[go: up one dir, main page]

WO2024207731A1 - 一种车辆行驶的控制方法和装置 - Google Patents

一种车辆行驶的控制方法和装置 Download PDF

Info

Publication number
WO2024207731A1
WO2024207731A1 PCT/CN2023/130503 CN2023130503W WO2024207731A1 WO 2024207731 A1 WO2024207731 A1 WO 2024207731A1 CN 2023130503 W CN2023130503 W CN 2023130503W WO 2024207731 A1 WO2024207731 A1 WO 2024207731A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
overlap
driving
ahead
Prior art date
Application number
PCT/CN2023/130503
Other languages
English (en)
French (fr)
Inventor
王国权
刘开勇
兰华
付广
林智桂
Original Assignee
上汽通用五菱汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上汽通用五菱汽车股份有限公司 filed Critical 上汽通用五菱汽车股份有限公司
Publication of WO2024207731A1 publication Critical patent/WO2024207731A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18159Traversing an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant

Definitions

  • Embodiments of the present invention relate to the field of autonomous driving technology, and more particularly to a vehicle control method and device.
  • autonomous driving vehicles In the existing technology, in the scenario of multi-lane traffic intersections, autonomous driving vehicles mostly follow the lane selected by the vehicle in front.
  • An embodiment of the present invention provides a vehicle driving control method and device.
  • the method can compare the comfort of directly entering a target lane and following a target vehicle, so as to control the vehicle to choose the most comfortable way to go straight through the intersection and avoid blindly following the vehicle.
  • an embodiment of the present invention provides a vehicle driving control method, which is applied to a vehicle driving control device, and the method includes:
  • the left and right driving boundaries of the vehicle ahead are preset to generate a virtual driving lane
  • the vehicle is controlled to enter a drivable lane corresponding to the first overlap degree.
  • judging whether the vehicle is going to go straight through the intersection according to the driving environment image includes:
  • the lane the vehicle is in is not a left-turn or right-turn lane, it is determined that the vehicle is going straight through the intersection.
  • the method further includes:
  • a prompt message is generated, and the prompt message is used to prompt the driver to take over the vehicle.
  • the method before determining whether lane lines of multiple drivable lanes ahead can be identified, the method further includes:
  • the determining whether lane lines of a plurality of drivable lanes ahead can be identified further includes:
  • a prompt message is generated, and the prompt message is used to prompt the driver to take over the vehicle.
  • the presetting of the left and right driving boundaries of the vehicle ahead to generate a virtual driving lane includes:
  • Preset the driving lane width of the front vehicle and determine the left and right driving boundaries of the front vehicle according to the current driving position of the front vehicle;
  • a virtual driving lane corresponding to the front vehicle is determined according to the left and right driving boundaries.
  • the determining of the first overlap and the second overlap between the lane where the vehicle is located and the plurality of drivable lanes ahead and the virtual driving lane of the vehicle ahead, respectively includes:
  • a first degree of overlap is determined based on a degree of overlap between a lane line where the vehicle is located and lane lines of a plurality of drivable lanes ahead.
  • the determining of the first overlap degree and the second overlap degree between the lane where the vehicle is currently located and the plurality of drivable lanes ahead and the virtual driving lane of the vehicle ahead, respectively further includes:
  • a second degree of overlap is determined based on a degree of overlap between a lane line of a lane where the vehicle is located and left and right driving boundaries of a front vehicle.
  • the method further includes:
  • an embodiment of the present invention provides a vehicle driving control device, comprising:
  • a collection module used for collecting images of the driving environment of the vehicle
  • a judgment module is used to judge whether the vehicle is going to go straight through the intersection according to the driving environment image; if so, whether lane lines of multiple drivable lanes ahead can be identified; if so, whether there is a front vehicle, and the front vehicle is the front vehicle that is crossing the intersection; and whether the first overlap degree is greater than the second overlap degree;
  • a determination module for, if there is a vehicle ahead, presetting the left and right driving boundaries of the vehicle ahead and determining the virtual driving lane of the vehicle ahead; respectively determining a first overlap and a second overlap between the lane where the vehicle is located and the plurality of drivable lanes ahead and the virtual driving lane of the vehicle ahead, wherein the first overlap is the maximum overlap between the lane where the vehicle is located and the plurality of drivable lanes ahead, and the second overlap is the maximum overlap between the lane where the vehicle is located and the virtual driving lane;
  • a control module is used to control the vehicle to follow the front vehicle corresponding to the second overlap when the first overlap is less than or equal to the second overlap; and to control the vehicle to enter a drivable lane corresponding to the first overlap when the first overlap is greater than the second overlap.
  • the vehicle driving control method and device provided by the embodiments of the present invention can control the vehicle to go straight through the intersection in the most comfortable way regardless of whether there is a vehicle ahead, thereby ensuring the driver's driving experience and improving the efficiency of the vehicle crossing the intersection.
  • FIG1 is a schematic diagram of a scene of a vehicle crossing an intersection provided by an embodiment of the present invention.
  • FIG2 is a flow chart of a method for controlling vehicle travel provided by an embodiment of the present invention.
  • FIG3 is a flow chart of a method for determining whether a vehicle is passing through an intersection in a straight line provided by an embodiment of the present invention
  • FIG4 is a schematic diagram of determining a target vehicle provided by an embodiment of the present invention.
  • FIG5 is a schematic diagram of determining a target lane provided by an embodiment of the present invention.
  • FIG6 is a schematic structural diagram of a vehicle travel control device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a scene of a vehicle crossing an intersection provided by an embodiment of the present invention.
  • an embodiment of the present invention provides a method for controlling vehicle travel.
  • the application scenarios of the method include but are not limited to a vehicle driving straight through a multi-lane intersection.
  • the above method is applied to a vehicle travel control device.
  • the vehicle travel control device is configured on an autonomous driving vehicle to control the vehicle travel.
  • the above vehicle travel control device may be an adaptive cruise control (Adaptive Cruise Control, hereinafter referred to as: ACC) device of an autonomous driving vehicle.
  • the vehicle travel control device includes an image acquisition device such as a camera, which is used to capture driving environment images during vehicle travel in real time.
  • the above driving environment image may include but is not limited to the virtual and real lane lines of the lane where the vehicle is currently located, the turn arrow mark, the lane lines of multiple drivable lanes ahead, and the stop line at the intersection ahead.
  • the vehicle driving control method of the embodiment of the present invention can determine the target lane and control the vehicle to enter when there is no vehicle in front.
  • the target lane is the lane with the highest overlap with the lane where the vehicle is currently located. Controlling the vehicle to enter the target lane has a higher degree of comfort than entering other lanes. In the case of a vehicle in front, the comfort of following the vehicle and directly entering the target lane can be compared, and the vehicle can be controlled to choose the most comfortable way to drive, thereby ensuring the driver's driving experience and effectively avoiding blind following.
