测量2次瘤体积和体重,共四周,记录数据。数据统计使用Excel 2023统计软件:平均值以avg计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算;组间差异P值以TTEST计算。实验结果如表11,图6所示,本申请的ADC分子均能显著缩小肿瘤体积,较参照ADC有相当的肿瘤抑制效果。
表11:ADC对NCI-N87移植模型的体内肿瘤抑制效果
测试例12:JIMT-1荷瘤小鼠药效评价
试验目的
以SCID Beige mice为受试动物,评价本申请中的Her2-ADC药效。
1、受试药物
ADC-3:3mg/kg
ADC-5:3mg/kg
ADC-9:3mg/kg
ADC-10:3mg/kg
ADC-13:3mg/kg
ADC-14:3mg/kg
参照ADC(DS8201):3mg/kg
空白对照(Blank):PBS
2、配制方法:均用PBS稀释配制。
3、试验方法
在小鼠右肋部皮下接种JIMT-1细胞,肿瘤生长8天,将动物随机分组,6只/组,共8组(7组实验组+1组空白对照组)。
采用尾静脉注射给药,共给药1次。每周测量2次瘤体积和体重,共四周,记录数据。数据统计使用Excel 2023统计软件:平均值以avg计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算;组间差异P值以TTEST计算。实验结果如表12和图7所示,本申请的ADC分子均能显著缩小肿瘤体积,较参照ADC有更优的肿瘤抑制效果。
表12:ADC对JIMT-1移植模型的体内肿瘤抑制效果
以上对本发明技术方案的实施方式进行了示例性的说明。应当理解,本发明的保护范围不拘囿于上述实施方式。凡在本发明的精神和原则之内,本领域技术人员所做的任何修改、等同替换、改进等,均应包含在本申请权利要求书的保护范围之内。
Claims (19)
- 式I’所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物:
其中,R1、R2、R3相同或不同,彼此独立地选自H、OH、CN、卤素、C1-10烷基、C2-10烯基、C2-10炔基、C1-10烷氧基、卤代C1-10烷基、卤代C1-10烷氧基、氰基C1-10烷基、氰基C1-10烷氧基、C3-10环烷基;R4选自H或R41选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R5选自H、R51、R52相同或不同,彼此独立地选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R53选自C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;环A选自C3-8环烷基、C3-8杂环基,Ra选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0、1或2;q选自0、1或2;X选自CH或N;Y选自-(CH2)m-O-(CH2)p-;m选自0-6的整数;p选自0-6的整数。 - 根据权利要求1所述的化合物,其特征在于,R1选自H、OH、CN、卤素、C1-6烷基、C2-6烯基、C2-6炔基、C3-6环烷基或卤代C1-6烷氧基;优选地,R1选自H、OH、Br、甲基、二氟甲氧基、2,2,2-三氟乙氧基、乙烯基、环丙基或乙炔基;优选地,R2选自H、卤素、CN或C1-6烷基;优选地,R2选自H或F;优选地,R3选自H或C1-6烷基;优选地,R3为H。
- 根据权利要求1或2所述的化合物,其特征在于,R4选自H或例如优选地,R4选自H或优选地,X-R4为优选为优选地,X-R4为-CH2-;优选地,Y选自-CH2-O-。
- 根据权利要求1-3任一项所述的化合物,其特征在于,R5选自H、 其中,R51选自H、甲基、乙基、异丙基或环丙基;R52选自H或甲基;R53选自甲基;环A选自C3-6环烷基;Ra选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0或1;q选自0或1;优选地,环A选自环丁烷环;优选地,R5选自H、优选地,R51选自H、甲基、乙基、异丙基或环丙基;R52选自H或甲基;R53选自甲基;环A选自环丁烷环;优选地,R5选自H、
- 根据权利要求1-4任一项所述的化合物,其特征在于,X选自CH或N;且当X为CH时,R4为H;或者当X为N时,R5为H;优选地,m选自0、1或2;还优选地,m+p为2。
- 根据权利要求1-5任一项所述的化合物,其特征在于,式I’所示的化合物结构如下所示:
其中,R1、R2、R51、R52、n彼此独立地具有权利要求1-5任一项所述的定义。 - 根据权利要求1-6任一项所述的化合物,其特征在于,式I’化合物的结构如下所示:
- 式V所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物:M-L1-L2-D(式V)其中,M是和抗体或其抗原结合片段的接头部位;L1为肽残基;优选地,选自甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(GGFG)、谷氨酸-缬氨酸-瓜氨酸(EVC)、缬氨酸-瓜氨酸(VC)、天冬氨酸-缬氨酸-瓜氨酸(DVC)、谷氨酸-甘氨酸-甘氨酸 -苯丙氨酸-甘氨酸(EGGFG)、天冬氨酸-甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(DGGFG);优选地,L1选自甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(GGFG);L2为肽残基与D的连接基团;优选地,选自化学键、-NH-C1-6烷基-、 优选地,L2选自-NH-CH2-;D为生物活性分子的结构片段;优选地,D选自式I所示化合物去氢之后的结构;
其中,R1、R2、R3相同或不同,彼此独立地选自H、OH、CN、卤素、C1-10烷基、C2-10烯基、C2-10炔基、C1-10烷氧基、卤代C1-10烷基、卤代C1-10烷氧基、氰基C1-10烷基、氰基C1-10烷氧基、C3-10环烷基;R4选自H或R41选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R5选自H、R51、R52相同或不同,彼此独立地选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R53选自C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;环A选自C3-8环烷基或3-8元杂环基,Ra选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0、1或2;q选自0、1或2;X选自CH或N;Y选自-(CH2)m-、-(CH2)m-O-(CH2)p-;m选自0-6的整数;p选自0-6的整数;更优选地,D的结构如下所示:
优选地,M选自如下结构
Lg不存在,或者为离去基团,所述离去基团选自卤素、砜基、三氟甲磺酰基或甲磺酰基;优选地,Lg为甲磺酰基;环B选自5-14元杂芳环、3-14元杂环;优选地,环B选自5-6元含N杂芳环或3-6元含N杂环;更优选地,环B选自嘧啶环、吡啶环、三嗪环或每个Rb相同或不同,彼此独立地选自如下基团:卤素、氰基、氧代(=O)、C1-6烷基、卤代C1-6烷基、羟基C1-6烷基、C1-6烷氧基或C3-8环烷基、3-8元杂环基、C1-6烷基-O-C1-6烷基-、C1-6烷基-(5-6元)杂芳基-;优选地,每个Rb相同或不同,彼此独立地选自氰基、氧代(=O)、甲氧基、环丙基、三氟甲基、Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的如下基团:C6-14芳基、5-14元杂芳基、3-14元杂环基;每个Rm1相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基、HOOC-C1-3亚烷基;优选地,Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的下列基团:苯基、哌啶基或哌嗪基;更优选地,Lm1选自Lm2选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-(CH2)s-(C=O)-、-乙炔基-(CH2)t-(C=O)-;优选地,Lm2选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-CH2-(C=O)-、-(CH2)2-(C=O)-、-(CH2)5-(C=O)-、-乙炔基-(CH2)3-(C=O)-;每个Rm2相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基或-C1-6亚烷基-COOH,所述亚烷基任选地被一个、两个或更多个下列基团所间隔:O、NH;优选地,每个Rm2相同或不同,彼此独立地选自-C1-3亚烷基-COOH,所述亚烷基任选地被O或NH所间隔;更优选地,Rm2选自、r选自0-6的整数;s选自0-6的整数;t选自0-6的整数;优选地,M选自如下基团:
优选地,M-L1-L2选自如下基团:
- 根据权利要求8所述的化合物,其特征在于,式V所示的化合物选自以下结构:
- 一种抗体-药物偶联物,其具有式VI所示结构,Ab-[L-D]β (式VI)其中,Ab为抗体或其抗原结合片段,D具有权利要求8或9中所述的定义,L是连接Ab和D的连接子,β选自1-10之间的整数或小数;优选地,Ab为抗体或抗原结合片段,所述抗原结合片段选自Fab、Fab’、(Fab’)2、Fd、Fv、二硫键连接的Fv、scFv、di-scFv、(scFv)2、双抗体(diabody)和单域抗体(sdAb);和/或,所述抗体为鼠源抗体、人源化抗体、嵌合抗体、双特异性抗体或多特异性抗体优选地,Ab为抗HER 2的抗体或其抗原结合片段;更优选地,Ab是曲妥珠单抗或其抗原结合片段;优选地,β选自4-9之间的整数或小数(例如7、7.71、7.84、7.92、7.94、7.97、7.98、7.99、8、8.02、8.06或8.14)。
- 根据权利要求10所述的抗体-药物偶联物,其特征在于,L选自M’-L1-L2,其中,M’是和抗体或其抗原结合片段的接头部位,由权利要求8-9任一项所定义的M与抗体或其抗原结合片段偶联形成,L1、L2具有如权利要求8-9任一项中所述的定义,优选地,M’选自
优选地,M’中的羰基连接位置与L1连接,杂环或杂芳环上的连接位置与Ab连接;优选地,L选自:
其中,1位与Ab相连,2位与D相连;优选地,L-D选自:
- 根据权利要求10或11所述的抗体-药物偶联物,其特征在于,式VI所示的抗体-药物偶联物选自以下结构:
其中β为7-9的整数或小数。 - 一种药物组合物,其包含治疗有效量的权利要求1-12任一项所述化合物或抗体-药物偶联物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物中的至少一种。
- 权利要求1-12任一项所述化合物或抗体-药物偶联物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物中的至少 一种或权利要求14所述的药物组合物在制备拓扑异构酶I抑制剂中的用途和/或在制备预防或治疗与拓扑异构酶I相关的疾病或病症的药物中的用途;优选地,所述的疾病或病症为肿瘤,所述肿瘤包括乳腺癌、胃癌、肺癌、结直肠癌、大肠癌、卵巢癌、肝癌、肾癌、食管癌、宫颈癌、膀胱癌、胰腺癌、前列腺癌、鼻咽癌、黑色素瘤或白血病。
- 式I”所示的化合物、其消旋体、立体异构体、互变异构体、同位素标记物、溶剂化物、多晶型物、药学上可接受的盐或其前药化合物:
其中,R1、R2、R3相同或不同,彼此独立地选自H、OH、CN、卤素、C1-10烷基、C2-10烯基、C2-10炔基、C1-10烷氧基、卤代C1-10烷基、卤代C1-10烷氧基、氰基C1-10烷基、氰基C1-10烷氧基、C3-10环烷基;R4选自H或R41选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R52选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R20选自H或氨基保护基;优选地,R20选自Fmoc、Boc、Bn、Cbz;X选自CH或N;Y选自-(CH2)m-O-(CH2)p-;m选自0-6的整数;p选自0-6的整数;优选地,R1选自H、OH、CN、卤素、C1-6烷基、C2-6烯基、C2-6炔基、C3-6环烷基或卤代C1-6烷氧基;优选地,R1选自H、OH、Br、甲基、二氟甲氧基、2,2,2-三氟乙氧基、乙烯基、环丙基或乙炔基;优选地,R2选自H、卤素、CN或C1-6烷基;优选地,R2选自H或F;优选地,R3选自H或C1-6烷基;优选地,R3为H;R4选自H;优选地,式I”为下述化合物:
- 式MII所示的化合物
Lg为离去基团,所述离去基团选自卤素、砜基、三氟甲磺酰基或甲磺酰基;优选地,Lg为甲磺酰基;环B选自5-6元含N杂芳环或3-6元含N杂环;更优选地,环B选自嘧啶环、吡啶环或三嗪环;每个Rb相同或不同,彼此独立地选自如下基团:卤素、氰基、氧代(=O)、C1-6烷基、卤代C1-6烷基、羟基C1-6烷基、C1-6烷氧基或C3-8环烷基、3-8元杂环基、C1-6烷基-O-C1-6烷基-、C1-6烷基-(5-6元)杂芳基-;优选地,每个Rb相同或不同,彼此独立地选自氰基、氧代(=O)、甲氧基、环丙基、三氟甲基、Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的如下基团:C6-14芳基、5-14元杂芳基、3-14元杂环基;每个Rm1相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基、HOOC-C1-3亚烷基;优选地,Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的下列基团