[go: up one dir, main page]

WO2024203317A1 - Ferritic stainless steel sheet - Google Patents

Ferritic stainless steel sheet Download PDF

Info

Publication number
WO2024203317A1
WO2024203317A1 PCT/JP2024/009697 JP2024009697W WO2024203317A1 WO 2024203317 A1 WO2024203317 A1 WO 2024203317A1 JP 2024009697 W JP2024009697 W JP 2024009697W WO 2024203317 A1 WO2024203317 A1 WO 2024203317A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
ferritic stainless
steel sheet
mass
value
Prior art date
Application number
PCT/JP2024/009697
Other languages
French (fr)
Japanese (ja)
Inventor
拓哉 稲田
直樹 平川
一成 今川
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Publication of WO2024203317A1 publication Critical patent/WO2024203317A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to ferritic stainless steel sheets.
  • Patent Documents 1 to 5 disclose technologies to improve the formability of ferritic stainless steel sheets.
  • One aspect of the present invention aims to provide a ferritic stainless steel sheet that has a high r-value, reduced in-plane anisotropy, and low yield strength and ridging resistance.
  • a ferritic stainless steel sheet contains, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, and also contains at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, and the S content is 0.0100% or less.
  • the crystal grain size calculated by a cutting method in a cross section parallel to the rolling direction of the ferritic stainless steel plate and perpendicular to the rolling surface is 15 ⁇ m or more and 40 ⁇ m or less, and in a cross section parallel to the rolling surface in the center part of the plate thickness of the ferritic stainless steel plate, the ⁇ 111 ⁇ 110> crystal orientation intensity is Ia and the ⁇ 111 ⁇ 112> crystal orientation intensity is Ib, the larger of the values Ia and Ib is referred to as I111 , and the relationships I111 ⁇ 10.0 and 0.2 ⁇ (Ia/Ib) ⁇ 4.0 are satisfied.
  • a ferritic stainless steel sheet that has a high r-value, reduced in-plane anisotropy, and low yield strength and ridging resistance.
  • FIG. 1 is a schematic diagram showing a cross section of a stainless steel plate according to one embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a cross section of a stainless steel plate according to one embodiment of the present invention.
  • 1 is a flowchart showing an example of a method for producing a ferritic stainless steel sheet according to one embodiment of the present invention.
  • ferritic stainless steel is not limited to the specific shape of steel strip, steel plate, etc., and is used to explain the properties of the material itself. Also, since a “steel plate” can be considered to be a part of a “steel strip,” “ferritic stainless steel plate” includes a “ferritic stainless steel strip.”
  • the ferritic stainless steel sheet in one embodiment of the present invention has a chemical composition that is a single phase of ferrite up to the melting point, has reduced carbon and nitrogen content, and contains carbide stabilizing elements (Ti, Nb, etc.). Ferritic stainless steel with such a chemical composition is sometimes called high-purity ferritic stainless steel.
  • the formability (deep drawability) of a ferritic stainless steel sheet can be evaluated by the r-value (Lankford value, plastic working strain ratio).
  • the deep drawability can be evaluated by the average r-value obtained by averaging multiple r-values obtained by measuring multiple different in-plane directions based on the rolling direction.
  • the in-plane anisotropy can be evaluated by the in-plane anisotropy index ⁇ r calculated from the multiple r-values.
  • Ferritic stainless steel sheets high-purity ferritic stainless steel sheets that have a chemical composition that does not undergo austenite transformation when heated have texture in their metal structure, and are prone to the presence of colony textures (hereafter referred to as colonies). These colonies are formed by the aggregation of crystal grains with similar crystal orientations. The crystal orientation of the colony differs from the crystal orientation of the texture in the surrounding area of the colony.
  • the inventors have conducted extensive research into technology that reduces in-plane anisotropy while maintaining a high r-value, and also provides low yield strength and resistance to ridging, and have arrived at the present invention.
  • the ferritic stainless steel sheet in one embodiment of the present invention is realized by a manufacturing process approach that differs from conventional approaches. The various properties and manufacturing method of the ferritic stainless steel sheet in one embodiment of the present invention will be described in detail later.
  • the manufacturing process for stainless steel sheets includes, in this order, a steelmaking process, a hot rolling process, a hot-rolled sheet annealing process, intermediate processes such as cold rolling, and a final annealing process.
  • Patent Document 1 In the technology described in Patent Document 1, the forming workability is improved by refining the crystal grains, and the reduction in the yield strength is not taken into consideration.
  • Patent Documents 2 and 4 the texture is controlled in the hot rolling process, and the hot-rolled sheet annealing process is omitted.
  • Patent Document 2 describes that by increasing the concentration of both the ⁇ 111 ⁇ 112> orientation and the ⁇ 111 ⁇ 011> orientation, the in-plane anisotropy is reduced while maintaining a high r value, but the objective is not to achieve both low yield strength and ridging resistance.
  • Patent Document 4 describes that by highly reducing the carbon content to 0.005% or less and the nitrogen content to 0.012% or less, the texture can be effectively controlled in the hot rolling process, and the in-plane anisotropy is reduced while maintaining ridging resistance and a high r value.
  • the hot-rolled sheet annealing process is omitted, so ridging may worsen.
  • the technology described in Patent Document 4 takes ridging resistance into consideration, but the improvement in ridging resistance may be limited, and highly reducing the carbon and nitrogen content leads to problems with production costs.
  • Patent Document 3 describes reducing in-plane anisotropy while retaining ridging resistance and a high r-value by controlling the conditions of the hot rolling process. However, it is not intended to combine low yield strength and low ⁇ r value.
  • the technology described in Patent Document 5 reduces the carbon and nitrogen content and further fixes carbon and nitrogen by adding Ti, improving the workability of ferritic stainless steel.
  • the ridging resistance is unknown, and recrystallization can be suppressed by Ti-based precipitates. Therefore, there is a limit to increasing the r-value.
  • the stainless steel plate may have a chemical composition that contains, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, as well as at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, with an S content of 0.0100% or less.
  • the stainless steel plate may have a chemical composition with the remainder being iron (Fe) and unavoidable impurities.
  • C Carbon
  • C is an element that forms carbides with Cr and the like, thereby generating interfaces that become the source of dislocations when ferritic stainless steel is deformed.
  • the C content may be 0.001 to 0.030 mass%, 0.001 to 0.020 mass%, or 0.002 to 0.010 mass%.
  • Silicon has an effect as a deoxidizer in the smelting stage. However, if excessive silicon is added, the ferritic stainless steel becomes hard and its ductility decreases. Therefore, the silicon content may be 0.01 to 1.00 mass%, 0.02 to 0.70 mass%, or 0.03 to 0.30 mass%.
  • Mn Manganese Mn has an effect as a deoxidizer. However, if Mn is added in excess, the amount of MnS produced increases, and the corrosion resistance of the ferritic stainless steel decreases. Therefore, the Mn content may be 0.01 to 1.00 mass%, 0.02 to 0.70 mass%, or 0.03 to 0.30 mass%.
  • Cr Chromium Cr is necessary to form a passive film on the surface of the cold-rolled steel sheet to improve corrosion resistance. However, if Cr is added in excess, the ductility of the ferritic stainless steel decreases. Therefore, the Cr content may be 10.5 to 30.0 mass%, or 12.0 to 25.0 mass%.
  • N nitrogen
  • the N content may be 0.001 to 0.030 mass%, or 0.005 to 0.025 mass%.
  • the C+N content which is the total value of the C content and the N content, may be 0.050 mass% or less, or 0.045 mass% or less. If the C+N content is too high, the amount of precipitation of carbonitrides may be excessive.
  • the C+N content may be 0.010 mass% or more, or 0.015 mass% or more.
  • the C+N content, in mass % may be in the range of 0.010 ⁇ C+N ⁇ 0.050, and may be in the range of 0.015 ⁇ C+N ⁇ 0.050.
  • P Rin
  • P is contained excessively, the weldability, the toughness of the weld, and the workability may be deteriorated.
  • P is related to precipitates in the material structure (described later). Therefore, the P content may be 0.005 to 0.050 mass%, 0.005 to 0.040 mass%, or 0.010 to 0.030 mass%.
  • Ti and Nb titanium and niobium
  • Ti and Nb combine with C or N to fix C and N as precipitates such as TiC, TiN, NbC, or NbN, and therefore the average r-value and product elongation can be improved by purifying ferritic stainless steel.
  • excessive Ti and Nb content increases raw material costs and may reduce manufacturability due to an increase in recrystallization temperature.
  • the Ti content may be 0.01 to 0.50 mass%, 0.02 to 0.40 mass%, or 0.10 to 0.30 mass%.
  • the Nb content may be 0.01 to 0.50 mass%, 0.02 to 0.40 mass%, or 0.10 to 0.30 mass%.
  • the ferritic stainless steel may contain only either Ti or Nb, or may contain both Ti and Nb.
  • S sulfur
  • S is an impurity atom that adversely affects hot workability, corrosion resistance, and oxidation resistance. Therefore, the S content may be 0.0100 mass% or less. Ferritic stainless steel may not contain S, and there is no particular lower limit for the S content.
  • the S content may be 0 (including no addition) to 0.0100 mass%.
  • the S content of "0 (including no addition)" means that S is allowed to be contained as an unavoidable impurity.
  • the present stainless steel sheet may have a chemical composition further containing, by mass%, one or more elements selected from the group consisting of Mo, Ni, Co, Cu, Al, Ca, Mg, B, V, W, Sn, Sb, Zr, Y, Hf, and rare earth elements.
  • Mo Molybdenum
  • Mo Molybdenum
  • Ni Nickel
  • Ni is an element effective in improving corrosion resistance.
  • excessive Ni content destabilizes the ferrite phase and increases the raw material cost of the ferritic stainless steel. Therefore, when Ni is included in the chemical composition, the Ni content may be 0.01 to 1.00 mass%.
  • the Ni content may be 0.01 to 0.10 mass%.
  • the Ni content may be 0.40 mass% or less, 0.10 mass% or less, or 0 (including no addition) to 0.10 mass%.
  • No addition means that Ni is not artificially added during steelmaking.
  • the Ni content of "0 (including no addition)” allows the inclusion of Ni as an unavoidable impurity.
  • Co Cobalt
  • Co is an element that is effective in improving corrosion resistance and heat resistance. However, if excessive Co is added, the raw material cost of ferritic stainless steel increases. Therefore, when Co is included in the chemical composition, the Co content may be 0.005 to 0.500 mass%.
  • Cu Copper
  • Cu is an element effective for improving corrosion resistance, and therefore, when Cu is included in the chemical composition, the Cu content may be 0.05 to 1.00% by mass.
  • Al Aluminum
  • Al Aluminum
  • Al Aluminum
  • Al is an effective element for deoxidization and can reduce A2 -based inclusions that adversely affect press workability.
  • Al is added in excess, surface defects increase. Therefore, when Al is included in the chemical composition, the content of Al may be 0.01 to 1.00 mass%.
  • Ca Calcium
  • Ca is an element effective for degassing, and therefore, when Ca is included in the chemical composition, the Ca content may be 0.0001 to 0.0050 mass%.
  • Mg Magnesium Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizer. On the other hand, if Mg is contained in excess, the toughness of the ferritic stainless steel decreases, and the manufacturability decreases. Therefore, when Mg is contained in the chemical composition, the Mg content may be 0.0001 to 0.0050 mass%.
  • B Boron B
  • B is an element effective in improving toughness. However, if an excessive amount of B is contained, the effect is saturated. Therefore, when B is contained in the chemical composition, the content of B may be 0.0001 to 0.0025 mass%.
  • V Vanadium
  • V is an element effective in improving hardness and strength. However, if an excessive amount of V is added, the raw material cost of the ferritic stainless steel increases. Therefore, when V is included in the chemical composition, the V content may be 0.05 to 0.50 mass%.
  • W Tungsten
  • W is an element effective in improving high-temperature strength.
  • the raw material cost of the ferritic stainless steel increases. Therefore, when W is included in the chemical composition, the W content may be 0.05 to 1.00 mass%.
  • Sn is an element effective in improving corrosion resistance. However, if excessive Sn is added, hot workability and toughness are reduced. Therefore, when Sn is included in the chemical composition, the Sn content may be 0.005 to 0.500 mass%.
  • Sb Antimony Sb is effective in improving workability by promoting the formation of deformation bands during rolling. On the other hand, if an excessive amount of Sb is contained, the effect is saturated and workability is further reduced. Therefore, when Sb is contained in the chemical composition, the Sb content may be 0.005 to 0.500 mass%.
  • Zr zirconium
  • Zr is an element effective for denitrification, deoxidation, and desulfurization. However, if Zr is added in excess, the raw material cost of stainless steel increases. Therefore, when Zr is included in the chemical composition, the Zr content may be 0.050 to 0.500 mass%.
  • Y Yttrium
  • Y is an element effective in improving hot workability and oxidation resistance. However, these effects are saturated when the content exceeds 0.20%.
  • the Y content may be 0.001 to 0.100 mass%.
  • Hf Hafnium
  • Hf is an element that improves oxidation resistance.
  • the toughness of the steel plate is reduced and the raw material cost of the stainless steel increases. Therefore, when Hf is contained in the chemical composition, the Hf content may be 0.001 to 0.100 mass%.
  • Rare Earth Metals refers to lanthanoid elements (La, Ce, Pr, Nd, Sm, and other elements with atomic numbers 57 to 71). REM is used to improve hot workability and oxidation resistance. However, these effects are saturated when the content exceeds 0.100%. Therefore, when REM is included in the chemical composition, the content of REM may be 0.001 to 0.100 mass%. .
  • This stainless steel sheet has the above-mentioned chemical composition, and by controlling the manufacturing conditions, a material structure (internal structure) having the following characteristics is formed.
  • a material structure internal structure having the following characteristics.
  • the colonies are divided, the metal structure is recrystallized, and low-temperature precipitates are dissolved. These low-temperature precipitates have the effect of suppressing grain growth (so-called "pinning" effect).
  • the final annealing process by raising the temperature to a temperature range where precipitates are not formed, recrystallized nuclei of crystal grains with various crystal orientations are formed and the grains grow, so that randomization of the crystal orientation can be promoted. More details will be described later in conjunction with the explanation of the manufacturing method of this stainless steel sheet.
  • FIG. 1 is a schematic diagram showing a cross section 12 of a stainless steel sheet 1 according to one embodiment of the present invention. As shown in Fig. 1, the cross section 12 is a cross section parallel to the rolling direction of the stainless steel sheet 1 and perpendicular to the rolled surface 11. The thickness and width of the stainless steel sheet 1 are denoted as t and w, respectively.
  • the crystal grain size (average grain size d, described below) calculated by the cutting method is 15 ⁇ m or more and 40 ⁇ m or less, and preferably 18 ⁇ m or more and 35 ⁇ m or less.
  • the grain size calculated by the intercept method can be measured by the method specified in the JIS standard (JIS G 0551:2020). Specifically, first, a line segment with a total length L parallel to the rolling direction is drawn on the cross section 12, and the number n of grains that this line crosses is measured. Note that grains with the end of the line segment inside are counted as 1/2 grain.
  • FIG. 2 is a schematic diagram showing a cross section 13 of a stainless steel sheet 1 according to one embodiment of the present invention.
  • the cross section 13 is a cross section of the center of the sheet thickness parallel to the rolled surface 11 of the steel sheet 1.
  • the rolling direction is abbreviated as RD (Rolling Direction)
  • the normal direction to the rolled surface is abbreviated as ND (Normal Direction)
