[go: up one dir, main page]

WO2024203537A1 - Photonic-crystal surface emitting laser element - Google Patents

Photonic-crystal surface emitting laser element Download PDF

Info

Publication number
WO2024203537A1
WO2024203537A1 PCT/JP2024/010547 JP2024010547W WO2024203537A1 WO 2024203537 A1 WO2024203537 A1 WO 2024203537A1 JP 2024010547 W JP2024010547 W JP 2024010547W WO 2024203537 A1 WO2024203537 A1 WO 2024203537A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photonic crystal
buried
buried layer
semiconductor
Prior art date
Application number
PCT/JP2024/010547
Other languages
French (fr)
Japanese (ja)
Inventor
進 野田
朋朗 小泉
渓 江本
Original Assignee
国立大学法人京都大学
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, スタンレー電気株式会社 filed Critical 国立大学法人京都大学
Publication of WO2024203537A1 publication Critical patent/WO2024203537A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present invention relates to a photonic crystal surface-emitting laser element having a photonic crystal layer.
  • Patent Document 1 describes an ultraviolet light-emitting element that has a composition-gradient layer for generating holes through the polarization doping effect and efficiently injecting the holes into the active layer.
  • Patent Document 2 also describes a nitride semiconductor light-emitting device that has a compositionally graded layer in which the Al composition decreases toward the side where the sum of spontaneous polarization and piezoelectric polarization becomes negative in order to improve the efficiency of hole injection into the active layer.
  • Patent Document 3 also discloses a photonic crystal surface-emitting laser (PCSEL) that is made of a crystal layer with a different crystal composition from the air hole layer (photonic crystal layer) and has a light distribution adjustment layer that adjusts the coupling efficiency between the light and the air hole layer.
  • PCSEL photonic crystal surface-emitting laser
  • the inventors of the present application have discovered that depletion due to piezoelectric polarization occurs at the heterointerface between a photonic crystal layer and a semiconductor layer formed on the photonic crystal layer and having a different crystal composition from that of the photonic crystal layer, forming a barrier against electrons and preventing efficient operation of a photonic crystal surface-emitting laser (PCSEL).
  • PCSEL photonic crystal surface-emitting laser
  • the present application is based on this finding and aims to provide a photonic crystal surface-emitting laser element that has high injection efficiency and emits light with a low threshold and high efficiency.
  • a photonic crystal surface emitting laser element comprises: An n-type semiconductor layer; a first guide layer including: a photonic crystal layer formed on the n-type semiconductor layer, the photonic crystal layer having holes arranged two-dimensionally at each lattice point; and a buried layer formed on the photonic crystal layer for closing the holes; a hetero semiconductor layer formed on the buried layer and made of a semiconductor having a different crystal composition from that of the buried layer; an active layer formed on the hetero semiconductor layer; a second guide layer formed on the active layer; The buried layer is doped with an n-type dopant at a concentration of 1.0 ⁇ 10 17 to 1.0 ⁇ 10 20 cm ⁇ 3 .
  • FIG. 1 is a cross-sectional view showing a schematic example of a structure of a PCSEL element according to a first embodiment.
  • 1B is an enlarged cross-sectional view showing a schematic diagram of holes arranged in the photonic crystal layer shown in FIG. 1A.
  • FIG. 2 is a plan view showing a schematic top surface of a PCSEL element. 2 is a cross-sectional view that illustrates a cross section taken along a plane parallel to an n-side guide layer.
  • FIG. FIG. 2 is a plan view showing a schematic bottom surface of a PCSEL element.
  • FIG. 2 is a plan view showing a schematic view of a main opening and a sub-opening in a resist, and a hole after etching.
  • FIG. 1 is a diagram showing a schematic cross section perpendicular to the central axis CX of a formed photonic crystal layer.
  • FIG. 1 is a graph showing the measurement results of the IV characteristics of Samples 1 to 4 (EX.1 to EX.4) of the PCSEL element of this embodiment.
  • 1 is a graph showing the measurement results of the IV characteristics of the PCSEL element and surface-emitting element samples 1 to 5 (CX.1 to CX.5) of the comparative example.
  • 1 is a graph showing a SIMS profile in the depth direction of a PCSEL element.
  • 1 is a table showing parameters of each semiconductor layer of a PCSEL device.
  • FIG. 13 is a diagram showing the simulation results of the energy band of the conduction band, and the concentrations of electrons and holes when the donor concentration of the buried layer is set to 2.0 ⁇ 10 17 cm ⁇ 3 .
  • FIG. 13 is a diagram showing the simulation results of the energy band of the conduction band, and the concentrations of electrons and holes when the donor concentration of the buried layer is set to 2.0 ⁇ 10 18 cm ⁇ 3 .
  • 11 is a graph showing a simulation result of IV characteristics when the donor concentration of the buried layer is changed.
  • a photonic crystal surface emitting laser element is an element that has a resonator layer in a direction parallel to the semiconductor light emitting structure layers (n-side guide layer, light emitting layer, p-side guide layer) that constitute a light emitting element, and radiates coherent light in a direction perpendicular to the resonator layer.
  • a PCSEL element in a PCSEL element, light waves propagating within a plane parallel to the photonic crystal layer (air hole layer) are diffracted by the diffraction effect of the photonic crystal to form a two-dimensional resonance mode, and are also diffracted in a direction perpendicular to the parallel plane.
  • the light extraction direction is perpendicular to the resonance direction (within the plane parallel to the photonic crystal layer).
  • FIG. 1A is a cross-sectional view showing an example of the structure of a photonic crystal surface-emitting laser element (PCSEL element) 10 according to an embodiment of the present invention.
  • FIG. 1B is an enlarged cross-sectional view showing a photonic crystal layer 14P in FIG. 1A and air holes 14K (air hole pairs) arranged in the photonic crystal layer 14P.
  • PCSEL element photonic crystal surface-emitting laser element
  • FIG. 2A is a plan view that typically shows the upper surface of the PCSEL element 10.
  • FIG. 2B is a cross-sectional view that typically shows a cross section of the photonic crystal layer 14P in a plane parallel to the n-side guide layer 14, and
  • FIG. 2C is a plan view that typically shows the lower surface of the PCSEL element 10.
  • a semiconductor structure layer 11 is formed on a light-transmitting element substrate 12. The semiconductor layers are stacked perpendicular to the central axis CX of the semiconductor structure layer 11.
  • the semiconductor structure layer 11 is made of a hexagonal nitride semiconductor.
  • the semiconductor structure layer 11 is made of, for example, a GaN-based semiconductor.
  • a semiconductor structure layer 11 consisting of multiple semiconductor layers is formed on an element substrate 12, in this order: an n-clad layer (first clad layer of a first conductivity type) 13, an n-side guide layer (first guide layer) 14 which is a guide layer provided on the n-side, a light distribution adjustment layer 23, an active layer (ACT) 15, a p-side guide layer (second guide layer) 16 which is a guide layer provided on the p-side, an electron barrier layer (EBL: Electron Blocking Layer) 17, a p-clad layer (second clad layer of a second conductivity type) 18, and a p-contact layer 19.
  • the first conductivity type is n-type and the second conductivity type, which is the opposite conductivity type to the first conductivity type, is p-type
  • the first conductivity type and the second conductivity type may also be p-type and n-type, respectively.
  • the element substrate 12 is a hexagonal GaN single crystal substrate that has a high transmittance for the light emitted from the active layer 15. More specifically, the element substrate 12 is a hexagonal GaN single crystal substrate whose main surface (crystal growth surface) is a +c plane, which is a ⁇ 0001 ⁇ plane in which Ga atoms are arranged on the outermost surface.
  • the back surface (light emission surface) is a -c plane, which is a (000-1) plane in which N atoms are arranged on the outermost surface.
  • the -c plane is suitable as a light emission surface because it is resistant to oxidation, etc.
  • the element substrate 12 is not limited to this, but is preferably a so-called just substrate, or, for example, a substrate whose main surface is offset by about 1° in the m-axis direction.
  • a substrate offset by about 0.3 to 0.7° in the m-axis direction can obtain mirror-finish growth under a wide range of growth conditions.
  • the substrate surface (back surface, light emission surface) on which the light emission region 20L ( Figure 2C) facing the main surface is provided is the "-c" surface, which is the (000-1) surface on which N atoms are arranged.
  • the -c surface is resistant to oxidation, etc., and is therefore suitable as a light extraction surface.
  • each semiconductor layer is explained below, but these are merely examples and can be modified as appropriate.
  • the n-cladding layer 13 is, for example, an n-Al 0.04 Ga 0.96 N layer with an Al composition of 4% and a thickness of 2 ⁇ m.
  • the aluminum (Al) composition ratio is set so that the refractive index is smaller than that of the layer adjacent to the active layer 15 side (i.e., the n-side guide layer 14).
  • the n-side guide layer 14 is composed of a lower guide layer 14A, a photonic crystal layer (PC layer) 14P which is an air-hole layer, and a buried layer 14B.
  • the photonic crystal layer 14P has a layer thickness dPC
  • the buried layer 14B has a layer thickness dEMB .
  • the layer thickness dPC of the photonic crystal layer 14P is 40 to 180 nm.
  • photonic crystal layer 14P refers to the layer portion from the upper end to the lower end of the air hole in n-side guide layer 14 (see FIG. 1B). Therefore, the layer thickness d PC of photonic crystal layer 14P is equal to the height of the air hole.
  • the lower guide layer 14A is, for example, n-GaN with a layer thickness of 100 to 400 nm.
  • the photonic crystal layer 14P is n-GaN with a layer thickness (or the depth of the holes 14K) of 40 to 180 nm.
  • the buried layer 14B is made of n-GaN or n-InGaN. Alternatively, it may be a layer in which these semiconductor layers are stacked.
  • the layer thickness d EMB of the buried layer 14B is, for example, 50 to 150 nm.
  • the buried layer 14B is made of a first buried layer 14B1 and a second buried layer 14B2, and is doped with an n-type dopant (Si) at a concentration of, for example, 1 ⁇ 10 18 cm ⁇ 3 . It is sufficient that the second embedded layer 14B2, which is a surface layer of the embedded layer 14B that is in contact with the light distribution adjustment layer 23, is doped with an n-type dopant.
  • a light distribution adjustment layer 23 which is a hetero semiconductor layer (a heterogeneous semiconductor layer) that has a different crystal composition from the second buried layer 14B2 and forms a heterostructure with the second buried layer 14B2.
  • a hetero interface is formed between the hetero semiconductor layer (light distribution adjustment layer 23) and the second embedded layer 14B2.
  • the hetero semiconductor layer may be a semiconductor layer of the same conductivity type as the second buried layer 14B2, or at least one of them may be an i-layer (intrinsic semiconductor layer).
  • Light distribution adjustment layer 23 is provided between buried layer 14B and active layer 15, and has the function of adjusting the coupling efficiency between the light propagating within photonic crystal layer 14P and photonic crystal layer 14P acting as a resonator.
  • the light distribution adjustment layer 23 is an undoped In 0.03 Ga 0.97 N layer, and has a layer thickness of, for example, 50 nm.
  • the composition or refractive index and layer thickness of the light distribution adjustment layer 23 are selected according to adjustment of coupling efficiency.
  • the n-side semiconductor layer including the n-side guide layer 14 and the light distribution adjustment layer 23 is also referred to as the first semiconductor layer.
  • the active layer 15, which is the light-emitting layer, is, for example, a multiple quantum well (MQW) layer having two quantum well layers.
  • the barrier layer and quantum well layer of the MQW are GaN (layer thickness 6.0 nm) and InGaN (layer thickness 4.0 nm), respectively.
  • the central emission wavelength of the active layer 15 is 440 nm.
  • the active layer 15 is disposed within 180 nm of the photonic crystal layer 14P (i.e., within the period PK of the holes). In this case, a high resonance effect is obtained by the photonic crystal layer 14P.
  • the p-side guide layer 16 is composed of a p-side guide layer (1) 16A which is an undoped In 0.02 Ga 0.98 N layer (layer thickness 70 nm) and a p-side guide layer (2) 16B which is an undoped GaN layer (layer thickness 180 nm).
  • the p-side guide layer 16 is an undoped layer in consideration of the light absorption by the dopant (Mg: magnesium, etc.), but it may be doped to obtain good electrical conductivity.
  • the In composition and layer thickness of the p-side guide layer (1) 16A can be appropriately selected to adjust the electric field distribution in the oscillation operation mode.
  • the electron barrier layer (EBL) 17 is a magnesium (Mg)-doped p-type Al 0.2 Ga 0.8 N layer having a thickness of, for example, 15 nm.
  • the p-cladding layer 18 is an Mg-doped p-Al 0.06 Ga 0.94 N layer, and has a thickness of, for example, 600 nm.
  • the Al composition of the p-cladding layer 18 is preferably selected so that the refractive index is smaller than that of the p-side guide layer 16.
  • the p-cladding layer 18 functions as a first p-cladding layer.
  • the p-contact layer 19 is a Mg-doped p-GaN layer, and has a thickness of, for example, 20 nm.
  • the carrier density of the p-contact layer 19 is set to a concentration that allows for ohmic junction with the transparent electrode 29, which is a transparent conductive layer provided on the surface of the p-contact layer.
  • p-type GaN p-type or undoped InGaN may be used.
  • a layer in which a GaN layer and an InGaN layer are stacked may be used.
  • the layer consisting of the p-side guide layer 16, the electron barrier layer 17, the p-cladding layer 18 and the p-contact layer 19 is also referred to as the second semiconductor layer.
  • n-side and p-side do not necessarily mean n-type and p-type.
  • the n-side guide layer means a guide layer provided on the n-side of the active layer, and may be an undoped layer (or i-layer).
  • the n-cladding layer 13 may be composed of multiple layers rather than a single layer, in which case not all layers need to be n-layers (n-doped layers) and may include undoped layers (i-layers). The same applies to the p-side guide layer 16 and p-cladding layer 18.
  • a p-electrode 20B (second electrode) is formed as a translucent electrode/Ag/Au layer in which a translucent electrode 29 (not shown), a silver (Ag) layer, and a gold (Au) layer are laminated in this order.
  • the p-electrode 20B functions as a light reflecting layer
  • the interface between the translucent electrode 29 and the Ag layer of the p-electrode 20B is the reflecting surface SR.
  • the reflecting surface SR is provided parallel to the photonic crystal layer 14P.
  • the p-electrode 20B has a circular shape with a diameter RA centered on the central axis CX of the void formation region 14R.
  • RA 300 ⁇ m when viewed from above (i.e., when viewed from a direction perpendicular to the semiconductor structure layer 11).
  • Pd, Al, Al alloys, etc. may also be used as the p-electrode 20B.
  • a pad electrode, etc. may also be provided on the p-electrode 20B.
  • the translucent electrode 29 is formed of a translucent conductor, for example, indium tin oxide (ITO). Note that the translucent electrode 29 is not limited to ITO, and other translucent conductors such as zinc tin oxide (ZTO), GZO (ZnO:Ga), and AZO (ZnO:Al) can be used.
  • ITO indium tin oxide
  • ZTO zinc tin oxide
  • GZO ZnO:Ga
  • AZO ZnO:Al
  • the side and top surfaces of the semiconductor structure layer 11 and the side surfaces of the p-electrode 20B are covered with an insulating film 21 such as SiO 2.
  • the insulating film 21 is formed so as to run onto the p-electrode 20B and cover the edge of the top surface of the p-electrode 20B.
  • the insulating film 21 also functions as a protective film, protecting the aluminum (Al)-containing crystal layer constituting the PCSEL element 10 from corrosive gases, etc. It also prevents short circuits caused by adhesions or solder creeping up during mounting, contributing to improved reliability and yield.
  • the material of the insulating film 21 is not limited to SiO2 , but may be ZrO2 , HfO2, TiO2 , Al2O3 , SiNx , etc.
  • a circular cathode electrode 20A (first electrode) is formed on the back surface of the element substrate 12 (see FIG. 2C).
  • an anti-reflective (AR) coating layer 27 is formed on the inside of the cathode electrode 20A.
  • the cathode electrode 20A is made of Ti/Au and is in ohmic contact with the element substrate 12.
  • the electrode material can be selected from Ti/Al, Ti/Rh, Ti/Al/Pt/Au, Ti/Pt/Au, etc.
  • the light emitted from the active layer 15 is diffracted by the photonic crystal layer (PC layer) 14P.
