WO2024202142A1 - Control apparatus, power conditioner, control method, and program - Google Patents
Control apparatus, power conditioner, control method, and program Download PDFInfo
- Publication number
- WO2024202142A1 WO2024202142A1 PCT/JP2023/036062 JP2023036062W WO2024202142A1 WO 2024202142 A1 WO2024202142 A1 WO 2024202142A1 JP 2023036062 W JP2023036062 W JP 2023036062W WO 2024202142 A1 WO2024202142 A1 WO 2024202142A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- limit value
- output
- power
- pcs
- output limit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 230000007423 decrease Effects 0.000 claims abstract description 23
- 230000003247 decreasing effect Effects 0.000 claims description 7
- 101150071172 PCS2 gene Proteins 0.000 description 31
- 230000008569 process Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 12
- 230000005856 abnormality Effects 0.000 description 6
- 238000004146 energy storage Methods 0.000 description 6
- 230000003750 conditioning effect Effects 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 101000908580 Homo sapiens Spliceosome RNA helicase DDX39B Proteins 0.000 description 2
- 102100021298 b(0,+)-type amino acid transporter 1 Human genes 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 101100465393 Homo sapiens PSMA1 gene Proteins 0.000 description 1
- 102100036042 Proteasome subunit alpha type-1 Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
Definitions
- the present disclosure relates to a control device, a power conditioner, a control method, and a program.
- This application claims priority based on Japanese Patent Application No. 2023-057834, filed on March 31, 2023, the contents of which are incorporated herein by reference.
- Energy storage systems have come to be used in a variety of locations, such as power generation facilities and factories that use renewable energy.
- Energy storage systems are equipped with multiple battery units, each having a storage battery and a DC/DC converter, a PCS (Power Conditioning System), and a DC bus that connects the battery units and the PCS.
- PCS Power Conditioning System
- Patent Document 1 describes how, when starting a load with a battery pack (energy storage system) made up of multiple single cells, if over-discharge of any of the single cells is detected, the power supply from the battery pack to the load will be limited or stopped.
- FIG. 8 is a diagram showing an example of an output limiting process of a power storage system according to the conventional technology.
- the conventional battery storage system changes the output limit value for limiting the PCS output power P PCS in response to an increase or decrease in the DC bus voltage V dc .
- a positive value of the output limit value indicates charging to the battery unit, and a negative value indicates discharging from the battery unit.
- the total dischargeable power of the storage battery unit decreases (a1 in FIG. 8 ), and the DC bus voltage V dc decreases (a2 in FIG. 8 ).
- the storage system detects a decrease in the DC bus voltage V dc _t91 at time t91, it gradually decreases the PCS output power P PCS (gradually increases the value of the output limit value) to limit the discharge from the storage battery unit (a3 in FIG. 8 ). Then, at time t92, the PCS output power P PCS can be decreased to the total dischargeable power of the storage battery unit, and the storage battery system stops the process of limiting the discharge power.
- the DC bus voltage V dc continues to decrease until the PCS output power P PCS is in balance with the total dischargeable power. Then, the DC bus voltage V dc continues to decrease until time t92, and thereafter, the storage system continues to operate while maintaining the DC bus voltage in an abnormally low state (the value of the DC bus voltage V dc _t92 at time t92) (a4 in FIG. 8 ).
- the PCS output power P PCS can be reduced to the total chargeable power of the storage battery units, so the storage battery system stops the process of limiting the charging power.
- the DC bus voltage V dc continues to rise until the PCS output power P PCS balances with the total chargeable power.
- the DC bus voltage Vdc continues to rise until time t94, and thereafter, the energy storage system continues to operate while maintaining the DC bus voltage at an abnormally high state (the value of the DC bus voltage Vdc_t94 at time t94) (b4 in FIG. 8).
- the objective of the present disclosure is to provide a control device, power conditioner, control method, and program that can prevent the DC bus voltage from exceeding the normal operating voltage range and continue operation when a drop or rise in the DC bus voltage is detected.
- the control device includes a voltage acquisition unit that acquires the voltage of a DC bus that connects a power conditioning system (PCS) and a storage battery unit, an output limiting unit that sets to zero the output limit value of the PCS output power, which is the power that the PCS outputs to the load, when the voltage exceeds an upper threshold or falls below a lower threshold, and a limit release unit that gradually increases or decreases the output limit value after setting the output limit value to zero.
- PCS power conditioning system
- the control method includes the steps of acquiring the voltage of a DC bus connecting a power conditioning system (PCS) and a storage battery unit, setting to zero an output limit value of the PCS output power, which is the power output by the PCS to the load, when the voltage exceeds an upper threshold or falls below a lower threshold, and gradually increasing or decreasing the output limit value after setting the output limit value to zero.
- PCS power conditioning system
- the program causes the control device to execute the steps of acquiring the voltage of a DC bus connecting a power conditioning system (PCS) and a storage battery unit, setting to zero the output limit value of the PCS output power, which is the power output by the PCS to the load, when the voltage exceeds an upper threshold or falls below a lower threshold, and gradually increasing or decreasing the output limit value after setting the output limit value to zero.
- PCS power conditioning system
- the DC bus voltage when a drop or rise in the DC bus voltage is detected, the DC bus voltage can be prevented from exceeding the normal operating voltage range and operation can be continued.
- FIG. 1 is a diagram showing an overall configuration of a power storage system according to an embodiment
- FIG. 2 is a block diagram showing a functional configuration of a control device according to an embodiment.
- FIG. 13 is a diagram illustrating upper and lower thresholds for a DC bus voltage according to an embodiment.
- 5 is a flowchart illustrating an example of an output control process of a control device according to an embodiment.
- FIG. 11 is a first diagram for explaining an output control process according to an embodiment.
- FIG. 11 is a second diagram for explaining the output control process according to an embodiment.
- 5 is a flowchart illustrating an example of an update process of an output limit value of a control device according to an embodiment.
- FIG. 13 is a diagram illustrating an example of an output limiting process of a power storage system according to the prior art.
- FIG. 1 is a diagram showing an overall configuration of a power storage system according to an embodiment.
- the power storage system 1 includes a PCS (Power Conditioning System) 2 , a control device 3 , a DC bus 4 , and a plurality of storage battery units 5 .
- PCS Power Conditioning System
- the PCS2 is a power conditioner connected to the power system.
- the PCS2 includes an inverter 21, which is a bidirectional inverter that converts AC power and DC power.
- the PCS2 converts DC power discharged from each storage battery unit 5 to AC power using the inverter 21 and outputs the AC power to the power system.
- the PCS2 also converts AC power supplied from the power system to DC power using the inverter 21 and outputs the DC power to each storage battery unit 5.
- the power output from the PCS2 to the load side is also referred to as PCS output power P PCS .
- the PCS output power P PCS is the power output from the PCS2 to the power system when the storage battery unit 5 is discharged, and is the power output from the PCS2 to the storage battery unit 5 when the storage battery unit 5 is charged.
- the control device 3 sets an output limit value LM2 of the PCS2 so that the power (PCS output power P PCS ) output by the PCS2 to the load side is within the range of power (P 1 +P 2 + ... +P N ) that can be charged and discharged by the entire storage battery unit 5. Note that under normal circumstances, the control device 3 receives an output limit value LM1 of the PCS2 from the higher-level device 6 and controls the PCS2 according to this output limit value LM1. The specific functional configuration of the control device 3 will be described later.
- the DC bus 4 is a bus for connecting the PCS 2 to multiple storage battery units 5.
- the multiple storage battery units 5 are connected in parallel to the PCS2 via the DC bus 4.
- Each storage battery unit 5 includes a DC/DC converter 51 and a storage battery 52.
- the DC/DC converter 51 converts the direct current power supplied from the PCS2 to a predetermined voltage and charges the storage battery 52.
- the DC/DC converter 51 also converts the discharged power of the storage battery 52 to a predetermined voltage and supplies it to the PCS2.
- FIG. 1 shows an example of a configuration in which the PCS 2 has the control device 3 built in, this is not limiting. In other embodiments, the control device 3 may be provided as separate hardware outside the PCS 2.
- FIG. 2 is a block diagram illustrating a functional configuration of a control device according to an embodiment.