  • FIG2 is a flow chart of a vehicle driving control method provided by an embodiment of the present invention.
  • the vehicle driving control method may include:
  • Step 201 Collect driving environment images.
  • Step 202 Determine whether the vehicle is going to go straight through the intersection based on the driving environment image.
  • the driving environment image is real-time image data collected by the camera during the vehicle's driving process.
  • the above driving environment image may include but is not limited to the lane virtual and real lines of the lane where the vehicle is located, the turn arrow mark, the stop line at the intersection ahead, etc.
  • the above step 202 may specifically further include:
  • Step 2021 Identify the lane virtual and solid lines and turn arrow mark of the lane where the vehicle is located from the driving environment image.
  • Step 2022 Determine in real time whether the lane virtual and real lines of the lane where the vehicle is located are solid lines.
  • the lane dashed lines are the lane dashed lines on both sides of the vehicle during the vehicle's driving process.
  • the lane dashed lines around the lane where the current vehicle is located are dashed lines, it indicates that the vehicle can still change lanes.
  • step 2023 is executed, and the driver controls the vehicle to drive.
  • the lane dashed lines around the lane where the current vehicle is located are solid lines, it indicates that the vehicle can no longer change lanes, and step 2024 is executed.
  • Step 2023 If the lane virtual-solid line of the lane where the vehicle is located is a dotted line, the driver controls the vehicle to drive normally.
  • Step 2024 If yes, determine whether the lane the vehicle is in is a left turn lane or a right turn lane based on the turn arrow mark.
  • the above-mentioned turning arrow marks include a right arrow mark, a left arrow mark and a straight arrow mark. If the turning arrow mark of the lane where the vehicle is located is identified as a right arrow mark or a left arrow mark, it indicates that the lane where the vehicle is located is a left turn lane or a right turn lane, and step 2025 is executed. If the turning arrow mark of the lane where the vehicle is located is identified as a straight arrow mark, it indicates that the lane where the vehicle is located is a straight lane, and step 2027 is executed.
  • Step 2025 If yes, control the corresponding turn signal to be turned on according to the turn arrow mark.
  • Step 2026 Generate prompt information.
  • the prompt information is used to prompt the driver to take over the vehicle.
  • the prompt information can be at least one of a voice prompt or a pop-up prompt screen prompting the driver to take over the vehicle, or a combination of the two.
  • Step 2027 If the lane where the vehicle is located is not a left-turn lane or a right-turn lane, it is determined that the vehicle is going to go straight through the intersection.
  • the conditions for determining that the vehicle is going straight through the intersection in the embodiment of the present invention include: the current lane virtual and solid lines of the lane where the vehicle is located are solid lines, and the turn arrow mark is a straight arrow mark.
  • Step 203 If it is determined that the vehicle is going to go straight through the intersection, it is determined whether lane lines of multiple drivable lanes ahead can be identified.
  • the drivable lane is the front lane that the vehicle can choose to drive into after passing the intersection.
  • the driving environment image collected by the vehicle may also include the number of lanes, lane lines, and turn arrow marks of the front lane. Based on the turn arrow mark of the front lane, the front lane is divided into a drivable lane and a reverse lane. It is understood that the vehicle cannot drive into the reverse lane.
  • the driving environment image may further include: the state of a traffic light at the intersection ahead.
  • the process may further include: judging whether the vehicle is currently passable according to the state of the traffic light at the intersection ahead.
  • the above-mentioned driving environment image may also include: a stop line at the intersection ahead.
  • it may also include: determining a first distance between the vehicle and the intersection ahead according to the above-mentioned driving environment image. Determining in real time whether the above-mentioned first distance is less than a first threshold. If less than, determining whether lane lines of multiple drivable lanes ahead can be identified.
  • the above-mentioned first threshold may be set according to actual conditions, and the embodiment of the present invention does not limit it.
  • step 204 if the lane lines of the multiple drivable lanes ahead cannot be accurately identified, step 204 is executed, and the driver takes over the driving of the vehicle. If the lane lines can be accurately identified, step 205 is executed.
  • Step 204 Generate prompt information.
  • the prompt information is used to prompt the driver to take over the vehicle.
  • Step 205 If yes, determine whether there is a vehicle ahead that is crossing the intersection.
  • step 206 based on the driving environment image captured by the camera, if a vehicle ahead of the vehicle crossing the intersection is identified, then step 206 is continued. If no vehicle ahead is identified, then step 209 is executed.
  • Step 206 If so, preset the left and right driving boundaries of the vehicle ahead and generate a virtual driving lane.
  • the front vehicle 1 and the front vehicle 2 are identified to be crossing the intersection. Based on the above driving environment image, the current driving positions of the front vehicle 1 and the front vehicle 2 are determined respectively. As shown in FIG4 , the driving lane widths of the front vehicle 1 and the front vehicle 2 are preset, and the left and right driving boundaries of the front vehicle 1 and the front vehicle 2 are determined according to the current driving positions of the front vehicles. Finally, based on the above left and right driving boundaries, the virtual driving lanes of the front vehicle 1 and the front vehicle 2 are determined respectively.
  • the above driving lane widths can be set according to actual conditions, and the embodiments of the present invention do not limit this.
  • Step 207 respectively determining a first degree of overlap and a second degree of overlap between the lane where the vehicle is located and the plurality of drivable lanes ahead and the virtual driving lane of the vehicle ahead.
  • the first overlap is the maximum overlap between the lane where the vehicle is located and the plurality of drivable lanes ahead.
  • the second overlap is the maximum overlap between the lane where the vehicle is located and the virtual driving lane of the vehicle ahead.
  • the lane line of the lane where the vehicle is located is identified.
  • the lane line of the lane where the above-mentioned vehicle is located is extended in the direction of vehicle travel.
  • the overlap C and overlap D between the lane line of the lane where the vehicle is located and the virtual driving lanes of the front vehicle 1 and the front vehicle 2 are calculated respectively.
  • the sizes of the above-mentioned overlap C and overlap D are compared to determine the above-mentioned second overlap. It can be understood that the front vehicle corresponding to the above-mentioned second overlap is the target vehicle that can be selected in the embodiment of the present invention.
  • the vehicle can have a higher degree of comfort when driving the above-mentioned target vehicle than following other vehicles.
  • the lane line of the lane where the vehicle is located and the lane lines of the two drivable lanes in front are identified.
  • the lane line of the lane where the vehicle is located is extended in the direction of the two drivable lanes in front.
  • the overlap A and overlap B of the lane line of the lane where the vehicle is located and the two drivable lanes in front are calculated respectively. Compare the sizes of the above overlap A and overlap B to determine the above first overlap.