  • the direction perpendicular to the rolling is abbreviated as TD (Transverse Direction).
  • the cross section 13 is a so-called ND surface.
  • Pole figure data can be obtained by performing XRD measurement on cross section 13. From the obtained pole figure data, the crystal orientation distribution function (ODF) can be analyzed to measure the intensity for each crystal orientation (crystal orientation intensity).
  • ODF crystal orientation distribution function
  • pole figure data can be obtained by performing pole measurements using SmartLab manufactured by Rigaku. SmartLab Studio II can be used as ODF analysis software. As known analysis methods can be used in this way, detailed explanations are omitted, but a general explanation is as follows.
  • ODF is a function of three variables ( ⁇ 1, ⁇ , ⁇ 2) that uniquely specify the crystal orientation of the crystal grains with respect to the material coordinate axis system.
  • ⁇ 1, ⁇ , and ⁇ 2 are Euler angles defined by Bunge's method.
  • the x, y, and z axes are RD, TD, and ND, respectively.
  • ⁇ 1 is the counterclockwise rotation angle around the z axis
  • is the counterclockwise rotation angle around the x' axis after rotation by ⁇ 1
  • ⁇ 2 is the counterclockwise rotation angle around the z' axis after rotation by ⁇ .
  • (200), (110), and (211) pole figures are obtained by performing XRD measurement.
  • the obtained pole figures are used to perform ODF analysis.
  • the ⁇ 111 ⁇ 110> crystal orientation intensity obtained by ODF analysis is Ia
  • the ⁇ 111 ⁇ 112> crystal orientation intensity obtained by ODF analysis is Ib.
  • the values of Ia and Ib can be obtained, for example, by outputting the contour line data (ODF diagram) obtained using SmartLab Studio II as a numerical value.
  • the calculation method in the ODF analysis can be the WIMV method by Matthies and Vinel, which does not use a continuous function in the analysis.
  • the larger value of Ia and Ib is referred to as I 111.
  • SmartLab can be used as the X-ray diffraction device
  • a Mo source can be used as the X-ray source.
  • the pole figure data used in the ODF analysis is intensity normalized by correction processes such as background correction and randomization in the processing in SmartLab. This normalization process is performed under fixed conditions without setting individual conditions by selecting a normalization check box displayed on the display of the user interface of the X-ray diffraction device.
  • the above crystal orientation intensity can also be expressed as an orientation density or an X-ray random intensity ratio.
  • the stainless steel plate 1 has an I111 of 10.0 or more and satisfies the relationship 0.2 ⁇ (Ia/Ib) ⁇ 4.0.
  • the higher the I111 the larger the r-value can be.
  • Ia/Ib satisfies the above relationship, the in-plane anisotropy can be reduced.
  • the stainless steel sheet 1 may have an I 111 of 10.0 or more and 30.0 or less, or may have an I 111 of 15.0 or more and 30.0 or less, and may satisfy the relationship of 1.0 ⁇ (Ia/Ib) ⁇ 3.8. When the I 111 exceeds 30.0, it becomes difficult to satisfy the relationship of 0.2 ⁇ (Ia/Ib) ⁇ 4.0.
  • Ia/Ib is often satisfied. Therefore, (Ia/Ib) may be 1 or more.
  • (Ia/Ib) may be 3.8 or less, which can further reduce the in-plane anisotropy.
  • the present stainless steel sheet can have an average r-value (average Lankford value) of 1.4 or more.
  • rL , rD, and rC are r-values measured on JIS No. 13B test pieces taken in directions of 0° (parallel), 45°, and 90° to the rolling direction, respectively.
  • the stainless steel sheet may have an average r-value of 1.4 to 2.1, or 1.9 to 2.1.
  • the stainless steel sheet of the present invention may have a ⁇ r of -0.50 or more and 0.50 or less.
  • the range of ⁇ r is preferably 0 or more and 0.50 or less, and more preferably 0 or more and 0.48 or less.
  • the present stainless steel sheet can have a ridging height of 15 ⁇ m or less.
  • the ridging height is a value obtained by measuring the waviness height in the width direction (direction perpendicular to the rolling direction of the stainless steel sheet) at the center of the rating interval for a test piece obtained by taking a JIS No. 5 tensile test piece perpendicular to the rolling direction and then subjecting the test piece to a 16% strain using a tensile test method specified by the JIS standard (JIS Z 2241:2011).
  • the waviness height is the average height of the waviness curve element measured by the surface property measurement specified in JIS B 0601:2001, etc.
  • the average height of the waviness curve element measured in this manner is the waviness height (i.e., the ridging height) of the present stainless steel sheet.
  • the present stainless steel sheet can have a yield strength of 320 MPa or less.
  • the yield strength is a value obtained by measuring the 0.2% yield strength of a JIS No. 13 B test piece by a tensile test method specified by the JIS standard (JIS Z 2241:2011).
  • the present stainless steel sheet may have a yield strength of 310 MPa or less, or may have a yield strength of 300 MPa or less.
  • Fig. 3 is a flow chart showing an example of a method for producing a ferritic stainless steel sheet according to one embodiment of the present invention.
  • the method for producing the present stainless steel sheet includes a hot rolling step, a hot-rolled sheet annealing step, an intermediate step, and a final annealing step, in this order.
  • the method for producing the slabs to be subjected to the hot rolling process is not particularly limited, but may, for example, include a steelmaking process prior to the hot rolling process.
  • molten steel having the desired composition is poured into a mold and cooled to produce a slab of ferritic stainless steel.
  • the slab is cut to the desired length and used in the hot rolling process.
  • this manufacturing method may include a post-process after the final annealing process as appropriate.
  • the hot rolling process is a process for producing a hot-rolled sheet of a predetermined thickness by rolling (hot rolling) a slab at a high temperature.
  • the hot rolling process can be performed by known equipment and methods. In this manufacturing method, general manufacturing conditions in the hot rolling process can be adopted.
  • the heating temperature (rolling temperature) can be 1150 to 1250°C, and the total reduction rate can be 95 to 99%.
  • the coiling temperature after hot rolling can be 200 to 500°C.
  • Hot-rolled sheet annealing process In the hot-rolled sheet annealing process, the hot-rolled sheet is heated to a temperature range of 900 to 1000° C. and soaked.
  • the soaking temperature in the hot-rolled sheet annealing process is preferably 910 to 980° C.
  • the soaking time in the hot-rolled sheet annealing process is 20 to 120 s (seconds).
  • the precipitates can be dissolved in the ferritic stainless steel.
  • a distinction is made between low-temperature precipitates and high-temperature precipitates.
  • the low-temperature precipitates are precipitates that precipitate in ferritic stainless steels in the temperature range of 600° C. or more and less than 900° C.
  • Examples of low-temperature precipitates include compounds containing Fe and at least one of Nb, Ti, and P. More specifically, examples of low-temperature precipitates include (i) phosphides, such as FeTiP, FeNbP, and Fe(Ti,Nb)P, and (ii) intermetallic compounds that form a phase called a Laves phase, such as Fe 2 Nb.
  • high-temperature precipitates include metal carbides (e.g., TiC and NbC) and metal nitrides (e.g., TiN and NbN).
  • the low-temperature precipitates and high-temperature precipitates are dissolved in the ferritic stainless steel, and the hot-rolled structure that causes ridging is disrupted by recrystallization.
  • the lower limit of the heating temperature is set to 900°C, and the lower limit of the soaking time is set to 20 seconds.
  • the upper limit of the heating temperature is set to 1000°C, and the upper limit of the soaking time is set to 120 seconds. This disrupts the colonies in the metal structure.
  • the cooling rate after soaking in the hot-rolled sheet annealing process can be 5°C/s or more in the temperature range from the soaking temperature to 500°C. This makes it possible to suppress the precipitation of low-temperature precipitates during cooling. There are no particular limitations on the cooling rate in the temperature range below 500°C.
  • the semi-finished product after cooling is called a hot-rolled annealed sheet.
  • the annealing equipment used in the hot-rolled sheet annealing process is not particularly limited, and known equipment such as a continuous annealing furnace or a batch furnace can be used.
  • the hot-rolled annealed sheet may be subjected to an acid pickling step.
  • the acid pickling step is a step of removing scale adhering to the surface of the hot-rolled annealed sheet using an acid pickling solution such as sulfuric acid, hydrochloric acid, or a mixture of nitric acid and hydrofluoric acid.
  • the cold rolling process is a process in which the above-mentioned hot-rolled annealed sheet is cold-rolled (for example, at room temperature to 200°C) to obtain a cold-rolled sheet of a specified thickness.
  • the rolling ratio in the cold rolling process is preferably 75% or more, since a higher rolling ratio is more effective in improving the average r-value and formability.
  • the rolling ratio in the cold rolling process may be 90% or less.
  • the rolling equipment used in the cold rolling process is not particularly limited, and publicly known equipment can be used.
  • the cold rolling process may be performed only once, or may be performed two or more times.
  • an intermediate annealing process may be performed between the cold rolling processes.
  • the heating temperature in the intermediate annealing process may be, for example, 900 to 1000°C.
  • the final annealing step is a step of heating the cold-rolled sheet to a temperature range of 900 to 1000° C. and then soaking for 0 to 120 seconds.
  • the heating rate in the final annealing step is 100° C./s or more.
  • the heating rate may be 100 to 2000° C./s, and is preferably 100 to 1500° C./s.
  • the cold-rolled sheet is heated under the above conditions, which makes it difficult for low-temperature precipitates to precipitate during heating, and promotes the growth rate of crystal grains while causing recrystallization in random orientations.
  • the heating rate may be set to 2000°C/s or less, or 1500°C/s or less.
  • the temperature increase under the above conditions in the final annealing process suppresses the precipitation of low-temperature precipitates and promotes the growth of crystal grains in the metal structure.
  • the lower limit of the heating temperature (soaking temperature) in the final annealing process is 900°C, at which point no low-temperature precipitates form and recrystallization is complete.
  • the upper limit of the heating temperature is set to 1000°C, and the upper limit of the soaking time is set to 120 seconds.
  • the soaking temperature in the final annealing process is preferably 910 to 980°C, and the soaking time is preferably 5 to 100 seconds.
  • the final annealing step in this manufacturing method is described in more detail below.
  • a case where annealing is performed at a general heating rate will be described.
  • recrystallization occurs in the order of ⁇ 111 ⁇ grains, ⁇ 211 ⁇ grains, ⁇ 311 ⁇ grains, and ⁇ 100 ⁇ grains as the temperature rises. That is, during heating, recrystallization nuclei of ⁇ 111 ⁇ grains are generated at a temperature of, for example, about 800°C. Then, recrystallization nuclei of grains in other orientations are generated as the temperature rises.
  • the annealing equipment used in the final annealing process is not particularly limited, and known equipment such as a continuous annealing furnace or a batch furnace can be used.
  • a pickling process may be performed if necessary. Also, if necessary, a post-process may be performed, such as temper rolling and cutting to the desired shape.
  • the ferritic stainless steel sheet in the first aspect of the present invention contains, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, as well as at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, with the S content being 0.0100% or less, and the balance being Fe and unavoidable impurities.
  • a ferritic stainless steel sheet having a pure chemical composition wherein in a cross section of the ferritic stainless steel sheet parallel to the rolling direction and perpendicular to the rolling surface, the crystal grain size calculated by a cutting method is 15 ⁇ m or more and 40 ⁇ m or less, and in a cross section parallel to the rolling surface in a center portion of the sheet thickness of the ferritic stainless steel sheet, the ⁇ 111 ⁇ 110> crystal orientation intensity is Ia and the ⁇ 111 ⁇ 112> crystal orientation intensity is Ib, and the larger of Ia and Ib is referred to as I111 , and the relationships I111 ⁇ 10.0 and 0.2 ⁇ (Ia/Ib) ⁇ 4.0 are satisfied.
  • the ferritic stainless steel sheet in aspect 3 of the present invention is the ferritic stainless steel sheet in aspect 1 or 2, in which a JIS No. 5 tensile test piece is taken from the ferritic stainless steel sheet perpendicular to the rolling direction, and the JIS No. 5 tensile test piece is subjected to a 16% strain to measure the waviness height in the width direction at the center of the rating line, and the ridging height obtained is 15 ⁇ m or less.
  • the ferritic stainless steel sheet in aspect 4 of the present invention is any one of aspects 1 to 3 described above, and contains, by mass%, Mo: 0.05 to 2.00%, Ni: 0.01 to 1.00%, Co: 0.005 to 0.500%, Cu: 0.05 to 1.00%, Al: 0.01 to 1.00%, Ca: 0.0001 to 0.0050%, Mg: 0.0001 to 0.0050%, B: 0.00 It further contains one or more elements selected from the group consisting of 0.01-0.0025%, V: 0.05-0.50%, W: 0.05-1.00%, Sn: 0.005-0.500%, Sb: 0.005-0.500%, Zr: 0.050-0.500%, Y: 0.001-0.100%, Hf: 0.001-0.100%, and rare earth elements: 0.001-0.100%.
  • the manufacturing method of the ferritic stainless steel sheet in aspect 5 of the present invention contains, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, as well as at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, and the S content is 0.0
  • the process includes a hot-rolled sheet annealing process in which a hot-rolled sheet having a chemical composition in which the content of Zn is 0.1% or less, with the remainder being Fe and unavoidable impurities, is heated to a temperature range of 900 to 1000°C and held at that temperature for 20 to 120 seconds, and a final annealing process in which the cold-rolled sheet obtained by cold-rolling the hot-rolled annealed sheet obtained by the hot-rolled sheet annealing process is heated to a temperature range of 900 to 1000°C at a heating rate of
  • the slab was heated at 1200°C for 2 hours and then hot rolled to produce a hot-rolled sheet with a thickness of 3 mm.
  • the hot-rolled sheet annealing process and the final annealing process were performed under the manufacturing conditions shown in Table 2, and steel sheets No. 1 to 38 having a sheet thickness of 0.6 mm were manufactured.
  • cold rolling was performed only once as an intermediate process.
  • the rolling ratio of the cold rolling was 80%.
  • Table 2 also shows the results of evaluating various physical properties for each steel sheet.
  • the underlines in Table 2 indicate that the manufacturing conditions and various physical properties of the steel sheet are outside the range of the present invention or outside the preferred range of the present invention.
  • the grain size, crystal orientation strength (I 111 , Ia, Ib), yield strength, average r value, ⁇ r, and ridging height were measured or calculated by the same method as in the above-mentioned embodiment.
  • the diagonal lines in the description column for the conditions of the hot-rolled sheet annealing process for steel sheet No. 3 indicate that the hot-rolled sheet annealing process was not performed (omitted).
  • Comparative steel sheet No. 3 had yield strength, average r value, and ⁇ r within the range of the present invention, but the omission of the hot-rolled sheet annealing process resulted in insufficient colony separation and insufficient ridging resistance. Comparative steel sheet No. 6 also showed insufficient colony separation. Comparative steel sheet No. 8 had small crystal grain size and increased yield strength due to insufficient heating in the hot-rolled sheet annealing process, and therefore had insufficient ridging resistance. Comparative steel sheets No. 10 and 24 had coarse recrystallized structures, which deteriorated ridging resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided are a ferritic stainless-steel sheet that has low proof stress and ridging resistance and reduces in-plane anisotropy while having a high r value, and a method for producing the same. The ferritic stainless steel sheet (1) has a crystal grain size of 15-40 μm inclusive and satisfies the relationships I111 ≥ 10.0 and 0.2 ≤ (Ia/Ib) ≤ 4.0 when the larger of the [111]<110> crystal orientation strength Ia and the [111]<112> crystal orientation strength Ib in a cross-section (13) parallel to the rolling surface in the plate thickness center is expressed as I111.