- the control device 3 includes a processor 31 , a memory 32 , a storage 33 , and a communication interface 34 .
- the processor 31 operates according to a predetermined program to perform the functions of a voltage acquisition unit 310, an output limiting unit 311, a limit removal unit 312, and a limit value setting unit 313.
- the voltage acquisition unit 310 acquires the voltage of the DC bus 4 connecting the PCS 2 and the storage battery unit 5 (hereinafter also referred to as DC bus voltage V dc ) from a voltage sensor (not shown) provided on the DC bus 4 .
- the output limiting unit 311 sets the output limit value LM2 of the PCS output power P PCS , which is the power output by the PCS2 to the load side, to zero.
- the upper threshold VUL and the lower threshold VLL will be described in detail later.
- the limit removal unit 312 sets the output limit value LM2 to zero, and then gradually increases or decreases the output limit value LM2.
- the limit value setting unit 313 fixes the output limit value LM2 at the current value when the DC bus voltage Vdc becomes the upper limit value Vmax or the lower limit value Vmin of a predetermined normal operation voltage range R. Furthermore, when the limit value setting unit 313 receives the output limit value LM1 of the PCS output power P PCS from the higher-level device 6, if the output limit value LM1 ⁇ the output limit value LM2, the limit value setting unit 313 overwrites the output limit value LM2 with the value of the output limit value LM1. Details of the normal operation voltage range R will be described later.
- the predetermined program executed by the processor 31 is stored in a computer-readable recording medium.
- a computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, etc.
- the computer program may be distributed to a computer via a communication line, and the computer that receives the program may execute the program.
- the program may be for realizing some of the functions described above.
- the program may also be a so-called differential file (differential program) that can realize the functions described above in combination with a program already recorded in the computer system.
- Memory 32 has memory space necessary for the operation of processor 31.
- Storage 33 is a so-called auxiliary storage device, such as a hard disk drive (HDD) or a solid state drive (SSD). Storage 33 stores data that each part of processor 31 acquires, generates, and references during processing.
- HDD hard disk drive
- SSD solid state drive
- the communication interface 34 is an interface for transmitting and receiving various data and control signals between the PCS 2 and the higher-level device 6, etc.
- FIG. 3 is a diagram illustrating upper and lower thresholds for the DC bus voltage according to one embodiment.
- FIG. 3 shows an example of an upper threshold VUL, a lower threshold VLL, and a normal operation voltage range R of the DC bus voltage Vdc .
- the DC bus voltage of each storage battery unit 5 when it is unloaded (when charging/discharging is not being performed) is set as a reference voltage V0 .
- the normal operation voltage range R is a voltage fluctuation range caused by droop during normal operation of the storage battery unit 5, centered on the reference voltage V0 .
- the upper limit value of the normal operation voltage range is also referred to as Vmax, and the lower limit value is also referred to as Vmin.
- the upper threshold VUL and the lower threshold VLL are thresholds for detecting an abnormality in the voltage of the DC bus 4. Taking into account transient voltage fluctuations due to overshoot and resonance during voltage control, errors in the voltage sensor, etc., the upper threshold VUL is set to a value that is a predetermined amount ⁇ greater than the upper limit value Vmax of the normal operation voltage range. Similarly, the lower threshold VLL is set to a value that is a predetermined amount ⁇ smaller than the lower limit value Vmin of the normal operation voltage range. This predetermined amount ⁇ may be changed as desired depending on the characteristics of the storage battery unit 5, etc.
- FIG. 4 is a flowchart showing an example of an output control process of the control device according to an embodiment.
- Fig. 5 is a first diagram for explaining the output control process according to an embodiment.
- Fig. 6 is a second diagram for explaining the output control process according to an embodiment.
- the flow of the output control process of the control device 3 in response to fluctuations in the DC bus voltage will be described with reference to FIGS.
- the voltage acquisition unit 310 acquires the DC bus voltage Vdc at each time.
- the output limiting unit 311 determines whether the DC bus voltage Vdc acquired by the voltage acquisition unit 310 exceeds the upper threshold VUL or falls below the lower threshold VLL (step S01).
- step S01; NO When the storage battery unit 5 is being charged, if the DC bus voltage Vdc does not exceed the upper threshold VUL (step S01; NO), the output limiting unit 311 returns to step S01 and continues monitoring the DC bus 4.
- the output limiting unit 311 When the storage battery unit 5 is being discharged, if the DC bus voltage Vdc does not fall below the lower threshold VLL (step S01; NO), the output limiting unit 311 returns to step S01 and continues monitoring the DC bus 4.
- step S01 when the DC bus voltage Vdc exceeds the upper threshold VUL or falls below the lower threshold VLL (step S01; YES), the output limiting unit 311 executes the output control process of the PCS2.
- Fig. 5 illustrates a time series of the PCS output power P PCS and the DC bus voltage V dc during discharge of the storage battery unit 5_2 among the three storage battery units 5_1, 5_2, and 5_3 included in the power storage system 1.
- Fig. 6 illustrates the correspondence between the DC bus voltage V dc of the storage battery unit 5_2 measured at each time t01 to t05 in Fig. 5 and the output limit value LM2.
- a trip occurs in the storage battery unit 5_2 at time t01.
- the power that can be discharged by the entire storage battery unit 5 is P1+P2+P3 before time t01, but drops to P1+P3 after time t01.
- the PCS 2 cannot know that the storage battery unit 5_2 has tripped. Therefore, the PCS output power P PCS does not change at time t01. Therefore, after time t01, the PCS output power P PCS > the dischargeable power P1+P3 of the entire storage battery unit 5, and the DC bus voltage V dc drops over time as in the example of Fig. 5.
- V BAT1 of the storage battery unit 5_1 is the highest among the storage battery units 5_1 and 5_3 that are still in operation, V BAT1 will be approximately equal to V DC .
- the storage battery unit 5_1 will compensate for the insufficient load without relying on the control of the DC/DC converter 51 of the storage battery unit 5_1. This may result in over-discharging of the storage battery unit 5_1.
- control device 3 executes the output control process described below.
- the output limiting unit 311 sets the output limit value LM2 of the PSC2 to zero (step S02).
- the output limit value LM2 of the PCS2 becomes zero
- the PCS output power PPCS of the PCS2 becomes zero at time t03
- the DC bus voltage Vdc_t03 returns (increases) to the no-load reference voltage V0 .
- the limit removal unit 312 After setting the output limit value LM2 of PCS2 to zero, the limit removal unit 312 gradually reduces the output limit value LM2 of PCS2 (step S03).
- the limit value setting unit 313 determines whether the DC bus voltage Vdc has reached the lower limit value Vmin of the normal operation voltage range R (step S04).
- the DC bus voltage Vdc_t04 has not reached the lower limit value Vmin of the normal operation voltage range R (step S04; NO). In this case, the limit value setting unit 313 waits until the next determination timing.
- the limit value setting unit 313 stops the gradual decrease of the output limit value LM2 and fixes the output limit value LM2 at its current value (step S05). Note that if the value of the DC bus voltage Vdc_t05 is within a predetermined range from the lower limit Vmin, the limit value setting unit 313 may determine that the DC bus voltage Vdc_t05 becomes equal to the lower limit Vmin (step S04; YES) and fix the output limit value LM2 at its current value (step S05).
- the control device 3 can continue the operation of the power storage system 1 by controlling the other operating storage battery units 5 to discharge at the maximum power that can be discharged and to keep the DC bus voltage Vdc within the normal operation voltage range R.
- Fig. 6 illustrates an example of the correspondence between the DC bus voltage Vdc measured at times t11 to t15 during charging and the output limit value LM2.
- the output limiting unit 311 sets the output limit value LM2 of the PCS2 to zero (step S02).
- the output limit value LM2 of the PCS2 becomes zero
- the PCS output power P PCS of the PCS2 becomes zero
- the DC bus voltage V dc _t13 returns (decreases) to the no-load reference voltage V 0 .
- the limit removal unit 312 After setting the output limit value LM2 of PCS2 to zero, the limit removal unit 312 gradually increases the output limit value LM2 of PCS2 (step S03).
- the limit value setting unit 313 determines whether the DC bus voltage Vdc has reached the upper limit value Vmax of the normal operation voltage range R (step S04).