  • the light is diffracted by the photonic crystal layer 14P (diffraction surface WS), and the light emitted directly from the photonic crystal layer 14P (direct diffracted light Ld: first diffracted light) and the light emitted by the diffraction of the photonic crystal layer 14P and reflected by the reflection surface SR (reflected diffracted light Lr: second diffracted light) are emitted to the outside from the light emission region 20L ( Figure 2C) of the rear surface (emission surface) 12R of the element substrate 12.
  • the holes 14K are arranged periodically within, for example, a rectangular hole formation region 14R.
  • the anode region RA is formed so as to be contained within the void formation region 14R.
  • the cathode electrode 20A is provided as a ring-shaped electrode on the outside of the p-electrode 20B so as not to overlap with the p-electrode 20B when viewed from a direction perpendicular to the photonic crystal layer 14P.
  • the area inside the cathode electrode 20A is the light emission area 20L.
  • a bonding pad 20C is provided that is electrically connected to the cathode electrode 20 and connects a wire for power supply from an external source.
  • Photonic crystal layer fabrication method and recrystallization growth The process of fabricating the photonic crystal layer and the recrystallization growth are described below. Metalorganic Vapor Phase Epitaxy (MOVPE) was used as the crystal growth method. Note that the method of forming the photonic crystal layer 14P will be described below using the example of a double lattice photonic crystal layer, but a single lattice photonic crystal layer and a multiple lattice photonic crystal layer can also be formed in the same manner.
  • MOVPE Metalorganic Vapor Phase Epitaxy
  • the substrate was removed from the chamber of the MOVPE apparatus, and fine recesses (holes) were formed on the surface of the growth layer.
  • a silicon nitride film SiN x was formed by plasma CVD.
  • a resist for electron beam lithography was applied on the SiN x film, and the substrate was placed in an electron beam lithography apparatus to pattern a two-dimensional periodic structure.
  • FIG. 3 is a plan view showing the main opening K1 and sub-opening K2 of the resist, and the main hole 14H1 and sub-hole 14H2 after etching.
  • a pattern was performed in which pairs of openings, each consisting of an oval-shaped main opening K1 and a sub-opening K2 that is smaller than the main opening K1, were two-dimensionally arranged in the plane of the resist in a square lattice pattern with a period PK.
  • the openings are shown with hatching.
  • the main openings K1 have their centers of gravity CD1 arranged two-dimensionally on the lattice points of a square lattice with period PK in two mutually orthogonal directions (x direction and y direction).
  • the sub-openings K2 have their centers of gravity CD2 arranged two-dimensionally on the lattice points of a square lattice with period PK in the x direction and y direction.
  • the major axes of the main opening K1 and the sub-opening K2 are parallel to the ⁇ 11-20> crystal orientation, and the minor axes of the main opening K1 and the sub-opening K2 are parallel to the ⁇ 1-100> crystal orientation.
  • the center of gravity CD2 of the sub-opening K2 is spaced apart from the center of gravity CD1 of the main opening K1 by ⁇ x and ⁇ y.
  • ⁇ x ⁇ y.
  • the center of gravity CD2 of the sub-opening K2 is spaced apart from the center of gravity CD1 of the main opening K1 in the ⁇ 1-100> direction.
  • the SiN x film was selectively dry etched by an ICP-RIE (Inductive Coupled Plasma - Reactive Ion Etching) device.
  • ICP-RIE Inductive Coupled Plasma - Reactive Ion Etching
  • the resist was removed, and recesses (holes) were formed in the GaN surface using the patterned SiN x film as a hard mask.
  • the GaN was dry-etched in the depth direction using a chlorine-based gas and argon gas in an ICP-RIE apparatus, to form an oval cylindrical main hole 14H1 and a sub-hole 14H2 that were dug vertically in the GaN surface.
  • the recesses (holes) dug in the GaN surface portion by the above etching are simply referred to as main holes and sub-holes in order to distinguish them from air holes in the photonic crystal layer 14P.
  • main holes 14H1 and sub-holes 14H2 they may be collectively referred to as holes 14H.
  • the shape of the hole 14H is not limited to an oval cylinder, but may be a cylinder, a polygon, or the like.
  • silane (SiH 4 ) was supplied as an n-type dopant to dope the first buried layer 14B1 with Si at a concentration of 1 ⁇ 10 18 cm -3 .
  • the n-type dopant may be Ge instead of Si, and disilane (Si 2 H 6 ) or germane (GeH 4 ) may be used as the supply source of the n-type dopant.
  • the first buried layer 14B1 was formed at a first temperature (920°C) at which the shape of the hole 14H was transformed by mass transport into a shape composed of thermally stable surfaces.
  • N atoms are attached to the top surface of the growth substrate, so that N-polarity faces are selectively grown. Therefore, ⁇ 1-101 ⁇ facets are selectively grown on the surface. When the opposing ⁇ 1-101 ⁇ facets collide with each other, the hole 14H is blocked and filled. This forms the first buried layer 14B1.
  • the second buried layer 14B2 having a thickness of 50 nm was grown.
  • the second buried layer 14B2 was grown by raising the substrate temperature (growth temperature) to 1050° C. (second buried temperature) and then supplying trimethylgallium (TMG), NH 3 and silane (SiH 4 ).
  • TMG trimethylgallium
  • NH 3 trimethylgallium
  • SiH 4 silane
  • the second buried temperature was higher than the first buried temperature.
  • the temperature relationship between the second buried temperature and the first buried temperature may be reversed as long as the growth surface of the second buried layer 14B2 can be grown to be the (0001) plane.
  • the second buried layer 14B2 was doped with Si at a concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • the second embedded layer 14B2 in this embodiment also functions as a light distribution adjustment layer for adjusting the coupling efficiency (light field) between the light and the photonic crystal layer 14P.
  • the first buried layer 14B1 and the second buried layer 14B2 in this embodiment are GaN layers doped with Si (n-type dopant).
  • the first buried layer 14B1 and the second buried layer 14B2 are not limited to GaN, and may be n-GaN, n-InGaN, or a layer in which these semiconductor layers are stacked.
  • a photonic crystal layer 14P with a double lattice structure in which holes 14K, each consisting of a pair of a main hole 14K1 and a subhole 14K2, are arranged two-dimensionally at each of the square lattice points.
  • the subhole 14K2 has a smaller hole diameter and height than the main hole 14K1.
  • the hole 14K when there is no particular distinction between the main hole 14K1 and the sub-hole 14K2, they may be collectively referred to as the hole 14K.
  • FIG. 4 is a schematic diagram showing a cross section perpendicular to the central axis CX of the formed photonic crystal layer 14P.
  • the inner surface of hole 14H changes shape to a (1-100) plane (i.e., an m-plane). That is, the shape changes from an oval cylindrical shape to an oval hexagonal prism-shaped hole 14K whose side surface is made up of an m-plane.
  • the formed primary void 14K1 had a long hexagonal prism shape with a long diameter of 72.5 nm and a short diameter of 43.5 nm, and a long diameter/short diameter ratio of 1.67.
  • the secondary void 14K2 had a long diameter of 44.6 nm and a short diameter of 38.3 nm, and a long diameter/short diameter ratio of 1.16, and had a long hexagonal prism shape closer to a regular hexagonal prism than the primary void 14K1.
  • the hole filling factor is the ratio of the area occupied by each hole per unit area in a two-dimensional regular array. Specifically, when the areas of the main holes 14K1 and the sub-holes 14K2 in the photonic crystal layer 14P are S1 and S2, respectively, the hole filling factors FF1 and FF2 of the main holes 14K1 and the sub-holes 14K2 are given by the following formulas.
  • FF1 S1/ PK2
  • FF2 S2/ PK2
  • the light distribution adjustment layer 23 is made of a semiconductor having a different crystal composition from the buried layer 14B.
  • the light distribution adjustment layer 23 is an undoped In 0.03 Ga 0.97 N layer, which is a hetero semiconductor layer (a different semiconductor layer) that forms a heterostructure with the buried layer 14B (GaN layer).
  • the semiconductor layer that constitutes the buried layer 14B has a smaller lattice constant in the a-axis direction than the semiconductor layer that constitutes the light distribution adjustment layer 23. That is, the lower guide layer 14A, the photonic crystal layer 14P, and the buried layer 14B that constitute the n-side guide layer 14 are composed of the same lattice constant.
  • the light distribution adjustment layer 23 is epitaxially grown from the n-side guide layer 14. Therefore, the a-axis is compressed and the c-axis is stretched, resulting in large polarization. Therefore, a band barrier (BB) is generated as shown in FIG. 9, which will be described later.
  • This band barrier (BB) does not occur in the semiconductor growth process where the lattice constant difference is small, such as when AlGaN is grown on GaN.
  • the active layer 15, the p-side guide layer (second guide layer) 16, the electron barrier layer (EBL) 17, the p-cladding layer 18, and the p-contact layer 19 were grown in sequence on the light distribution adjustment layer 23.
  • the PCSEL element 10 was fabricated.
  • Samples 1 to 3 (EX.1 to EX.3) of the embodiment are PCSEL elements 10 having the structure described above.
  • Sample 4 (EX.4) is a reference sample that serves as a reference standard for evaluating the characteristics of Samples 1 to 3.
  • Sample 4 (EX.4) differs from PCSEL element 10 in that it does not have photonic crystal layer 14P, but is otherwise a surface-emitting element having the same structure as PCSEL element 10.
  • the surface-emitting device of Reference Sample 4 was fabricated as follows. First, an n-clad layer 13 was grown on a substrate 12, and then an n-type GaN layer was grown on the n-clad layer 13. The substrate was then removed from the reactor of the MOVPE device, cleaned, and then re-introduced into the reactor of the MOVPE device for regrowth.
  • each PCSEL element (EX.1 to EX.3) of this embodiment exhibits approximately the same threshold and efficiency, and has good I-V characteristics.
  • each of the PCSEL elements of Samples 1 to 3 (EX.1 to EX.3) had good I-V characteristics that were comparable to those of the surface-emitting element of Reference Sample 4 (EX.4), which does not have a photonic crystal layer 14P (PC layer).
  • the buried layer 14B (first buried layer 14B1 and second buried layer 14B2) is an undoped layer that is not doped with a dopant, and in this respect, they differ from the PCSEL devices 10 of Samples 1 to 4 (EX.1 to EX.4) of the embodiment.
  • PCSEL elements of Comparative Examples 1 to 3 differ from the PCSEL elements 10 of Samples 1 to 3 (EX.1 to EX.3) of the embodiment only in that the buried layer 14B is an undoped layer.
  • the surface-emitting device of comparative example sample 4 differs from the PCSEL devices of comparative examples samples 1 to 3 (CX.1 to CX.3) in that it does not have the photonic crystal layer 14P. However, it is the same as the surface-emitting device of reference sample 4 (EX.4) of the embodiment in that it has been regrown.
  • the surface-emitting device of comparative sample 5 does not have a photonic crystal layer 14P, and is an element in which an n-type GaN layer is grown on the n-clad layer 13, and then undoped GaN is continuously grown on the n-type GaN layer.
  • the process of forming a recess (hole) is not performed, and the n-type GaN layer and the undoped GaN layer are continuously grown on the n-clad layer 13 in a crystal growth apparatus (MOCVD apparatus). Otherwise, it is a surface-emitting device with the same structure as the PCSEL device 10.
  • comparative sample 4 and sample 5 The only difference between comparative sample 4 and sample 5 is the manufacturing method, in that the device is removed from the MOVPE apparatus midway through growth and re-grown, or the device is continuously grown without being removed from the MOVPE apparatus, and the laminated structure is the same for both surface-emitting devices.
  • the PCSEL elements of comparative samples 1 to 3 (CX.1 to CX.3) and the surface-emitting device of sample 4 (CX.4) have higher drive voltages and significantly larger differential resistances than the surface-emitting device of sample 5 (CX.5) which does not have the photonic crystal layer 14P and is formed by continuous growth.
  • FIG. 7 shows the measurement results (SIMS profile) of SIMS (secondary ion mass spectrometry) in the depth direction of the PCSEL element formed by regrowth.
  • SIMS profile measurement results
  • each semiconductor layer is indicated by its reference number.
  • “14B” indicates the buried layer 14B
  • "23" indicates the light distribution adjustment layer (hetero semiconductor layer) 23.
  • the vacancies are blocked by selectively growing the ⁇ 1-101 ⁇ facet, and the vacancies are filled in the GaN layer.
  • more impurities present in the atmosphere are taken in than in the (0001) face growth, so the donors are compensated, and the driving voltage is thought to increase.
  • the buried layer 14B (i.e., the first buried layer 14B1 and the second buried layer 14B2) is doped with an n-type dopant.
  • the I-V characteristics when the donor concentration of buried layer 14B is changed were simulated using the device simulator Atlas.
  • Fig. 8 is a table showing the parameters of each semiconductor layer of the PCSEL element used in the simulation.
  • x.comp indicates the composition x ( InxGa1 -xN , AlxGa1 -xN ) of each semiconductor layer (Material)
  • Thiick (nm) indicates the layer thickness.
  • Doping profiles indicates the conductivity type and doping concentration (Conc (cm -3 )) of each semiconductor layer (Material).
  • the conductivity type is indicated as n-type, and the doping concentration is set to 5.0 x 1016 cm -3 .
  • FIGS. 9 and 10 are diagrams showing the simulation results of the conduction band energy band and the electron and hole concentrations when the donor concentrations (Nd) of the buried layer 14B are set to 2.0 ⁇ 10 17 cm ⁇ 3 and 2.0 ⁇ 10 18 cm ⁇ 3 , respectively.
  • the donor concentration (Nd) is 2.0 ⁇ 10 17 cm ⁇ 3
  • the interface between the light distribution adjustment layer (hetero semiconductor layer) 23 (InGaN) and the buried layer 14B (GaN) is depleted due to piezoelectric polarization, and a band barrier (BB, shown by the dashed line) against electrons injected from the buried layer 14B is formed.
  • BB band barrier
  • band barrier When the band barrier (BB) is high, current will not flow unless voltage is applied until the barrier height at the interface is reduced, and if the donor concentration in buried layer 14B is too low, the drive voltage will increase.
  • the band barrier at the interface between the light distribution adjustment layer (hetero semiconductor layer) 23 and the buried layer 14B is lowered (see FIG. 9). Also, when the donor concentration (Nd) is 2.0 ⁇ 10 18 cm -3 or more, the band barrier is significantly improved.
  • FIG. 11 is a graph showing the results of a simulation of the I-V characteristics when the donor concentration (Nd) of the buried layer 14B is changed.
  • Nd donor concentration
  • the higher the donor concentration (Nd) the better the I-V characteristics are, and that the characteristics can be significantly improved by increasing the donor concentration up to 1.0 ⁇ 10 18 cm -3 .
  • the improvement in characteristics is saturated when the donor concentration is 2.0 ⁇ 10 18 cm -3 or higher.
  • the arrow indicates the direction of increase in the donor concentration Nd.
  • the calculated values diverged when the n concentration of the buried layer 14B was 1.0 ⁇ 10 17 cm ⁇ 3 or less. In other words, it was found that the barrier at the interface between the light distribution adjustment layer (hetero semiconductor layer) 23 (InGaN) and the buried layer 14B (GaN) was high and no current flowed.
  • the doping concentration of the buried layer 14B is preferably 2.0 ⁇ 10 17 cm -3 or more, and more preferably 1.5 ⁇ 10 17 cm -3 or more considering the autodoping of the memory effect during regrowth (about 5.0 ⁇ 10 16 cm -3 ) and the incorporation of donors. Also, from the viewpoint of the effect of improving the I-V characteristics, the doping concentration is preferably 1.0 ⁇ 10 18 cm -3 or more, and more preferably 2.0 ⁇ 10 18 cm -3 or more.
  • the doping concentration of the buried layer 14B is preferably 1.0 ⁇ 10 20 cm ⁇ 3 or less.
  • the doping concentration of the buried layer 14B is more preferably 2.0 ⁇ 10 19 cm ⁇ 3 or less.
  • the present invention has been exemplified with a photonic crystal layer in which the holes have a hexagonal columnar shape
  • the present invention can also be applied to cases in which the holes in the photonic crystal layer have an irregular columnar shape, such as a cylindrical, rectangular, polygonal, or teardrop shape.
  • PCSEL element 12 Element substrate 13: First cladding layer 14: First guide layer 14A: Lower guide layer 14B: Buried layer 14B1: First buried layer 14B2: Second buried layer 14K: Hole/hole pair 14K1/14K2: Main/sub-hole 14P: Photonic crystal layer (hole layer) 15: Active layer 16: Second guide layer 17: Electron barrier layer 18: Second cladding layer 19: Contact layer 23: Light distribution adjustment layer (hetero semiconductor layer)