  • the drivable lane in front corresponding to the above first overlap is the target lane that can be selected in the embodiment of the present invention.
  • the vehicle can have a higher degree of comfort when choosing the target lane to drive into compared with choosing other lanes.
  • Step 208 Determine whether the first overlap degree is greater than the second overlap degree.
  • Step 209 If yes, or there is no front vehicle crossing the intersection, control the vehicle to enter a drivable lane corresponding to the first overlap degree.
  • Step 210 If it is not greater than, control the vehicle to follow the front vehicle corresponding to the second overlap degree.
  • the vehicle driving control device of the embodiment of the present invention can send a lateral and longitudinal control request to the vehicle engine controller to automatically control the vehicle to enter a drivable lane corresponding to the first overlap or to follow the vehicle in front corresponding to the second overlap.
  • the method further includes: determining in real time whether the vehicle has lost the vehicle in front corresponding to the second overlap. If lost, the vehicle is controlled to enter a drivable lane corresponding to the first overlap. If the vehicle in front corresponding to the second overlap can be continuously identified, the vehicle is controlled to continue to follow the vehicle in front through the intersection.
  • FIG6 is a schematic diagram of the structure of a vehicle driving control device provided by an embodiment of the present invention. As shown in FIG6, The vehicle driving control device may include:
  • the acquisition module 61 is specifically used to acquire the driving environment image of the vehicle.
  • the judgment module 62 is specifically used to judge whether the vehicle is going to go straight through the intersection based on the driving environment image; if so, to judge whether the lane lines of multiple drivable lanes ahead can be identified; if so, to judge whether there is a vehicle ahead, and the vehicle ahead is the vehicle ahead that is crossing the intersection; and, to judge whether the first overlap degree is greater than the second overlap degree.
  • the determination module 63 is used to preset the left and right driving boundaries of the vehicle ahead if there is a vehicle ahead, determine the virtual driving lane of the vehicle ahead, and respectively determine the first overlap and the second overlap between the lane where the vehicle is located and the multiple drivable lanes ahead and the virtual driving lane of the vehicle ahead.
  • the first overlap is the maximum overlap between the lane where the vehicle is located and the multiple drivable lanes ahead
  • the second overlap is the maximum overlap between the lane where the vehicle is located and the virtual driving lane.
  • the control module 64 is specifically used to control the vehicle to follow the front vehicle corresponding to the second overlap when the first overlap is less than or equal to the second overlap; and to control the vehicle to enter the drivable lane corresponding to the first overlap when the first overlap is greater than the second overlap.
  • the vehicle driving control device provided in the embodiment shown in Figure 6 can be used to execute the technical solutions of the method embodiments shown in Figures 1 to 5 of the present application. Its implementation principles and technical effects can be further referred to the relevant descriptions in the method embodiments.
  • FIG7 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present invention.
  • the electronic device may include at least one processor; and at least one memory connected to the processor in communication, wherein: the memory stores program instructions executable by the processor, and the processor calls the program instructions to execute the vehicle driving control method provided by the embodiments shown in FIGS. 1 to 5 of the present invention.
  • the electronic device may be a device capable of controlling the driving of a vehicle, such as ACC, and the specific form of the electronic device is not limited in the embodiment of the present invention. It can be understood that the electronic device here is the machine mentioned in the method embodiment.
  • Figure 7 shows a block diagram of an exemplary electronic device suitable for implementing an embodiment of the present invention.
  • the electronic device shown in Figure 7 is only an example and should not bring any limitation to the functions and scope of use of the embodiment of the present invention.
  • the electronic device is in the form of a general computing device.
  • the components of the electronic device may include, but are not limited to: one or more processors 410, memory 430, and a communication bus 440 connecting different system components (including memory 430 and processing unit 410).
  • the communication bus 440 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor or a local bus using any of a variety of bus structures.
  • these architectures include but are not limited to Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (VESA) local bus and Peripheral Component Interconnection (PCI) bus.
  • Electronic devices typically include a variety of computer system readable media. These media can be any available media that can be accessed by the electronic device, including volatile and non-volatile media, removable and non-removable media.
  • Memory 430 may include computer system readable media in the form of volatile memory, such as random access memory. Memory (Random Access Memory; hereinafter referred to as: RAM) and/or cache memory. The electronic device may further include other removable/non-removable, volatile/non-volatile computer system storage media. Memory 430 may include at least one program product, which has a set (e.g., at least one) of program modules, which are configured to perform the functions of various embodiments of the present invention.
  • RAM Random Access Memory
  • cache memory volatile memory
  • the electronic device may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • Memory 430 may include at least one program product, which has a set (e.g., at least one) of program modules, which are configured to perform the functions of various embodiments of the present invention.
  • a program/utility having a set (at least one) of program modules may be stored in memory 430, such program modules including, but not limited to, an operating system, one or more application programs, other program modules, and program data, each of which or some combination may include an implementation of a network environment.
  • the program modules generally perform the functions and/or methods of the embodiments described in the embodiments of the present invention.
  • the processor 410 executes various functional applications and data processing by running the programs stored in the memory 430, such as implementing the vehicle driving control method provided in the embodiments shown in Figures 1 to 5 of the embodiments of the present invention.
  • the vehicle driving control method provided by the embodiment of the present invention can respectively determine the target lane and the target vehicle when the vehicle goes straight through the intersection, and by comparing the comfort of directly entering the target lane and following the target vehicle, control the vehicle to choose the most comfortable way to go straight through the intersection, thereby avoiding blind following and improving the driver's driving experience and the efficiency of vehicle crossing the intersection.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (Processor) to perform some steps of the method described in each embodiment of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory; hereinafter referred to as: ROM), random access memory (Random Access Memory; hereinafter referred to as: RAM), disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及自动驾驶领域,尤其涉及一种车辆行驶的控制方法和装置。其中,上述车辆行驶的控制方法包括:采集车辆的驾驶环境图像;根据驾驶环境图像,判断车辆是否要直行过路口;若是,则判断是否可识别前方多个可行驶车道的车道线;若是,则判断是否存在正在过路口的前方车辆;若存在,则预设前方车辆的左右行驶边界,生成虚拟行驶车道;分别确定车辆所在车道与可行驶车道、虚拟行驶车道间的第一重合度、第二重合度;判断第一重合度是否大于第二重合度;若否,则控制车辆跟随与第二重合度对应的前方车辆行驶;若是,或者不存在所述前方车辆,则控制车辆驶入与第一重合度对应的可行驶车道。从而避免盲目跟车行驶,提高用户行车体验。