- the DC bus voltage Vdc_t14 has not reached the upper limit value Vmax of the normal operation voltage range R (step S04; NO). In this case, the limit value setting unit 313 waits until the next determination timing.
- the limit value setting unit 313 stops the gradual increase of the output limit value LM2 and fixes the output limit value LM2 at its current value (step S05). Note that if the value of the DC bus voltage Vdc_t15 is within a predetermined range from the upper limit value Vmax, the limit value setting unit 313 may determine that the DC bus voltage Vdc_t15 becomes equal to the upper limit value Vmax (step S04; YES) and fix the output limit value LM2 at its current value (step S05).
- the control device 3 can continue to operate the power storage system 1 by controlling the other operating storage battery units 5 to the maximum power that can be charged and the DC bus voltage Vdc to be within the normal operation voltage range R.
- control device 3 After fixing the output limit value LM2, the control device 3 returns to step S01. In this manner, the control device 3 repeatedly performs the series of processes shown in FIG. 3 while the energy storage system 1 is operating.
- step S03 it is preferable that the limit removal unit 312 gradually increases or decreases the output limit value LM2 by setting a time constant that is sufficiently larger than that during normal voltage control.
- the limit removal unit 312 sets the time constant so that it takes X seconds for the DC bus voltage to reach the upper limit value Vmax or the lower limit value Vmin of the normal operation voltage range R after it reaches the reference voltage V0 .
- the value of X may be changed arbitrarily depending on the characteristics of the storage battery unit 5, etc.
- FIG. 7 is a flowchart illustrating an example of an update process of an output limit value of the control device according to an embodiment.
- the control device 3 may execute the process shown in FIG. 7 to update the output limit value LM2 of the PCS 2 in accordance with a command from the higher-level device 6.
- the control device 3 may notify the higher-level device 6 of an abnormality.
- the higher-level device 6 accepts an operation to specify an output limit value LM1 of the PCS2 from the manager of the power storage system 1, and transmits this output limit value LM1 to the control device 3.
- the control device 3 executes the process shown in Figure 7. Specifically, when the limit value setting unit 313 of the control device 3 receives a new output limit value LM1 from the higher-level device 6 (step S11), it determines whether the output limit value LM1 is less than or equal to the output limit value LM2 (step S12). If the output limit value LM1 is less than or equal to the output limit value LM2 (step S12; YES), the limit value setting unit 313 sets the value of the output limit value LM2 to the value of the output limit value LM1 received from the higher-level device 6 (step S13). On the other hand, if the output limit value LM1 is greater than the output limit value LM2 (step S12; NO), the limit value setting unit 313 ends the process without changing the value of the output limit value LM2.
- the control device 3 detects an abnormality in the DC bus voltage Vdc (step S01 in FIG. 3; YES), the control device 3 executes the series of processes in FIG. 3 to perform automatic control to provisionally change the output limit value LM2. Furthermore, when the control device 3 receives a new output limit value LM1 from the higher-level device 6 during normal operation (when the DC bus voltage Vdc is within the normal operation voltage range R), if the output limit value LM1 ⁇ the output limit value LM2, the control device 3 resets the output limit value LM2 according to the output limit value LM1. Thereafter, the storage system 1 continues to operate according to the output limit value LM1 specified by the higher-level device 6.
- the output limit value LM2 is reset according to the output limit value LM1 from the higher-level device 6, thereby maximizing the power that can be charged and discharged by the entire storage system 1.
- the control device 3 includes a voltage acquisition unit 310 that acquires the DC bus voltage Vdc of the DC bus 4 that connects the PCS 2 and the storage battery unit 5, an output limiting unit 311 that sets the PCS output power P, which is the power that the PCS 2 outputs to the load side, to zero when the DC bus voltage Vdc exceeds the upper threshold VUL or falls below the lower threshold VLL, and a limit release unit 312 that gradually increases or decreases the output limit value LM2 after setting the output limit value LM2 to zero.
- control device 3 when the control device 3 detects an abnormality in the DC bus voltage Vdc , it temporarily sets the output limit value LM2 of the PCS2 to zero to return the DC bus voltage Vdc to the reference voltage V0 , and then gradually increases or decreases the output limit value LM2, thereby preventing the DC bus voltage Vdc from exceeding the normal operation voltage range R and allowing operation to continue.
- control device 3 further includes a limit value setting unit 313 that stops the gradual increase or decrease of the output limit value LM2 and fixes it when the DC bus voltage Vdc becomes the upper limit value Vmax or the lower limit value Vmin of a predetermined normal operation voltage range R.
- the control device 3 can control the operating storage battery 5 units to the maximum power that can be charged/discharged and the DC bus voltage Vdc to be within the normal operation voltage range R, thereby enabling the operation of the power storage system 1 to continue.
- the limit value setting unit 313 also receives a new output limit value LM1 from the higher-level device 6, and if the new output limit value LM1 is smaller than the output limit value LM2, it overwrites the output limit value LM2 with the value of the new output limit value LM1.
- control device 3 can reset the output limit value LM2 based on the output limit value LM1 newly instructed by the higher-level device 6, thereby maximizing the amount of power that can be charged and discharged by the entire storage system 1.
- control device the power conditioner, the control method, and the program described in the above-described embodiments can be understood, for example, as follows.
- the control device 3 includes a voltage acquisition unit 310 that acquires a voltage Vdc of the DC bus 4 connecting the PCS 2 and the storage battery unit 5, an output limiting unit 311 that sets a PCS output limit value LM2 of the PCS , which is the power that the PCS 2 outputs to the load side, to zero when Vdc exceeds an upper threshold VUL or falls below a lower threshold VLL, and a limit removal unit 312 that gradually increases or decreases the output limit value LM2 after setting the output limit value LM2 to zero.
- control device 3 when the control device 3 detects an abnormality in the DC bus voltage Vdc , it temporarily sets the output limit value LM2 of the PCS2 to zero to return the DC bus voltage Vdc to the reference voltage V0 , and then gradually increases or decreases the output limit value LM2, thereby preventing the DC bus voltage Vdc from exceeding the normal operation voltage range R and allowing operation to continue.
- control device 3 further includes a limit value setting unit 313 that stops the gradual increase or decrease of the output limit value LM2 and fixes it when the voltage Vdc reaches an upper limit value Vmax or a lower limit value Vmin of a predetermined normal operation voltage range R.
- the control device 3 can continue to operate the power storage system 1 by controlling the operating storage battery 5 units to the maximum power that can be charged/discharged and the DC bus voltage Vdc to be within the normal operation voltage range R.
- the limit value setting unit 313 receives a new output limit value LM1 from the higher-level device 6, and if the new output limit value LM1 is smaller than the output limit value LM2, overwrites the output limit value LM2 with the value of the new output limit value LM1.
- control device 3 can reset the output limit value LM2 according to a command value from the higher-level device 6, thereby maximizing the amount of power that can be charged and discharged by the entire energy storage system 1.
- the PCS 2 includes a control device 3 according to any one of the first to third aspects.
- the control method includes the steps of acquiring a voltage Vdc of a DC bus 4 connecting the PCS 2 and the storage battery unit 5, setting a PCS output power P, which is power that the PCS 2 outputs to the load side, to zero when the voltage Vdc exceeds an upper threshold VUL or falls below a lower threshold VLL, and gradually increasing or decreasing the output limit value LM2 after setting the output limit value LM2 to zero.
- the program causes the control device 3 to execute the following steps: acquiring the voltage Vdc of the DC bus 4 connecting the PCS 2 and the storage battery unit 5; when the voltage Vdc exceeds an upper threshold VUL or falls below a lower threshold VLL, setting to zero an output limit value LM2 of the PCS output power P, which is the power that the PCS 2 outputs to the load side; and, after setting the output limit value LM2 to zero, gradually increasing or decreasing the output limit value LM2.
- the DC bus voltage when a drop or rise in the DC bus voltage is detected, the DC bus voltage can be prevented from exceeding the normal operating voltage range and operation can be continued.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本開示は、制御装置、パワーコンディショナ、制御方法、およびプログラムに関する。
本願は、2023年3月31日に、日本に出願された特願2023-057834号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a control device, a power conditioner, a control method, and a program.