Description

フェライト系ステンレス鋼板Ferritic Stainless Steel Sheet

 本発明は、フェライト系ステンレス鋼板に関する。 The present invention relates to ferritic stainless steel sheets.

 フェライト系ステンレス鋼板を深絞り成形すると、材料組織の面内異方性に起因して、成形品の表面に凹凸が生じることがある。また、成形品の表面に、フェライト系ステンレス鋼板の圧延方向に沿って畝状に起伏が生じることがあり、このような表面欠陥は一般にリジングと称される。 When ferritic stainless steel sheet is deep drawn, unevenness may appear on the surface of the formed product due to the in-plane anisotropy of the material structure. In addition, ridge-like undulations may appear on the surface of the formed product along the rolling direction of the ferritic stainless steel sheet; this type of surface defect is generally referred to as ridging.

 従来、フェライト系ステンレス鋼板の成形加工性を向上させる技術が検討されている(例えば、特許文献1~5を参照)。  Technologies to improve the formability of ferritic stainless steel sheets have been studied (see, for example, Patent Documents 1 to 5).

日本国特許第5505555号公報Japanese Patent No. 5505555 日本国特許第4083669号公報Japanese Patent No. 4083669 日本国特許第2772237号公報Japanese Patent No. 2772237 日本国特開平8-311542号公報Japanese Patent Application Publication No. 8-311542 日本国特公昭51-35369号公報Japan Special Publication No. 51-35369

 フェライト系ステンレス鋼が高い耐力を有する場合、成形加工における成形荷重が増加するとともに、加工後の形状寸法精度が悪化(スプリングバック)し得る。耐力を低減するには結晶粒の粗大化が有効であるが、結晶粒が成長する過程で特定方位の集合組織が発達すると面内異方性が増大する。また、面内異方性を低下させると、r値が低下したり、リジングが悪化したりする傾向がある。 When ferritic stainless steel has high yield strength, the forming load during forming increases and the shape and dimensional accuracy after processing can deteriorate (springback). Coarsening the crystal grains is an effective way to reduce yield strength, but if a texture in a specific orientation develops during the grain growth process, the in-plane anisotropy increases. Furthermore, reducing the in-plane anisotropy tends to reduce the r-value and worsen ridging.

 本発明の一態様は、高いr値を有しつつ面内異方性を低減するとともに、低い耐力および耐リジング性を有するフェライト系ステンレス鋼板を提供することを目的とする。 One aspect of the present invention aims to provide a ferritic stainless steel sheet that has a high r-value, reduced in-plane anisotropy, and low yield strength and ridging resistance.

 上記の課題を解決するために、本発明の一態様におけるフェライト系ステンレス鋼板は、質量%で、C:0.001~0.030%、Si:0.01~1.00%、Mn:0.01~1.00%、Cr:10.5~30.0%、N:0.001~0.030%、およびP:0.005~0.050%を含有するとともに、Ti:0.01~0.50%およびNb:0.01~0.50%のうちの少なくとも一方を含有し、Sの含有率が0.0100%以下であり、残部がFeおよび不可避的不純物である化学組成を有し、前記フェライト系ステンレス鋼板の圧延方向に平行かつ圧延面に垂直な断面において、切断法により算出される結晶粒径が15μm以上40μm以下であり、前記フェライト系ステンレス鋼板の板厚中心部における、前記圧延面に平行な断面において、{111}<110>結晶方位強度をIa、{111}<112>結晶方位強度をIbとし、前記Iaおよび前記Ibのうち値の大きい方をI111と称し、I111≧10.0、かつ0.2≦(Ia/Ib)≦4.0の関係を満たす。 In order to solve the above problems, a ferritic stainless steel sheet according to one embodiment of the present invention contains, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, and also contains at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, and the S content is 0.0100% or less. and the balance being Fe and unavoidable impurities, the crystal grain size calculated by a cutting method in a cross section parallel to the rolling direction of the ferritic stainless steel plate and perpendicular to the rolling surface is 15 μm or more and 40 μm or less, and in a cross section parallel to the rolling surface in the center part of the plate thickness of the ferritic stainless steel plate, the {111}<110> crystal orientation intensity is Ia and the {111}<112> crystal orientation intensity is Ib, the larger of the values Ia and Ib is referred to as I111 , and the relationships I111 ≧10.0 and 0.2≦(Ia/Ib)≦4.0 are satisfied.

 本発明の一態様によれば、高いr値を有しつつ面内異方性を低減するとともに、低い耐力および耐リジング性を有するフェライト系ステンレス鋼板を提供することができる。 According to one aspect of the present invention, it is possible to provide a ferritic stainless steel sheet that has a high r-value, reduced in-plane anisotropy, and low yield strength and ridging resistance.

本発明の一態様におけるステンレス鋼板の断面を示す模式図である。FIG. 1 is a schematic diagram showing a cross section of a stainless steel plate according to one embodiment of the present invention. 本発明の一態様におけるステンレス鋼板の断面を示す模式図である。FIG. 1 is a schematic diagram showing a cross section of a stainless steel plate according to one embodiment of the present invention. 本発明の一態様におけるフェライト系ステンレス鋼板の製造方法の一例を示すフローチャートである。1 is a flowchart showing an example of a method for producing a ferritic stainless steel sheet according to one embodiment of the present invention.

 以下、本発明の実施の形態について説明する。なお、以下の記載は発明の趣旨をよりよく理解させるためのものであり、特に指定のない限り、本発明を限定するものでは無い。また、本出願において、「A~B」とは、A以上B以下であることを示している。 The following describes the embodiments of the present invention. Note that the following description is intended to provide a better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified. In this application, "A to B" indicates that the range is greater than or equal to A and less than or equal to B.

 なお、本明細書において、「フェライト系ステンレス鋼」との用語は、鋼帯、鋼板等の具体的な形状は限定されず、素材自体の性質について説明するために用いられる。また、「鋼板」は「鋼帯」の一部分であると考えることができるので、「フェライト系ステンレス鋼板」は、「フェライト系ステンレス鋼帯」を含む。 In this specification, the term "ferritic stainless steel" is not limited to the specific shape of steel strip, steel plate, etc., and is used to explain the properties of the material itself. Also, since a "steel plate" can be considered to be a part of a "steel strip," "ferritic stainless steel plate" includes a "ferritic stainless steel strip."

 本発明の一態様におけるフェライト系ステンレス鋼板は、融点までフェライト単相となる化学組成を有しており、炭素および窒素の含有量を低減するとともに炭化物安定化元素(Ti,Nb等)を含む。このような化学組成を有するフェライト系ステンレス鋼は、高純度フェライト系ステンレス鋼と呼ばれることがある。 The ferritic stainless steel sheet in one embodiment of the present invention has a chemical composition that is a single phase of ferrite up to the melting point, has reduced carbon and nitrogen content, and contains carbide stabilizing elements (Ti, Nb, etc.). Ferritic stainless steel with such a chemical composition is sometimes called high-purity ferritic stainless steel.

 <本発明の概要について>
 一般に、フェライト系ステンレス鋼板の成形加工性(深絞り性)は、r値(ランクフォード値、塑性加工ひずみ比)によって評価できる。典型的には、圧延方向を基準に複数の異なる面内方向について測定して得られる複数のr値を平均した平均r値によって深絞り性を評価できる。また、上記複数のr値から算出される面内異方性指数Δrによって面内異方性を評価できる。
<Overview of the present invention>
In general, the formability (deep drawability) of a ferritic stainless steel sheet can be evaluated by the r-value (Lankford value, plastic working strain ratio). Typically, the deep drawability can be evaluated by the average r-value obtained by averaging multiple r-values obtained by measuring multiple different in-plane directions based on the rolling direction. In addition, the in-plane anisotropy can be evaluated by the in-plane anisotropy index Δr calculated from the multiple r-values.

 加熱によりオーステナイト変態を生じない化学組成を有するフェライト系ステンレス鋼板(高純度フェライト系ステンレス鋼板)は、金属組織において、集合組織を有するとともに、コロニー組織(以下、コロニー)が存在し易い。このコロニーは、類似した結晶方位を有する結晶粒が集合して形成される。コロニーの結晶方位は、当該コロニーの周辺における集合組織の結晶方位とは異なる。 Ferritic stainless steel sheets (high-purity ferritic stainless steel sheets) that have a chemical composition that does not undergo austenite transformation when heated have texture in their metal structure, and are prone to the presence of colony textures (hereafter referred to as colonies). These colonies are formed by the aggregation of crystal grains with similar crystal orientations. The crystal orientation of the colony differs from the crystal orientation of the texture in the surrounding area of the colony.

 面内異方性Δrを低下させるために熱延板焼鈍を省略したプロセスが知られているが、この場合コロニーの分断が不十分となり、リジングが悪化する。一方、熱延板焼鈍を実施した場合、コロニーの分断によりリジングは改善するが、ある特定の方位のみが優先的に発達するため面内異方性が増加する。そのため、小さいΔrを有しつつ耐リジング性を向上させることは容易ではない。  There is a known process that omits hot-rolled sheet annealing in order to reduce the in-plane anisotropy Δr, but in this case the colonies are not sufficiently separated, and ridging worsens. On the other hand, when hot-rolled sheet annealing is performed, ridging improves due to the separation of the colonies, but in-plane anisotropy increases because only certain orientations are preferentially developed. For this reason, it is not easy to improve ridging resistance while maintaining a small Δr.

 本発明者らは、高いr値を有しつつ面内異方性を低減するとともに、低い耐力および耐リジング性を有する技術について鋭意検討を行い、本発明を想到した。本発明の一態様におけるフェライト系ステンレス鋼板は、製造工程における、従来とは異なるアプローチによって実現される。本発明の一態様におけるフェライト系ステンレス鋼板の諸特性および製造方法について、詳しくは後述する。 The inventors have conducted extensive research into technology that reduces in-plane anisotropy while maintaining a high r-value, and also provides low yield strength and resistance to ridging, and have arrived at the present invention. The ferritic stainless steel sheet in one embodiment of the present invention is realized by a manufacturing process approach that differs from conventional approaches. The various properties and manufacturing method of the ferritic stainless steel sheet in one embodiment of the present invention will be described in detail later.

 (従来技術について)
 本発明の一態様におけるフェライト系ステンレス鋼板の製造方法の理解を容易にするために、特許文献1~5に記載の技術について以下に概略的に説明する。
(Regarding the Prior Art)
In order to facilitate understanding of the method for producing a ferritic stainless steel sheet according to one embodiment of the present invention, the techniques described in Patent Documents 1 to 5 will be briefly described below.

 一般に、ステンレス鋼板の製造工程は、製鋼工程、熱間圧延工程、熱延板焼鈍工程、冷間圧延等の中間工程、および最終焼鈍工程をこの順に含む。  Generally, the manufacturing process for stainless steel sheets includes, in this order, a steelmaking process, a hot rolling process, a hot-rolled sheet annealing process, intermediate processes such as cold rolling, and a final annealing process.

 特許文献1に記載の技術では、結晶粒微細化によって成形加工性を向上させており、耐力を低下させることについて考慮されていない。特許文献2、4に記載の技術では、熱間圧延工程において集合組織制御を行い、熱延板焼鈍工程を省略している。特許文献2には、{111}<112>方位および{111}<011>方位の両方の集積度を高めることにより、高いr値を有しつつ面内異方性を低減することについて記載されているが、低い耐力および耐リジング性の兼備は目的とされていない。特許文献4には、炭素の含有量を0.005%以下かつ窒素の含有量を0.012%以下と高度に低減することで、熱間圧延工程における集合組織制御を効果的に行うことができ、耐リジング性および高いr値を有しつつ面内異方性を低減することについて記載されている。しかし、特許文献2、4に記載の技術では、熱延板焼鈍工程を省略しているため、リジングが悪化し得る。特許文献4に記載の技術では、耐リジング性について考慮されているが、その耐リジング性の向上は限定的であり得るとともに、炭素および窒素含有量を高度に低減することは製造コストの問題を招来する。 In the technology described in Patent Document 1, the forming workability is improved by refining the crystal grains, and the reduction in the yield strength is not taken into consideration. In the technology described in Patent Documents 2 and 4, the texture is controlled in the hot rolling process, and the hot-rolled sheet annealing process is omitted. Patent Document 2 describes that by increasing the concentration of both the {111}<112> orientation and the {111}<011> orientation, the in-plane anisotropy is reduced while maintaining a high r value, but the objective is not to achieve both low yield strength and ridging resistance. Patent Document 4 describes that by highly reducing the carbon content to 0.005% or less and the nitrogen content to 0.012% or less, the texture can be effectively controlled in the hot rolling process, and the in-plane anisotropy is reduced while maintaining ridging resistance and a high r value. However, in the technology described in Patent Documents 2 and 4, the hot-rolled sheet annealing process is omitted, so ridging may worsen. The technology described in Patent Document 4 takes ridging resistance into consideration, but the improvement in ridging resistance may be limited, and highly reducing the carbon and nitrogen content leads to problems with production costs.