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This photonic-crystal surface emitting laser element is provided with: a first guide layer which is formed on the lower guide layer and comprises a lower guide layer, a photonic crystal layer having vacancies that are two-dimensionally arranged on lattice points and an embedment layer formed on the photonic crystal layer and filling the vacancies; a hetero semiconductor layer which is formed on the embedment layer and is composed of a semiconductor having a crystal composition different from that of the embedment layer; an active layer which is formed on the hetero semiconductor layer; and a second guide layer which is formed on the active layer. The embedment layer is doped with an n-type dopant at a concentration of 1.0 × 1017 to 1.0 × 1020 cm-3.

Description

フォトニック結晶面発光レーザ素子Photonic crystal surface emitting laser element

 本発明は、フォトニック結晶層を有するフォトニック結晶面発光レーザ素子に関する。 The present invention relates to a photonic crystal surface-emitting laser element having a photonic crystal layer.

 従来、半導体発光素子の効率を高めるため種々の構造が提案されている。例えば、特許文献1には、分極ドーピング効果により正孔を生成させて、正孔を効率良く活性層に注入するための組成傾斜層を有する紫外線発光素子について記載されている。 Various structures have been proposed to increase the efficiency of semiconductor light-emitting elements. For example, Patent Document 1 describes an ultraviolet light-emitting element that has a composition-gradient layer for generating holes through the polarization doping effect and efficiently injecting the holes into the active layer.

 また、特許文献2には、活性層への正孔注入効率を改善するため、自発分極とピエゾ分極の和が負になる側に向かってAl組成値が減少する組成傾斜層を有する窒化物半導体発光素子が記載されている。 Patent Document 2 also describes a nitride semiconductor light-emitting device that has a compositionally graded layer in which the Al composition decreases toward the side where the sum of spontaneous polarization and piezoelectric polarization becomes negative in order to improve the efficiency of hole injection into the active layer.

 また、特許文献3には、空孔層(フォトニック結晶層)とは異なる結晶組成の結晶層からなり、光と空孔層との結合効率を調整する光分布調整層を設けたフォトニック結晶面発光レーザ(PCSEL:Photonic-Crystal Surface-Emitting Laser)が開示されている。 Patent Document 3 also discloses a photonic crystal surface-emitting laser (PCSEL) that is made of a crystal layer with a different crystal composition from the air hole layer (photonic crystal layer) and has a light distribution adjustment layer that adjusts the coupling efficiency between the light and the air hole layer.

特開2022-041738号公報JP 2022-041738 A 特許第6192378号公報Patent No. 6192378 WO2021/186965 A1号公報WO2021/186965 A1 Publication

 本願の発明者は、フォトニック結晶層と、フォトニック結晶層上に形成され、フォトニック結晶層とは結晶組成の異なる半導体層との間のヘテロ界面においてピエゾ分極による空乏化が生じて電子に対する障壁が形成され、フォトニック結晶面発光レーザ(PCSEL)の高効率動作を妨げているとの知見を得た。 The inventors of the present application have discovered that depletion due to piezoelectric polarization occurs at the heterointerface between a photonic crystal layer and a semiconductor layer formed on the photonic crystal layer and having a different crystal composition from that of the photonic crystal layer, forming a barrier against electrons and preventing efficient operation of a photonic crystal surface-emitting laser (PCSEL).

 本願は、当該知見に基づいてなされたものであり、高い注入効率を有し、低閾値及び高効率で発光するフォトニック結晶面発光レーザ素子を提供することを目的としている。 The present application is based on this finding and aims to provide a photonic crystal surface-emitting laser element that has high injection efficiency and emits light with a low threshold and high efficiency.

 本発明の1実施態様によるフォトニック結晶面発光レーザ素子は、
 n型半導体層と、
 前記n型半導体層上に形成され、格子点の各々に2次元的に配置された空孔を有するフォトニック結晶層と、前記フォトニック結晶層上に形成されて前記空孔を閉塞する埋込層と、を有する第1のガイド層と、
 前記埋込層上に形成され、前記埋込層とは結晶組成の異なる半導体からなるヘテロ半導体層と、
 前記ヘテロ半導体層上に形成された活性層と、
 前記活性層上に形成された第2のガイド層と、を有し、
 前記埋込層にはn形ドーパントが1.0×1017~1.0×1020cm-3の濃度でドーピングされている。
A photonic crystal surface emitting laser element according to one embodiment of the present invention comprises:
An n-type semiconductor layer;
a first guide layer including: a photonic crystal layer formed on the n-type semiconductor layer, the photonic crystal layer having holes arranged two-dimensionally at each lattice point; and a buried layer formed on the photonic crystal layer for closing the holes;
a hetero semiconductor layer formed on the buried layer and made of a semiconductor having a different crystal composition from that of the buried layer;
an active layer formed on the hetero semiconductor layer;
a second guide layer formed on the active layer;
The buried layer is doped with an n-type dopant at a concentration of 1.0×10 17 to 1.0×10 20 cm −3 .

第1の実施形態のPCSEL素子の構造の一例を模式的に示す断面図である。1 is a cross-sectional view showing a schematic example of a structure of a PCSEL element according to a first embodiment. 図1Aに示すフォトニック結晶層中に配列された空孔を模式的に示す拡大断面図である。1B is an enlarged cross-sectional view showing a schematic diagram of holes arranged in the photonic crystal layer shown in FIG. 1A. PCSEL素子の上面を模式的に示す平面図である。FIG. 2 is a plan view showing a schematic top surface of a PCSEL element. n側ガイド層に平行な面における断面を模式的に示す断面図である。2 is a cross-sectional view that illustrates a cross section taken along a plane parallel to an n-side guide layer. FIG. PCSEL素子の下面を模式的に示す平面図である。FIG. 2 is a plan view showing a schematic bottom surface of a PCSEL element. レジストの主開口及び副開口、及び、エッチング後のホールを模式的に示す平面図である。FIG. 2 is a plan view showing a schematic view of a main opening and a sub-opening in a resist, and a hole after etching. 形成されたフォトニック結晶層の中心軸CXに垂直な断面を模式的に示す図である。1 is a diagram showing a schematic cross section perpendicular to the central axis CX of a formed photonic crystal layer. FIG. 本実施形態のPCSEL素子のサンプル1~4(EX.1~EX.4)のI-V特性の測定結果を示すグラフである。1 is a graph showing the measurement results of the IV characteristics of Samples 1 to 4 (EX.1 to EX.4) of the PCSEL element of this embodiment. 比較例のPCSEL素子及び面発光素子のサンプル1~5(CX.1~CX.5)のI-V特性の測定結果を示すグラフである。1 is a graph showing the measurement results of the IV characteristics of the PCSEL element and surface-emitting element samples 1 to 5 (CX.1 to CX.5) of the comparative example. PCSEL素子の深さ方向のSIMSプロファイルを示すグラフである。1 is a graph showing a SIMS profile in the depth direction of a PCSEL element. PCSEL素子の各半導体層のパラメータを示す表である。1 is a table showing parameters of each semiconductor layer of a PCSEL device. 埋込層のドナー濃度を2.0×1017cm-3としたときの、伝導帯のエネルギーバンド、電子及び正孔の濃度のシミュレーション結果を示す図である。FIG. 13 is a diagram showing the simulation results of the energy band of the conduction band, and the concentrations of electrons and holes when the donor concentration of the buried layer is set to 2.0×10 17 cm −3 . 埋込層のドナー濃度を2.0×1018cm-3としたときの、伝導帯のエネルギーバンド、電子及び正孔の濃度のシミュレーション結果を示す図である。FIG. 13 is a diagram showing the simulation results of the energy band of the conduction band, and the concentrations of electrons and holes when the donor concentration of the buried layer is set to 2.0×10 18 cm −3 . 埋込層のドナー濃度を変化させたときのI-V特性のシミュレーション結果を示すグラフである。11 is a graph showing a simulation result of IV characteristics when the donor concentration of the buried layer is changed.

 以下においては、本発明の好適な実施形態について説明するが、これらを適宜改変し、組合せてもよい。また、以下の説明及び添付図面において、実質的に同一又は等価な部分には同一の参照符を付して説明する。 Below, preferred embodiments of the present invention will be described, but these may be modified and combined as appropriate. Furthermore, in the following description and accompanying drawings, substantially the same or equivalent parts are denoted by the same reference symbols.

[第1の実施形態]
1.フォトニック結晶面発光レーザ素子の構造
 フォトニック結晶面発光レーザ素子(PCSEL素子)は、発光素子を構成する半導体発光構造層(n側ガイド層、発光層、p側ガイド層)と平行方向に共振器層を有し、当該共振器層に直交する方向にコヒーレントな光を放射する素子である。
[First embodiment]
1. Structure of Photonic Crystal Surface Emitting Laser Element A photonic crystal surface emitting laser element (PCSEL element) is an element that has a resonator layer in a direction parallel to the semiconductor light emitting structure layers (n-side guide layer, light emitting layer, p-side guide layer) that constitute a light emitting element, and radiates coherent light in a direction perpendicular to the resonator layer.