This application claims priority based on Japanese Patent Application No. 2023-057834, filed on March 31, 2023, the contents of which are incorporated herein by reference.
近年では、再生可能エネルギーを利用した発電設備や工場などの様々な場所で蓄電システムが利用されている。蓄電システムは、蓄電池およびDC/DCコンバータを有する複数の蓄電池ユニットと、PCS(Power Conditioning System;パワーコンディショナ)と、蓄電池ユニットおよびPCSを接続するDCバスとを備える。 In recent years, energy storage systems have come to be used in a variety of locations, such as power generation facilities and factories that use renewable energy. Energy storage systems are equipped with multiple battery units, each having a storage battery and a DC/DC converter, a PCS (Power Conditioning System), and a DC bus that connects the battery units and the PCS.
また、蓄電システムは、たとえばDC/DCコンバータがトリップした場合など、蓄電池ユニット全体の総充放電可能電力が、PCSから負荷側(蓄電ユニットの放電時は電力系統、充電時は蓄電ユニット)に出力するPCS出力電力よりも小さくなると、蓄電池の過放電やDCバスの過電圧が発生してシステム停止となる。蓄電システムの運転継続のためには、DCバスの電圧が大きく低下または上昇した場合に、PCS出力電力を制限することが必要となる。たとえば特許文献1には、複数の単電池で構成される組電池(蓄電システム)で負荷を起動する際に、いずれかの単電池の過放電を検出した場合に、組電池から負荷への電力供給を制限または停止することが記載されている。 In addition, if the total chargeable/dischargeable power of the entire battery unit becomes smaller than the PCS output power output from the PCS to the load side (to the power grid when the battery unit is discharging, and to the battery unit when it is charging), for example when the DC/DC converter trips, the battery will over-discharge or the DC bus will overvoltage, causing the system to stop. In order to continue operating the battery storage system, it is necessary to limit the PCS output power when the DC bus voltage drops or rises significantly. For example, Patent Document 1 describes how, when starting a load with a battery pack (energy storage system) made up of multiple single cells, if over-discharge of any of the single cells is detected, the power supply from the battery pack to the load will be limited or stopped.
図8は、従来技術における蓄電システムの出力制限処理の一例を表す図である。
図8に示すように、従来の蓄電システムは、DCバス電圧Vdcの上昇または低下に応じて、PCS出力電力PPCSを制限するための出力制限値を変更する。出力制限値が正の値のときは蓄電池ユニットへの充電を、負の値のときは蓄電池ユニットからの放電を表す。
FIG. 8 is a diagram showing an example of an output limiting process of a power storage system according to the conventional technology.
As shown in Fig. 8, the conventional battery storage system changes the output limit value for limiting the PCS output power P PCS in response to an increase or decrease in the DC bus voltage V dc . A positive value of the output limit value indicates charging to the battery unit, and a negative value indicates discharging from the battery unit.
たとえば、蓄電池ユニットからの放電時にトリップが発生すると、蓄電池ユニットの総放電可能電力が低下し(図8のa1)、DCバス電圧Vdcが低下する(図8のa2)。このとき、蓄電システムは、時刻t91でDCバス電圧Vdc_t91の低下を検知すると、PCS出力電力PPCSを徐々に下げて(出力制限値の値を徐々に大きくして)、蓄電池ユニットからの放電を制限する(図8のa3)。そうすると、時刻t92では、PCS出力電力PPCSを蓄電池ユニットの総放電可能電力まで下げることができるので、蓄電池システムは放電電力を制限する処理を停止する。しかしながら、PCS出力電力PPCSが総放電可能電力に釣り合うまでDCバス電圧Vdcは低下し続ける。そうすると、時刻t92までDCバス電圧Vdcが低下し続けてしまい、以降、蓄電システムは、DCバス電圧を異常に低い状態(時刻t92時点におけるDCバス電圧Vdc_t92の値)のまま保持して(図8のa4)運転を継続してしまう。 For example, if a trip occurs during discharge from the storage battery unit, the total dischargeable power of the storage battery unit decreases (a1 in FIG. 8 ), and the DC bus voltage V dc decreases (a2 in FIG. 8 ). At this time, when the storage system detects a decrease in the DC bus voltage V dc _t91 at time t91, it gradually decreases the PCS output power P PCS (gradually increases the value of the output limit value) to limit the discharge from the storage battery unit (a3 in FIG. 8 ). Then, at time t92, the PCS output power P PCS can be decreased to the total dischargeable power of the storage battery unit, and the storage battery system stops the process of limiting the discharge power. However, the DC bus voltage V dc continues to decrease until the PCS output power P PCS is in balance with the total dischargeable power. Then, the DC bus voltage V dc continues to decrease until time t92, and thereafter, the storage system continues to operate while maintaining the DC bus voltage in an abnormally low state (the value of the DC bus voltage V dc _t92 at time t92) (a4 in FIG. 8 ).
同様に、蓄電池ユニットへの充電時、1つの蓄電池ユニットのDC/DCバスがトリップしたとする。そうすると、蓄電池ユニットの総充電可能電力が低下し(図8のb1)、DCバス電圧Vdcが上昇する(図8のb2)。このとき、蓄電システムは、時刻t93でDCバス電圧Vdc_t93の上昇を検知すると、PCS出力電力PPCSを徐々に下げて(出力制限値の値を徐々に小さくして)、蓄電池ユニットへの充電を制限する(図8のb3)。そうすると、時刻t94では、PCS出力電力PPCSを蓄電池ユニットの総充電可能電力まで下げることができるので、蓄電池システムは充電電力を制限する処理を停止する。しかしながら、PCS出力電力PPCSが総充電可能電力に釣り合うまでDCバス電圧Vdcは上昇し続ける。そうすると、時刻t94までDCバス電圧Vdcが上昇し続けてしまい、以降、蓄電システムは、DCバス電圧を異常に高い状態(時刻t94時点におけるDCバス電圧Vdc_t94の値)のまま保持して(図8のb4)運転を継続してしまう。 Similarly, suppose that the DC/DC bus of one of the storage battery units is tripped during charging of the storage battery units. Then, the total chargeable power of the storage battery units decreases (b1 in FIG. 8 ), and the DC bus voltage V dc increases (b2 in FIG. 8 ). At this time, when the storage system detects an increase in the DC bus voltage V dc _t93 at time t93, it gradually reduces the PCS output power P PCS (gradually reduces the value of the output limit value) to limit the charging of the storage battery units (b3 in FIG. 8 ). Then, at time t94, the PCS output power P PCS can be reduced to the total chargeable power of the storage battery units, so the storage battery system stops the process of limiting the charging power. However, the DC bus voltage V dc continues to rise until the PCS output power P PCS balances with the total chargeable power. As a result, the DC bus voltage Vdc continues to rise until time t94, and thereafter, the energy storage system continues to operate while maintaining the DC bus voltage at an abnormally high state (the value of the DC bus voltage Vdc_t94 at time t94) (b4 in FIG. 8).
本開示の目的は、DCバス電圧の低下および上昇を検出したときに、DCバス電圧が通常運転電圧範囲を超えることを抑制して運転継続することができる制御装置、パワーコンディショナ、制御方法、およびプログラムを提供することにある。 The objective of the present disclosure is to provide a control device, power conditioner, control method, and program that can prevent the DC bus voltage from exceeding the normal operating voltage range and continue operation when a drop or rise in the DC bus voltage is detected.
本開示の一態様によれば、制御装置は、パワーコンディショナ(PCS:Power Conditioning System)と蓄電池ユニットとを接続するDCバスの電圧を取得する電圧取得部と、前記電圧が上限閾値を超える場合、または下限閾値を下回る場合に、前記PCSが負荷側へ出力する電力であるPCS出力電力の出力制限値をゼロにする出力制限部と、前記出力制限値をゼロにした後、前記出力制限値を漸増または漸減させる制限解除部と、を備える。 According to one aspect of the present disclosure, the control device includes a voltage acquisition unit that acquires the voltage of a DC bus that connects a power conditioning system (PCS) and a storage battery unit, an output limiting unit that sets to zero the output limit value of the PCS output power, which is the power that the PCS outputs to the load, when the voltage exceeds an upper threshold or falls below a lower threshold, and a limit release unit that gradually increases or decreases the output limit value after setting the output limit value to zero.