 特許文献3には、熱間圧延工程の条件制御によって、耐リジング性および高いr値を有しつつ面内異方性を低減することについて記載されている。しかしながら、低い耐力および低いΔr値の特性の兼備は目的とされていない。冷延板の焼鈍温度を低くすると結晶粒が微細になることにより耐力が増大し、一方で、冷延板の焼鈍温度を高くすると耐力が低減する一方でΔrも増大する。また、特許文献5に記載の技術においては、炭素および窒素含有量を低減し、さらにTi添加によって炭素および窒素を固定して、フェライト系ステンレス鋼の加工性を向上させている。しかし、耐リジング性については不明であるとともに、Ti系析出物によって再結晶が抑制され得る。そのため、r値を高めることに限界がある。 Patent Document 3 describes reducing in-plane anisotropy while retaining ridging resistance and a high r-value by controlling the conditions of the hot rolling process. However, it is not intended to combine low yield strength and low Δr value. When the annealing temperature of the cold-rolled sheet is lowered, the crystal grains become finer and the yield strength increases, while when the annealing temperature of the cold-rolled sheet is increased, the yield strength decreases while Δr increases. In addition, the technology described in Patent Document 5 reduces the carbon and nitrogen content and further fixes carbon and nitrogen by adding Ti, improving the workability of ferritic stainless steel. However, the ridging resistance is unknown, and recrystallization can be suppressed by Ti-based precipitates. Therefore, there is a limit to increasing the r-value.

 <鋼板の成分組成>
 始めに、本発明の一態様におけるフェライト系ステンレス鋼板の成分組成(化学組成)について以下に説明する。なお、以下の説明では、本発明の一態様におけるフェライト系ステンレス鋼板を「本ステンレス鋼板」と略記することがある。
<Steel plate composition>
First, the chemical composition of the ferritic stainless steel sheet according to one embodiment of the present invention will be described below. In the following description, the ferritic stainless steel sheet according to one embodiment of the present invention will sometimes be abbreviated as "the present stainless steel sheet."

 本ステンレス鋼板は、質量%で、C:0.001~0.030%、Si:0.01~1.00%、Mn:0.01~1.00%、Cr:10.5~30.0%、N:0.001~0.030%、およびP:0.005~0.050%を含有するとともに、Ti:0.01~0.50%およびNb:0.01~0.50%のうちの少なくとも一方を含有し、Sの含有率が0.0100%以下である化学組成を有していてよい。 The stainless steel plate may have a chemical composition that contains, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, as well as at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, with an S content of 0.0100% or less.

 本ステンレス鋼板は、残部が鉄(Fe)および不可避的不純物である化学組成を有していてよい。上述の各元素について以下に説明する。 The stainless steel plate may have a chemical composition with the remainder being iron (Fe) and unavoidable impurities. Each of the above elements is explained below.

 (C:炭素)
 Cは、Cr等と炭化物を形成することにより、フェライト系ステンレス鋼が変形するときに転位の発生源となる界面を生成させる元素である。しかし、Cが過剰に添加されると、耐粒界腐食性および加工性が低下するとともに、精錬に要するコストが上昇する。そのため、Cの含有量は、0.001~0.030質量%であってよく、0.001~0.020質量%であってよく、0.002~0.010質量%であってよい。
(C: Carbon)
C is an element that forms carbides with Cr and the like, thereby generating interfaces that become the source of dislocations when ferritic stainless steel is deformed. However, if C is added in excess, the intergranular corrosion resistance and workability decrease, and the cost required for refining increases. Therefore, the C content may be 0.001 to 0.030 mass%, 0.001 to 0.020 mass%, or 0.002 to 0.010 mass%.

 (Si:ケイ素)
 Siは、溶製段階で脱酸剤としての効果を有する。しかし、Siが過剰に添加されると、フェライト系ステンレス鋼が硬質化し、延性が低下する。そのため、Siの含有量は、0.01~1.00質量%であってよく、0.02~0.70質量%であってよく、0.03~0.30質量%であってよい。
(Si: Silicon)
Silicon has an effect as a deoxidizer in the smelting stage. However, if excessive silicon is added, the ferritic stainless steel becomes hard and its ductility decreases. Therefore, the silicon content may be 0.01 to 1.00 mass%, 0.02 to 0.70 mass%, or 0.03 to 0.30 mass%.

 (Mn:マンガン)
 Mnは、脱酸剤としての効果を有する。しかし、Mnが過剰に添加されると、MnSの生成量が増加してフェライト系ステンレス鋼の耐食性が低下する。そのため、Mnの含有量は、0.01~1.00質量%であってよく、0.02~0.70質量%であってよく、0.03~0.30質量%であってよい。
(Mn: Manganese)
Mn has an effect as a deoxidizer. However, if Mn is added in excess, the amount of MnS produced increases, and the corrosion resistance of the ferritic stainless steel decreases. Therefore, the Mn content may be 0.01 to 1.00 mass%, 0.02 to 0.70 mass%, or 0.03 to 0.30 mass%.

 (Cr:クロム)
 Crは、冷延鋼板の表面に不動態皮膜を形成して、耐食性を高めるために必要である。しかし、Crが過剰に添加されると、フェライト系ステンレス鋼の延性が低下する。そのため、Crの含有量は、10.5~30.0質量%であってよく、12.0~25.0質量%であってよい。
(Cr: Chromium)
Cr is necessary to form a passive film on the surface of the cold-rolled steel sheet to improve corrosion resistance. However, if Cr is added in excess, the ductility of the ferritic stainless steel decreases. Therefore, the Cr content may be 10.5 to 30.0 mass%, or 12.0 to 25.0 mass%.

 (N:窒素)
 Nは、Cr等と窒化物を形成することにより、フェライト系ステンレス鋼が変形するときに転位の発生源となる界面を生成させる元素である。しかし、Nが過剰に添加されると、固溶強化により、延性が低下する。そのため、Nの含有量は、0.001~0.030質量%であってよく、0.005~0.025質量%であってよい。また、本ステンレス鋼板では、C含有量およびN含有量を合計した値であるC+N含有量が、0.050質量%以下であってよく、0.045質量%以下であってよい。C+N含有量が多すぎると、炭窒化物の析出量が過剰となり得る。一方で、C+N含有量を過剰に低減することは精錬コストを増大させるため、C+N含有量は、0.010質量%以上であってよく、0.015質量%以上であってよい。C+N含有量は、質量%で、0.010≦C+N≦0.050の範囲内であってよく、0.015≦C+N≦0.050の範囲内であってよい。
(N: nitrogen)
N is an element that forms nitrides with Cr and the like, thereby generating interfaces that become the source of dislocations when ferritic stainless steel is deformed. However, if excessive N is added, ductility decreases due to solid solution strengthening. Therefore, the N content may be 0.001 to 0.030 mass%, or 0.005 to 0.025 mass%. In addition, in this stainless steel sheet, the C+N content, which is the total value of the C content and the N content, may be 0.050 mass% or less, or 0.045 mass% or less. If the C+N content is too high, the amount of precipitation of carbonitrides may be excessive. On the other hand, since excessive reduction of the C+N content increases refining costs, the C+N content may be 0.010 mass% or more, or 0.015 mass% or more. The C+N content, in mass %, may be in the range of 0.010≦C+N≦0.050, and may be in the range of 0.015≦C+N≦0.050.

 (P:リン)
 Pを過度に含有すると、溶接性、溶接部の靱性、および加工性が劣化し得る。また、Pは、材料組織中の析出物(後述)に関連する。そのため、Pの含有量は、0.005~0.050質量%であってよく、0.005~0.040質量%であってよく、0.010~0.030質量%であってよい。
(P: Rin)
If P is contained excessively, the weldability, the toughness of the weld, and the workability may be deteriorated. In addition, P is related to precipitates in the material structure (described later). Therefore, the P content may be 0.005 to 0.050 mass%, 0.005 to 0.040 mass%, or 0.010 to 0.030 mass%.

 (TiおよびNb:チタンおよびニオブ)
 TiおよびNbは、CまたはNと結合し、例えばTiC、TiN、NbCまたはNbN等の析出物としてCおよびNを固定するので、フェライト系ステンレス鋼の高純度化により、平均r値および製品伸びを向上させることができる。一方で、TiおよびNbを過剰に含有させると、原料コストが上昇するとともに、再結晶温度の上昇に伴い製造性が低下し得る。
(Ti and Nb: titanium and niobium)
Ti and Nb combine with C or N to fix C and N as precipitates such as TiC, TiN, NbC, or NbN, and therefore the average r-value and product elongation can be improved by purifying ferritic stainless steel. On the other hand, excessive Ti and Nb content increases raw material costs and may reduce manufacturability due to an increase in recrystallization temperature.

 そのため、本発明の一態様では、Tiの含有量は、0.01~0.50質量%であってよく、0.02~0.40質量%であってよく、0.10~0.30質量%であってよい。また、Nbの含有量は、0.01~0.50質量%であってよく、0.02~0.40質量%であってよく、0.10~0.30質量%であってよい。フェライト系ステンレス鋼は、TiおよびNbのいずれか一方のみを含有してもよく、あるいはTiおよびNbの両方を含有してもよい。 Therefore, in one embodiment of the present invention, the Ti content may be 0.01 to 0.50 mass%, 0.02 to 0.40 mass%, or 0.10 to 0.30 mass%. The Nb content may be 0.01 to 0.50 mass%, 0.02 to 0.40 mass%, or 0.10 to 0.30 mass%. The ferritic stainless steel may contain only either Ti or Nb, or may contain both Ti and Nb.

 (S:硫黄)
 Sは不純物原子であり、熱間加工性、耐食性および耐酸化性に悪影響を及ぼす。そのため、Sの含有量は、0.0100質量%以下であってよい。フェライト系ステンレス鋼は、Sを含有しなくてもよく、Sの含有率の下限は特に限定されない。Sの含有量は、0(無添加を含む)~0.0100質量%であってよい。Sの含有量が「0(無添加を含む)」とは、不可避的不純物としてSを含有することを許容する。
(S: sulfur)
S is an impurity atom that adversely affects hot workability, corrosion resistance, and oxidation resistance. Therefore, the S content may be 0.0100 mass% or less. Ferritic stainless steel may not contain S, and there is no particular lower limit for the S content. The S content may be 0 (including no addition) to 0.0100 mass%. The S content of "0 (including no addition)" means that S is allowed to be contained as an unavoidable impurity.

 (その他の成分)
 本ステンレス鋼板は、質量%で、Mo、Ni、Co、Cu、Al、Ca、Mg、B、V、W、Sn、Sb、Zr、Y、Hf、および希土類元素からなる群から選択される1種または2種以上を更に含有する化学組成を有していてもよい。
(Other ingredients)
The present stainless steel sheet may have a chemical composition further containing, by mass%, one or more elements selected from the group consisting of Mo, Ni, Co, Cu, Al, Ca, Mg, B, V, W, Sn, Sb, Zr, Y, Hf, and rare earth elements.

 (Mo:モリブデン)
 Moは、耐食性の向上に有効な元素である。しかし、Moが過剰に添加されると、ステンレス鋼の原料コストが上昇する。そのため、化学組成にMoを含む場合、Moの含有量は、0.05~2.00質量%であってよい。
(Mo: Molybdenum)
Mo is an element effective in improving corrosion resistance. However, if excessive Mo is added, the raw material cost of stainless steel increases. Therefore, when Mo is included in the chemical composition, the Mo content may be 0.05 to 2.00 mass%.

 (Ni:ニッケル)
 Niは、耐食性の向上に有効な元素である。一方、Niを過度に含有すると、フェライト相が不安定化するとともに、フェライト系ステンレス鋼の原料コストが上昇する。そのため、化学組成にNiを含む場合、Niの含有量は、0.01~1.00質量%であってよい。Niの含有量は、0.01~0.10質量%であってもよい。本ステンレス鋼では、Niの含有量は、0.40質量%以下であってよく、0.10質量%以下であってよく、0(無添加を含む)~0.10質量%であってよい。「無添加」とは、製鋼の際にNiを人為的に添加していないことを意味する。Niの含有量が「0(無添加を含む)」とは、不可避的不純物としてNiを含有することを許容する。
(Ni: Nickel)
Ni is an element effective in improving corrosion resistance. On the other hand, excessive Ni content destabilizes the ferrite phase and increases the raw material cost of the ferritic stainless steel. Therefore, when Ni is included in the chemical composition, the Ni content may be 0.01 to 1.00 mass%. The Ni content may be 0.01 to 0.10 mass%. In this stainless steel, the Ni content may be 0.40 mass% or less, 0.10 mass% or less, or 0 (including no addition) to 0.10 mass%. "No addition" means that Ni is not artificially added during steelmaking. The Ni content of "0 (including no addition)" allows the inclusion of Ni as an unavoidable impurity.

 (Co:コバルト)
 Coは、耐食性および耐熱性の向上に有効な元素である。しかし、Coが過剰に添加されると、フェライト系ステンレス鋼の原料コストが上昇する。そのため、化学組成にCoを含む場合、Coの含有量は、0.005~0.500質量%であってよい。
(Co: Cobalt)
Co is an element that is effective in improving corrosion resistance and heat resistance. However, if excessive Co is added, the raw material cost of ferritic stainless steel increases. Therefore, when Co is included in the chemical composition, the Co content may be 0.005 to 0.500 mass%.

 (Cu:銅)
 Cuは、耐食性の向上に有効な元素である。そのため、化学組成にCuを含む場合、Cuの含有量は、0.05~1.00%質量であってよい。
(Cu: Copper)
Cu is an element effective for improving corrosion resistance, and therefore, when Cu is included in the chemical composition, the Cu content may be 0.05 to 1.00% by mass.