 すなわち、PCSEL素子では、フォトニック結晶層(空孔層)に平行な面内を伝搬する光波はフォトニック結晶の回折効果により回折され2次元的な共振モードを形成するとともに、当該平行面に垂直な方向にも回折される。すなわち、PCSEL素子では、共振方向(フォトニック結晶層に平行な面内)に対して、光取り出し方向が垂直方向である。 In other words, in a PCSEL element, light waves propagating within a plane parallel to the photonic crystal layer (air hole layer) are diffracted by the diffraction effect of the photonic crystal to form a two-dimensional resonance mode, and are also diffracted in a direction perpendicular to the parallel plane. In other words, in a PCSEL element, the light extraction direction is perpendicular to the resonance direction (within the plane parallel to the photonic crystal layer).

 図1Aは、本発明の実施形態によるフォトニック結晶面発光レーザ素子(PCSEL素子)10の構造の一例を模式的に示す断面図である。また、図1Bは、図1Aのフォトニック結晶層14P及びフォトニック結晶層14P中に配列された空孔(air hole)14K(空孔対)を模式的に示す拡大断面図である。 FIG. 1A is a cross-sectional view showing an example of the structure of a photonic crystal surface-emitting laser element (PCSEL element) 10 according to an embodiment of the present invention. FIG. 1B is an enlarged cross-sectional view showing a photonic crystal layer 14P in FIG. 1A and air holes 14K (air hole pairs) arranged in the photonic crystal layer 14P.

 また、図2Aは、PCSEL素子10の上面を模式的に示す平面図である。また、図2Bは、フォトニック結晶層14Pのn側ガイド層14に平行な面における断面を模式的に示す断面図であり、図2Cは、PCSEL素子10の下面を模式的に示す平面図である。図1Aに示すように、半導体構造層11が透光性の素子基板12上に形成されている。なお、半導体構造層11の中心軸CXに垂直に半導体層が積層されている。 FIG. 2A is a plan view that typically shows the upper surface of the PCSEL element 10. FIG. 2B is a cross-sectional view that typically shows a cross section of the photonic crystal layer 14P in a plane parallel to the n-side guide layer 14, and FIG. 2C is a plan view that typically shows the lower surface of the PCSEL element 10. As shown in FIG. 1A, a semiconductor structure layer 11 is formed on a light-transmitting element substrate 12. The semiconductor layers are stacked perpendicular to the central axis CX of the semiconductor structure layer 11.

 また、半導体構造層11は、六方晶系の窒化物半導体からなる。本実施形態においては、半導体構造層11は、例えば、GaN系半導体からなる。 The semiconductor structure layer 11 is made of a hexagonal nitride semiconductor. In this embodiment, the semiconductor structure layer 11 is made of, for example, a GaN-based semiconductor.

 より詳細には、素子基板12上に複数の半導体層からなる半導体構造層11、すなわちn-クラッド層(第1導電型の第1のクラッド層)13、n側に設けられたガイド層であるn側ガイド層(第1のガイド層)14、光分布調整層23、活性層(ACT)15、p側に設けられたガイド層であるp側ガイド層(第2のガイド層)16、電子障壁層(EBL:Electron Blocking Layer)17、p-クラッド層(第2導電型の第2のクラッド層)18、p-コンタクト層19がこの順で形成されている。 More specifically, a semiconductor structure layer 11 consisting of multiple semiconductor layers is formed on an element substrate 12, in this order: an n-clad layer (first clad layer of a first conductivity type) 13, an n-side guide layer (first guide layer) 14 which is a guide layer provided on the n-side, a light distribution adjustment layer 23, an active layer (ACT) 15, a p-side guide layer (second guide layer) 16 which is a guide layer provided on the p-side, an electron barrier layer (EBL: Electron Blocking Layer) 17, a p-clad layer (second clad layer of a second conductivity type) 18, and a p-contact layer 19.

 なお、第1導電型がn型、第1導電型の反対導電型である第2導電型がp型の場合について説明するが、第1導電型及び第2導電型がそれぞれp型、n型であってもよい。 Note that, although the case will be described where the first conductivity type is n-type and the second conductivity type, which is the opposite conductivity type to the first conductivity type, is p-type, the first conductivity type and the second conductivity type may also be p-type and n-type, respectively.

 素子基板12は、六方晶のGaN単結晶であり、活性層15から放射された光の透過率が高い基板である。より詳細には、素子基板12は、主面(結晶成長面)が、Ga原子が最表面に配列した{0001}面である+c面の六方晶のGaN単結晶基板である。裏面(光出射面)は、N原子が最表面に配列した(000-1)面である-c面である。-c面は酸化等に対して耐性があるので光出射面として適している。 The element substrate 12 is a hexagonal GaN single crystal substrate that has a high transmittance for the light emitted from the active layer 15. More specifically, the element substrate 12 is a hexagonal GaN single crystal substrate whose main surface (crystal growth surface) is a +c plane, which is a {0001} plane in which Ga atoms are arranged on the outermost surface. The back surface (light emission surface) is a -c plane, which is a (000-1) plane in which N atoms are arranged on the outermost surface. The -c plane is suitable as a light emission surface because it is resistant to oxidation, etc.

 素子基板12はこれに限定されないが、いわゆるジャスト基板、又は、例えば、主面がm軸方向に1°程度までオフセットした基板が好ましい。例えば、m軸方向に0.3~0.7°程度までオフセットした基板は、広範な成長条件下にて鏡面成長を得ることができる。 The element substrate 12 is not limited to this, but is preferably a so-called just substrate, or, for example, a substrate whose main surface is offset by about 1° in the m-axis direction. For example, a substrate offset by about 0.3 to 0.7° in the m-axis direction can obtain mirror-finish growth under a wide range of growth conditions.

 主面と対向する光出射領域20L(図2C)が設けられた基板面(裏面、光出射面)は、N原子が最表面に配列した(000-1)面である「-c」面である。-c面は酸化等に対して耐性があるので光取り出し面として適している。 The substrate surface (back surface, light emission surface) on which the light emission region 20L (Figure 2C) facing the main surface is provided is the "-c" surface, which is the (000-1) surface on which N atoms are arranged. The -c surface is resistant to oxidation, etc., and is therefore suitable as a light extraction surface.

 以下に各半導体層の組成、層厚等の構成について説明するが、例示に過ぎず、適宜改変して適用することができる。 The composition, thickness, and other configurations of each semiconductor layer are explained below, but these are merely examples and can be modified as appropriate.

 n-クラッド層13は、例えばAl組成が4%のn-Al0.04Ga0.96N層であり、層厚は2μmである。アルミニウム(Al)組成比は、活性層15側に隣接する層(すなわち、n側ガイド層14)より屈折率が小さくなる組成としている。 The n-cladding layer 13 is, for example, an n-Al 0.04 Ga 0.96 N layer with an Al composition of 4% and a thickness of 2 μm. The aluminum (Al) composition ratio is set so that the refractive index is smaller than that of the layer adjacent to the active layer 15 side (i.e., the n-side guide layer 14).

 n側ガイド層14は、下ガイド層14A、空孔層(air-hole layer)であるフォトニック結晶層(PC層)14P及び埋込層14Bからなる。図1Bに示すように、フォトニック結晶層14Pは層厚dPCを有し、埋込層14Bは層厚dEMBを有する。例えば、フォトニック結晶層14Pの層厚dPCは40~180nmである。 The n-side guide layer 14 is composed of a lower guide layer 14A, a photonic crystal layer (PC layer) 14P which is an air-hole layer, and a buried layer 14B. As shown in Fig. 1B, the photonic crystal layer 14P has a layer thickness dPC , and the buried layer 14B has a layer thickness dEMB . For example, the layer thickness dPC of the photonic crystal layer 14P is 40 to 180 nm.

 なお、本明細書において、フォトニック結晶層14Pは、n側ガイド層14において空孔の上端から下端に至る層部分をいう(図1Bを参照)。したがって、フォトニック結晶層14Pの層厚dPCは、空孔の高さに等しい。 In this specification, photonic crystal layer 14P refers to the layer portion from the upper end to the lower end of the air hole in n-side guide layer 14 (see FIG. 1B). Therefore, the layer thickness d PC of photonic crystal layer 14P is equal to the height of the air hole.

 下ガイド層14Aは、例えば層厚が100~400nmのn-GaNである。フォトニック結晶層14Pは、層厚(又は空孔14Kの深さ)が40~180nmのn-GaNである。 The lower guide layer 14A is, for example, n-GaN with a layer thickness of 100 to 400 nm. The photonic crystal layer 14P is n-GaN with a layer thickness (or the depth of the holes 14K) of 40 to 180 nm.

 埋込層14Bは、n-GaN又はn-InGaNからなる。あるいは、これらの半導体層が積層された層であってもよい。埋込層14Bの層厚dEMBは、例えば50~150nmである。なお、埋込層14Bは、第1の埋込層14B1及び第2の埋込層14B2からなり、例えば、1×1018cm-3濃度のn型ドーパント(Si)がドーピングされている。
 なお、埋込層14Bのうち光分布調整層23に接する表面層である第2の埋込層14B2にn型ドーパントがドープされていればよい。
The buried layer 14B is made of n-GaN or n-InGaN. Alternatively, it may be a layer in which these semiconductor layers are stacked. The layer thickness d EMB of the buried layer 14B is, for example, 50 to 150 nm. The buried layer 14B is made of a first buried layer 14B1 and a second buried layer 14B2, and is doped with an n-type dopant (Si) at a concentration of, for example, 1×10 18 cm −3 .
It is sufficient that the second embedded layer 14B2, which is a surface layer of the embedded layer 14B that is in contact with the light distribution adjustment layer 23, is doped with an n-type dopant.

 埋込層14Bの表面層である第2の埋込層14B2上には、第2の埋込層14B2とは結晶組成が異なり、第2の埋込層14B2とヘテロ構造を形成するヘテロ半導体層(異種半導体層)である光分布調整層23が設けられている。 On the second buried layer 14B2, which is the surface layer of the buried layer 14B, there is provided a light distribution adjustment layer 23, which is a hetero semiconductor layer (a heterogeneous semiconductor layer) that has a different crystal composition from the second buried layer 14B2 and forms a heterostructure with the second buried layer 14B2.

 すなわち、当該ヘテロ半導体層(光分布調整層23)と第2の埋込層14B2との間にはヘテロ界面が形成されている。 In other words, a hetero interface is formed between the hetero semiconductor layer (light distribution adjustment layer 23) and the second embedded layer 14B2.

 なお、当該ヘテロ半導体層(光分布調整層23)は第2の埋込層14B2とは同一導電型の半導体層であるか、又は少なくとも一方がi層(真性半導体層)であってもよい。
 光分布調整層23は、埋込層14Bと活性層15との間に設けられ、フォトニック結晶層14P内を伝搬する光と共振器としてのフォトニック結晶層14Pとの結合効率を調整する機能を有する。
The hetero semiconductor layer (light distribution adjustment layer 23) may be a semiconductor layer of the same conductivity type as the second buried layer 14B2, or at least one of them may be an i-layer (intrinsic semiconductor layer).
Light distribution adjustment layer 23 is provided between buried layer 14B and active layer 15, and has the function of adjusting the coupling efficiency between the light propagating within photonic crystal layer 14P and photonic crystal layer 14P acting as a resonator.

 本実施形態においては、光分布調整層23は、アンドープのIn0.03Ga0.97N層であり、例えば層厚は50nmである。光分布調整層23の組成又は屈折率、及び層厚は、結合効率の調整に応じて選ばれる。 In this embodiment, the light distribution adjustment layer 23 is an undoped In 0.03 Ga 0.97 N layer, and has a layer thickness of, for example, 50 nm. The composition or refractive index and layer thickness of the light distribution adjustment layer 23 are selected according to adjustment of coupling efficiency.

 なお、n側ガイド層14及び光分布調整層23を含むn側半導体層を第1の半導体層とも称する。 The n-side semiconductor layer including the n-side guide layer 14 and the light distribution adjustment layer 23 is also referred to as the first semiconductor layer.

 発光層である活性層15は、例えば2つの量子井戸層を有する多重量子井戸(MQW)層である。MQWのバリア層及び量子井戸層は、それぞれGaN(層厚6.0nm)及びInGaN(層厚4.0nm)である。また、活性層15の発光中心波長は440nmである。 The active layer 15, which is the light-emitting layer, is, for example, a multiple quantum well (MQW) layer having two quantum well layers. The barrier layer and quantum well layer of the MQW are GaN (layer thickness 6.0 nm) and InGaN (layer thickness 4.0 nm), respectively. The central emission wavelength of the active layer 15 is 440 nm.

 なお、活性層15は、フォトニック結晶層14Pから180nm以内(すなわち空孔の周期PK以内)に配置されていることが好ましい。この場合、フォトニック結晶層14Pによる高い共振効果が得られる。 It is preferable that the active layer 15 is disposed within 180 nm of the photonic crystal layer 14P (i.e., within the period PK of the holes). In this case, a high resonance effect is obtained by the photonic crystal layer 14P.

 p側ガイド層16は、アンドープIn0.02Ga0.98N層(層厚70nm)であるp側ガイド層(1)16AとアンドープGaN層(層厚180nm)であるp側ガイド層(2)16Bとからなる。 The p-side guide layer 16 is composed of a p-side guide layer (1) 16A which is an undoped In 0.02 Ga 0.98 N layer (layer thickness 70 nm) and a p-side guide layer (2) 16B which is an undoped GaN layer (layer thickness 180 nm).

 p側ガイド層16は、ドーパント(Mg:マグネシウム等)による光吸収を考慮してアンドープ層としたが、良好な電気伝導性を得るためにドープしても良い。また、発振動作モードの電界分布を調整するため、p側ガイド層(1)16AのIn組成及び層厚は適宜選択することができる。 The p-side guide layer 16 is an undoped layer in consideration of the light absorption by the dopant (Mg: magnesium, etc.), but it may be doped to obtain good electrical conductivity. In addition, the In composition and layer thickness of the p-side guide layer (1) 16A can be appropriately selected to adjust the electric field distribution in the oscillation operation mode.