本開示の一態様によれば、制御方法は、パワーコンディショナ(PCS:Power Conditioning System)と蓄電池ユニットとを接続するDCバスの電圧を取得するステップと、前記電圧が上限閾値を超える場合、または下限閾値を下回る場合に、前記PCSが負荷側へ出力する電力であるPCS出力電力の出力制限値をゼロにするステップと、前記出力制限値をゼロにした後、前記出力制限値を漸増または漸減させるステップと、を有する。 According to one aspect of the present disclosure, the control method includes the steps of acquiring the voltage of a DC bus connecting a power conditioning system (PCS) and a storage battery unit, setting to zero an output limit value of the PCS output power, which is the power output by the PCS to the load, when the voltage exceeds an upper threshold or falls below a lower threshold, and gradually increasing or decreasing the output limit value after setting the output limit value to zero.
本開示の一態様によれば、プログラムは、パワーコンディショナ(PCS:Power Conditioning System)と蓄電池ユニットとを接続するDCバスの電圧を取得するステップと、前記電圧が上限閾値を超える場合、または下限閾値を下回る場合に、前記PCSが負荷側へ出力する電力であるPCS出力電力の出力制限値をゼロにするステップと、前記出力制限値をゼロにした後、前記出力制限値を漸増または漸減させるステップと、を制御装置に実行させる。 According to one aspect of the present disclosure, the program causes the control device to execute the steps of acquiring the voltage of a DC bus connecting a power conditioning system (PCS) and a storage battery unit, setting to zero the output limit value of the PCS output power, which is the power output by the PCS to the load, when the voltage exceeds an upper threshold or falls below a lower threshold, and gradually increasing or decreasing the output limit value after setting the output limit value to zero.
上記態様によれば、DCバス電圧の低下および上昇を検出したときに、DCバス電圧が通常運転電圧範囲を超えることを抑制して運転継続することができる。 According to the above aspect, when a drop or rise in the DC bus voltage is detected, the DC bus voltage can be prevented from exceeding the normal operating voltage range and operation can be continued.
(蓄電システムの全体構成)
図1は、一実施形態に係る蓄電システムの全体構成を示す図である。
図1に示すように、蓄電システム1は、PCS(Power Conditioning System;パワーコンディショナ)2と、制御装置3と、DCバス4と、複数の蓄電池ユニット5とを備える。
(Overall configuration of the power storage system)
FIG. 1 is a diagram showing an overall configuration of a power storage system according to an embodiment.
As shown in FIG. 1 , the power storage system 1 includes a PCS (Power Conditioning System) 2 , a control device 3 , a
PCS2は、電力系統と連系するパワーコンディショナである。PCS2は、交流電力と直流電力とを変換する双方向インバータであるインバータ21を備える。PCS2は、各蓄電池ユニット5から放電される直流電力を、インバータ21により交流電力に変換して電力系統に出力する。また、PCS2は、電力系統から供給された交流電力を、インバータ21により直流電力に変換して各蓄電池ユニット5に出力する。PCS2から負荷側へ出力する電力をPCS出力電力PPCSとも記載する。PCS出力電力PPCSは、蓄電池ユニット5の放電時はPCS2から電力系統へ出力する電力であり、蓄電池ユニット5の充電時はPCS2から蓄電池ユニット5へ出力する電力である。
The PCS2 is a power conditioner connected to the power system. The PCS2 includes an
制御装置3は、PCS2が負荷側へ出力する電力(PCS出力電力PPCS)が、蓄電池ユニット5全体で充放電可能な電力(P1+P2+・・・+PN)内となるように、PCS2の出力制限値LM2を設定する。なお、制御装置3は、通常時は上位装置6からPCS2の出力制限値LM1を受信して、この出力制限値LM1に従いPCS2を制御する。制御装置3の具体的な機能構成については後述する。
The control device 3 sets an output limit value LM2 of the PCS2 so that the power (PCS output power P PCS ) output by the PCS2 to the load side is within the range of power (P 1 +P 2 + ... +P N ) that can be charged and discharged by the entire
DCバス4は、PCS2と複数の蓄電池ユニット5とを接続するためのバスである。
The
複数の蓄電池ユニット5は、DCバス4を介してPCS2に並列接続される。各蓄電池ユニット5は、DC/DCコンバータ51および蓄電池52を備える。DC/DCコンバータ51は、PCS2から供給された直流電力を所定の電圧に変換して蓄電池52を充電する。また、DC/DCコンバータ51は、蓄電池52の放電電力を所定の電圧に変換してPCS2へ供給する。
The multiple
なお、図1には、PCS2が制御装置3を内蔵する構成例が示されているが、これに限られることはない。他の実施形態では、制御装置3は、PCS2の外部に異なるハードウェアとして設けられてもよい。 Note that while FIG. 1 shows an example of a configuration in which the PCS 2 has the control device 3 built in, this is not limiting. In other embodiments, the control device 3 may be provided as separate hardware outside the PCS 2.
(制御装置の機能構成)
図2は、一実施形態に係る制御装置の機能構成を示すブロック図である。
図2に示すように、制御装置3は、プロセッサ31と、メモリ32と、ストレージ33と、通信インタフェース34とを備える。
(Functional configuration of the control device)
FIG. 2 is a block diagram illustrating a functional configuration of a control device according to an embodiment.
As shown in FIG. 2 , the control device 3 includes a
プロセッサ31は、所定のプログラムに従って動作することにより、電圧取得部310、出力制限部311、制限解除部312、制限値設定部313としての機能を発揮する。
The
電圧取得部310は、DCバス4に設けられた電圧センサ(不図示)から、PCS2と蓄電池ユニット5とを接続するDCバス4の電圧(以下、DCバス電圧Vdcとも記載する。)を取得する。
The
出力制限部311は、DCバス電圧Vdcが上限閾値VULを超える場合、または下限閾値VLLを下回る場合に、PCS2が負荷側に出力する電力であるPCS出力電力PPCSの出力制限値LM2をゼロにする。上限閾値VULおよび下限閾値VLLの詳細については後述する。
When the DC bus voltage Vdc exceeds the upper threshold VUL or falls below the lower threshold VLL, the
制限解除部312は、出力制限値LM2をゼロにした後、出力制限値LM2を漸増、または漸減させる。
The
制限値設定部313は、DCバス電圧Vdcが予め定めた通常運転電圧範囲Rの上限値Vmaxまたは下限値Vminとなった場合に、出力制限値LM2を現在の値で固定する。また、制限値設定部313は、上位装置6からPCS出力電力PPCSの出力制限値LM1を受信した場合に、出力制限値LM1≦出力制限値LM2であれば、出力制限値LM2を出力制限値LM1の値で上書きする。通常運転電圧範囲Rの詳細については後述する。
The limit
なお、プロセッサ31が実行する所定のプログラムは、コンピュータ読み取り可能な記録媒体に記憶される。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。さらに、このプログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The predetermined program executed by the
メモリ32は、プロセッサ31の動作に必要なメモリ領域を有する。
ストレージ33は、いわゆる補助記憶装置であって、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等である。ストレージ33には、プロセッサ31の各部が処理中に取得、生成、参照するデータが格納される。
通信インタフェース34は、PCS2や上位装置6などとの間で各種データや制御信号などの送受信を行うためのインタフェースである。
The
(DCバス電圧の上限閾値および下限閾値について)
図3は、一実施形態に係るDCバス電圧の上限閾値および下限閾値を説明するための図である。
図3は、DCバス電圧Vdcの上限閾値VUL、下限閾値VLL、通常運転電圧範囲Rの一例を表したものである。
(Regarding the upper and lower thresholds of the DC bus voltage)
FIG. 3 is a diagram illustrating upper and lower thresholds for the DC bus voltage according to one embodiment.
FIG. 3 shows an example of an upper threshold VUL, a lower threshold VLL, and a normal operation voltage range R of the DC bus voltage Vdc .