 (Al:アルミニウム)
 Alは、脱酸に有効な元素であるとともに、プレス加工性に悪影響を及ぼすA系介在物を低減することができる。しかし、Alが過剰に添加されると、表面欠陥が増加する。そのため、化学組成にAlを含む場合、Alの含有量は、0.01~1.00質量%であってよい。
(Al: Aluminum)
Al is an effective element for deoxidization and can reduce A2 -based inclusions that adversely affect press workability. However, if Al is added in excess, surface defects increase. Therefore, when Al is included in the chemical composition, the content of Al may be 0.01 to 1.00 mass%.

 (Ca:カルシウム)
 Caは、脱ガスに有効な元素である。そのため、化学組成にCaを含む場合、Caの含有量は、0.0001~0.0050質量%であってよい。
(Ca: Calcium)
Ca is an element effective for degassing, and therefore, when Ca is included in the chemical composition, the Ca content may be 0.0001 to 0.0050 mass%.

 (Mg:マグネシウム)
 Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する。一方、過剰にMgを含有するとフェライト系ステンレス鋼の靱性が低下して製造性が低下する。そのため、化学組成にMgを含む場合、Mgの含有量は、0.0001~0.0050質量%であってよい。
(Mg: Magnesium)
Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizer. On the other hand, if Mg is contained in excess, the toughness of the ferritic stainless steel decreases, and the manufacturability decreases. Therefore, when Mg is contained in the chemical composition, the Mg content may be 0.0001 to 0.0050 mass%.

 (B:ホウ素)
 Bは、靭性改善に有効な元素である。しかし、過剰にBを含有するとその効果は飽和する。そのため、化学組成にBを含む場合、Bの含有量は、0.0001~0.0025質量%であってよい。
(B: Boron)
B is an element effective in improving toughness. However, if an excessive amount of B is contained, the effect is saturated. Therefore, when B is contained in the chemical composition, the content of B may be 0.0001 to 0.0025 mass%.

 (V:バナジウム)
 Vは、硬度および強度の向上に有効な元素である。しかし、Vが過剰に添加されると、フェライト系ステンレス鋼の原料コストが上昇する。そのため、化学組成にVを含む場合、Vの含有量は、0.05~0.50質量%であってよい。
(V: Vanadium)
V is an element effective in improving hardness and strength. However, if an excessive amount of V is added, the raw material cost of the ferritic stainless steel increases. Therefore, when V is included in the chemical composition, the V content may be 0.05 to 0.50 mass%.

 (W:タングステン)
 Wは、高温強さの向上に有効な元素である。しかし、Wが過剰に添加されると、フェライト系ステンレス鋼の原料コストが上昇する。そのため、化学組成にWを含む場合、Wの含有量は、0.05~1.00質量%であってよい。
(W: Tungsten)
W is an element effective in improving high-temperature strength. However, if excessive W is added, the raw material cost of the ferritic stainless steel increases. Therefore, when W is included in the chemical composition, the W content may be 0.05 to 1.00 mass%.

 (Sn:スズ)
 Snは、耐食性の向上に有効な元素である。しかし、Snが過剰に添加されると、熱間加工性および粘り強さが低下する。そのため、化学組成にSnを含む場合、Snの含有量は、0.005~0.500質量%であってよい。
(Sn: tin)
Sn is an element effective in improving corrosion resistance. However, if excessive Sn is added, hot workability and toughness are reduced. Therefore, when Sn is included in the chemical composition, the Sn content may be 0.005 to 0.500 mass%.

 (Sb:アンチモン)
 Sbは、圧延時における変形帯生成の促進による加工性の向上に効果的である。一方、過剰にSbを含有するとその効果は飽和し、さらに加工性が低下する。そのため、化学組成にSbを含む場合、Sbの含有量は、0.005~0.500質量%であってよい。
(Sb: Antimony)
Sb is effective in improving workability by promoting the formation of deformation bands during rolling. On the other hand, if an excessive amount of Sb is contained, the effect is saturated and workability is further reduced. Therefore, when Sb is contained in the chemical composition, the Sb content may be 0.005 to 0.500 mass%.

 (Zr:ジルコニウム)
 Zrは、脱窒、脱酸および脱硫に有効な元素である。しかし、Zrが過剰に添加されると、ステンレス鋼の原料コストが上昇する。そのため、化学組成にZrを含む場合、Zrの含有量は、0.050~0.500質量%であってよい。
(Zr: zirconium)
Zr is an element effective for denitrification, deoxidation, and desulfurization. However, if Zr is added in excess, the raw material cost of stainless steel increases. Therefore, when Zr is included in the chemical composition, the Zr content may be 0.050 to 0.500 mass%.

 (Y:イットリウム)
 Yは、熱間加工性および耐酸化性の向上に有効な元素である。しかし、これらの効果は、0.20%を超えると飽和する。化学組成にYを含む場合、Yの含有量は、0.001~0.100質量%であってよい。
(Y: Yttrium)
Y is an element effective in improving hot workability and oxidation resistance. However, these effects are saturated when the content exceeds 0.20%. When Y is included in the chemical composition, the Y content may be 0.001 to 0.100 mass%.

 (Hf:ハフニウム)
 Hfは、耐酸化性を向上させる元素である。一方、Hfを過度に含有すると、鋼板の靱性を低下させるとともにステンレス鋼の原料コストが上昇する。そのため、化学組成にHfを含む場合、Hfの含有量は、0.001~0.100質量%であってよい。
(Hf: Hafnium)
Hf is an element that improves oxidation resistance. On the other hand, if an excessive amount of Hf is contained, the toughness of the steel plate is reduced and the raw material cost of the stainless steel increases. Therefore, when Hf is contained in the chemical composition, the Hf content may be 0.001 to 0.100 mass%.

 (REM:希土類元素)
 希土類元素(Rare Earth Metals)とは、ランタノイド系元素(La、Ce、Pr、Nd、Smなど原子番号57~71の元素)を意味する。REMは、熱間加工性および耐酸化性の向上に有効である。しかし、これらの効果は、0.100%を超えると飽和する。そのため、化学組成にREMを含む場合、REMの含有量は、0.001~0.100質量%であってよい。
(REM: rare earth element)
Rare Earth Metals refers to lanthanoid elements (La, Ce, Pr, Nd, Sm, and other elements with atomic numbers 57 to 71). REM is used to improve hot workability and oxidation resistance. However, these effects are saturated when the content exceeds 0.100%. Therefore, when REM is included in the chemical composition, the content of REM may be 0.001 to 0.100 mass%. .

 <鋼板の特性>
 本ステンレス鋼板は、上述のような化学組成を有し、製造条件を制御することにより以下の特性を有する材料組織(内部組織)が形成されている。概略的には、熱延板焼鈍工程においてコロニーを分断しつつ、金属組織を再結晶させるとともに、低温析出物を固溶させる。この低温析出物は、粒成長を抑制する作用(いわゆる「ピン止め」作用)を有する。そして、最終焼鈍工程において、析出物が生成しない温度域まで昇温することにより、色々な結晶方位の結晶粒の再結晶核が生成して粒成長するため、結晶方位のランダム化を促進させることができる。より詳しくは本ステンレス鋼板の製造方法の説明と併せて後述する。
<Steel plate characteristics>
This stainless steel sheet has the above-mentioned chemical composition, and by controlling the manufacturing conditions, a material structure (internal structure) having the following characteristics is formed. Schematically, in the hot-rolled sheet annealing process, the colonies are divided, the metal structure is recrystallized, and low-temperature precipitates are dissolved. These low-temperature precipitates have the effect of suppressing grain growth (so-called "pinning" effect). Then, in the final annealing process, by raising the temperature to a temperature range where precipitates are not formed, recrystallized nuclei of crystal grains with various crystal orientations are formed and the grains grow, so that randomization of the crystal orientation can be promoted. More details will be described later in conjunction with the explanation of the manufacturing method of this stainless steel sheet.

 (鋼板の結晶粒径)
 図1は、本発明の一態様におけるステンレス鋼板1の断面12を示す模式図である。図1に示すように、断面12は、ステンレス鋼板1の圧延方向に平行かつ圧延面11に垂直な断面である。ステンレス鋼板1の板厚をt、板幅をwとする。
(Grain size of steel sheet)
Fig. 1 is a schematic diagram showing a cross section 12 of a stainless steel sheet 1 according to one embodiment of the present invention. As shown in Fig. 1, the cross section 12 is a cross section parallel to the rolling direction of the stainless steel sheet 1 and perpendicular to the rolled surface 11. The thickness and width of the stainless steel sheet 1 are denoted as t and w, respectively.

 ステンレス鋼板1は、断面12において、切断法により算出される結晶粒径(下記平均粒径d)が15μm以上40μm以下であり、好ましくは18μm以上35μm以下である。 In the cross section 12 of the stainless steel plate 1, the crystal grain size (average grain size d, described below) calculated by the cutting method is 15 μm or more and 40 μm or less, and preferably 18 μm or more and 35 μm or less.

 切断法により算出される結晶粒径は、JIS規格(JIS G 0551:2020)に規定される方法より測定することができる。具体的には、まず、断面12において、圧延方向に平行な全長Lの線分を引き、この線分が横切る結晶粒の数nを測定する。なお、線分の端がその内部にある結晶粒については、1/2個として数える。平均粒径dは、d=L/nの式にて算出することができる。 The grain size calculated by the intercept method can be measured by the method specified in the JIS standard (JIS G 0551:2020). Specifically, first, a line segment with a total length L parallel to the rolling direction is drawn on the cross section 12, and the number n of grains that this line crosses is measured. Note that grains with the end of the line segment inside are counted as 1/2 grain. The average grain size d can be calculated by the formula d = L/n.

 (結晶方位)
 図2は、本発明の一態様におけるステンレス鋼板1の断面13を示す模式図である。図2に示すように、断面13は、鋼板1の圧延面11に平行な板厚中心部の断面である。圧延方向をRD(Rolling Direction)、圧延面の法線方向をND(Normal Direction)、圧延直角方向をTD(Transverse Direction)と略称する。断面13はいわゆるND面である。
(Crystal orientation)
Fig. 2 is a schematic diagram showing a cross section 13 of a stainless steel sheet 1 according to one embodiment of the present invention. As shown in Fig. 2, the cross section 13 is a cross section of the center of the sheet thickness parallel to the rolled surface 11 of the steel sheet 1. The rolling direction is abbreviated as RD (Rolling Direction), the normal direction to the rolled surface is abbreviated as ND (Normal Direction), and the direction perpendicular to the rolling is abbreviated as TD (Transverse Direction). The cross section 13 is a so-called ND surface.

 断面13に対してXRD測定を行うことにより、極点図データを得ることができる。得られた極点図データから結晶粒方位分布関数(ODF)を解析して各結晶方位についての強度(結晶方位強度)を測定することができる。例えば、Rigaku製のSmartLabを用いて極点測定を行うことにより極点図データを得ることができる。ODF解析ソフトウェアとして、SmartLab Studio IIを用いることができる。このように公知の解析手法を用いることができるため、詳細な説明は省略するが、概略的に説明すれば以下のとおりである。 Pole figure data can be obtained by performing XRD measurement on cross section 13. From the obtained pole figure data, the crystal orientation distribution function (ODF) can be analyzed to measure the intensity for each crystal orientation (crystal orientation intensity). For example, pole figure data can be obtained by performing pole measurements using SmartLab manufactured by Rigaku. SmartLab Studio II can be used as ODF analysis software. As known analysis methods can be used in this way, detailed explanations are omitted, but a general explanation is as follows.

 或る結晶粒の結晶方位について、ND面に平行に(hkl)面が位置し、圧延方向を[uvw]方向が向いている場合、当該結晶粒の結晶方位を(hkl)[uvw]と表す。そして、等価な方位群を含めて{hkl}<uvw>と表す。 When the (hkl) plane of a certain grain is parallel to the ND plane and the rolling direction is the [uvw] direction, the grain's crystal orientation is expressed as (hkl)[uvw]. The equivalent orientation group is expressed as {hkl}<uvw>.

 ODFは、材料座標軸系に対して結晶粒の結晶方位を一義的に指定する三つの変数(φ1、Φ、φ2)の関数である。φ1、Φ、φ2はBungeの手法により定義したオイラー角である。材料座標軸系は、x,y,z軸をそれぞれRD,TD,NDとする。φ1はz軸周りの反時計方向の回転角度、Φはφ1の回転後のx'軸周りの反時計方向の回転角度、φ2はΦの回転後のz'軸周りの反時計方向の回転角度である。 ODF is a function of three variables (φ1, Φ, φ2) that uniquely specify the crystal orientation of the crystal grains with respect to the material coordinate axis system. φ1, Φ, and φ2 are Euler angles defined by Bunge's method. In the material coordinate axis system, the x, y, and z axes are RD, TD, and ND, respectively. φ1 is the counterclockwise rotation angle around the z axis, Φ is the counterclockwise rotation angle around the x' axis after rotation by φ1, and φ2 is the counterclockwise rotation angle around the z' axis after rotation by Φ.

 オイラー空間のφ2=45°の断面において、Φ=55°、φ1=30°の位置を{111}<112>方位、Φ=55°、φ1=0°の位置を{111}<110>方位とした。 In the φ2=45° cross section of Euler space, the position where Φ=55° and φ1=30° is the {111}<112> orientation, and the position where Φ=55° and φ1=0° is the {111}<110> orientation.

 ステンレス鋼板1について、XRD測定を行うことにより、(200)、(110)、(211)正極点図を得る。得られた正極点図を用いてODF解析を行った。ODF解析によって得られる{111}<110>結晶方位強度をIaとし、ODF解析によって得られる{111}<112>結晶方位強度をIbとする。IaおよびIbの値は、例えば、SmartLab Studio IIを用いて得られる等高線データ(ODF図)を数値として出力することによって得ることができる。なお、ODFの解析における算出手法は、解析に連続関数を使用しないMatthiesとVinelによるWIMV法が用いられ得る。IaおよびIbのうち値の大きい方をI111と称する。例えばX線回折装置としてSmartLabを用い、X線源としてMo線源を用いることができる。この場合、ODF解析に用いた極点図データは、SmartLabにおける処理において、バックグラウンド補正およびランダム化等の補正処理によって強度が規格化されている。この規格化処理は、X線回折装置のユーザーインターフェースにおいてディスプレイに表示される規格化のチェックボックスを選択することにより、条件を個別に設定することなく一定条件にて行われる。上記結晶方位強度は、方位密度またはX線ランダム強度比と表現することもできる。 For the stainless steel plate 1, (200), (110), and (211) pole figures are obtained by performing XRD measurement. The obtained pole figures are used to perform ODF analysis. The {111}<110> crystal orientation intensity obtained by ODF analysis is Ia, and the {111}<112> crystal orientation intensity obtained by ODF analysis is Ib. The values of Ia and Ib can be obtained, for example, by outputting the contour line data (ODF diagram) obtained using SmartLab Studio II as a numerical value. In addition, the calculation method in the ODF analysis can be the WIMV method by Matthies and Vinel, which does not use a continuous function in the analysis. The larger value of Ia and Ib is referred to as I 111. For example, SmartLab can be used as the X-ray diffraction device, and a Mo source can be used as the X-ray source. In this case, the pole figure data used in the ODF analysis is intensity normalized by correction processes such as background correction and randomization in the processing in SmartLab. This normalization process is performed under fixed conditions without setting individual conditions by selecting a normalization check box displayed on the display of the user interface of the X-ray diffraction device. The above crystal orientation intensity can also be expressed as an orientation density or an X-ray random intensity ratio.