 電子障壁層(EBL)17は、マグネシウム(Mg)がドープされたp型のAl0.2Ga0.8N層であり、例えば。層厚15nmを有する。 The electron barrier layer (EBL) 17 is a magnesium (Mg)-doped p-type Al 0.2 Ga 0.8 N layer having a thickness of, for example, 15 nm.

 p-クラッド層18は、Mgドープのp-Al0.06Ga0.94N層であり、例えば、層厚600nmを有する。p-クラッド層18のAl組成は、p側ガイド層16よりも屈折率が小であるように選ばれていることが好ましい。p-クラッド層18は、第1のp-クラッド層として機能する。 The p-cladding layer 18 is an Mg-doped p-Al 0.06 Ga 0.94 N layer, and has a thickness of, for example, 600 nm. The Al composition of the p-cladding layer 18 is preferably selected so that the refractive index is smaller than that of the p-side guide layer 16. The p-cladding layer 18 functions as a first p-cladding layer.

 また、p-コンタクト層19は、Mgドープのp-GaN層であり、例えば層厚20nmを有する。p-コンタクト層19のキャリア密度は、その表面に設けた透光性導電体層である透光性電極29とオーミック接合できる濃度としている。p型GaNの代わりに、p型またはアンドープInGaNを用いてもよい。あるいは、GaN層とInGaN層を積層させた層としてもよい。 The p-contact layer 19 is a Mg-doped p-GaN layer, and has a thickness of, for example, 20 nm. The carrier density of the p-contact layer 19 is set to a concentration that allows for ohmic junction with the transparent electrode 29, which is a transparent conductive layer provided on the surface of the p-contact layer. Instead of p-type GaN, p-type or undoped InGaN may be used. Alternatively, a layer in which a GaN layer and an InGaN layer are stacked may be used.

 なお、p側ガイド層16、電子障壁層17、p-クラッド層18及びp-コンタクト層19からなる層を第2の半導体層とも称する。 The layer consisting of the p-side guide layer 16, the electron barrier layer 17, the p-cladding layer 18 and the p-contact layer 19 is also referred to as the second semiconductor layer.

 なお、本明細書において、「n側」、「p側」は、必ずしもn型、p型を有することを意味するものではない。例えば、n側ガイド層は活性層よりもn側に設けられたガイド層を意味し、アンドープ層(又はi層)であってもよい。 In this specification, "n-side" and "p-side" do not necessarily mean n-type and p-type. For example, the n-side guide layer means a guide layer provided on the n-side of the active layer, and may be an undoped layer (or i-layer).

 また、n-クラッド層13は単一層ではなく複数の層から構成されていてもよく、その場合、全ての層がn層(nドープ層)である必要はなく、アンドープ層(i層)を含んでいてもよい。p側ガイド層16、p-クラッド層18についても同様である。 The n-cladding layer 13 may be composed of multiple layers rather than a single layer, in which case not all layers need to be n-layers (n-doped layers) and may include undoped layers (i-layers). The same applies to the p-side guide layer 16 and p-cladding layer 18.

 また、上記した全ての半導体層を設ける必要はなく、第1導電型の第1の半導体層、第2導電型の第2の半導体層及びこれらの層に挟まれた活性層(発光層)を有する構成であればよい。 Furthermore, it is not necessary to provide all of the semiconductor layers described above, and it is sufficient to have a configuration having a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and an active layer (light-emitting layer) sandwiched between these layers.

 p-コンタクト層19上には、p電極20B(第2の電極)として、透光性電極29(図示せず)、銀(Ag)層、金(Au)層が順に積層された、透光性電極/Ag/Au層が形成されている。すなわち、p電極20Bは光反射層として機能し、透光性電極29とp電極20BのAg層との界面が反射面SRである。なお、反射面SRはフォトニック結晶層14Pと平行に設けられている。 On the p-contact layer 19, a p-electrode 20B (second electrode) is formed as a translucent electrode/Ag/Au layer in which a translucent electrode 29 (not shown), a silver (Ag) layer, and a gold (Au) layer are laminated in this order. In other words, the p-electrode 20B functions as a light reflecting layer, and the interface between the translucent electrode 29 and the Ag layer of the p-electrode 20B is the reflecting surface SR. The reflecting surface SR is provided parallel to the photonic crystal layer 14P.

 p電極20Bは、空孔形成領域14Rの中心軸CXを中心とする直径がRAの円形状を有している。具体的には、透光性電極29は、上面視において(すなわち、半導体構造層11に垂直な方向から見たとき)、例えばRA=300μmの直径を有している。なお、p電極20Bとして、Pd、Al、Al合金等を用いることもできる。また、p電極20B上にパッド電極等を設けてもよい。 The p-electrode 20B has a circular shape with a diameter RA centered on the central axis CX of the void formation region 14R. Specifically, the transparent electrode 29 has a diameter of, for example, RA = 300 μm when viewed from above (i.e., when viewed from a direction perpendicular to the semiconductor structure layer 11). Note that Pd, Al, Al alloys, etc. may also be used as the p-electrode 20B. A pad electrode, etc. may also be provided on the p-electrode 20B.

 透光性電極29は、透光性の導電体によって形成され、例えばインジウムスズ酸化物(ITO)で形成されている。なお、透光性電極29は、ITOに限定されず、亜鉛錫酸化物(ZTO)、GZO(ZnO:Ga)、AZO(ZnO:Al)等の透光性導電体を用いることができる。 The translucent electrode 29 is formed of a translucent conductor, for example, indium tin oxide (ITO). Note that the translucent electrode 29 is not limited to ITO, and other translucent conductors such as zinc tin oxide (ZTO), GZO (ZnO:Ga), and AZO (ZnO:Al) can be used.

 半導体構造層11の側面及び上面、並びにp電極20Bの側面は、SiOなどの絶縁膜21で被覆されている。また、絶縁膜21は、p電極20Bに乗り上げ、p電極20Bの上面の縁部を覆うように形成されている。 The side and top surfaces of the semiconductor structure layer 11 and the side surfaces of the p-electrode 20B are covered with an insulating film 21 such as SiO 2. The insulating film 21 is formed so as to run onto the p-electrode 20B and cover the edge of the top surface of the p-electrode 20B.

 絶縁膜21は保護膜としても機能し、PCSEL素子10を構成するアルミニウム(Al)を含む結晶層を腐食性ガス等から保護する。また、付着物や実装時におけるはんだの這い上がりによる短絡等を防止し、信頼性、歩留まりの向上に寄与する。絶縁膜21の材料はSiOに限らず、ZrO、HfO、TiO、Al、SiNx等を選択することができる。 The insulating film 21 also functions as a protective film, protecting the aluminum (Al)-containing crystal layer constituting the PCSEL element 10 from corrosive gases, etc. It also prevents short circuits caused by adhesions or solder creeping up during mounting, contributing to improved reliability and yield. The material of the insulating film 21 is not limited to SiO2 , but may be ZrO2 , HfO2, TiO2 , Al2O3 , SiNx , etc.

 素子基板12の裏面には円環状のカソード電極20A(第1の電極)が形成されている(図2Cを参照)。また、カソード電極20Aの内側には無反射(AR)コート層27が形成されている。 A circular cathode electrode 20A (first electrode) is formed on the back surface of the element substrate 12 (see FIG. 2C). In addition, an anti-reflective (AR) coating layer 27 is formed on the inside of the cathode electrode 20A.

 カソード電極20Aは、Ti/Auからなり、素子基板12とオーミック接触している。電極材料は、Ti/Au以外に、Ti/Al、Ti/Rh、Ti/Al/Pt/Au、Ti/Pt/Auなどを選択することができる。 The cathode electrode 20A is made of Ti/Au and is in ohmic contact with the element substrate 12. In addition to Ti/Au, the electrode material can be selected from Ti/Al, Ti/Rh, Ti/Al/Pt/Au, Ti/Pt/Au, etc.

 活性層15からの放射光はフォトニック結晶層(PC層)14Pによって回折される。フォトニック結晶層14Pによって回折され(回折面WS)、フォトニック結晶層14Pから直接放出された光(直接回折光Ld:第1の回折光)と、フォトニック結晶層14Pの回折によって放出され、反射面SRによって反射された光(反射回折光Lr:第2の回折光)とが素子基板12の裏面(出射面)12Rの光出射領域20L(図2C)から外部に出射される。 The light emitted from the active layer 15 is diffracted by the photonic crystal layer (PC layer) 14P. The light is diffracted by the photonic crystal layer 14P (diffraction surface WS), and the light emitted directly from the photonic crystal layer 14P (direct diffracted light Ld: first diffracted light) and the light emitted by the diffraction of the photonic crystal layer 14P and reflected by the reflection surface SR (reflected diffracted light Lr: second diffracted light) are emitted to the outside from the light emission region 20L (Figure 2C) of the rear surface (emission surface) 12R of the element substrate 12.

 図2Bに示すように、フォトニック結晶層14Pにおいて空孔14Kは、例えば矩形の空孔形成領域14R内に周期的に配列されて設けられている。 As shown in FIG. 2B, in the photonic crystal layer 14P, the holes 14K are arranged periodically within, for example, a rectangular hole formation region 14R.

 図2Cに示すように、アノード領域RAは、空孔形成領域14R内に包含されるように形成されている。 As shown in FIG. 2C, the anode region RA is formed so as to be contained within the void formation region 14R.

 また、カソード電極20Aは、フォトニック結晶層14Pに対して垂直方向から見たときにp電極20Bに重ならないようにp電極20Bの外側に環状の電極として設けられている。 The cathode electrode 20A is provided as a ring-shaped electrode on the outside of the p-electrode 20B so as not to overlap with the p-electrode 20B when viewed from a direction perpendicular to the photonic crystal layer 14P.

 カソード電極20Aの内側の領域が光出射領域20Lである。また、カソード電極20に電気的に接続され、外部からの給電用のワイヤを接続するボンディングパッド20Cが設けられている。 The area inside the cathode electrode 20A is the light emission area 20L. In addition, a bonding pad 20C is provided that is electrically connected to the cathode electrode 20 and connects a wire for power supply from an external source.

2.フォトニック結晶層の製法及び再結晶成長 
 以下に、フォトニック結晶層の作製工程及び再結晶成長について説明する。結晶成長方法としてMOVPE(Metalorganic Vapor Phase Epitaxy)法を用いた。なお、以下においては、フォトニック結晶層14Pが二重格子フォトニック結晶層である場合を例にその形成方法について説明するが、単一格子フォトニック結晶層及び多重格子フォトニック結晶層も同様にして形成することができる。
2. Photonic crystal layer fabrication method and recrystallization growth
The process of fabricating the photonic crystal layer and the recrystallization growth are described below. Metalorganic Vapor Phase Epitaxy (MOVPE) was used as the crystal growth method. Note that the method of forming the photonic crystal layer 14P will be described below using the example of a double lattice photonic crystal layer, but a single lattice photonic crystal layer and a multiple lattice photonic crystal layer can also be formed in the same manner.

(a)ホールの形成
 まず、基板12上にn-クラッド層13としてAl組成が4%のn型Al0.04Ga0.96N層を成長した。続いて、n-クラッド層13上にn型GaN層を成長した。この成長層は、下ガイド層14Aと、フォトニック結晶層14Pを形成するための準備層である。
(a) Formation of holes First, an n-type Al 0.04 Ga 0.96 N layer with an Al composition of 4% was grown as n-clad layer 13 on substrate 12. Then, an n-type GaN layer was grown on n-clad layer 13. This grown layer was a preparatory layer for forming lower guide layer 14A and photonic crystal layer 14P.

 上記準備層を形成後、基板をMOVPE装置のチャンバより取り出し、成長層表面に微細な凹部(ホール)を形成した。洗浄により清浄表面を得た後、プラズマCVDを用いてシリコン窒化膜(SiN)を成膜した。この上に電子線描画用レジストを塗布し、電子線描画装置に入れて2次元周期構造のパターニングを行った。 After the preparation layer was formed, the substrate was removed from the chamber of the MOVPE apparatus, and fine recesses (holes) were formed on the surface of the growth layer. After obtaining a clean surface by washing, a silicon nitride film (SiN x ) was formed by plasma CVD. A resist for electron beam lithography was applied on the SiN x film, and the substrate was placed in an electron beam lithography apparatus to pattern a two-dimensional periodic structure.

 図3は、レジストの主開口K1及び副開口K2、及び、エッチング後の主ホール14H1,副ホール14H2を模式的に示す平面図である。図3に示すように、長円形状の主開口K1及び主開口K1よりも小なる副開口K2からなる開口対を周期PKで正方格子状にレジストの面内で2次元配列したパターニングを行った。なお、図面の明確さのため、開口部にハッチングを施して示している。 FIG. 3 is a plan view showing the main opening K1 and sub-opening K2 of the resist, and the main hole 14H1 and sub-hole 14H2 after etching. As shown in FIG. 3, a pattern was performed in which pairs of openings, each consisting of an oval-shaped main opening K1 and a sub-opening K2 that is smaller than the main opening K1, were two-dimensionally arranged in the plane of the resist in a square lattice pattern with a period PK. For clarity of the drawing, the openings are shown with hatching.

 より詳細には、主開口K1は、その重心CD1が互いに直交する2方向(x方向及びy方向)に周期PKの正方格子の格子点上に2次元的に配列されている。副開口K2も同様に、その重心CD2がx方向及びy方向に周期PKの正方格子の格子点上に2次元的に配列されている。 More specifically, the main openings K1 have their centers of gravity CD1 arranged two-dimensionally on the lattice points of a square lattice with period PK in two mutually orthogonal directions (x direction and y direction). Similarly, the sub-openings K2 have their centers of gravity CD2 arranged two-dimensionally on the lattice points of a square lattice with period PK in the x direction and y direction.

 主開口K1及び副開口K2の長軸は結晶方位の<11-20>方向に平行であり、主開口K1及び副開口K2の短軸は<1-100>方向に平行である。 The major axes of the main opening K1 and the sub-opening K2 are parallel to the <11-20> crystal orientation, and the minor axes of the main opening K1 and the sub-opening K2 are parallel to the <1-100> crystal orientation.

 また、副開口K2の重心CD2は、主開口K1の重心CD1に対してΔx及びΔyだけ離間している。ここでは、Δx=Δyとした。すなわち、副開口K2の重心CD2は、主開口K1の重心CD1から<1-100>方向に離間している。 Furthermore, the center of gravity CD2 of the sub-opening K2 is spaced apart from the center of gravity CD1 of the main opening K1 by Δx and Δy. Here, Δx=Δy. In other words, the center of gravity CD2 of the sub-opening K2 is spaced apart from the center of gravity CD1 of the main opening K1 in the <1-100> direction.