Description

一种车辆行驶的控制方法和装置
本申请要求于2023年4月4日提交中国专利局、申请号为202310354958X、发明名称为“一种车辆行驶的控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及自动驾驶技术领域,尤其涉及一种车辆的控制方法和装置。
背景技术
随着自动驾驶领域相关技术的不断成熟,汽车智能化水平不断提高,车辆自动驾驶能够解决的场景和工况也越来越多。现有技术中,在多车道交通路口的场景中,自动驾驶车辆大多按照前车选择的车道进行跟车行驶。
然而,盲目跟车行驶可能会导致自动驾驶车辆偏出舒适性较高的车道,影响用户的行车体验,降低自动驾驶车辆过路口的效率。因此,自动驾驶车辆如何高效且舒适的通过多车道交通路口成为一个需要解决的问题。
发明内容
本发明实施例提供了一种车辆行驶的控制方法和装置,该方法能够在自动驾驶车辆通过直行路口时,对比直接驶入目标车道与跟随目标车辆行驶的舒适度,以控制车辆选择舒适度最高的方式直行通过路口,避免盲目跟车行驶。
第一方面,本发明实施例提供一种车辆行驶的控制方法,应用于车辆行驶控制装置,所述方法包括:
采集车辆的驾驶环境图像;
根据所述驾驶环境图像,判断车辆是否要直行过路口;
若是,则判断是否可识别前方多个可行驶车道的车道线;
若是,则判断是否存在正在过路口的前方车辆;
若存在,则预设前方车辆的左右行驶边界,生成虚拟行驶车道;
分别确定车辆所在车道与前方多个可行驶车道、前方车辆的虚拟行驶车道间的第一重合度、第二重合度,所述第一重合度为车辆所在车道与多个可行驶车道间的最大重合度,所述第二重合度为车辆所在车道与前方车辆的虚拟车道间的最大重合度;
判断所述第一重合度是否大于所述第二重合度;
若否,则控制车辆跟随与所述第二重合度对应的前方车辆行驶;
若是,或者不存在正在过路口的前方车辆,则控制车辆驶入与所述第一重合度对应的可行驶车道。
其中一种可能的实现方式中,所述根据所述驾驶环境图像,判断车辆是否要直行过路口,包括:
从所述驾驶环境图像中识别车辆所在车道的车道虚实线、转向箭头标识;
实时判断车辆所在车道的所述车道虚实线是否为实线;
若是,则根据所述转向箭头标识判断车辆所在车道是否为左转或右转车道;
若是,则根据所述转向箭头标识,控制开启相应的转向灯;
若车辆所在车道不是左转或右转车道,则确定车辆要直行过路口。
其中一种可能的实现方式中,所述方法还包括:
若车辆所在车道为左转或右转车道,则生成提示信息,所述提示信息用于提示驾驶员接管车辆。
其中一种可能的实现方式中,所述判断是否可识别前方多个可行驶车道的车道线之前,还包括:
根据所述驾驶环境图像,确定车辆距前方路口的第一距离;
判断所述第一距离是否小于第一阈值;
若小于,则判断是否可识别前方多个可行驶车道的车道线。
其中一种可能的实现方式中,所述判断是否可识别前方多个可行驶车道的车道线,还包括:
若不可识别,则生成提示信息,所述提示信息用于提示驾驶员接管车辆。
其中一种可能的实现方式中,所述预设前方车辆的左右行驶边界,生成虚拟行驶车道,包括:
根据所述驾驶环境图像,确定前方车辆的当前行驶位置;
预设所述前方车辆的行驶车道宽度,根据前方车辆的当前行驶位置,确定所述前方车辆的左右行驶边界;
根据所述左右行驶边界,确定所述前方车辆对应的虚拟行驶车道。
其中一种可能的实现方式中,所述分别确定车辆所在车道与前方多个可行驶车道、前方车辆的虚拟行驶车道间的第一重合度、第二重合度,包括:
根据所述驾驶环境图像,确定车辆所在车道的车道线;
分别计算所述车辆所在车道的车道线与前方多个可行驶车道的车道线之间的重合度;
根据所述车辆所在车道线与前方多个可行驶车道的车道线之间的重合度,确定第一重合度。
其中一种可能的实现方式中,所述分别确定车辆当前所在车道与前方多个可行驶车道、所述前方车辆的虚拟行驶车道间的第一重合度、第二重合度,还包括:
分别计算所述车辆所在车道的车道线与前方车辆的左右行驶边界间的重合度;
根据所述车辆所在车道的车道线与前方车辆的左右行驶边界间的重合度,确定第二重合度。
其中一种可能的实现方式中,所述控制车辆跟随与所述第二重合度对应的前方车辆行驶之后,还包括:
实时判断车辆是否跟丢与所述第二重合度对应的前方车辆;
若是,则控制车辆驶入与所述第一重合度对应的可行驶车道;
若否,则控制车辆继续跟随与所述第二重合度对应的前方车辆行驶。
第二方面,本发明实施例提供一种车辆行驶控制装置,包括:
采集模块,用于采集车辆的驾驶环境图像;
判断模块,用于根据所述驾驶环境图像,判断车辆是否要直行过路口;若是,则判断是否可识别前方多个可行驶车道的车道线;若是,则判断是否存在前方车辆,所述前方车辆为正在过路口的前方车辆;以及,判断第一重合度是否大于第二重合度;
确定模块,用于若存在前方车辆,则预设前方车辆的左右行驶边界,确定前方车辆的虚拟行驶车道;分别确定车辆所在车道与前方多个可行驶车道、前方车辆的虚拟行驶车道间的第一重合度、第二重合度,所述第一重合度为车辆所在车道与前方多个可行驶车道间的最大重合度,所述第二重合度为车辆所在车道与所述虚拟行驶车道间的最大重合度;
控制模块,用于当所述第一重合度小于或者等于所述第二重合度时,控制车辆跟随与所述第二重合度对应的前方车辆行驶;以及,当所述第一重合度大于所述第二重合度时,控制车辆驶入与所述第一重合度对应的可行驶车道。
本发明实施例提供的车辆行驶的控制方法和装置,能够在无论有无前方车辆的情况下,控制车辆选择舒适度最高的方式直行通过路口,从而保障驾驶员的行车体验,提高车辆过路口的效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种车辆过路口的场景示意图;
图2为本发明实施例提供的一种车辆行驶的控制方法的流程图;
图3为本发明实施例提供的一种车辆直行过路口的判断方法的流程图;
图4为本发明实施例提供的一种确定目标车辆的示意图;
图5为本发明实施例提供的一种确定目标车道的示意图;
图6为本发明实施例提供的一种车辆行驶控制装置的结构示意图;
图7为本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
为了更好的理解本发明实施例的技术方案,下面结合附图对本发明实施例进行详 细描述。
应当明确,所描述的实施例仅仅是本发明实施例一部分实施例,而不是全部的实施例。基于本发明实施例中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明实施例保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明实施例。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