:苯基、哌啶基或哌嗪基;更优选地,Lm1选自Rm20选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-(CH2)s-(C=O)-RZ、-乙炔基-(CH2)t-(C=O)-RZ;优选地,Rm20选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-CH2-(C=O)-RZ、-(CH2)2-(C=O)-RZ、-(CH2)5-(C=O)-RZ、-乙炔基-(CH2)3-(C=O)-RZ;每个Rm2相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基或-C1-6亚烷基-COOH,所述亚烷基任选地被一个、两个或更多个下列基团所间隔:O、NH;优选地,每个Rm2相同或不同,彼此独立地选自-C1-3亚烷基-COOH,所述亚烷基任选地被O或NH所间隔;更优选地,Rm2选自、r选自0-6的整数;s选自0-6的整数;t选自0-6的整数;Rz选自羟基、卤素、活性酯、羧基保护基、氨基酸、肽片段或亲水片段;所述氨基酸为L1的N端氨基酸,所述肽片段为L1自N端的2个、3个或4个氨基酸形成的子片段或为L1;所述肽片段的C端为羟基、活性酯、羧基保护基或优选地,所述亲水片段包含多羟基基团、聚乙二醇片段、聚甜菜碱片段或聚肌酸片段;优选地,式MII为如下式MII-1:
其中,t和Rz如上述定义,Z为N或CR22,R21和R22各自独立选自H、卤素、氰基、氧代(=O)、C1-6烷基、卤代C1-6烷基、羟基C1-6烷基、C1-6烷氧基、C3-8环烷基、3-8元杂环基、C1-6烷基-O-C1-6烷基;条件是当Z为N时,R21不为H;优选地,Rz为OH或卤素,t为2-4的整数,Z为N并且R21选自氰基、C1-6烷氧基、C3-4环烷基或-C1-6烷基-O-C1-6烷基,或R21为H、Z为CR22并且R22为氰基或三氟甲基;优选地,式MII为如下化合物:
- 式(L’-1)-(L’-3)所示的化合物:
Lg为离去基团,所述离去基团选自卤素、砜基、三氟甲磺酰基或甲磺酰基;优选地,Lg为甲磺酰基;环B选自5-6元含N杂芳环或3-6元含N杂环;更优选地,环B选自嘧啶环、吡啶环或三嗪环;每个Rb相同或不同,彼此独立地选自如下基团:卤素、氰基、氧代(=O)、C1-6烷基、卤代C1-6烷基、羟基C1-6烷基、C1-6烷氧基或C3-8环烷基、3-8元杂环基、C1-6烷基-O-C1-6烷基-、C1-6烷基-(5-6元)杂芳基-;优选地,每个Rb相同或不同,彼此独立地选自氰基、氧代(=O)、甲氧基、环丙基、三氟甲基、Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的如下基团:C6-14芳基、5-14元杂芳基、3-14元杂环基;每个Rm1相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基、HOOC-C1-3亚烷基;优选地,Lm1不存在,或者选自无取代或任选被一个、两个或更多个Rm1取代的下列基团:苯基、哌啶基或哌嗪基;更优选地,Lm1选自Lm2选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-(CH2)s-(C=O)-、-乙炔基-(CH2)t-(C=O)-;优选地,Lm2选自无取代或任选被一个、两个或更多个Rm2取代的下列基团:-CH2-(C=O)-、-(CH2)2-(C=O)-、-(CH2)5-(C=O)-、-乙炔基-(CH2)3-(C=O)-;每个Rm2相同或不同,彼此独立地选自H、卤素、氰基、C1-6烷基或-C1-6亚烷基-COOH,所述亚烷基任选地被一个、两个或更多个下列基团所间隔:O、NH;优选地,每个Rm2相同或不同,彼此独立地选自-C1-3亚烷基-COOH,所述亚烷基任选地被O或NH所间隔;更优选地,Rm2选自、r选自0-6的整数;s选自0-6的整数;t选自0-6的整数;Rz2选自羟基、卤素、活性酯或羧基保护基;优选地,其中片段具有下式所示结构:
其中各基团定义如权利要求16所述;R51彼此独立地选自H、C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2+N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;R53选自C1-6烷基、C1-6卤代烷基、C1-6烷基-NH-、(C1-6烷基)2N-、C1-6烷基-NH-C1-6烷基、(C1-6烷基)2N-C1-6烷基、C1-6烷氧基烷基、C2-6烯基、C2-6炔基、C3-6环烷基、3-6元杂环基、C6-14芳基和5-14元杂芳基;环A选自C3-8环烷基或3-8元杂环基,Ra选自H、羟基、CN、卤素、C1-6烷基、C1-6卤代烷基;n选自0、1或2;q选自0、1或2;L1为肽残基;优选地,选自甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(GGFG)、谷氨酸-缬氨酸-瓜氨酸(EVC)、缬氨酸-瓜氨酸(VC)、天冬氨酸-缬氨酸-瓜氨酸(DVC)、谷氨酸-甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(EGGFG)、天冬氨酸-甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(DGGFG);优选地, L1选自甘氨酸-甘氨酸-苯丙氨酸-甘氨酸(GGFG);L2为肽残基与D的连接基团;优选地,选自化学键、-NH-C1-6烷基-、 优选地,L2选自-NH-CH2-;(L’-1)-(L’-3)优选地为:
- 权利要求17所述的式(L’)的合成方法,其中所述L2为-NH-CH2-,包括如下反应式的步骤:
其中Rm20定义如权利要求16所述,并且Rz2为羟基、活性酯或羧基保护基;其余各基团定义如权利要求17所述。 - 权利要求8所述化合物的合成方法,包括第一方案或第二方案:第一方案选自如下步骤:
Rz2选自羟基、卤素、活性酯或羧基保护基,其余基团定义如权利要求8所述;第二方案包括如下步骤:与式I化合物反应的步骤,所述式I化合物如权利要求8所述,其余基团定义如权利要求8所述。
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310367781.7 | 2023-04-07 | ||
CN202310367781 | 2023-04-07 | ||
CN202310743291.2 | 2023-06-21 | ||
CN202310743291 | 2023-06-21 | ||
CN202310941713.7 | 2023-07-28 | ||
CN202310941713 | 2023-07-28 | ||
CN202311173712 | 2023-09-12 | ||
CN202311173712.9 | 2023-09-12 | ||
CN202311558824.6 | 2023-11-21 | ||
CN202311558824 | 2023-11-21 | ||
CN202311802330.8 | 2023-12-25 | ||
CN202311802330 | 2023-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024208314A1 true WO2024208314A1 (zh) | 2024-10-10 |
Family
ID=92971308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/085983 WO2024208314A1 (zh) | 2023-04-07 | 2024-04-03 | 喜树碱衍生物、药物组合物及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202444723A (zh) |
WO (1) | WO2024208314A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025103192A1 (zh) * | 2023-11-16 | 2025-05-22 | 上海齐鲁制药研究中心有限公司 | 一种氘代喜树碱化合物及其制备和应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0495432A1 (en) * | 1991-01-16 | 1992-07-22 | Daiichi Pharmaceutical Co., Ltd. | Hexa-cyclic compound |
JPH0687746A (ja) * | 1992-07-16 | 1994-03-29 | Dai Ichi Seiyaku Co Ltd | 抗腫瘍剤 |
WO2020063673A1 (zh) * | 2018-09-30 | 2020-04-02 | 江苏恒瑞医药股份有限公司 | 抗b7h3抗体-依喜替康类似物偶联物及其医药用途 |
WO2021190602A1 (zh) * | 2020-03-25 | 2021-09-30 | 江苏恒瑞医药股份有限公司 | 一种抗体药物偶联物的制备方法 |