 また、主開口K1及び副開口K2の重心間距離Δx、Δyを、Δx=Δy=0.46PKとした。パターニングしたレジストを現像後、ICP-RIE(Inductive Coupled Plasma - Reactive Ion Etching)装置によってSiN膜を選択的にドライエッチングした。これにより周期PKの正方格子の格子点上に2次元的に配列された主開口K1及び副開口K2がSiN膜を貫通するように形成された。 The distances Δx and Δy between the centers of gravity of the main opening K1 and the sub-opening K2 were set to Δx=Δy=0.46PK. After the patterned resist was developed, the SiN x film was selectively dry etched by an ICP-RIE (Inductive Coupled Plasma - Reactive Ion Etching) device. As a result, the main opening K1 and the sub-opening K2, which were two-dimensionally arranged on the lattice points of the square lattice with the period PK, were formed so as to penetrate the SiN x film.

 なお、周期(空孔間隔)PKは、発振波長(λ)を438nmとするため、PK=177.5nmとした。 The period (hole spacing) PK was set to PK = 177.5 nm in order to set the oscillation wavelength (λ) to 438 nm.

 続いて、レジストを除去し、パターニングしたSiN膜をハードマスクとしてGaN表面部に凹部(ホール)を形成した。ICP-RIE装置にて塩素系ガス及びアルゴンガスを用いてGaNを深さ方向にドライエッチングすることにより、GaN表面に垂直に掘られた長円柱状の主ホール14H1及び副ホール14H2を形成した。 Next, the resist was removed, and recesses (holes) were formed in the GaN surface using the patterned SiN x film as a hard mask. The GaN was dry-etched in the depth direction using a chlorine-based gas and argon gas in an ICP-RIE apparatus, to form an oval cylindrical main hole 14H1 and a sub-hole 14H2 that were dug vertically in the GaN surface.

 なお、上記エッチングによりGaN表面部に掘られた凹部(ホール)をフォトニック結晶層14Pにおける空孔(air-hole)と区別するため、単に主ホール及び副ホールと称する。また、主ホール14H1,副ホール14H2を特に区別しない場合には、これらを合わせてホール14Hと称する場合がある。
 なお、ホール14Hの形状は長円柱状に限らず、円柱状、多角形状などであってもよい。
In addition, the recesses (holes) dug in the GaN surface portion by the above etching are simply referred to as main holes and sub-holes in order to distinguish them from air holes in the photonic crystal layer 14P. When there is no particular distinction between the main holes 14H1 and the sub-holes 14H2, they may be collectively referred to as holes 14H.
The shape of the hole 14H is not limited to an oval cylinder, but may be a cylinder, a polygon, or the like.

(b)埋込層の形成(再結晶成長)
 ホール14Hを形成した基板を洗浄した後、再度MOVPE装置のリアクタ内に導入し、再成長を行った。具体的には、アンモニア(NH3)及びトリメチルガリウム(TMG)を供給して第1の埋込層14B1を形成し、ホール14Hの開口を閉塞した。
(b) Formation of the buried layer (recrystallization growth)
After cleaning the substrate in which the hole 14H was formed, it was again introduced into the reactor of the MOVPE apparatus and regrowth was performed. Specifically, ammonia (NH 3 ) and trimethylgallium (TMG) were supplied to form the first buried layer 14B1 and close the opening of the hole 14H.

 また、同時に、n型ドーパントとしてシラン(SiH)を供給して、第1の埋込層14B1に1×1018cm-3のSiをドープした。なお、n型ドーパントはSi以外にGeであっても良く、n型ドーパントの供給原料としてはジシラン(Si)やゲルマン(GeH)を用いることができる。 At the same time, silane (SiH 4 ) was supplied as an n-type dopant to dope the first buried layer 14B1 with Si at a concentration of 1×10 18 cm -3 . Note that the n-type dopant may be Ge instead of Si, and disilane (Si 2 H 6 ) or germane (GeH 4 ) may be used as the supply source of the n-type dopant.

 すなわち、マストランスポートによってホール14Hの形状が熱的に安定な面で構成される形状へと変形する第1の温度(920℃)で第1の埋込層14B1を形成した。 In other words, the first buried layer 14B1 was formed at a first temperature (920°C) at which the shape of the hole 14H was transformed by mass transport into a shape composed of thermally stable surfaces.

 この第1の温度領域では、成長基板の最表面にはN原子が付着しているため、N極性面が選択的に成長される。したがって、表面には{1-101}ファセットが選択的に成長される。対向する{1-101}ファセットがそれぞれぶつかることで、ホール14Hは閉塞され埋め込まれる。これにより第1の埋込層14B1が形成される。 In this first temperature region, N atoms are attached to the top surface of the growth substrate, so that N-polarity faces are selectively grown. Therefore, {1-101} facets are selectively grown on the surface. When the opposing {1-101} facets collide with each other, the hole 14H is blocked and filled. This forms the first buried layer 14B1.

 続いて、主ホール14H1及び副ホール14H2を閉塞した後、厚さが50nmの第2の埋込層14B2を成長した。第2の埋込層14B2の成長は、基板温度(成長温度)を1050℃(第2の埋込温度)まで昇温後、トリメチルガリウム(TMG)、NH3及びシラン(SiH)を供給することで行った。なお、第2の埋込温度は、第1の埋込温度よりも高温であった。ただし、第2の埋込層14B2の成長表面が(0001)面となるように成長することができれば、第2の埋め込み温度と第1の埋め込み温度との温度関係は逆転しても良い。また、第2の埋込層14B2に1×1018cm-3の濃度でSiをドープした。 Next, after blocking the main hole 14H1 and the sub-hole 14H2, the second buried layer 14B2 having a thickness of 50 nm was grown. The second buried layer 14B2 was grown by raising the substrate temperature (growth temperature) to 1050° C. (second buried temperature) and then supplying trimethylgallium (TMG), NH 3 and silane (SiH 4 ). The second buried temperature was higher than the first buried temperature. However, the temperature relationship between the second buried temperature and the first buried temperature may be reversed as long as the growth surface of the second buried layer 14B2 can be grown to be the (0001) plane. The second buried layer 14B2 was doped with Si at a concentration of 1×10 18 cm −3 .

 また、本実施例における第2の埋込層14B2は、光とフォトニック結晶層14Pとの結合効率(光フィールド)を調整するための光分布調整層としても機能する。 In addition, the second embedded layer 14B2 in this embodiment also functions as a light distribution adjustment layer for adjusting the coupling efficiency (light field) between the light and the photonic crystal layer 14P.

 すなわち、本実施形態における第1の埋込層14B1及び第2の埋込層14B2はSi(n型ドーパント)をドープしたGaN層である。しかし、第1の埋込層14B1及び第2の埋込層14B2は、GaNに限らず、n-GaN、n-InGaNあるいは、これらの半導体層が積層された層を用いることができる。 In other words, the first buried layer 14B1 and the second buried layer 14B2 in this embodiment are GaN layers doped with Si (n-type dopant). However, the first buried layer 14B1 and the second buried layer 14B2 are not limited to GaN, and may be n-GaN, n-InGaN, or a layer in which these semiconductor layers are stacked.

 以上の埋込工程により、主空孔14K1及び副空孔14K2の一対からなる空孔14Kが正方格子点の各々に2次元的に配置された二重格子構造のフォトニック結晶層14Pが形成された。ここで、副空孔14K2は主空孔14K1よりも空孔径及び高さが小さい。 The above embedding process resulted in the formation of a photonic crystal layer 14P with a double lattice structure in which holes 14K, each consisting of a pair of a main hole 14K1 and a subhole 14K2, are arranged two-dimensionally at each of the square lattice points. Here, the subhole 14K2 has a smaller hole diameter and height than the main hole 14K1.

 なお、主空孔14K1及び副空孔14K2を特に区別しない場合には、これらを合わせて空孔14Kと称する場合がある。 In addition, when there is no particular distinction between the main hole 14K1 and the sub-hole 14K2, they may be collectively referred to as the hole 14K.

 図4は、形成されたフォトニック結晶層14Pの、中心軸CXに垂直な断面を模式的に示す図である。III族窒化物においてホールを埋め込む際には、マストランスポートによってホール14Hの形状が熱的に安定な面で構成される形状へと変形し空孔14Kが形成される。 FIG. 4 is a schematic diagram showing a cross section perpendicular to the central axis CX of the formed photonic crystal layer 14P. When filling holes in the group III nitride, the shape of the holes 14H is deformed by mass transport into a shape composed of thermally stable surfaces, and voids 14K are formed.

 すなわち、+c面基板においては、ホール14Hの内側面は(1-100)面(すなわち、m面)へと形状変化する。すなわち、長円柱状の形状から側面がm面で構成される長六角柱状の空孔14Kへと形状変化する。 In other words, in a +c-plane substrate, the inner surface of hole 14H changes shape to a (1-100) plane (i.e., an m-plane). That is, the shape changes from an oval cylindrical shape to an oval hexagonal prism-shaped hole 14K whose side surface is made up of an m-plane.

 形成された主空孔14K1は、長径が72.5nm及び短径が43.5nmであり、長径/短径比は1.67である長六角柱形状を有していた。また、副空孔14K2は長径が44.6nm及び短径が38.3nmであり、長径/短径比は1.16であり、主空孔14K1よりも正六角柱に近い長六角柱形状を有していた。 The formed primary void 14K1 had a long hexagonal prism shape with a long diameter of 72.5 nm and a short diameter of 43.5 nm, and a long diameter/short diameter ratio of 1.67. The secondary void 14K2 had a long diameter of 44.6 nm and a short diameter of 38.3 nm, and a long diameter/short diameter ratio of 1.16, and had a long hexagonal prism shape closer to a regular hexagonal prism than the primary void 14K1.

 また、主空孔14K1及び副空孔14K2の重心間距離Δx及びΔyは、81.6nm(Δx=Δy=0.46PK)であり、埋め込み前から変化していないことが確認された。また、主空孔14K1及び副空孔14K2の長軸は<11-20>軸(すなわち、a軸)に平行であることが確認された。 Furthermore, it was confirmed that the distances Δx and Δy between the centers of gravity of the main hole 14K1 and the subhole 14K2 were 81.6 nm (Δx = Δy = 0.46PK), and had not changed since before the filling. It was also confirmed that the major axes of the main hole 14K1 and the subhole 14K2 were parallel to the <11-20> axis (i.e., the a-axis).

 また、主空孔14K1及び副空孔14K2の空孔充填率(フィリングファクタ)FF1,FF2を算出したところ、FF1=8.8%、FF2=4.2%であった。ここで空孔充填率とは、2次元的な規則配列において、単位面積あたりの各空孔が占める面積の割合である。具体的には、フォトニック結晶層14Pにおける主空孔14K1及び副空孔14K2の面積をそれぞれS1、S2としたとき、主空孔14K1及び副空孔14K2の空孔充填率FF1,FF2は次の式で与えられる。 Furthermore, the hole filling factors FF1 and FF2 of the main holes 14K1 and the sub-holes 14K2 were calculated to be FF1 = 8.8% and FF2 = 4.2%. Here, the hole filling factor is the ratio of the area occupied by each hole per unit area in a two-dimensional regular array. Specifically, when the areas of the main holes 14K1 and the sub-holes 14K2 in the photonic crystal layer 14P are S1 and S2, respectively, the hole filling factors FF1 and FF2 of the main holes 14K1 and the sub-holes 14K2 are given by the following formulas.

 FF1=S1/PK, FF2=S2/PK
 以上の工程により、空孔層であるフォトニック結晶層14Pを含むn側ガイド層14の形成が完了した。
FF1=S1/ PK2 , FF2=S2/ PK2
Through the above steps, the formation of the n-side guide layer 14 including the photonic crystal layer 14P, which is a hole layer, is completed.

(c)光分布調整層、活性層及びp半導体層の成長
 埋込層14Bの成長に続いて、MO原料の供給を切り替えて、光分布調整層23を順次成長した。
(c) Growth of Light Distribution Adjustment Layer, Active Layer, and p-Semiconductor Layer Following the growth of the buried layer 14B, the supply of the MO source material was switched to sequentially grow the light distribution adjustment layer 23.

  本実施形態においては、光分布調整層23は、埋込層14Bとは結晶組成の異なる半導体からなる。具体的には、光分布調整層23はアンドープのIn0.03Ga0.97N層であり、埋込層14B(GaN層)とヘテロ構造を形成するヘテロ半導体層(異種半導体層)である。なお、埋込層14Bを構成する半導体層は光分布調整層23を構成する半導体層に比べて、a軸方向の格子定数が小さくなる。つまり、n側ガイド層14を構成する、下ガイド層14A、フォトニック結晶層14P及び埋込層14Bは、同じ格子定数で構成される。しかしながら、光分布調整層23は、n側ガイド層14上からエピタキシャル成長している。従って、a軸は圧縮されて、c軸は伸長して分極が大きくなる。よって、後述する図9に示すようなバンド障壁(BB)が生じる。このバンド障壁(BB)は、例えばGaN上にAlGaNを成長させた場合のような、格子定数差の小さい半導体成長過程では起きない。 In this embodiment, the light distribution adjustment layer 23 is made of a semiconductor having a different crystal composition from the buried layer 14B. Specifically, the light distribution adjustment layer 23 is an undoped In 0.03 Ga 0.97 N layer, which is a hetero semiconductor layer (a different semiconductor layer) that forms a heterostructure with the buried layer 14B (GaN layer). The semiconductor layer that constitutes the buried layer 14B has a smaller lattice constant in the a-axis direction than the semiconductor layer that constitutes the light distribution adjustment layer 23. That is, the lower guide layer 14A, the photonic crystal layer 14P, and the buried layer 14B that constitute the n-side guide layer 14 are composed of the same lattice constant. However, the light distribution adjustment layer 23 is epitaxially grown from the n-side guide layer 14. Therefore, the a-axis is compressed and the c-axis is stretched, resulting in large polarization. Therefore, a band barrier (BB) is generated as shown in FIG. 9, which will be described later. This band barrier (BB) does not occur in the semiconductor growth process where the lattice constant difference is small, such as when AlGaN is grown on GaN.