图1为本发明实施例提供的一种车辆过路口的场景示意图。
随着自动驾驶技术领域相关技术的不断成熟,汽车智能化水平不断提高,汽车自动驾驶能够解决的场景和工况也越来越多。但是,在现有技术中,自动驾驶车辆经由如图1所示的多车道交通路口时,多只能跟车行驶,即跟随前车驶入前车选择的车道。且如遇到前方没有车辆,无法跟车行驶的情况,则需要驾驶员自行选择车道并控制车辆驶入。无论是跟车行驶还是驾驶员自行选择车道驶入,均有可能使车辆驶入距当前所在车道较远的前方车道,从而影响驾驶员的行车体验,降低车辆过路口的效率。
针对上述问题,本发明实施例提供一种车辆行驶的控制方法。需要说明的是,该方法的应用场景包括但不仅限于车辆直行通过多车道路口。上述方法应用于车辆行驶控制装置。车辆行驶控制装置配置于自动驾驶车辆上,用于控制车辆行驶。可选的,上述车辆行驶控制装置可以为自动驾驶车辆的自适应巡航控制(Adaptive Cruise Control,以下简称:ACC)装置。一些实施例中,车辆行驶控制装置中包含摄像头等图像采集设备,用于实时采集车辆行驶过程中的驾驶环境图像。如图1中,上述驾驶环境图像中可以包括但不仅限于车辆当前所在车道的车道虚实线、转向箭头标识、前方多个可行驶车道的车道线、前方路口的停车线。
基于上述由摄像头实时采集的驾驶环境图像,本发明实施例的车辆行驶控制方法能够在无前车的情况下,确定目标车道,并控制车辆驶入。需要说明的是,上述目标车道为与车辆当前所在车道的重合度最高的车道。控制车辆驶入上述目标车道与驶入其它车道相比,拥有较高的舒适度。在有前车的情况下,能够比对跟车行驶与直接驶入目标车道的舒适度,并控制车辆选择舒适度最高的方式行驶,从而保障驾驶员的行车体验,同时有效避免盲目跟车行驶。
如图2所示,图2为本发明实施例提供的一种车辆行驶的控制方法的流程图。上述车辆行驶的控制方法可以包括:
步骤201、采集驾驶环境图像。
步骤202、根据驾驶环境图像,判断车辆是否要直行过路口。
驾驶环境图像为车辆行驶过程中的由摄像头采集的实时图像数据。上述驾驶环境图像可以包括但不限于车辆所在车道的车道虚实线、转向箭头标识、前方路口停车线等。一些实施例中,上述步骤202具体可以还包括:
步骤2021、从驾驶环境图像中识别车辆所在车道的上述车道虚实线、转向箭头标识。
步骤2022、实时判断车辆所在车道的车道虚实线是否为实线。
具体地,上述车道虚实线为车辆行驶过程中车辆两侧的车道虚实线。一些实施例中,若当前车辆所在车道周围的车道虚实线为虚线,表明车辆当前仍可变换车道行驶。在此情况下,执行步骤2023,由驾驶员控制车辆行驶。或者,若当前车辆所在车道周围的车道虚实线为实线,则表明车辆当前已不可变换车道,则执行步骤2024。
步骤2023,若车辆所在车道的车道虚实线为虚线,则由驾驶员控制车辆正常行驶。
步骤2024、若是,则根据转向箭头标识判断车辆所在车道是否为左转或右转车道。
具体地,上述转向箭头标识包括右向箭头标识、左向箭头标识和直行箭头标识。若识别车辆所在车道的转向箭头标识为右向箭头标识或者左向箭头标识,则表明车辆所在车道为左转或右转车道,执行步骤2025。若识别车辆所在车道的转向箭头标识为直行箭头标识,则表明车辆所在车道为直行车道,执行步骤2027。
步骤2025、若是,则根据转向箭头标识,控制开启相应的转向灯。
可以理解的是,若上述转向箭头标识为右向箭头标识,则控制车辆开启右转向灯。若上述转向箭头标识为左向箭头标识,则控制车辆开启左转向灯。
步骤2026、生成提示信息。
具体的,上述提示信息用于提示驾驶员接管车辆。可选的,上述提示信息可以是通过语音提示或者弹出提示驾驶员接管车辆的提示画面中的至少一种或者两种方式的组合。
步骤2027、若车辆所在车道不是左转或右转车道,则确定车辆要直行过路口。
基于上述步骤2021~步骤2027,可以理解的是,本发明实施例中确定车辆要直行过路口的条件包括:车辆所在车道的当前车道虚实线为实线、转向箭头标识为直行箭头标识。
步骤203、若确定车辆要直行过路口,则判断是否可识别前方多个可行驶车道的车道线。
具体地,上述可行驶车道为车辆通过路口后可选择驶入的前方车道。如图1中,车辆采集的驾驶环境图像中还可以包括前方车道的车道数量、车道线和转向箭头标识等。基于上述前方车道的转向箭头标识,将前方车道分为可行驶车道和逆行车道。可以理解的是,车辆不可驶入逆行车道。
一些实施例中,上述驾驶环境图像中还可以包括:前方路口的信号灯状态。在执行步骤203之前,还可以包括:根据上述前方路口的信号灯状态,判断车辆当前是否可通行。
另外,上述驾驶环境图像中还可以包括:前方路口的停车线。在执行上述步骤203之前,还可以包括:根据上述驾驶环境图像,确定车辆距前方路口的第一距离。实时判断上述第一距离是否小于第一阈值。若小于,则判断是否可识别前方多个可行驶车道的车道线。可选的,上述第一阈值可根据实际情况自行设置,本发明实施例不做限定。
一些实施例中,基于上述驾驶环境图像,若不可准确识别前方多个可行驶车道的车道线,则执行步骤204,由驾驶员接管车辆行驶。若可准确识别,则执行步骤205。
步骤204、生成提示信息。上述提示信息用于提示驾驶员接管车辆。
步骤205、若是,则判断是否存在正在过路口的前方车辆。
具体地,基于摄像头采集的上述驾驶环境图像,识别到存在正在过路口的前方车辆,则继续执行步骤206。若识别到不存在前方车辆,则执行步骤209。
步骤206、若存在,则预设前方车辆的左右行驶边界,生成虚拟行驶车道。
示例的,如图4中,根据摄像头采集的驾驶环境图像,识别到存在正在过路口的前方车辆1和前方车辆2。基于上述驾驶环境图像,分别确定前方车辆1和前方车辆2的当前行驶位置。如图4所示,预设前方车辆1和前方车辆2的行驶车道宽度,根据前方车辆的当前行驶位置,确定前方车辆1和前方车辆2的左右行驶边界。最后,根据上述左右行驶边界,分别确定前方车辆1和前方车辆2的虚拟行驶车道。可选的,上述行驶车道宽度可根据实际情况自行设定,本发明实施例不做限定。
步骤207、分别确定车辆所在车道与前方多个可行驶车道、前方车辆的虚拟行驶车道间的第一重合度、第二重合度。
具体地,上述第一重合度为车辆所在车道与前方多个可行驶车道间的最大重合度。上述第二重合度为车辆所在车道与前方车辆的虚拟行驶车道间的最大重合度。
如图4所示,基于摄像头采集的驾驶环境图像,识别到车辆所在车道的车道线。将上述车辆所在车道的车道线向车辆行驶方向延伸。分别计算车辆所在车道的车道线与前方车辆1、前方车辆2的虚拟行驶车道间的重合度C和重合度D。比较上述重合度C和重合度D的大小,确定上述第二重合度。可以理解的是,与上述第二重合度对应的前方车辆即为本发明实施例可以选择的目标车辆。自车上述目标车辆行驶较跟随其它车辆相比可以拥有较高的舒适度。