各蓄電池ユニット5の無負荷時(充放電を行っていないとき)のDCバス電圧を基準電圧V0とする。
The DC bus voltage of each
通常運転電圧範囲Rは、基準電圧V0を中心とした蓄電池ユニット5の通常運転時のドループによる電圧変動範囲である。通常運転電圧範囲の上限値をVmax、下限値をVminとも記載する。
The normal operation voltage range R is a voltage fluctuation range caused by droop during normal operation of the
上限閾値VULおよび下限閾値VLLは、DCバス4の電圧の異常を検出するための閾値である。電圧制御時のオーバーシュートや共振などによる過渡電圧変動や、電圧センサの誤差などを考慮して、上限閾値VULは通常運転電圧範囲の上限値Vmaxよりも所定量α分、大きい値が設定される。同様に、下限閾値VLLは通常運転電圧範囲の下限値Vminよりも所定量α分、小さい値が設定される。この所定量αは、蓄電池ユニット5の特性などに応じて任意に変更してよい。
The upper threshold VUL and the lower threshold VLL are thresholds for detecting an abnormality in the voltage of the
(制御装置の処理フロー)
図4は、一実施形態に係る制御装置の出力制御処理の一例を示すフローチャートである。図5は、一実施形態に係る出力制御処理を説明するための第1の図である。図6は、一実施形態に係る出力制御処理を説明するための第2の図である。
以下、図4~図6を参照しながら、制御装置3のDCバス電圧の変動にともなう出力制御処理の流れについて説明する。
(Processing flow of the control device)
Fig. 4 is a flowchart showing an example of an output control process of the control device according to an embodiment. Fig. 5 is a first diagram for explaining the output control process according to an embodiment. Fig. 6 is a second diagram for explaining the output control process according to an embodiment.
Hereinafter, the flow of the output control process of the control device 3 in response to fluctuations in the DC bus voltage will be described with reference to FIGS.
図3の一連の処理を実施中、電圧取得部310は、各時刻のDCバス電圧Vdcを取得する。出力制限部311は、電圧取得部310が取得したDCバス電圧Vdcが上限閾値VULを超えたか、または下限閾値VLLを下回ったか判定する(ステップS01)。
3, the
蓄電池ユニット5の充電時、出力制限部311は、DCバス電圧Vdcが上限閾値VULを超えていない場合(ステップS01;NO)、ステップS01に戻り、DCバス4の監視を継続する。また、蓄電池ユニット5の放電時、出力制限部311は、DCバス電圧Vdcが下限閾値VLLを下回っていない場合(ステップS01;NO)、ステップS01に戻り、DCバス4の監視を継続する。
When the
一方、出力制限部311は、DCバス電圧Vdcが上限閾値VULを超えた場合、または、下限閾値VLLを下回った場合(ステップS01;YES)、PCS2の出力制御処理を実行する。
On the other hand, when the DC bus voltage Vdc exceeds the upper threshold VUL or falls below the lower threshold VLL (step S01; YES), the
まず、蓄電システム1の放電時における出力制御処理について説明する。図5は、たとえば蓄電システム1が有する3台の蓄電池ユニット5_1,5_2,5_3のうち、蓄電池ユニット5_2の放電時のPCS出力電力PPCSおよびDCバス電圧Vdcの時系列を例示したものである。また、図6は、図5の各時刻t01~t05に計測した蓄電池ユニット5_2のDCバス電圧Vdcと、出力制限値LM2との対応を例示したものである。 First, an explanation will be given of the output control process during discharge of the power storage system 1. Fig. 5 illustrates a time series of the PCS output power P PCS and the DC bus voltage V dc during discharge of the storage battery unit 5_2 among the three storage battery units 5_1, 5_2, and 5_3 included in the power storage system 1. Fig. 6 illustrates the correspondence between the DC bus voltage V dc of the storage battery unit 5_2 measured at each time t01 to t05 in Fig. 5 and the output limit value LM2.
図5の例では、蓄電池ユニット5_2は、時刻t01にトリップが発生した。そうすると、蓄電池ユニット5全体が放電可能な電力は、時刻t01より前ではP1+P2+P3であるが、時刻t01以降はP1+P3に低下する。また、このとき、PCS2は蓄電池ユニット5_2のトリップ発生を知ることができない。このため、時刻t01の時点ではPCS出力電力PPCSは変化しない。したがって、時刻t01以降では、PCS出力電力PPCS>蓄電池ユニット5全体の放電可能電力P1+P3となり、図5の例のように、DCバス電圧Vdcが時間とともに低下していく。
In the example of Fig. 5, a trip occurs in the storage battery unit 5_2 at time t01. In this case, the power that can be discharged by the entire
ここで、比較例として、本実施形態の出力制御処理が行われない場合について説明する。運転継続中の蓄電池ユニット5_1,5_3のうち、蓄電池ユニット5_1の電圧VBAT1が最も高いとすると、VBAT1はVdcと近似的に等しくなる。この場合、蓄電池ユニット5_1のDC/DCコンバータ51の制御によらず、不足負荷分を蓄電池ユニット5_1が補うこととなる。そうすると、蓄電池ユニット5_1は過放電となる可能性がある。
Here, as a comparative example, a case where the output control process of this embodiment is not performed will be described. If the voltage V BAT1 of the storage battery unit 5_1 is the highest among the storage battery units 5_1 and 5_3 that are still in operation, V BAT1 will be approximately equal to V DC . In this case, the storage battery unit 5_1 will compensate for the insufficient load without relying on the control of the DC/
このような蓄電池ユニット5_1の過放電を抑制するため、本実施形態に係る制御装置3は、以下に説明するような出力制御処理を実行する。 To prevent such over-discharge of the storage battery unit 5_1, the control device 3 according to this embodiment executes the output control process described below.
図5および図6の例では、トリップが発生した時刻t01以降、DCバス電圧Vdcは時間とともに低下していき、時刻t02でDCバス電圧Vdc_t02が下限閾値VLLを下回る(ステップS01;YES)。そうすると、出力制限部311は、PSC2の出力制限値LM2をゼロにする(ステップS02)。PCS2の出力制限値LM2がゼロになると、時刻t03において、PCS2のPCS出力電力PPCSはゼロとなり、DCバス電圧Vdc_t03は無負荷時の基準電圧V0に復帰(上昇)する。
5 and 6, after the trip occurs at time t01, the DC bus voltage Vdc decreases over time, and at time t02, the DC bus voltage Vdc_t02 falls below the lower limit threshold VLL (step S01; YES). Then, the
PCS2の出力制限値LM2をゼロにした後、制限解除部312は、PCS2の出力制限値LM2を漸減する(ステップS03)。
After setting the output limit value LM2 of PCS2 to zero, the
次に、制限値設定部313は、DCバス電圧Vdcが通常運転電圧範囲Rの下限値Vminとなったか判定する(ステップS04)。
Next, the limit
図5および図6の時刻t04では、DCバス電圧Vdc_t04は通常運転電圧範囲Rの下限値Vminに達していない(ステップS04;NO)。この場合、制限値設定部313は、次の判定タイミングまで待機する。
5 and 6, the DC bus voltage Vdc_t04 has not reached the lower limit value Vmin of the normal operation voltage range R (step S04; NO). In this case, the limit
また、図5および図6の時刻t05では、DCバス電圧Vdc_t05=下限値Vminとなる(ステップS04;YES)。この場合、制限値設定部313は、出力制限値LM2の漸減を停止し、出力制限値LM2を現在の値で固定する(ステップS05)。なお、制限値設定部313は、DCバス電圧Vdc_t05の値が下限値Vminから所定範囲内であれば、DCバス電圧Vdc_t05=下限値Vminとなったと判定し(ステップS04;YES)、出力制限値LM2を現在の値で固定してもよい(ステップS05)。
5 and 6, the DC bus voltage Vdc_t05 becomes equal to the lower limit Vmin (step S04; YES). In this case, the limit
DCバス電圧Vdcが通常運転電圧範囲Rの下限値Vminとなったとき、図6の例のように、PCS2の出力電力PPCSは、蓄電池ユニット5全体から放電可能な最大電力と略一致する。したがって、制御装置3は、放電時に蓄電池ユニット5_2がトリップしたとしても、稼働している他の蓄電池5ユニットが放電可能な最大電力で、かつ、DCバス電圧Vdcが通常運転電圧範囲R内となるように制御して、蓄電システム1の運転を継続することができる。
6 , when the DC bus voltage Vdc reaches the lower limit Vmin of the normal operation voltage range R, the output power P PCS of the PCS2 approximately matches the maximum power that can be discharged from all of the
また、蓄電システム1の充電時における出力制御について、図6を参照しながら説明する。図6には、充電時の時刻t11~t15に計測したDCバス電圧Vdcと、出力制限値LM2との対応が例示されている。 Moreover, output control during charging of the power storage system 1 will be described with reference to Fig. 6. Fig. 6 illustrates an example of the correspondence between the DC bus voltage Vdc measured at times t11 to t15 during charging and the output limit value LM2.