 続いて、光分布調整層23上に、活性層15、p側ガイド層(第2のガイド層)16、電子障壁層(EBL)17、p-クラッド層18、p-コンタクト層19を順次成長した。以上により、PCSEL素子10が作製された。 Next, the active layer 15, the p-side guide layer (second guide layer) 16, the electron barrier layer (EBL) 17, the p-cladding layer 18, and the p-contact layer 19 were grown in sequence on the light distribution adjustment layer 23. In this way, the PCSEL element 10 was fabricated.

3.PCSEL素子の特性
(a)本実施形態のPCSEL素子の特性
 複数のPCSEL素子10のサンプルを作製し、それらの電流-電圧特性(I-V特性)を評価した。図5は、サンプル1~4(EX.1~EX.4)のI-V特性の測定結果を示すグラフである。
3. Characteristics of the PCSEL Element (a) Characteristics of the PCSEL Element of the Present Embodiment A number of samples of the PCSEL element 10 were fabricated, and their current-voltage characteristics (IV characteristics) were evaluated. Fig. 5 is a graph showing the measurement results of the IV characteristics of samples 1 to 4 (EX.1 to EX.4).

 ここで、実施例のサンプル1~3(EX.1~EX.3)は、上記で説明した構造を有するPCSEL素子10である。また、サンプル4(EX.4)は、サンプル1~3の特性評価の参照基準とするリファレンス・サンプルである。具体的には、サンプル4(EX.4)は、フォトニック結晶層14Pを有しない点においてPCSEL素子10と異なり、その他はPCSEL素子10と同一の構造を有する面発光素子である。 Here, Samples 1 to 3 (EX.1 to EX.3) of the embodiment are PCSEL elements 10 having the structure described above. Sample 4 (EX.4) is a reference sample that serves as a reference standard for evaluating the characteristics of Samples 1 to 3. Specifically, Sample 4 (EX.4) differs from PCSEL element 10 in that it does not have photonic crystal layer 14P, but is otherwise a surface-emitting element having the same structure as PCSEL element 10.

 より詳細には、リファレンス・サンプル4(EX.4)の面発光素子は次のように作製した。まず、基板12上にn-クラッド層13を成長し、続いて、n-クラッド層13上にn型GaN層を成長した。続いて、基板を一度MOPVE装置のリアクタから取り出し、基板を洗浄した後、再度MOVPE装置のリアクタ内に導入し、再成長を行った。 More specifically, the surface-emitting device of Reference Sample 4 (EX.4) was fabricated as follows. First, an n-clad layer 13 was grown on a substrate 12, and then an n-type GaN layer was grown on the n-clad layer 13. The substrate was then removed from the reactor of the MOVPE device, cleaned, and then re-introduced into the reactor of the MOVPE device for regrowth.

 図5に示すように、本実施形態の各PCSEL素子(EX.1~EX.3)は、ほぼ同一の閾値及び効率を示し、良好なI-V特性を有していることが確認された。 As shown in Figure 5, it was confirmed that each PCSEL element (EX.1 to EX.3) of this embodiment exhibits approximately the same threshold and efficiency, and has good I-V characteristics.

 また、サンプル1~3(EX.1~EX.3)の各PCSEL素子は、フォトニック結晶層14P(PC層)を有しないリファレンス・サンプル4(EX.4)の面発光素子と比較しても遜色の無い良好なI-V特性を有していることが確認された。 Furthermore, it was confirmed that each of the PCSEL elements of Samples 1 to 3 (EX.1 to EX.3) had good I-V characteristics that were comparable to those of the surface-emitting element of Reference Sample 4 (EX.4), which does not have a photonic crystal layer 14P (PC layer).

(b)比較例のPCSEL素子の特性
 本実施形態のPCSEL素子10の比較例として複数のPCSEL素子及び面発光素子を作製し、それらの電流-電圧特性(I-V特性)を評価した。図6は、サンプル1~5(CX.1~CX.5)のI-V特性の測定結果を示すグラフである。
(b) Characteristics of Comparative PCSEL Elements A number of PCSEL elements and surface-emitting devices were fabricated as comparative examples of the PCSEL element 10 of the present embodiment, and their current-voltage characteristics (IV characteristics) were evaluated. Figure 6 is a graph showing the measurement results of the IV characteristics of Samples 1 to 5 (CX.1 to CX.5).

 具体的には、比較例のサンプル1~5(CX.1~CX.5)の面発光素子においては、埋込層14B(第1の埋込層14B1及び第2の埋込層14B2)は、ドーパントをドープしていないアンドープ層であり、この点において、実施例のサンプル1~4(EX.1~EX.4)のPCSEL素子10とは異なっている。 Specifically, in the surface-emitting devices of Samples 1 to 5 (CX.1 to CX.5) of the comparative example, the buried layer 14B (first buried layer 14B1 and second buried layer 14B2) is an undoped layer that is not doped with a dopant, and in this respect, they differ from the PCSEL devices 10 of Samples 1 to 4 (EX.1 to EX.4) of the embodiment.

 より詳細には、比較例1~3(CX.1~CX.3)のPCSEL素子は、埋込層14Bがアンドープ層である点のみにおいて、実施例のサンプル1~3(EX.1~EX.3)のPCSEL素子10とは異なっている。 More specifically, the PCSEL elements of Comparative Examples 1 to 3 (CX.1 to CX.3) differ from the PCSEL elements 10 of Samples 1 to 3 (EX.1 to EX.3) of the embodiment only in that the buried layer 14B is an undoped layer.

 また、比較例のサンプル4(CX.4)の面発光素子は、フォトニック結晶層14Pを有しない点において比較例のサンプル1~3(CX.1~CX.3)のPCSEL素子と異なる。なお、再成長を行った点においては実施例のリファレンス・サンプル4(EX.4)の面発光素子と同じである。 The surface-emitting device of comparative example sample 4 (CX.4) differs from the PCSEL devices of comparative examples samples 1 to 3 (CX.1 to CX.3) in that it does not have the photonic crystal layer 14P. However, it is the same as the surface-emitting device of reference sample 4 (EX.4) of the embodiment in that it has been regrown.

 比較例のサンプル5(CX.5)の面発光素子は、フォトニック結晶層14Pを有さず、n-クラッド層13上にn型GaN層成長した後に、n型GaN層上にアンドープGaNを連続成長した素子である。すなわち、凹部(ホール)を形成するプロセスを行わず、結晶成長装置(MOCVD装置)内でn-クラッド層13上に続いてn型GaN層およびアンドープGaN層を連続成長した素子である。その他はPCSEL素子10と同一の構造を有する面発光素子である。比較例のサンプル4とサンプル5との違いは、成長の途中でMOVPE装置から取り出して再成長を行うか、MOVPE装置から取り出さずに連続成長するかの点においてのみ製造方法が異なり、積層構造については同一の面発光素子である。 The surface-emitting device of comparative sample 5 (CX.5) does not have a photonic crystal layer 14P, and is an element in which an n-type GaN layer is grown on the n-clad layer 13, and then undoped GaN is continuously grown on the n-type GaN layer. In other words, the process of forming a recess (hole) is not performed, and the n-type GaN layer and the undoped GaN layer are continuously grown on the n-clad layer 13 in a crystal growth apparatus (MOCVD apparatus). Otherwise, it is a surface-emitting device with the same structure as the PCSEL device 10. The only difference between comparative sample 4 and sample 5 is the manufacturing method, in that the device is removed from the MOVPE apparatus midway through growth and re-grown, or the device is continuously grown without being removed from the MOVPE apparatus, and the laminated structure is the same for both surface-emitting devices.

 図6に示すように、比較例のサンプル1~3(CX.1~CX.3)のPCSEL素子及びサンプル4(CX.4)の面発光素子では、フォトニック結晶層14Pを有さず、連続成長によって形成したサンプル5(CX.5)の面発光素子と比較して、駆動電圧が上昇し、微分抵抗が極めて大きくなる。 As shown in Figure 6, the PCSEL elements of comparative samples 1 to 3 (CX.1 to CX.3) and the surface-emitting device of sample 4 (CX.4) have higher drive voltages and significantly larger differential resistances than the surface-emitting device of sample 5 (CX.5) which does not have the photonic crystal layer 14P and is formed by continuous growth.

(c)比較例のPCSEL素子における駆動電圧上昇の原因
 図7は、再成長によって形成されるPCSEL素子の深さ方向のSIMS(二次イオン質量分析)の測定結果(SIMSプロファイル)を示している。なお、図の明確さのため、各半導体層については、それらの参照符号で示している。例えば、「14B」は埋込層14Bを、「23」は光分布調整層(ヘテロ半導体層)23を示している。
(c) Cause of the increase in driving voltage in the PCSEL element of the comparative example Fig. 7 shows the measurement results (SIMS profile) of SIMS (secondary ion mass spectrometry) in the depth direction of the PCSEL element formed by regrowth. For clarity of the figure, each semiconductor layer is indicated by its reference number. For example, "14B" indicates the buried layer 14B, and "23" indicates the light distribution adjustment layer (hetero semiconductor layer) 23.

 図7に示すように、埋込層14Bは再成長界面に近いため、MOCVD成長中のメモリ効果によりMgなどの意図しない元素の取り込みが発生しドナー濃度が低くなる。なお、この現象は、空孔の有無にかかわらず発生する。 As shown in FIG. 7, since buried layer 14B is close to the regrowth interface, the memory effect during MOCVD growth causes unintended elements such as Mg to be incorporated, lowering the donor concentration. This phenomenon occurs regardless of the presence or absence of vacancies.

 また、空孔を埋め込む場合、{1-101}ファセットを選択成長させることで空孔を閉塞し、GaN層中に空孔を埋め込む。このとき、(0001)面成長に比べて雰囲気中に存在する不純物の取り込みが多くなるため、ドナーが補償され、さらに駆動電圧が上昇すると考えられる。 In addition, when filling vacancies, the vacancies are blocked by selectively growing the {1-101} facet, and the vacancies are filled in the GaN layer. In this case, more impurities present in the atmosphere are taken in than in the (0001) face growth, so the donors are compensated, and the driving voltage is thought to increase.

(d)本実施形態のPCSEL素子の特性改善
 上記したように、本実施形態のPCSEL素子10においては、埋込層14B(すなわち第1の埋込層14B1及び第2の埋込層14B2にn型ドーパントをドープしている。
(d) Improvement of Characteristics of the PCSEL Device of the Present Embodiment As described above, in the PCSEL device 10 of the present embodiment, the buried layer 14B (i.e., the first buried layer 14B1 and the second buried layer 14B2) is doped with an n-type dopant.

 埋込層14Bのドナー濃度を変化させた時のI-V特性を、デバイスシミュレータAtlasを用いてシミュレーションを行った。 The I-V characteristics when the donor concentration of buried layer 14B is changed were simulated using the device simulator Atlas.

 図8は、シミュレーションに用いたPCSEL素子の各半導体層のパラメータを示す表である。層構成(layer config.)中の「x.comp」は、各半導体層(Material)の組成x(InGa1-xN,AlGa1-xN)を、「Thick(nm)」は層厚を示している。また、「Doping profiles」は各半導体層(Material)の導電型及びドーピング濃度(Conc(cm-3))を示している。なお、III族窒化物半導体において、アンドープ層はわずかにn型伝導性を示すため、導電型はn型として表記し、ドーピング濃度は5.0×1016cm-3とした。 Fig. 8 is a table showing the parameters of each semiconductor layer of the PCSEL element used in the simulation. In the layer configuration, "x.comp" indicates the composition x ( InxGa1 -xN , AlxGa1 -xN ) of each semiconductor layer (Material), and "Thick (nm)" indicates the layer thickness. In addition, "Doping profiles" indicates the conductivity type and doping concentration (Conc (cm -3 )) of each semiconductor layer (Material). In Group III nitride semiconductors, since undoped layers show slight n-type conductivity, the conductivity type is indicated as n-type, and the doping concentration is set to 5.0 x 1016 cm -3 .

 本シミュレーションでは、埋込層14Bのn濃度を1.0×1017~2.0×1018cm-3の範囲で変化させて計算を行った。 In this simulation, calculations were performed while changing the n concentration of the buried layer 14B in the range of 1.0×10 17 to 2.0×10 18 cm −3 .

 図9及び図10は、それぞれ埋込層14Bのドナー濃度(Nd)を2.0×1017cm-3、2.0×1018cm-3としたときの、伝導帯のエネルギーバンド、及び、電子及び正孔の濃度のシミュレーション結果を示す図である。 9 and 10 are diagrams showing the simulation results of the conduction band energy band and the electron and hole concentrations when the donor concentrations (Nd) of the buried layer 14B are set to 2.0×10 17 cm −3 and 2.0×10 18 cm −3 , respectively.

 図9に示すように、ドナー濃度(Nd)が2.0×1017cm-3のとき、光分布調整層(ヘテロ半導体層)23(InGaN)と埋込層14B(GaN)との界面はピエゾ分極により空乏化され、埋込層14Bから注入される電子に対するバンド障壁(BB、破線で囲んで示している)が形成されていることが分かる。 As shown in FIG. 9, when the donor concentration (Nd) is 2.0×10 17 cm −3 , it can be seen that the interface between the light distribution adjustment layer (hetero semiconductor layer) 23 (InGaN) and the buried layer 14B (GaN) is depleted due to piezoelectric polarization, and a band barrier (BB, shown by the dashed line) against electrons injected from the buried layer 14B is formed.

 バンド障壁(BB)が高いとき、界面の障壁高さが低くなるまで電圧が印加されないと電流が流れず、埋込層14Bのドナー濃度が低すぎる場合には駆動電圧が上昇してしまう。 When the band barrier (BB) is high, current will not flow unless voltage is applied until the barrier height at the interface is reduced, and if the donor concentration in buried layer 14B is too low, the drive voltage will increase.