如图5所示,基于摄像头采集的驾驶环境图像,识别到车辆所在车道的车道线以及前方两个可行驶车道的车道线。将车辆所在车道的车道线向前方两个可行驶车道的方向延伸。分别计算车辆所在车道的车道线与前方两个可行驶车道的重合度A和重合度B。比较上述重合度A和重合度B的大小,确定上述第一重合度。可以理解的是,与上述第一重合度对应的前方可行驶车道即为本发明实施例可以选择的目标车道。自车选择目标车道驶入较选择其它车道相比可以拥有较高的舒适度。
步骤208、判断第一重合度是否大于第二重合度。
步骤209、若是,或者不存在正在过路口的前方车辆,则控制车辆驶入与第一重合度对应的可行驶车道。
步骤210、若不大于,则控制车辆跟随与第二重合度对应的前方车辆行驶。
一些实施例中,本发明实施例的车辆行驶控制装置可以向车辆发动机控制器发送横纵向控车请求,用于自动控制车辆驶入与第一重合度对应的可行驶车道或者跟随与第二重合度对应的前方车辆行驶。
具体地,车辆跟随前方车辆行驶过程中,还包括:实时判断车辆是否跟丢与第二重合度对应的前方车辆。若跟丢,则控制车辆驶入与上述第一重合度对应的可行驶车道。若可持续识别到与第二重合度对应的前方车辆,则控制车辆继续跟随上述前方车辆通过路口。
图6为本发明实施例提供的一种车辆行驶控制装置的结构示意图。如图6所示, 上述车辆行驶控制装置可以包括:
采集模块61,具体用于采集车辆的驾驶环境图像。
判断模块62,具体用于根据驾驶环境图像,判断车辆是否要直行过路口;若是,则判断是否可识别前方多个可行驶车道的车道线;若是,则判断是否存在前方车辆,所述前方车辆为正在过路口的前方车辆;以及,判断第一重合度是否大于第二重合度。
确定模块63,用于若存在前方车辆,则预设前方车辆的左右行驶边界,确定前方车辆的虚拟行驶车道;分别确定车辆所在车道与前方多个可行驶车道、前方车辆的虚拟行驶车道间的第一重合度、第二重合度。其中,第一重合度为车辆所在车道与前方多个可行驶车道间的最大重合度,第二重合度为车辆所在车道与所述虚拟行驶车道间的最大重合度。
控制模块64,具体用于当第一重合度小于或者等于第二重合度时,控制车辆跟随与第二重合度对应的前方车辆行驶;以及,当第一重合度大于第二重合度时,控制车辆驶入与第一重合度对应的可行驶车道。
图6所示实施例提供的车辆行驶控制装置可用于执行本申请图1-图5所示方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述。
图7为本发明实施例提供的一种电子设备的结构示意图。如图7所示,上述电子设备可以包括至少一个处理器;以及与上述处理器通信连接的至少一个存储器,其中:存储器存储有可被处理器执行的程序指令,上述处理器调用上述程序指令能够执行本发明实施例图1至图5所示实施例提供的车辆行驶的控制方法。
其中,上述电子设备可以为能够控制车辆行驶的设备,例如:ACC,本发明实施例对上述电子设备的具体形式不作限定。可以理解的是,这里的电子设备即为方法实施例中提到的机器。
图7示出了适于用来实现本发明实施例实施方式的示例性电子设备的框图。图7显示的电子设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图7所示,电子设备以通用计算设备的形式表现。电子设备的组件可以包括但不限于:一个或者多个处理器410,存储器430,连接不同系统组件(包括存储器430和处理单元410)的通信总线440。
通信总线440表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture;以下简称:ISA)总线,微通道体系结构(Micro Channel Architecture;以下简称:MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association;以下简称:VESA)局域总线以及外围组件互连(Peripheral Component Interconnection;以下简称:PCI)总线。
电子设备典型地包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储器430可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存 储器(Random Access Memory;以下简称:RAM)和/或高速缓存存储器。电子设备可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。存储器430可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明实施例各实施例的功能。
具有一组(至少一个)程序模块的程序/实用工具,可以存储在存储器430中,这样的程序模块包括——但不限于——操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块通常执行本发明实施例所描述的实施例中的功能和/或方法。
处理器410通过运行存储在存储器430中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例图1至图5所示实施例提供的车辆行驶的控制方法。
本发明实施例提供的车辆行驶的控制方法,能够分别确定车辆直行过路口时的目标车道和目标车辆,并通过对比直接驶入目标车道与跟随目标车辆行驶的舒适度,控制车辆选择舒适度最高的方式直行通过路口,从而避免盲目跟车行驶,提高驾驶员的行车体验和车辆过路口的效率。
在本发明实施例所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本发明实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本发明实施例各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory;以下简称:ROM)、随机存取存储器(Random Access Memory;以下简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明实施例的较佳实施例而已,并不用以限制本发明实施例,凡在本发明实施例的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明实施例保护的范围之内。