たとえば、時刻t11に蓄電池ユニット5_2がトリップしたとする。そうすると、時刻t11の時点では、PCS2の出力制限値LM2およびPCS出力電力PPCSは変化しないが、DCバス電圧Vdcは時間とともに上昇し、時刻t12の時点で上限閾値VULを超える(ステップS01;YES)。 For example, assume that the storage battery unit 5_2 trips at time t11. In this case, the output limit value LM2 of the PCS2 and the PCS output power P PCS do not change at the time t11, but the DC bus voltage Vdc increases over time and exceeds the upper limit threshold VUL at the time t12 (step S01; YES).
そうすると、出力制限部311は、PSC2の出力制限値LM2をゼロにする(ステップS02)。PCS2の出力制限値LM2がゼロになると、時刻t13において、PCS2のPCS出力電力PPCSはゼロとなり、DCバス電圧Vdc_t13は無負荷時の基準電圧V0に復帰(低下)する。
Then, the
PCS2の出力制限値LM2をゼロにした後、制限解除部312は、PCS2の出力制限値LM2を漸増する(ステップS03)。
After setting the output limit value LM2 of PCS2 to zero, the
次に、制限値設定部313は、DCバス電圧Vdcが通常運転電圧範囲Rの上限値Vmaxとなったか判定する(ステップS04)。
Next, the limit
図6の時刻t14では、DCバス電圧Vdc_t14は通常運転電圧範囲Rの上限値Vmaxに達していない(ステップS04;NO)。この場合、制限値設定部313は、次の判定タイミングまで待機する。
6, the DC bus voltage Vdc_t14 has not reached the upper limit value Vmax of the normal operation voltage range R (step S04; NO). In this case, the limit
また、図6の時刻t15では、DCバス電圧Vdc_t15=上限値Vmaxとなる(ステップS04;YES)。この場合、制限値設定部313は、出力制限値LM2の漸増を停止し、出力制限値LM2を現在の値で固定する(ステップS05)。なお、制限値設定部313は、DCバス電圧Vdc_t15の値が上限値Vmaxから所定範囲内であれば、DCバス電圧Vdc_t15=上限値Vmaxとなったと判定し(ステップS04;YES)、出力制限値LM2を現在の値で固定してもよい(ステップS05)。
6, the DC bus voltage Vdc_t15 becomes equal to the upper limit value Vmax (step S04; YES). In this case, the limit
DCバス電圧Vdcが通常運転電圧範囲Rの上限値Vmaxとなったとき、図6の例のように、PCS2の出力電力PPCSは、蓄電池ユニット5全体へ充電可能な最大電力と略一致する。したがって、制御装置3は、充電時に蓄電池ユニット5_2がトリップしたとしても、稼働している他の蓄電池5ユニットが充電可能な最大電力で、かつ、DCバス電圧Vdcが通常運転電圧範囲R内となるように制御して、蓄電システム1の運転を継続することができる。
6 , when the DC bus voltage Vdc reaches the upper limit Vmax of the normal operation voltage range R, the output power P PCS of the PCS2 approximately coincides with the maximum power that can be charged to all of the
出力制限値LM2を固定した後、制御装置3は、ステップS01に戻る。制御装置3は、このようにして蓄電システム1の運転中、図3の一連の処理を繰り返し実施する。 After fixing the output limit value LM2, the control device 3 returns to step S01. In this manner, the control device 3 repeatedly performs the series of processes shown in FIG. 3 while the energy storage system 1 is operating.
なお、ステップS03において、制限解除部312は、通常の電圧制御時よりも十分に大きい時定数を設定して、出力制限値LM2を漸増または漸減させることが望ましい。たとえば、制限解除部312は、DCバス電圧が基準電圧V0になってから通常運転電圧範囲Rの上限値Vmaxまたは下限値Vminに到達するまでにかかる時間がX秒となるように時定数を設定する。Xの値は、蓄電池ユニット5の特性などに応じて任意に変更してよい。
In step S03, it is preferable that the
図7は、一実施形態に係る制御装置の出力制限値の更新処理の一例を示すフローチャートである。
制御装置3は、図7に示す処理を実行して、上位装置6の指令に従ってPCS2の出力制限値LM2を更新してもよい。
FIG. 7 is a flowchart illustrating an example of an update process of an output limit value of the control device according to an embodiment.
The control device 3 may execute the process shown in FIG. 7 to update the output limit value LM2 of the
たとえば、制御装置3は、図3のステップS01においてDCバス電圧Vdcが上限閾値VULを超えたこと、または下限閾値VLLを下回ったことを検知すると、上位装置6に異常通知を行うようにしてもよい。また、上位装置6は、蓄電システム1の管理者からPCS2の出力制限値LM1を指定する操作を受け付けて、制御装置3へこの出力制限値LM1を送信する。
3 that the DC bus voltage Vdc has exceeded the upper threshold VUL or fallen below the lower threshold VLL, the control device 3 may notify the higher-
そうすると、制御装置3は図7に示す処理を実行する。具体的には、制御装置3の制限値設定部313は、上位装置6から新たな出力制限値LM1を受信すると(ステップS11)、出力制限値LM1が出力制限値LM2以下であるか判断する(ステップS12)。制限値設定部313は、出力制限値LM1≦出力制限値LM2である場合(ステップS12;YES)、出力制限値LM2の値を、上位装置6から受信した出力制限値LM1の値とする(ステップS13)。一方、制限値設定部313は、出力制限値LM1>出力制限値LM2である場合(ステップS12;NO)、出力制限値LM2の値を変更しないで処理を終了する。
Then, the control device 3 executes the process shown in Figure 7. Specifically, when the limit
つまり、制御装置3は、DCバス電圧Vdcの異常を検出したとき(図3のステップS01;YES)は、図3の一連の処理を実行して、出力制限値LM2を暫定的に変更する自動制御を行う。また、制御装置3は、通常時(DCバス電圧Vdcが通常運転電圧範囲R内であるとき)、上位装置6から新たな出力制限値LM1を受信した場合には、出力制限値LM1≦出力制限値LM2であれば、出力制限値LM1に従って出力制限値LM2を設定しなおす。以降、蓄電システム1は、上位装置6から指定された出力制限値LM1に沿って運転を継続する。たとえば蓄電池ユニット5_2を修理、交換して運転可能となった後、上位装置6からの出力制限値LM1によって出力制限値LM2を設定しなおすことで、蓄電システム1全体で充放電可能な電力を最大化することが可能となる。
That is, when the control device 3 detects an abnormality in the DC bus voltage Vdc (step S01 in FIG. 3; YES), the control device 3 executes the series of processes in FIG. 3 to perform automatic control to provisionally change the output limit value LM2. Furthermore, when the control device 3 receives a new output limit value LM1 from the higher-
(作用、効果)
以上のように、本実施形態に係る制御装置3は、PCS2と蓄電池ユニット5とを接続するDCバス4のDCバス電圧Vdcを取得する電圧取得部310と、DCバス電圧Vdcが上限閾値VULを超える場合、または下限閾値VLLを下回る場合に、PCS2が負荷側へ出力する電力であるPCS出力電力PPCSの出力制限値LM2をゼロにする出力制限部311と、出力制限値LM2をゼロにした後、出力制限値LM2を漸増または漸減させる制限解除部312と、を備える。
(Action, Effect)
As described above, the control device 3 according to this embodiment includes a voltage acquisition unit 310 that acquires the DC bus voltage Vdc of the
このようにすることで、制御装置3は、DCバス電圧Vdcの異常を検出したときには、一旦PCS2の出力制限値LM2をゼロにしてDCバス電圧Vdcを基準電圧V0まで戻してから、出力制限値LM2を徐々に増加または減少させることにより、DCバス電圧Vdcが通常運転電圧範囲Rを超えることを抑制して運転継続することができる。 In this manner, when the control device 3 detects an abnormality in the DC bus voltage Vdc , it temporarily sets the output limit value LM2 of the PCS2 to zero to return the DC bus voltage Vdc to the reference voltage V0 , and then gradually increases or decreases the output limit value LM2, thereby preventing the DC bus voltage Vdc from exceeding the normal operation voltage range R and allowing operation to continue.