WO2022121981A1 (zh) * | 2020-12-11 | 2022-06-16 | 微境生物医药科技(上海)有限公司 | 新型喜树碱衍生物、含其的组合物和其用途 |
WO2022166762A1 (zh) * | 2021-02-05 | 2022-08-11 | 四川科伦博泰生物医药股份有限公司 | 喜树碱类化合物及其制备方法和应用 |
WO2022253035A1 (zh) * | 2021-06-02 | 2022-12-08 | 四川科伦博泰生物医药股份有限公司 | 抗体药物偶联物及其制备方法和用途 |
WO2023143263A1 (zh) * | 2022-01-25 | 2023-08-03 | 苏州宜联生物医药有限公司 | 一种针对Her3的抗体,偶联物及其用途 |
WO2023143365A1 (zh) * | 2022-01-28 | 2023-08-03 | 映恩生物制药(苏州)有限公司 | Her3抗体药物偶联物及其用途 |
WO2023208216A1 (en) * | 2022-04-29 | 2023-11-02 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | Antibody-drug conjugates and preparation methods and use thereof |
WO2024078586A1 (en) * | 2022-10-14 | 2024-04-18 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | Antibody-drug conjugate binding to human ptk7 and method for preparation and use thereof |
-
2024
- 2024-04-03 TW TW113112832A patent/TW202444723A/zh unknown
- 2024-04-03 WO PCT/CN2024/085983 patent/WO2024208314A1/zh unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0495432A1 (en) * | 1991-01-16 | 1992-07-22 | Daiichi Pharmaceutical Co., Ltd. | Hexa-cyclic compound |
JPH0687746A (ja) * | 1992-07-16 | 1994-03-29 | Dai Ichi Seiyaku Co Ltd | 抗腫瘍剤 |
WO2020063673A1 (zh) * | 2018-09-30 | 2020-04-02 | 江苏恒瑞医药股份有限公司 | 抗b7h3抗体-依喜替康类似物偶联物及其医药用途 |
WO2021190602A1 (zh) * | 2020-03-25 | 2021-09-30 | 江苏恒瑞医药股份有限公司 | 一种抗体药物偶联物的制备方法 |
WO2022121981A1 (zh) * | 2020-12-11 | 2022-06-16 | 微境生物医药科技(上海)有限公司 | 新型喜树碱衍生物、含其的组合物和其用途 |
WO2022166762A1 (zh) * | 2021-02-05 | 2022-08-11 | 四川科伦博泰生物医药股份有限公司 | 喜树碱类化合物及其制备方法和应用 |
WO2022253035A1 (zh) * | 2021-06-02 | 2022-12-08 | 四川科伦博泰生物医药股份有限公司 | 抗体药物偶联物及其制备方法和用途 |
WO2023143263A1 (zh) * | 2022-01-25 | 2023-08-03 | 苏州宜联生物医药有限公司 | 一种针对Her3的抗体,偶联物及其用途 |
WO2023143365A1 (zh) * | 2022-01-28 | 2023-08-03 | 映恩生物制药(苏州)有限公司 | Her3抗体药物偶联物及其用途 |
WO2023208216A1 (en) * | 2022-04-29 | 2023-11-02 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | Antibody-drug conjugates and preparation methods and use thereof |
WO2024078586A1 (en) * | 2022-10-14 | 2024-04-18 | Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. | Antibody-drug conjugate binding to human ptk7 and method for preparation and use thereof |