Claims (10)

  1. 一种车辆行驶的控制方法,其特征在于,所述方法应用于车辆行驶控制装置,所述方法包括:
    采集车辆的驾驶环境图像;
    根据所述驾驶环境图像,判断车辆是否要直行过路口;
    若是,则判断是否可识别前方多个可行驶车道的车道线;
    若是,则判断是否存在正在过路口的前方车辆;
    若存在,则预设前方车辆的左右行驶边界,生成虚拟行驶车道;
    分别确定车辆所在车道与前方多个可行驶车道、前方车辆的虚拟行驶车道间的第一重合度、第二重合度,所述第一重合度为车辆所在车道与多个可行驶车道间的最大重合度,所述第二重合度为车辆所在车道与前方车辆的虚拟车道间的最大重合度;
    判断所述第一重合度是否大于所述第二重合度;
    若否,则控制车辆跟随与所述第二重合度对应的前方车辆行驶;
    若是,或者不存在正在过路口的前方车辆,则控制车辆驶入与所述第一重合度对应的可行驶车道。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述驾驶环境图像,判断车辆是否要直行过路口,包括:
    从所述驾驶环境图像中识别车辆所在车道的车道虚实线、转向箭头标识;
    实时判断车辆所在车道的所述车道虚实线是否为实线;
    若是,则根据所述转向箭头标识判断车辆所在车道是否为左转或右转车道;
    若是,则根据所述转向箭头标识,控制开启相应的转向灯;
    若车辆所在车道不是左转或右转车道,则确定车辆要直行过路口。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若车辆所在车道为左转或右转车道,则生成提示信息,所述提示信息用于提示驾驶员接管车辆。
  4. 根据权利要求1所述的方法,其特征在于,所述判断是否可识别前方多个可行驶车道的车道线之前,还包括:
    根据所述驾驶环境图像,确定车辆距前方路口的第一距离;
    判断所述第一距离是否小于第一阈值;
    若小于,则判断是否可识别前方多个可行驶车道的车道线。
  5. 根据权利要求1所述的方法,其特征在于,所述判断是否可识别前方多个可行驶车道的车道线,还包括:
    若不可识别,则生成提示信息,所述提示信息用于提示驾驶员接管车辆。
  6. 根据权利要求1所述的方法,其特征在于,所述预设前方车辆的左右行驶边界,生成虚拟行驶车道,包括:
    根据所述驾驶环境图像,确定前方车辆的当前行驶位置;
    预设所述前方车辆的行驶车道宽度,根据前方车辆的当前行驶位置,确定所述前 方车辆的左右行驶边界;
    根据所述左右行驶边界,确定所述前方车辆对应的虚拟行驶车道。
  7. 根据权利要求1所述的方法,其特征在于,所述分别确定车辆所在车道与前方多个可行驶车道、前方车辆的虚拟行驶车道间的第一重合度、第二重合度,包括:
    根据所述驾驶环境图像,确定车辆所在车道的车道线;
    分别计算所述车辆所在车道的车道线与前方多个可行驶车道的车道线之间的重合度;
    根据所述车辆所在车道线与前方多个可行驶车道的车道线之间的重合度,确定第一重合度。
  8. 根据权利要求7所述的方法,其特征在于,所述分别确定车辆当前所在车道与前方多个可行驶车道、所述前方车辆的虚拟行驶车道间的第一重合度、第二重合度,还包括:
    分别计算所述车辆所在车道的车道线与前方车辆的左右行驶边界间的重合度;
    根据所述车辆所在车道的车道线与前方车辆的左右行驶边界间的重合度,确定第二重合度。
  9. 根据权利要求1所述的方法,其特征在于,所述控制车辆跟随与所述第二重合度对应的前方车辆行驶之后,还包括:
    实时判断车辆是否跟丢与所述第二重合度对应的前方车辆;
    若是,则控制车辆驶入与所述第一重合度对应的可行驶车道;
    若否,则控制车辆继续跟随与所述第二重合度对应的前方车辆行驶。
  10. 一种车辆行驶控制装置,其特征在于,包括:
    采集模块,用于采集车辆的驾驶环境图像;
    判断模块,用于根据所述驾驶环境图像,判断车辆是否要直行过路口;若是,则判断是否可识别前方多个可行驶车道的车道线;若是,则判断是否存在前方车辆,所述前方车辆为正在过路口的前方车辆;以及,判断第一重合度是否大于第二重合度;
    确定模块,用于若存在前方车辆,则预设前方车辆的左右行驶边界,确定前方车辆的虚拟行驶车道;分别确定车辆所在车道与前方多个可行驶车道、前方车辆的虚拟行驶车道间的第一重合度、第二重合度,所述第一重合度为车辆所在车道与前方多个可行驶车道间的最大重合度,所述第二重合度为车辆所在车道与所述虚拟行驶车道间的最大重合度;
    控制模块,用于当所述第一重合度小于或者等于所述第二重合度时,控制车辆跟随与所述第二重合度对应的前方车辆行驶;以及,当所述第一重合度大于所述第二重合度时,控制车辆驶入与所述第一重合度对应的可行驶车道。
PCT/CN2023/130503 2023-04-04 2023-11-08 一种车辆行驶的控制方法和装置 WO2024207731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310354958.XA CN116161037A (zh) 2023-04-04 2023-04-04 一种车辆行驶的控制方法和装置
CN202310354958.X 2023-04-04