 ステンレス鋼板1は、I111が10.0以上であるとともに、0.2≦(Ia/Ib)≦4.0の関係を満たす。I111が高いほど、r値を大きくすることができる。Ia/Ibが上記の関係式を満たすことにより、面内異方性を低減することができる。 The stainless steel plate 1 has an I111 of 10.0 or more and satisfies the relationship 0.2≦(Ia/Ib)≦4.0. The higher the I111 , the larger the r-value can be. When Ia/Ib satisfies the above relationship, the in-plane anisotropy can be reduced.

 ステンレス鋼板1は、I111が10.0以上30.0以下であってよく、15.0以上30.0以下であってよく、1.0≦(Ia/Ib)≦3.8の関係を満たしていてもよい。I111が30.0を超えると、0.2≦(Ia/Ib)≦4.0の関係を満たすことが難しくなる。熱間圧延、熱延板焼鈍、冷間圧延、および最終焼鈍の工程で製造した場合(すなわち中間焼鈍および追加の冷間圧延を行わない場合)、Ia≧Ibとなることが多い。そのため、(Ia/Ib)は1以上であってよい。(Ia/Ib)は3.8以下であってよく、これにより、面内異方性をさらに低減することができる。 The stainless steel sheet 1 may have an I 111 of 10.0 or more and 30.0 or less, or may have an I 111 of 15.0 or more and 30.0 or less, and may satisfy the relationship of 1.0≦(Ia/Ib)≦3.8. When the I 111 exceeds 30.0, it becomes difficult to satisfy the relationship of 0.2≦(Ia/Ib)≦4.0. When the stainless steel sheet 1 is manufactured through the steps of hot rolling, hot-rolled sheet annealing, cold rolling, and final annealing (i.e., when intermediate annealing and additional cold rolling are not performed), Ia≧Ib is often satisfied. Therefore, (Ia/Ib) may be 1 or more. (Ia/Ib) may be 3.8 or less, which can further reduce the in-plane anisotropy.

 (平均r値およびΔr)
 本ステンレス鋼板は、平均r値(平均ランクフォード値)が1.4以上とすることができる。平均r値は、JIS規格(JIS Z 2254:2021)に規定される方法により、塑性歪み量14.4%で測定されるr値を用いて、下記式(1)により算出することができる:
   平均r値=(r+2r+r)/4   ・・・(1)。
(Average r value and Δr)
The present stainless steel sheet can have an average r-value (average Lankford value) of 1.4 or more. The average r-value can be calculated by the following formula (1) using the r-value measured at a plastic strain of 14.4% according to the method specified in the JIS standard (JIS Z 2254:2021):
Average r value = (r L + 2r D + r C ) / 4 ... (1).

 式(1)中、r、rおよびrはそれぞれ、圧延方向に対して0°(平行)、45°および90°の各方向から採取したJIS13号B試験片について測定したr値である。本ステンレス鋼板は、平均r値が1.4以上2.1以下であってよく、1.9以上2.1以下であってよい。 In formula (1), rL , rD, and rC are r-values measured on JIS No. 13B test pieces taken in directions of 0° (parallel), 45°, and 90° to the rolling direction, respectively. The stainless steel sheet may have an average r-value of 1.4 to 2.1, or 1.9 to 2.1.

 また、本ステンレス鋼板は、Δrが-0.50以上0.50以下とすることができる。Δrの範囲は、0以上0.50以下であることが好ましく、0以上0.48以下であることがより好ましい。Δrは、上記r値を用いて、下記式(2)により算出することができる:
   Δr=(r-2r+r)/2   ・・・(2)。
Furthermore, the stainless steel sheet of the present invention may have a Δr of -0.50 or more and 0.50 or less. The range of Δr is preferably 0 or more and 0.50 or less, and more preferably 0 or more and 0.48 or less. Δr can be calculated using the above r value according to the following formula (2):
Δr=(r L −2r D +r C )/2 (2).

 (リジング高さ)
 本ステンレス鋼板は、リジング高さが15μm以下とすることができる。リジング高さは、JIS5号引張試験片を圧延方向に垂直に採取後、JIS規格(JIS Z 2241:2011)により規定される引張試験方法により16%の歪付を行うことにより得られた試験片について、評点間中心の幅方向(ステンレス鋼板の圧延方向と直交する方向)におけるうねり高さを測定することにより得られる値である。うねり高さは、JIS B 0601:2001等に規定される表面性状測定にて測定される、うねり曲線要素の平均高さである。このように測定されたうねり曲線要素の平均高さが、本ステンレス鋼板のうねり高さ(すなわちリジング高さ)となる。
(Riding height)
The present stainless steel sheet can have a ridging height of 15 μm or less. The ridging height is a value obtained by measuring the waviness height in the width direction (direction perpendicular to the rolling direction of the stainless steel sheet) at the center of the rating interval for a test piece obtained by taking a JIS No. 5 tensile test piece perpendicular to the rolling direction and then subjecting the test piece to a 16% strain using a tensile test method specified by the JIS standard (JIS Z 2241:2011). The waviness height is the average height of the waviness curve element measured by the surface property measurement specified in JIS B 0601:2001, etc. The average height of the waviness curve element measured in this manner is the waviness height (i.e., the ridging height) of the present stainless steel sheet.

 (耐力)
 本ステンレス鋼板は、耐力が320MPa以下とすることができる。耐力は、JIS13号B試験片に対して、JIS規格(JIS Z 2241:2011)により規定される引張試験方法により、0.2%耐力を測定して得られる値である。本ステンレス鋼板は、耐力が310MPa以下であってよく、300MPa以下であってよい。
(Proof strength)
The present stainless steel sheet can have a yield strength of 320 MPa or less. The yield strength is a value obtained by measuring the 0.2% yield strength of a JIS No. 13 B test piece by a tensile test method specified by the JIS standard (JIS Z 2241:2011). The present stainless steel sheet may have a yield strength of 310 MPa or less, or may have a yield strength of 300 MPa or less.

 <鋼板の製造方法>
 図3は、本発明の一態様におけるフェライト系ステンレス鋼板の製造方法の一例を示すフローチャートである。図3に示すように、本ステンレス鋼板の製造方法(以下、本製造方法と略記することがある)は、熱間圧延工程、熱延板焼鈍工程、中間工程、および最終焼鈍工程をこの順に含む。
<Method of manufacturing steel sheet>
Fig. 3 is a flow chart showing an example of a method for producing a ferritic stainless steel sheet according to one embodiment of the present invention. As shown in Fig. 3, the method for producing the present stainless steel sheet (hereinafter sometimes abbreviated as the present production method) includes a hot rolling step, a hot-rolled sheet annealing step, an intermediate step, and a final annealing step, in this order.

 熱間圧延工程に供されるスラブの製造方法は特に限定されないが、例えば、熱間圧延工程の前に製鋼工程を含んでいてよい。製鋼工程では、所望の組成を有する溶鋼を鋳型に流し込み、冷却することで、フェライト系ステンレス鋼のスラブを製造する。スラブは所望の長さに切り分けられて、熱間圧延工程に用いられる。また、本製造方法は、最終焼鈍工程の後に、後工程を適宜含んでいてもよい。 The method for producing the slabs to be subjected to the hot rolling process is not particularly limited, but may, for example, include a steelmaking process prior to the hot rolling process. In the steelmaking process, molten steel having the desired composition is poured into a mold and cooled to produce a slab of ferritic stainless steel. The slab is cut to the desired length and used in the hot rolling process. In addition, this manufacturing method may include a post-process after the final annealing process as appropriate.

 (熱間圧延工程)
 熱間圧延工程は、スラブを高温で圧延する(熱間圧延する)ことにより、所定の厚みの熱延板を製造する工程である。熱間圧延工程は、公知の設備および方法により行うことができる。本製造方法では、熱間圧延工程において一般的な製造条件を採用することができる。例えば、加熱温度(圧延温度)を1150~1250℃、総圧下率を95~99%、とすることができる。熱間圧延後の巻き取り温度は200~500℃とすることができる。
(Hot rolling process)
The hot rolling process is a process for producing a hot-rolled sheet of a predetermined thickness by rolling (hot rolling) a slab at a high temperature. The hot rolling process can be performed by known equipment and methods. In this manufacturing method, general manufacturing conditions in the hot rolling process can be adopted. For example, the heating temperature (rolling temperature) can be 1150 to 1250°C, and the total reduction rate can be 95 to 99%. The coiling temperature after hot rolling can be 200 to 500°C.

 (熱延板焼鈍工程)
 熱延板焼鈍工程では、上記熱延板を、900~1000℃の温度域まで加熱して、均熱保持する。熱延板焼鈍工程における均熱温度は、好ましくは910~980℃である。また、熱延板焼鈍工程における均熱時間は、20~120s(秒)である。
(Hot-rolled sheet annealing process)
In the hot-rolled sheet annealing process, the hot-rolled sheet is heated to a temperature range of 900 to 1000° C. and soaked. The soaking temperature in the hot-rolled sheet annealing process is preferably 910 to 980° C. The soaking time in the hot-rolled sheet annealing process is 20 to 120 s (seconds).

 本製造方法において、上記のように熱延板焼鈍工程を行うことによれば、析出物をフェライト系ステンレス鋼中に固溶させることができる。本明細書において、析出物として、低温析出物および高温析出物を区別する。 In this manufacturing method, by carrying out the hot-rolled sheet annealing process as described above, the precipitates can be dissolved in the ferritic stainless steel. In this specification, a distinction is made between low-temperature precipitates and high-temperature precipitates.

 低温析出物とは、フェライト系ステンレス鋼において600℃以上900℃未満の温度域で析出する析出物である。低温析出物の例としては、Nb、TiおよびPのうちの少なくとも1つと、Feとを含む化合物を挙げることができる。より具体的には、低温析出物の例として、(i)リン化物、例えばFeTiP、FeNbPおよびFe(Ti、Nb)P、並びに(ii)Laves相と称される相を形成する金属間化合物、例えばFeNbが挙げられる。 The low-temperature precipitates are precipitates that precipitate in ferritic stainless steels in the temperature range of 600° C. or more and less than 900° C. Examples of low-temperature precipitates include compounds containing Fe and at least one of Nb, Ti, and P. More specifically, examples of low-temperature precipitates include (i) phosphides, such as FeTiP, FeNbP, and Fe(Ti,Nb)P, and (ii) intermetallic compounds that form a phase called a Laves phase, such as Fe 2 Nb.

 また、融点が900℃以上である化合物の析出物を高温析出物と称する。高温析出物の例としては、金属の炭化物(例えばTiCおよびNbC)並びに金属の窒化物(例えばTiNおよびNbN)が挙げられる。 Furthermore, precipitates of compounds with melting points of 900°C or higher are called high-temperature precipitates. Examples of high-temperature precipitates include metal carbides (e.g., TiC and NbC) and metal nitrides (e.g., TiN and NbN).

 熱延板焼鈍工程では、低温析出物および高温析出物をフェライト系ステンレス鋼中に固溶させるとともに、リジングの原因となる熱延組織を、再結晶により分断する。そのため、加熱温度の下限は900℃、均熱時間の下限は20sに設定される。一方で、熱延板の再結晶組織が粗大になるとリジングが悪化する。そのため、加熱温度の上限は1000℃、均熱時間の上限は120sに設定される。これにより、金属組織中のコロニーを分断する。 In the hot-rolled sheet annealing process, the low-temperature precipitates and high-temperature precipitates are dissolved in the ferritic stainless steel, and the hot-rolled structure that causes ridging is disrupted by recrystallization. For this reason, the lower limit of the heating temperature is set to 900°C, and the lower limit of the soaking time is set to 20 seconds. On the other hand, if the recrystallized structure of the hot-rolled sheet becomes coarse, ridging will worsen. For this reason, the upper limit of the heating temperature is set to 1000°C, and the upper limit of the soaking time is set to 120 seconds. This disrupts the colonies in the metal structure.

 熱延板焼鈍工程における均熱保持後の冷却速度は、均熱温度から500℃までの温度域において、5℃/s以上とすることができる。これにより、冷却中に低温析出物が析出することを抑制することができる。500℃未満の温度域における冷却速度は特に限定されない。冷却後の半製品を熱延焼鈍板と称する。 The cooling rate after soaking in the hot-rolled sheet annealing process can be 5°C/s or more in the temperature range from the soaking temperature to 500°C. This makes it possible to suppress the precipitation of low-temperature precipitates during cooling. There are no particular limitations on the cooling rate in the temperature range below 500°C. The semi-finished product after cooling is called a hot-rolled annealed sheet.

 熱延板焼鈍工程において用いられる焼鈍設備は特に限定されず、例えば連続焼鈍炉またはバッチ炉等の公知の設備を用いることができる。 The annealing equipment used in the hot-rolled sheet annealing process is not particularly limited, and known equipment such as a continuous annealing furnace or a batch furnace can be used.

 (中間工程)
 熱延板焼鈍工程の後、最終焼鈍工程までの間に、典型的には少なくとも1回の冷延工程が行われる。上記熱延焼鈍板に対して酸洗工程を行ってもよい。酸洗工程は、熱延焼鈍板の表面へ付着したスケールを、硫酸、塩酸または硝酸とフッ化水素酸との混合液等の酸洗液を用いて除去する工程である。
(Intermediate process)
After the hot-rolled sheet annealing step, at least one cold rolling step is typically performed before the final annealing step. The hot-rolled annealed sheet may be subjected to an acid pickling step. The acid pickling step is a step of removing scale adhering to the surface of the hot-rolled annealed sheet using an acid pickling solution such as sulfuric acid, hydrochloric acid, or a mixture of nitric acid and hydrofluoric acid.