 図10に示すように、ドナー濃度(Nd)を2.0×1018cm-3に増加させると、光分布調整層(ヘテロ半導体層)23と埋込層14Bとの界面のバンド障壁が低下することが分かる(図9を参照)。また、ドナー濃度(Nd)が2.0×1018cm-3以上であれば、バンド障壁が極めて大きく改善されることが分かる。 10, when the donor concentration (Nd) is increased to 2.0×10 18 cm -3 , the band barrier at the interface between the light distribution adjustment layer (hetero semiconductor layer) 23 and the buried layer 14B is lowered (see FIG. 9). Also, when the donor concentration (Nd) is 2.0×10 18 cm -3 or more, the band barrier is significantly improved.

 PCSEL素子においては、埋め込み成長(再成長)時において不純物(Mg,Cなど)が入り込み易く、ドナーが補償される。また、ファセット成長時の欠陥導入によって意図しないアクセプタが導入される。したがって、PCSEL素子においては、当該補償効果によって生じるヘテロ半導体層と埋込層との界面におけるバンド障壁が素子特性を大きく損なうものと解される。 In PCSEL elements, impurities (Mg, C, etc.) easily enter during buried growth (regrowth), compensating for donors. Also, unintended acceptors are introduced due to the introduction of defects during facet growth. Therefore, in PCSEL elements, the band barrier at the interface between the hetero semiconductor layer and buried layer, which arises due to this compensation effect, is understood to significantly impair the element characteristics.

 図11は、埋込層14Bのドナー濃度(Nd)を変化させたときのI-V特性のシミュレーション結果を示すグラフである。この結果、ドナー濃度(Nd)が高くなるほどI-V特性は良好となり、ドナー濃度を1.0×1018cm-3まで増加させることによって特性を大きく改善できることが分かった。また、ドナー濃度が2.0×1018cm-3以上で特性改善は飽和することが分かった。なお、図中、矢印はドナー濃度Ndの増加方向を示している。 11 is a graph showing the results of a simulation of the I-V characteristics when the donor concentration (Nd) of the buried layer 14B is changed. As a result, it was found that the higher the donor concentration (Nd), the better the I-V characteristics are, and that the characteristics can be significantly improved by increasing the donor concentration up to 1.0×10 18 cm -3 . It was also found that the improvement in characteristics is saturated when the donor concentration is 2.0×10 18 cm -3 or higher. In the figure, the arrow indicates the direction of increase in the donor concentration Nd.

 一方、I-V特性のシミュレーションにおいて、埋込層14Bのn濃度が1.0×1017cm-3以下では、計算値が発散した。すなわち、光分布調整層(ヘテロ半導体層)23(InGaN)と埋込層14B(GaN)との界面の障壁が高く、電流が流れないことが分かった。 On the other hand, in the simulation of the I-V characteristics, the calculated values diverged when the n concentration of the buried layer 14B was 1.0×10 17 cm −3 or less. In other words, it was found that the barrier at the interface between the light distribution adjustment layer (hetero semiconductor layer) 23 (InGaN) and the buried layer 14B (GaN) was high and no current flowed.

 すなわち、埋込層14Bへのドーピング濃度は、2.0×1017cm-3以上であることが好ましく、再成長におけるメモリ効果のオートドープ(5.0×1016cm-3程度)及びドナーの取り込みを考慮すると1.5×1017cm-3以上がさらに好ましい。また、I-V特性の改善効果の点で、1.0×1018cm-3以上であることが好ましく、2.0×1018cm-3以上であることがさらに好ましい。 That is, the doping concentration of the buried layer 14B is preferably 2.0×10 17 cm -3 or more, and more preferably 1.5×10 17 cm -3 or more considering the autodoping of the memory effect during regrowth (about 5.0×10 16 cm -3 ) and the incorporation of donors. Also, from the viewpoint of the effect of improving the I-V characteristics, the doping concentration is preferably 1.0×10 18 cm -3 or more, and more preferably 2.0×10 18 cm -3 or more.

 また、一般的なドーパントとして用いられるSiは1.0×1020cm-3程度までドーピングすると、極性反転が発生し表面モフォロジが悪化するため、埋込層14Bのドーピング濃度は1.0×1020cm-3以下であることが好ましい。 Furthermore, when Si, which is used as a general dopant, is doped to about 1.0×10 20 cm −3 , polarity inversion occurs and the surface morphology deteriorates, so the doping concentration of the buried layer 14B is preferably 1.0×10 20 cm −3 or less.

 また、埋込層14Bの成長面の表面粗さによる再成長層への影響を考慮すると、埋込層14Bのドーピング濃度は2.0×1019cm-3以下であることがさらに好ましい。
 以上、詳細に説明したように、本発明によれば、高い注入効率を有し、低閾値及び高効
率で発光するフォトニック結晶面発光レーザ素子を提供することができる。
Furthermore, taking into consideration the effect of the surface roughness of the growth surface of the buried layer 14B on the regrown layer, the doping concentration of the buried layer 14B is more preferably 2.0×10 19 cm −3 or less.
As described above in detail, according to the present invention, it is possible to provide a photonic crystal surface emitting laser element that has high injection efficiency and emits light with a low threshold and high efficiency.

 なお、上記した実施形態における数値等は、特に示した場合を除き、例示に過ぎず適宜改変して適用することができる。また、二重格子構造のPCSEL素子について例示したが、単一格子構造のPCSEL素子、及び一般に多重格子構造のPCSEL素子について適用することができる。 Note that unless otherwise specified, the numerical values and the like in the above-described embodiments are merely examples and can be modified as appropriate. In addition, although a double-lattice structure PCSEL element is illustrated, the present invention can be applied to a single-lattice structure PCSEL element and generally to a multiple-lattice structure PCSEL element.

 また、本発明は、空孔が六角柱形状を有するフォトニック結晶層について例示したが、フォトニック結晶層の空孔が円柱状、矩形状、多角形状、またティアドロップ形状などの不定柱形状を有する場合についても適用することができる。 In addition, although the present invention has been exemplified with a photonic crystal layer in which the holes have a hexagonal columnar shape, the present invention can also be applied to cases in which the holes in the photonic crystal layer have an irregular columnar shape, such as a cylindrical, rectangular, polygonal, or teardrop shape.

 10:PCSEL素子
 12:素子基板
 13:第1のクラッド層
 14:第1のガイド層
 14A:下ガイド層
 14B:埋込層
 14B1:第1の埋込層
 14B2:第2の埋込層
 14K:空孔/空孔対
 14K1/14K2:主/副空孔
 14P:フォトニック結晶層(空孔層)
 15:活性層
 16:第2のガイド層
 17;電子障壁層
 18:第2のクラッド層
 19:コンタクト層
 23:光分布調整層(ヘテロ半導体層)

 
10: PCSEL element 12: Element substrate 13: First cladding layer 14: First guide layer 14A: Lower guide layer 14B: Buried layer 14B1: First buried layer 14B2: Second buried layer 14K: Hole/hole pair 14K1/14K2: Main/sub-hole 14P: Photonic crystal layer (hole layer)
15: Active layer 16: Second guide layer 17: Electron barrier layer 18: Second cladding layer 19: Contact layer 23: Light distribution adjustment layer (hetero semiconductor layer)

Claims (6)

 下ガイド層と、
 前記下ガイド層上に形成され、格子点の各々に2次元的に配置された空孔を有するフォトニック結晶層と、前記フォトニック結晶層上に形成されて前記空孔を閉塞する埋込層と、を有する第1のガイド層と、
 前記埋込層上に形成され、前記埋込層とは結晶組成の異なる半導体からなるヘテロ半導体層と、
 前記ヘテロ半導体層上に形成された活性層と、
 前記活性層上に形成された第2のガイド層と、を有し、
 前記埋込層にはn型ドーパントが1.0×1017~1.0×1020cm-3の濃度でドーピングされている、フォトニック結晶面発光レーザ素子。
A lower guide layer;
a first guide layer including: a photonic crystal layer formed on the lower guide layer, the photonic crystal layer having holes two-dimensionally arranged at each lattice point; and a burying layer formed on the photonic crystal layer for closing the holes;
a hetero semiconductor layer formed on the buried layer and made of a semiconductor having a different crystal composition from that of the buried layer;
an active layer formed on the hetero semiconductor layer;
a second guide layer formed on the active layer;
The photonic crystal surface emitting laser element is configured such that the buried layer is doped with an n-type dopant at a concentration of 1.0×10 17 to 1.0×10 20 cm −3 .
 前記埋込層のドーピング濃度は1.0×1018~1.0×1020cm-3の範囲内である請求項1に記載のフォトニック結晶面発光レーザ素子。 2. The photonic crystal surface emitting laser element according to claim 1, wherein the doping concentration of said buried layer is within a range of 1.0×10 18 to 1.0×10 20 cm −3 .  前記埋込層のドーピング濃度は2.0×1018~2.0×1019cm-3の範囲内である請求項1に記載のフォトニック結晶面発光レーザ素子。 2. The photonic crystal surface emitting laser element according to claim 1, wherein the doping concentration of said buried layer is within a range of 2.0×10 18 to 2.0×10 19 cm −3 .  前記埋込層は、アンドープの第1の埋込層と、前記第1の埋込層上に形成され、n型ドーパントがドーピングされ第2の埋込層と、からなる請求項1に記載のフォトニック結晶面発光レーザ素子。 The photonic crystal surface-emitting laser element according to claim 1, wherein the buried layer comprises a first undoped buried layer and a second buried layer formed on the first buried layer and doped with an n-type dopant.  前記ヘテロ半導体層はアンドープ層である請求項1に記載のフォトニック結晶面発光レーザ素子。 The photonic crystal surface-emitting laser element according to claim 1, wherein the hetero semiconductor layer is an undoped layer.  前記埋込層はGaNからなり、前記ヘテロ半導体層はInGaNからなる請求項1ないし5のいずれか一項に記載のフォトニック結晶面発光レーザ素子。

 
6. The photonic crystal surface emitting laser element according to claim 1, wherein the buried layer is made of GaN, and the hetero semiconductor layer is made of InGaN.

PCT/JP2024/010547 2023-03-30 2024-03-18 Photonic-crystal surface emitting laser element WO2024203537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-055413 2023-03-30
JP2023055413A JP2024142980A (en) 2023-03-30 2023-03-30 Photonic crystal surface emitting laser element

Publications (1)

Publication Number Publication Date
WO2024203537A1 true WO2024203537A1 (en) 2024-10-03

Family

ID=92904971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010547 WO2024203537A1 (en) 2023-03-30 2024-03-18 Photonic-crystal surface emitting laser element

Country Status (2)

Country Link
JP (1) JP2024142980A (en)
WO (1) WO2024203537A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109223A (en) * 2008-10-31 2010-05-13 Canon Inc Surface-emitting laser
WO2020050130A1 (en) * 2018-09-03 2020-03-12 国立大学法人京都大学 Surface emitting laser element and method for producing surface emitting laser element
JP2020167321A (en) * 2019-03-29 2020-10-08 旭化成株式会社 Nitride semiconductor light emitting device
WO2021186965A1 (en) * 2020-03-16 2021-09-23 国立大学法人京都大学 Surface-emitting laser element and surface-emitting laser element manufacturing method
WO2022014343A1 (en) * 2020-07-14 2022-01-20 国立大学法人京都大学 Photonic crystal surface light-emitting laser element
US20230027930A1 (en) * 2021-07-22 2023-01-26 Epistar Corporation Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109223A (en) * 2008-10-31 2010-05-13 Canon Inc Surface-emitting laser
WO2020050130A1 (en) * 2018-09-03 2020-03-12 国立大学法人京都大学 Surface emitting laser element and method for producing surface emitting laser element
JP2020167321A (en) * 2019-03-29 2020-10-08 旭化成株式会社 Nitride semiconductor light emitting device
WO2021186965A1 (en) * 2020-03-16 2021-09-23 国立大学法人京都大学 Surface-emitting laser element and surface-emitting laser element manufacturing method
WO2022014343A1 (en) * 2020-07-14 2022-01-20 国立大学法人京都大学 Photonic crystal surface light-emitting laser element
US20230027930A1 (en) * 2021-07-22 2023-01-26 Epistar Corporation Semiconductor device

Also Published As

Publication number Publication date
JP2024142980A (en) 2024-10-11

Similar Documents

Publication Publication Date Title
US6920166B2 (en) Thin film deposition method of nitride semiconductor and nitride semiconductor light emitting device
CN101322292B (en) Gallium nitride semiconductor light emitting element
JP7667987B2 (en) Photonic crystal surface emitting laser element
US6172382B1 (en) Nitride semiconductor light-emitting and light-receiving devices
US20090078944A1 (en) Light emitting device and method of manufacturing the same
US8344413B2 (en) Nitride semiconductor wafer, nitride semiconductor chip, and method of manufacture of nitride semiconductor chip
US20110001126A1 (en) Nitride semiconductor chip, method of fabrication thereof, and semiconductor device
CN115298916A (en) Surface emitting laser element and method for manufacturing surface emitting laser element
JPWO2009078482A1 (en) Semiconductor light emitting device
US11837850B2 (en) Surface-emitting laser device and method for manufacturing surface-emitting laser device
US11670910B2 (en) Surface-emitting laser device and method for manufacturing surface-emitting laser device
JP4821385B2 (en) Group III nitride semiconductor optical device
US8896002B2 (en) Method for producing semiconductor laser, semiconductor laser, optical pickup, and optical disk drive
CN118355574A (en) Vertical Cavity Light Emitting Device
JP2004134772A (en) Nitride-based semiconductor light-emitting device
WO2024203537A1 (en) Photonic-crystal surface emitting laser element
JP3469847B2 (en) Nitride-based semiconductor device and method of manufacturing the same
JP2022150772A (en) laser diode
JP2002076518A (en) Semiconductor laser, semiconductor device and production method therefor
US20250055259A1 (en) Surface-emitting laser element
JP2024142951A (en) Surface emitting semiconductor laser element and method for manufacturing the same
JP2024143148A (en) Surface emitting semiconductor laser element and method for manufacturing the same
JP3804494B2 (en) Nitride semiconductor laser device
TW202414933A (en) Surface-emitting laser element
JP5304428B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24779662

Country of ref document: EP

Kind code of ref document: A1