Non-Patent Citations (1)
Title |
---|
DATABASE REGISTRY 3 December 2004 (2004-12-03), ANONYMOUS: "12H-Pyrano[4,3,2-de]pyrano[3', 4':6,7]indolizino[1,2-b]quino line10,13(2H,9H)-dione, 1-amin o-9-ethyl-1,15-dihydro-9-hy droxy-4-methyl-, (1S,9S)- (CA INDEX NAME)", XP093220028, Database accession no. 791752-85-7 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025103192A1 (zh) * | 2023-11-16 | 2025-05-22 | 上海齐鲁制药研究中心有限公司 | 一种氘代喜树碱化合物及其制备和应用 |
Also Published As
Publication number | Publication date |
---|---|
TW202444723A (zh) | 2024-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI870922B (zh) | 作為sos1抑制劑之新穎芐胺基取代吡啶并嘧啶酮及衍生物 | |
CN111164208B (zh) | 抗体-吡咯并苯并二氮杂卓衍生物偶联物 | |
TWI869913B (zh) | 吡啶并[4,3-d]嘧啶化合物 | |
JP6882299B2 (ja) | 多環式tlr7/8アンタゴニスト及び免疫障害の治療におけるそれらの使用 | |
KR20230022211A (ko) | 고안정성 친수성 연결 단위를 갖는 캄프토테신 약물 및 이의 접합체 | |
WO2020063676A1 (zh) | 依喜替康类似物的配体-药物偶联物及其制备方法和应用 | |
JP2021523147A (ja) | 抗msr1抗体及びその使用方法 | |
CN116059201A (zh) | 抗egfr抗体药物偶联物 | |
JP2020525513A (ja) | 癌および他の疾患を治療するためのatf4阻害剤としてのn−(3−(2−(4−クロロフェノキシ)アセトアミドビシクロ[1.1.1]ペンタン−1−イル)−2−シクロブタン−1−カルボキサミド誘導体および関連化合物 | |
CN109600993A (zh) | 抗egfr抗体药物偶联物 | |
TW201202254A (en) | Macrocyclic compounds as Trk kinase inhibitors | |
CN116135232B (zh) | 抗体-药物偶联物及其用途 | |
JP2021503508A (ja) | 置換大環状インドール誘導体 | |
CN115052604A (zh) | Masp-2抑制剂和使用方法 | |
JP2021512103A (ja) | Nampt阻害剤を含む抗体薬物複合体(adcs) | |
WO2024208314A1 (zh) | 喜树碱衍生物、药物组合物及其制备方法和应用 | |
CN114569739A (zh) | 抗体药物偶联物 | |
WO2023207710A9 (zh) | 一类抗体药物偶联物、其药物组合物及应用 | |
WO2023155808A1 (zh) | 抗体-艾日布林或其衍生物的偶联物、其中间体、制备方法、药物组合物和用途 | |
WO2022007659A1 (zh) | 杂环类免疫调节剂 | |
JP7338072B2 (ja) | Retキナーゼ阻害剤としてのピラゾール誘導体 | |
CN115650974B (zh) | N-[5-(嘧啶-2-氨基)-2,4-二取代苯基]-顺式戊二烯酰胺衍生物及应用 | |
WO2024140933A1 (zh) | 喜树碱衍生物、药物组合物及其制备方法和应用 | |
WO2025130780A1 (zh) | 一类免疫刺激抗体偶联物、其制备方法及用途 | |
WO2024235120A1 (zh) | 稠环化合物及其制备方法和用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24784396 Country of ref document: EP Kind code of ref document: A1 |