 冷延工程は、上記熱延焼鈍板を冷間圧延(例えば室温~200℃)することにより、所定の厚みの冷延板を得る工程である。冷延工程における圧延率は、圧延率が高い程、平均r値の向上および成形性の向上に有効であることから、好ましくは75%以上である。冷延工程における圧延率は、90%以下であってよい。 The cold rolling process is a process in which the above-mentioned hot-rolled annealed sheet is cold-rolled (for example, at room temperature to 200°C) to obtain a cold-rolled sheet of a specified thickness. The rolling ratio in the cold rolling process is preferably 75% or more, since a higher rolling ratio is more effective in improving the average r-value and formability. The rolling ratio in the cold rolling process may be 90% or less.

 冷延工程において用いられる圧延設備は特に限定されず、公知の設備を用いることができる。 The rolling equipment used in the cold rolling process is not particularly limited, and publicly known equipment can be used.

 中間工程では、冷間圧延処理を1回のみ行ってもよく、2回以上行ってもよい。冷間圧延処理を2回以上行う場合、冷間圧延処理と冷間圧延処理との間に、中間焼鈍工程を行ってもよい。中間焼鈍工程における加熱温度は、例えば900~1000℃であってよい。 In the intermediate process, the cold rolling process may be performed only once, or may be performed two or more times. When the cold rolling process is performed two or more times, an intermediate annealing process may be performed between the cold rolling processes. The heating temperature in the intermediate annealing process may be, for example, 900 to 1000°C.

 <最終焼鈍工程>
 最終焼鈍工程は、冷延板を900~1000℃の温度域まで昇温した後、0~120秒間均熱保持する工程である。最終焼鈍工程における昇温速度は100℃/s以上である。昇温速度は100~2000℃/sであってよく、好ましくは100~1500℃/sである。
<Final annealing process>
The final annealing step is a step of heating the cold-rolled sheet to a temperature range of 900 to 1000° C. and then soaking for 0 to 120 seconds. The heating rate in the final annealing step is 100° C./s or more. The heating rate may be 100 to 2000° C./s, and is preferably 100 to 1500° C./s.

 最終焼鈍工程では、上記条件で冷延板を昇温することにより、昇温中に低温析出物が析出しにくくするとともに、結晶粒の成長速度を促進させつつランダム方位に再結晶を生じさせる。昇温速度を100℃/s以上とすることにより、昇温過程における低温析出物の析出量を効果的に低減することができる。また、昇温時間が短くなりすぎると、再結晶に必要な熱量が不足し得ることから、昇温速度は2000℃/s以下に設定されてよく、1500℃/s以下に設定されてよい。 In the final annealing process, the cold-rolled sheet is heated under the above conditions, which makes it difficult for low-temperature precipitates to precipitate during heating, and promotes the growth rate of crystal grains while causing recrystallization in random orientations. By setting the heating rate at 100°C/s or more, the amount of low-temperature precipitates that precipitate during the heating process can be effectively reduced. Furthermore, if the heating time is too short, the amount of heat required for recrystallization may be insufficient, so the heating rate may be set to 2000°C/s or less, or 1500°C/s or less.

 最終焼鈍工程における上記条件での昇温は、低温析出物の析出を抑制するとともに、金属組織の結晶粒の成長を促進する。熱延板焼鈍工程において低温析出物を固溶させ、さらに、最終焼鈍工程における上記条件での昇温を施すことにより、色々な結晶方位の結晶粒の粒成長を促進させることができる。 The temperature increase under the above conditions in the final annealing process suppresses the precipitation of low-temperature precipitates and promotes the growth of crystal grains in the metal structure. By dissolving the low-temperature precipitates in the hot-rolled sheet annealing process and then increasing the temperature under the above conditions in the final annealing process, it is possible to promote the grain growth of crystal grains with various crystal orientations.

 最終焼鈍工程における加熱温度(均熱温度)の下限は低温析出物が生じないとともに再結晶が完了する900℃とする。一方で、粒成長が大きくなり過ぎると面内異方性が大きくなる。そのため、加熱温度の上限は1000℃、均熱時間の上限は120sに設定される。最終焼鈍工程における均熱温度は、好ましくは910~980℃であり、均熱時間は、好ましくは5~100秒間である。 The lower limit of the heating temperature (soaking temperature) in the final annealing process is 900°C, at which point no low-temperature precipitates form and recrystallization is complete. On the other hand, if grain growth becomes too large, the in-plane anisotropy increases. Therefore, the upper limit of the heating temperature is set to 1000°C, and the upper limit of the soaking time is set to 120 seconds. The soaking temperature in the final annealing process is preferably 910 to 980°C, and the soaking time is preferably 5 to 100 seconds.

 本製造方法における最終焼鈍工程について、より詳しく説明すれば以下のとおりである。始めに、比較として一般的な昇温速度にて焼鈍する場合について説明する。一般的な昇温速度にて昇温する場合、昇温に伴って{111}粒、{211}粒、{311}粒、{100}粒の順で再結晶が生じる。すなわち、昇温中において、例えば800℃程度の温度で{111}粒の再結晶核が生成する。続いて、その後の昇温に伴って他方位の粒の再結晶核が生成する。焼鈍による再結晶が進行する際に、先に核生成した{111}粒のうち特定の方向(例えば{111}<112>方位)を有する結晶粒が優先的に成長する。そのため、一般的な昇温速度にて焼鈍する場合、フェライト系ステンレス鋼板の異方性が大きくなる。これに対して、本製造方法における最終焼鈍工程では、上記条件における昇温を行うことで{111}粒だけでなく他方位もほぼ同じようなタイミングで再結晶核が生成する。そのため、特定の方位だけが優先的に成長することを抑制できる。 The final annealing step in this manufacturing method is described in more detail below. First, for comparison, a case where annealing is performed at a general heating rate will be described. When heating is performed at a general heating rate, recrystallization occurs in the order of {111} grains, {211} grains, {311} grains, and {100} grains as the temperature rises. That is, during heating, recrystallization nuclei of {111} grains are generated at a temperature of, for example, about 800°C. Then, recrystallization nuclei of grains in other orientations are generated as the temperature rises. As recrystallization by annealing progresses, crystal grains having a specific direction (for example, {111}<112> orientation) among the {111} grains that were nucleated earlier grow preferentially. Therefore, when annealing is performed at a general heating rate, the anisotropy of the ferritic stainless steel sheet becomes large. In contrast, in the final annealing step in this manufacturing method, by performing heating under the above conditions, recrystallization nuclei are generated not only in {111} grains but also in other orientations at approximately the same timing. This makes it possible to prevent preferential growth in only one direction.

 最終焼鈍工程において用いられる焼鈍設備は特に限定されず、例えば連続焼鈍炉またはバッチ炉等の公知の設備を用いることができる。 The annealing equipment used in the final annealing process is not particularly limited, and known equipment such as a continuous annealing furnace or a batch furnace can be used.

 最終焼鈍工程の後、必要に応じて、酸洗工程を行ってもよい。また、必要に応じて、後工程を行ってもよい。後工程では、例えば調質圧延および所望の形状への切断が行われてよい。 After the final annealing process, a pickling process may be performed if necessary. Also, if necessary, a post-process may be performed, such as temper rolling and cutting to the desired shape.

 〔まとめ〕
 本発明の態様1におけるフェライト系ステンレス鋼板は、質量%で、C:0.001~0.030%、Si:0.01~1.00%、Mn:0.01~1.00%、Cr:10.5~30.0%、N:0.001~0.030%、およびP:0.005~0.050%を含有するとともに、Ti:0.01~0.50%およびNb:0.01~0.50%のうちの少なくとも一方を含有し、Sの含有率が0.0100%以下であり、残部がFeおよび不可避的不純物である化学組成を有するフェライト系ステンレス鋼板であって、前記フェライト系ステンレス鋼板の圧延方向に平行かつ圧延面に垂直な断面において、切断法により算出される結晶粒径が15μm以上40μm以下であり、前記フェライト系ステンレス鋼板の板厚中心部における、前記圧延面に平行な断面において、{111}<110>結晶方位強度をIa、{111}<112>結晶方位強度をIbとし、前記Iaおよび前記Ibのうち値の大きい方をI111と称し、I111≧10.0、かつ0.2≦(Ia/Ib)≦4.0の関係を満たす。
〔summary〕
The ferritic stainless steel sheet in the first aspect of the present invention contains, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, as well as at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, with the S content being 0.0100% or less, and the balance being Fe and unavoidable impurities. A ferritic stainless steel sheet having a pure chemical composition, wherein in a cross section of the ferritic stainless steel sheet parallel to the rolling direction and perpendicular to the rolling surface, the crystal grain size calculated by a cutting method is 15 μm or more and 40 μm or less, and in a cross section parallel to the rolling surface in a center portion of the sheet thickness of the ferritic stainless steel sheet, the {111}<110> crystal orientation intensity is Ia and the {111}<112> crystal orientation intensity is Ib, and the larger of Ia and Ib is referred to as I111 , and the relationships I111 ≧10.0 and 0.2≦(Ia/Ib)≦4.0 are satisfied.

 本発明の態様2におけるフェライト系ステンレス鋼板は、前記態様1において、耐力が320MPa以下、平均r値が1.4以上、かつr値の面内異方性指数Δrが-0.50以上0.50以下である。ここで、平均r値=(r+2r+r)/4、Δr=(r-2r+r)/2、r:圧延方向に対して0°方向のランクフォード値、r:圧延方向に対して45°方向のランクフォード値、r:圧延方向に対して90°方向のランクフォード値である。 The ferritic stainless steel sheet according to aspect 2 of the present invention is the same as that according to aspect 1, wherein the yield strength is 320 MPa or less, the average r-value is 1.4 or more, and the in-plane anisotropy index Δr of the r-value is −0.50 or more and 0.50 or less, where the average r-value=(r L +2r D +r C )/4, Δr=(r L -2r D +r C )/2, r L : Lankford value in a direction at 0° to the rolling direction, r D : Lankford value in a direction at 45° to the rolling direction, and r C : Lankford value in a direction at 90° to the rolling direction.

 本発明の態様3におけるフェライト系ステンレス鋼板は、前記態様1または2において、前記フェライト系ステンレス鋼板から圧延方向に垂直にJIS5号引張試験片を採取し、当該JIS5号引張試験片に16%歪付して評点間中心の幅方向におけるうねり高さを測定して得られるリジング高さが15μm以下である。 The ferritic stainless steel sheet in aspect 3 of the present invention is the ferritic stainless steel sheet in aspect 1 or 2, in which a JIS No. 5 tensile test piece is taken from the ferritic stainless steel sheet perpendicular to the rolling direction, and the JIS No. 5 tensile test piece is subjected to a 16% strain to measure the waviness height in the width direction at the center of the rating line, and the ridging height obtained is 15 μm or less.

 本発明の態様4におけるフェライト系ステンレス鋼板は、前記態様1から3の何れか一態様において、質量%で、Mo:0.05~2.00%、Ni:0.01~1.00%、Co:0.005~0.500%、Cu:0.05~1.00%、Al:0.01~1.00%、Ca:0.0001~0.0050%、Mg:0.0001~0.0050%、B:0.0001~0.0025%、V:0.05~0.50%、W:0.05~1.00%、Sn:0.005~0.500%、Sb:0.005~0.500%、Zr:0.050~0.500%、Y:0.001~0.100%、Hf:0.001~0.100%および希土類元素:0.001~0.100%からなる群から選択される1種または2種以上をさらに含有する。 The ferritic stainless steel sheet in aspect 4 of the present invention is any one of aspects 1 to 3 described above, and contains, by mass%, Mo: 0.05 to 2.00%, Ni: 0.01 to 1.00%, Co: 0.005 to 0.500%, Cu: 0.05 to 1.00%, Al: 0.01 to 1.00%, Ca: 0.0001 to 0.0050%, Mg: 0.0001 to 0.0050%, B: 0.00 It further contains one or more elements selected from the group consisting of 0.01-0.0025%, V: 0.05-0.50%, W: 0.05-1.00%, Sn: 0.005-0.500%, Sb: 0.005-0.500%, Zr: 0.050-0.500%, Y: 0.001-0.100%, Hf: 0.001-0.100%, and rare earth elements: 0.001-0.100%.

 本発明の態様5におけるフェライト系ステンレス鋼板の製造方法は、質量%で、C:0.001~0.030%、Si:0.01~1.00%、Mn:0.01~1.00%、Cr:10.5~30.0%、N:0.001~0.030%、およびP:0.005~0.050%を含有するとともに、Ti:0.01~0.50%およびNb:0.01~0.50%のうちの少なくとも一方を含有し、Sの含有率が0.01%以下であり、残部がFeおよび不可避的不純物である化学組成を有する熱延板を、900~1000℃の温度域まで加熱して20~120秒間均熱保持する熱延板焼鈍工程と、前記熱延板焼鈍工程により得られた熱延焼鈍板を冷間圧延した冷延板を、昇温速度100℃/s以上で900~1000℃の温度域まで加熱した後、120秒間以下均熱保持するまたは均熱保持することなく冷却する最終焼鈍工程と、を含む。 The manufacturing method of the ferritic stainless steel sheet in aspect 5 of the present invention contains, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, as well as at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, and the S content is 0.0 The process includes a hot-rolled sheet annealing process in which a hot-rolled sheet having a chemical composition in which the content of Zn is 0.1% or less, with the remainder being Fe and unavoidable impurities, is heated to a temperature range of 900 to 1000°C and held at that temperature for 20 to 120 seconds, and a final annealing process in which the cold-rolled sheet obtained by cold-rolling the hot-rolled annealed sheet obtained by the hot-rolled sheet annealing process is heated to a temperature range of 900 to 1000°C at a heating rate of 100°C/s or more, and then held at that temperature for 120 seconds or less or cooled without being held at that temperature.

 〔附記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. Embodiments obtained by appropriately combining the technical means disclosed in different embodiments are also included in the technical scope of the present invention.

 本発明の一実施例について以下に説明する。なお、本実施例に記載のフェライト系ステンレス鋼板の製造方法は一例である。 An embodiment of the present invention is described below. Note that the manufacturing method of the ferritic stainless steel sheet described in this embodiment is just one example.