Publications (1)

Publication Number Publication Date
WO2024207731A1 true WO2024207731A1 (zh) 2024-10-10

Family

ID=86418399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130503 WO2024207731A1 (zh) 2023-04-04 2023-11-08 一种车辆行驶的控制方法和装置

Country Status (2)

Country Link
CN (1) CN116161037A (zh)
WO (1) WO2024207731A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116161037A (zh) * 2023-04-04 2023-05-26 上汽通用五菱汽车股份有限公司 一种车辆行驶的控制方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110053617A (zh) * 2018-01-19 2019-07-26 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
CN111785029A (zh) * 2020-08-05 2020-10-16 李明渊 汽车红绿灯路口选择车道的装置及其使用方法
US20210323553A1 (en) * 2018-08-23 2021-10-21 Hitachi Automotive Systems, Ltd. In-vehicle system
CN114283396A (zh) * 2020-09-18 2022-04-05 华为技术有限公司 用于自动驾驶的方法、装置和计算机可读存储介质
CN114537398A (zh) * 2022-04-13 2022-05-27 梅赛德斯-奔驰集团股份公司 用于在交叉路口处辅助车辆行驶的方法和设备
CN115107800A (zh) * 2021-03-17 2022-09-27 丰田自动车株式会社 行车道优先级设定装置、行车道优先级设定方法以及行车道优先级设定用计算机程序
CN115339451A (zh) * 2022-08-31 2022-11-15 重庆长安汽车股份有限公司 车道错位路口场景的跟车目标选择方法、装置、设备、车辆及储存介质
CN116161037A (zh) * 2023-04-04 2023-05-26 上汽通用五菱汽车股份有限公司 一种车辆行驶的控制方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102560700B1 (ko) * 2016-07-19 2023-07-28 주식회사 에이치엘클레무브 차량의 주행 지원장치 및 방법
KR102553247B1 (ko) * 2018-04-27 2023-07-07 주식회사 에이치엘클레무브 전방 차량 추종 제어 시 안전성을 향상할 수 있는 차선 유지 보조 시스템 및 방법
CN113879295B (zh) * 2020-07-02 2024-04-12 华为技术有限公司 轨迹预测方法及装置
CN114604243A (zh) * 2020-12-08 2022-06-10 奥迪股份公司 车辆辅助系统和方法、车辆、服务器和介质
CN114655255A (zh) * 2022-04-28 2022-06-24 梅赛德斯-奔驰集团股份公司 用于在左车道上进行自动驾驶和/或辅助驾驶的方法
CN115195724B (zh) * 2022-07-19 2025-03-18 岚图汽车科技有限公司 一种跟车控制方法及相关设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110053617A (zh) * 2018-01-19 2019-07-26 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
US20210323553A1 (en) * 2018-08-23 2021-10-21 Hitachi Automotive Systems, Ltd. In-vehicle system
CN111785029A (zh) * 2020-08-05 2020-10-16 李明渊 汽车红绿灯路口选择车道的装置及其使用方法
CN114283396A (zh) * 2020-09-18 2022-04-05 华为技术有限公司 用于自动驾驶的方法、装置和计算机可读存储介质
CN115107800A (zh) * 2021-03-17 2022-09-27 丰田自动车株式会社 行车道优先级设定装置、行车道优先级设定方法以及行车道优先级设定用计算机程序
CN114537398A (zh) * 2022-04-13 2022-05-27 梅赛德斯-奔驰集团股份公司 用于在交叉路口处辅助车辆行驶的方法和设备
CN115339451A (zh) * 2022-08-31 2022-11-15 重庆长安汽车股份有限公司 车道错位路口场景的跟车目标选择方法、装置、设备、车辆及储存介质
CN116161037A (zh) * 2023-04-04 2023-05-26 上汽通用五菱汽车股份有限公司 一种车辆行驶的控制方法和装置

Also Published As

Publication number Publication date
CN116161037A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN110910657B (zh) 一种路口通行权分配方法、装置及电子设备
CN114435405A (zh) 一种车辆换道方法、装置、设备和存储介质
WO2024207731A1 (zh) 一种车辆行驶的控制方法和装置
WO2024017003A1 (zh) 基于算法融合的车辆汇入检测方法、装置及设备
WO2024178800A1 (zh) 车辆变道指令的生成方法及装置、车辆
WO2025025455A1 (zh) 一种紧急制动模式的启动方法、装置及介质
CN114332105A (zh) 一种可行驶区域分割方法、系统、电子设备及存储介质
CN113581180B (zh) 拥堵路况变道决策方法、存储介质及电子设备
JP7075273B2 (ja) 駐車支援装置
CN106740842A (zh) 一种用于自适应巡航系统的节油装置及方法
WO2025065953A1 (zh) 一种避让车辆的控制方法、装置、设备及存储介质
CN115431995B (zh) 基于不同级别辅助驾驶的设备控制方法及装置
CN115534964B (zh) 车辆的自动变道方法、装置、车辆及存储介质
CN117698713A (zh) 一种障碍物情形下的车辆纠偏方法、装置、设备及介质
CN115230715A (zh) 变道预测方法、装置、非易失性存储介质及计算机设备
CN118810778A (zh) 车辆行驶的控制方法及装置、车辆
CN116080649A (zh) 车辆控制方法、装置、设备和存储介质
WO2024178798A1 (zh) 车辆变道的确定方法及装置、车辆
CN112270830B (zh) 确定车辆停车位置的方法及装置、自动驾驶车辆
CN116504088B (zh) 一种网联环境下考虑安全风险的快速路车辆换道决策方法
WO2024229970A1 (zh) 车辆行驶的控制方法及装置、车辆
US20250078521A1 (en) Target detection method for blind areas of vehicle, target detection device, electronic device, and sotrage medium
WO2024178799A1 (zh) 车辆通行效率的确定方法及装置、车辆
CN119659626A (zh) 车辆的会车方法、设备以及车辆
CN118907144A (zh) 驾驶辅助系统的控制方法、装置、车辆及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23931778

Country of ref document: EP

Kind code of ref document: A1