 (スラブの製造)
 下記の表1に示す成分組成を有する鋼を真空溶解し、30kgのスラブを製造した。表1において、鋼種A~Nは、本発明の範囲内の化学組成を有する。また、表1において、鋼種P,R,Sは、本発明の範囲外の化学組成を有する。表1には、各鋼種に含まれる成分の組成が質量%で示されている。なお、表1に示す各成分以外の残部は、Feまたは不可避的不純物である。また、表1中の下線は、比較例に係る各鋼種に含まれる各成分の組成が、本発明の範囲外であることを示している。
(Slab manufacturing)
Steels having the composition shown in Table 1 below were vacuum melted to produce 30 kg slabs. In Table 1, steel types A to N have chemical compositions within the range of the present invention. Also, in Table 1, steel types P, R, and S have chemical compositions outside the range of the present invention. Table 1 shows the composition of the components contained in each steel type in mass %. The balance other than each component shown in Table 1 is Fe or unavoidable impurities. Also, the underlines in Table 1 indicate that the composition of each component contained in each steel type according to the comparative example is outside the range of the present invention.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 上記スラブを1200℃で2時間加熱後、熱間圧延を施して、板厚3mmの熱延板を作製した。 The slab was heated at 1200°C for 2 hours and then hot rolled to produce a hot-rolled sheet with a thickness of 3 mm.

 次いで、表2に示す製造条件で、熱延板焼鈍工程、および最終焼鈍工程を行い、板厚0.6mmの鋼板No.1~38を製造した。なお、本実施例では、中間工程として、冷間圧延を1回のみ行った。冷間圧延の圧延率は80%とした。また、各鋼板について、各種物性を評価した結果も表2に示す。なお、表2中の下線は、鋼板の製造条件および各種物性が、本発明の範囲外である、または本発明の好ましい範囲の範囲外であることを示している。結晶粒径、結晶方位強度(I111,Ia,Ib)、耐力、平均r値、Δr、およびリジング高さのそれぞれの値は、前述の実施形態と同じ方法にて測定または算出した。鋼板No.3の熱延板焼鈍工程の条件についての記載欄の斜線は、熱延板焼鈍工程を行っていないこと(省略したこと)を示している。 Next, the hot-rolled sheet annealing process and the final annealing process were performed under the manufacturing conditions shown in Table 2, and steel sheets No. 1 to 38 having a sheet thickness of 0.6 mm were manufactured. In this example, cold rolling was performed only once as an intermediate process. The rolling ratio of the cold rolling was 80%. Table 2 also shows the results of evaluating various physical properties for each steel sheet. The underlines in Table 2 indicate that the manufacturing conditions and various physical properties of the steel sheet are outside the range of the present invention or outside the preferred range of the present invention. The grain size, crystal orientation strength (I 111 , Ia, Ib), yield strength, average r value, Δr, and ridging height were measured or calculated by the same method as in the above-mentioned embodiment. The diagonal lines in the description column for the conditions of the hot-rolled sheet annealing process for steel sheet No. 3 indicate that the hot-rolled sheet annealing process was not performed (omitted).

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2に示すように、前述した本発明の一態様におけるフェライト系ステンレス鋼板の製造方法により製造された本発明例の鋼板はいずれも、結晶粒径、結晶方位強度、耐力、平均r値、Δr、およびリジング高さの特性を兼備するものであった。 As shown in Table 2, all of the steel sheets of the present invention examples manufactured by the manufacturing method of ferritic stainless steel sheet according to one embodiment of the present invention described above had the following characteristics: grain size, crystal orientation strength, yield strength, average r value, Δr, and ridging height.

 これに対し、比較例の鋼板は上記特性のうち少なくとも1つが基準を満たさなかった。比較例の鋼板No.3は、耐力、平均r値、Δrは本発明の範囲内であるが、熱延板焼鈍工程の省略によってコロニーの分断が不十分であり、耐リジング性が不十分であった。比較例の鋼板No.6についても、同様にコロニーの分断が不十分であった。比較例の鋼板No.8では、熱延板焼鈍工程における加熱が不十分であることにより、結晶粒サイズが小さく耐力が増大するとともに、耐リジング性が不十分であった。比較例の鋼板No.10、24では、再結晶組織が粗大になることにより、耐リジング性が悪化した。 In contrast, the comparative steel sheets did not meet the criteria for at least one of the above characteristics. Comparative steel sheet No. 3 had yield strength, average r value, and Δr within the range of the present invention, but the omission of the hot-rolled sheet annealing process resulted in insufficient colony separation and insufficient ridging resistance. Comparative steel sheet No. 6 also showed insufficient colony separation. Comparative steel sheet No. 8 had small crystal grain size and increased yield strength due to insufficient heating in the hot-rolled sheet annealing process, and therefore had insufficient ridging resistance. Comparative steel sheets No. 10 and 24 had coarse recrystallized structures, which deteriorated ridging resistance.

 比較例の鋼板No.13では、最終焼鈍工程における昇温速度が本発明の範囲外であり、低温析出物の析出および特定の方向(例えば{111}<112>方位)の優先的な粒成長により面内異方性が増大した。比較例の鋼板No.16、28では、最終焼鈍工程における加熱が不十分であることにより、結晶粒サイズが小さく、耐力が増大した。一方で、比較例の鋼板No.19、21、30、33では、最終焼鈍工程での加熱による粒成長が大きくなり過ぎ、面内異方性が増大した。 In comparative steel sheet No. 13, the heating rate in the final annealing process was outside the range of the present invention, and the in-plane anisotropy increased due to the precipitation of low-temperature precipitates and preferential grain growth in a specific direction (e.g., the {111}<112> orientation). In comparative steel sheets No. 16 and 28, the crystal grain size was small and the yield strength increased due to insufficient heating in the final annealing process. On the other hand, in comparative steel sheets No. 19, 21, 30, and 33, the grain growth due to heating in the final annealing process was too large, and the in-plane anisotropy increased.

 1 ステンレス鋼板
11 圧延面
12 断面
13 断面

 
1 Stainless steel plate 11 Rolled surface 12 Cross section 13 Cross section

Claims (4)

 質量%で、C:0.001~0.030%、Si:0.01~1.00%、Mn:0.01~1.00%、Cr:10.5~30.0%、N:0.001~0.030%、およびP:0.005~0.050%を含有するとともに、Ti:0.01~0.50%およびNb:0.01~0.50%のうちの少なくとも一方を含有し、Sの含有率が0.0100%以下であり、残部がFeおよび不可避的不純物である化学組成を有するフェライト系ステンレス鋼板であって、
 前記フェライト系ステンレス鋼板の圧延方向に平行かつ圧延面に垂直な断面において、切断法により算出される結晶粒径が15μm以上40μm以下であり、
 前記フェライト系ステンレス鋼板の板厚中心部における、前記圧延面に平行な断面において、{111}<110>結晶方位強度をIa、{111}<112>結晶方位強度をIbとし、前記Iaおよび前記Ibのうち値の大きい方をI111と称し、
 I111≧10.0、かつ
 0.2≦(Ia/Ib)≦4.0の関係を満たす、フェライト系ステンレス鋼板。
A ferritic stainless steel sheet having a chemical composition containing, by mass%, C: 0.001-0.030%, Si: 0.01-1.00%, Mn: 0.01-1.00%, Cr: 10.5-30.0%, N: 0.001-0.030%, and P: 0.005-0.050%, as well as at least one of Ti: 0.01-0.50% and Nb: 0.01-0.50%, with an S content of 0.0100% or less, and the balance being Fe and unavoidable impurities,
In a cross section of the ferritic stainless steel plate parallel to the rolling direction and perpendicular to the rolling surface, the grain size calculated by a cutting method is 15 μm or more and 40 μm or less,
In a cross section parallel to the rolled surface at the center of the thickness of the ferritic stainless steel plate, the {111}<110> crystal orientation intensity is Ia, the {111}<112> crystal orientation intensity is Ib, and the larger of Ia and Ib is referred to as I111 ,
A ferritic stainless steel sheet satisfying the relationships I 111 ≧10.0 and 0.2≦(Ia/Ib)≦4.0.
 耐力が320MPa以下、平均r値が1.4以上、かつr値の面内異方性指数Δrが-0.50以上0.50以下である、請求項1に記載のフェライト系ステンレス鋼板。
 (ここで、
  平均r値=(r+2r+r)/4
  Δr=(r-2r+r)/2
  r:圧延方向に対して0°方向のランクフォード値
  r:圧延方向に対して45°方向のランクフォード値
  r:圧延方向に対して90°方向のランクフォード値)
2. The ferritic stainless steel sheet according to claim 1, having a yield strength of 320 MPa or less, an average r-value of 1.4 or more, and an in-plane anisotropy index Δr of the r-value of -0.50 or more and 0.50 or less.
(where:
Average r value = (r L + 2r D + r C )/4
Δr=(r L −2r D +r C )/2
r L : Lankford value in the direction of 0° to the rolling direction, r D : Lankford value in the direction of 45° to the rolling direction, r C : Lankford value in the direction of 90° to the rolling direction)
 前記フェライト系ステンレス鋼板から圧延方向に垂直にJIS5号引張試験片を採取し、当該JIS5号引張試験片に16%歪付して評点間中心の幅方向におけるうねり高さを測定して得られるリジング高さが15μm以下である、請求項1または2に記載のフェライト系ステンレス鋼板。 The ferritic stainless steel sheet according to claim 1 or 2, in which a JIS No. 5 tensile test piece is taken from the ferritic stainless steel sheet perpendicular to the rolling direction, and the JIS No. 5 tensile test piece is subjected to a 16% strain to measure the waviness height in the width direction at the center of the rating, and the ridging height obtained is 15 μm or less.  質量%で、Mo:0.05~2.00%、Ni:0.01~1.00%、Co:0.005~0.500%、Cu:0.05~1.00%、Al:0.01~1.00%、Ca:0.0001~0.0050%、Mg:0.0001~0.0050%、B:0.0001~0.0025%、V:0.05~0.50%、W:0.05~1.00%、Sn:0.005~0.500%、Sb:0.005~0.500%、Zr:0.050~0.500%、Y:0.001~0.100%、Hf:0.001~0.100%および希土類元素:0.001~0.100%からなる群から選択される1種または2種以上をさらに含有する、請求項1~3の何れか一項に記載のフェライト系ステンレス鋼板。 In mass%, Mo: 0.05-2.00%, Ni: 0.01-1.00%, Co: 0.005-0.500%, Cu: 0.05-1.00%, Al: 0.01-1.00%, Ca: 0.0001-0.0050%, Mg: 0.0001-0.0050%, B: 0.0001-0.0025%, V: 0.05-0.50%, W: 0.05-1.00%, S The ferritic stainless steel sheet according to any one of claims 1 to 3, further comprising one or more selected from the group consisting of n: 0.005 to 0.500%, Sb: 0.005 to 0.500%, Zr: 0.050 to 0.500%, Y: 0.001 to 0.100%, Hf: 0.001 to 0.100%, and rare earth elements: 0.001 to 0.100%.
PCT/JP2024/009697 2023-03-30 2024-03-13 Ferritic stainless steel sheet WO2024203317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023056652 2023-03-30
JP2023-056652 2023-03-30

Publications (1)

Publication Number Publication Date
WO2024203317A1 true WO2024203317A1 (en) 2024-10-03

Family

ID=92905786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/009697 WO2024203317A1 (en) 2023-03-30 2024-03-13 Ferritic stainless steel sheet

Country Status (1)

Country Link
WO (1) WO2024203317A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068139A1 (en) * 2014-10-31 2016-05-06 新日鐵住金ステンレス株式会社 Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP2018184660A (en) * 2017-04-25 2018-11-22 Jfeスチール株式会社 Ferritic stainless steel plate and method for producing the same
JP2019173149A (en) * 2018-03-26 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet, manufacturing method therefor, and ferritic stainless member
JP2022079072A (en) * 2020-11-16 2022-05-26 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for manufacturing the same
WO2023089693A1 (en) * 2021-11-17 2023-05-25 日鉄ステンレス株式会社 Ferritic stainless steel sheet
JP2023147504A (en) * 2022-03-30 2023-10-13 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068139A1 (en) * 2014-10-31 2016-05-06 新日鐵住金ステンレス株式会社 Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP2018184660A (en) * 2017-04-25 2018-11-22 Jfeスチール株式会社 Ferritic stainless steel plate and method for producing the same
JP2019173149A (en) * 2018-03-26 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet, manufacturing method therefor, and ferritic stainless member
JP2022079072A (en) * 2020-11-16 2022-05-26 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for manufacturing the same
WO2023089693A1 (en) * 2021-11-17 2023-05-25 日鉄ステンレス株式会社 Ferritic stainless steel sheet
JP2023147504A (en) * 2022-03-30 2023-10-13 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
TW202505044A (en) 2025-02-01

Similar Documents

Publication Publication Date Title
CN104093871B (en) Heatproof ferrite series stainless steel cold-rolled steel sheet, cold rolling base material ferrite-group stainless steel hot rolled steel plate and manufacture method thereof
KR100977600B1 (en) Ferritic stainless steel sheet with small orange peel and excellent moldability and manufacturing method
TWI404808B (en) Boron steel sheet with high quenching property and manufacturing method thereof
JP5043248B1 (en) High-strength bake-hardening cold-rolled steel sheet and manufacturing method thereof
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
JP5219689B2 (en) Ferritic stainless steel sheet with low surface roughness and manufacturing method thereof
WO2021149676A1 (en) Steel sheet and method for producing same
JP2016191150A (en) Stainless steel plate with excellent toughness and method for producing the same
JP7291222B2 (en) High-strength steel sheet with excellent ductility and workability, and method for producing the same
JP7166878B2 (en) Ferritic stainless steel plate, manufacturing method thereof, and ferritic stainless steel member
JP4562280B2 (en) Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same
CN115917029B (en) Ferritic stainless steel and method for producing ferritic stainless steel
JP2001207244A (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
KR20190077672A (en) Ferritic stainless steel excellent in ridging property
WO2024203317A1 (en) Ferritic stainless steel sheet
JP2023147504A (en) Ferritic stainless steel sheet and method of manufacturing the same
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
TWI888069B (en) Granular iron stainless steel plate
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
TWI875541B (en) Granular iron stainless steel plate
JP3950384B2 (en) High-strength steel pipe with excellent workability and manufacturing method thereof
JP2018188687A (en) Ferritic stainless steel plate for thermostable member
WO2023140239A1 (en) Cold-rolled steel sheet and manufacturing method thereof
WO2024172023A1 (en) Ferrite-austenite duplex stainless steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24779446

Country of ref document: EP

Kind code of ref document: A1