また、制御装置3は、DCバス電圧Vdcが予め定めた通常運転電圧範囲Rの上限値Vmaxまたは下限値Vminとなった場合に、出力制限値LM2の漸増または漸減を止めて固定する制限値設定部313をさらに備える。
In addition, the control device 3 further includes a limit
DCバス電圧Vdcが通常運転電圧範囲Rの上限値Vmaxまたは下限値Vminと略一致するとき、PCS2の出力電力PPCSは、蓄電池ユニット5全体から充放電可能な最大電力と略一致する。したがって、制御装置3は、上記した構成を有していることにより、蓄電池ユニット5の一部に異常(トリップなど)が発生したとしても、稼働している蓄電池5ユニットが充放電可能な最大電力で、かつ、DCバス電圧Vdcが通常運転電圧範囲R内となるように制御して、蓄電システム1の運転を継続することができる。
When the DC bus voltage Vdc substantially coincides with the upper limit value Vmax or the lower limit value Vmin of the normal operation voltage range R, the output power P PCS of the
また、制限値設定部313は、上位装置6から新たな出力制限値LM1を受信し、出力制限値LM2よりも新たな出力制限値LM1の方が小さい場合に、出力制限値LM2を新たな出力制限値LM1の値で上書きする。
The limit
このようにすることで、制御装置3は、たとえば蓄電池ユニット5を修理、交換して再度、運転可能となった後、上位装置6から新たに指示された出力制限値LM1によって出力制限値LM2を設定しなおすことで、蓄電システム1全体で充放電可能な電力を最大化することが可能となる。
In this way, for example, after the
以上のとおり、本開示に係る実施形態を説明したが、上記した実施形態は例として提示したものであり、本開示の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、本開示の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、本開示の範囲や要旨に含まれると同様に、特許請求の範囲に記載された本開示とその均等の範囲に含まれる。 As described above, the embodiments of the present disclosure have been described, but the above-mentioned embodiments are presented as examples and are not intended to limit the scope of the present disclosure. These embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the present disclosure. These embodiments and their modifications are included in the scope of the present disclosure and its equivalents as set forth in the claims, as well as in the scope and gist of the present disclosure.
<付記>
上述の実施形態に記載の制御装置、パワーコンディショナ、制御方法、およびプログラムは、例えば以下のように把握される。
<Additional Notes>
The control device, the power conditioner, the control method, and the program described in the above-described embodiments can be understood, for example, as follows.
(1)本開示の第1の態様によれば、制御装置3は、PCS2と蓄電池ユニット5とを接続するDCバス4の電圧Vdcを取得する電圧取得部310と、Vdcが上限閾値VULを超える場合、または下限閾値VLLを下回る場合に、PCS2が負荷側へ出力する電力であるPCS出力電力PPCSの出力制限値LM2をゼロにする出力制限部311と、出力制限値LM2をゼロにした後、出力制限値LM2を漸増または漸減させる制限解除部312と、を備える。
(1) According to a first aspect of the present disclosure, the control device 3 includes a
このようにすることで、制御装置3は、DCバス電圧Vdcの異常を検出したときには、一旦PCS2の出力制限値LM2をゼロにしてDCバス電圧Vdcを基準電圧V0まで戻してから、出力制限値LM2を徐々に増加または減少させることにより、DCバス電圧Vdcが通常運転電圧範囲Rを超えることを抑制して運転継続することができる。 In this manner, when the control device 3 detects an abnormality in the DC bus voltage Vdc , it temporarily sets the output limit value LM2 of the PCS2 to zero to return the DC bus voltage Vdc to the reference voltage V0 , and then gradually increases or decreases the output limit value LM2, thereby preventing the DC bus voltage Vdc from exceeding the normal operation voltage range R and allowing operation to continue.
(2)本開示の第2の態様によれば、第1の態様に係る制御装置3は、電圧Vdcが予め定めた通常運転電圧範囲Rの上限値Vmaxまたは下限値Vminとなった場合に、出力制限値LM2の漸増または漸減を止めて固定する制限値設定部313をさらに備える。
(2) According to a second aspect of the present disclosure, the control device 3 according to the first aspect further includes a limit
DCバス電圧Vdcが通常運転電圧範囲Rの上限値Vmaxまたは下限値Vminと略一致するとき、PCS2の出力電力PPCSは、蓄電池ユニット5全体から充放電可能な最大電力と略一致する。したがって、制御装置3は、上記した構成を有していることにより、たとえば蓄電池ユニット5の一部がトリップしたとしても、稼働している蓄電池5ユニットが充放電可能な最大電力で、かつ、DCバス電圧Vdcが通常運転電圧範囲R内となるように制御して、蓄電システム1の運転を継続することができる。
When the DC bus voltage Vdc substantially coincides with the upper limit value Vmax or the lower limit value Vmin of the normal operation voltage range R, the output power P PCS of the
(3)本開示の第3の態様によれば、第2の態様に係る制御装置3において、制限値設定部313は、上位装置6から新たな出力制限値LM1を受信し、出力制限値LM2よりも新たな出力制限値LM1の方が小さい場合に、出力制限値LM2を新たな出力制限値LM1の値で上書きする。
(3) According to a third aspect of the present disclosure, in the control device 3 according to the second aspect, the limit
このようにすることで、制御装置3は、たとえば蓄電池ユニット5を修理、交換して再度、運転可能となった後、上位装置6からの指令値によって出力制限値LM2を設定しなおすことで、蓄電システム1全体で充放電可能な電力を最大化することが可能となる。
In this way, for example, after the
(4)本開示の第4の態様によれば、PCS2は、第1から第3のいずれか一の態様に係る制御装置3を備える。
(4) According to a fourth aspect of the present disclosure, the
(5)本開示の第5の態様によれば、制御方法は、PCS2と蓄電池ユニット5とを接続するDCバス4の電圧Vdcを取得するステップと、電圧Vdcが上限閾値VULを超える場合、または下限閾値VLLを下回る場合に、PCS2が負荷側へ出力する電力であるPCS出力電力PPCSの出力制限値LM2をゼロにするステップと、出力制限値LM2をゼロにした後、出力制限値LM2を漸増または漸減させるステップと、を有する。
(5) According to a fifth aspect of the present disclosure, the control method includes the steps of acquiring a voltage Vdc of a
(6)本開示の第6の態様によれば、プログラムは、PCS2と蓄電池ユニット5とを接続するDCバス4の電圧Vdcを取得するステップと、電圧Vdcが上限閾値VULを超える場合、または下限閾値VLLを下回る場合に、PCS2が負荷側へ出力する電力であるPCS出力電力PPCSの出力制限値LM2をゼロにするステップと、出力制限値LM2をゼロにした後、出力制限値LM2を漸増または漸減させるステップと、を制御装置3に実行させる。
(6) According to a sixth aspect of the present disclosure, the program causes the control device 3 to execute the following steps: acquiring the voltage Vdc of the
上述した一態様によれば、DCバス電圧の低下および上昇を検出したときに、DCバス電圧が通常運転電圧範囲を超えることを抑制して運転継続することができる。 According to the above-mentioned embodiment, when a drop or rise in the DC bus voltage is detected, the DC bus voltage can be prevented from exceeding the normal operating voltage range and operation can be continued.
1 蓄電システム
2 PCS
21 インバータ
3 制御装置
31 プロセッサ
310 電圧取得部
311 出力制限部
312 制限解除部
313 制限値設定部
32 メモリ
33 ストレージ
34 通信インタフェース
4 DCバス
5 蓄電池ユニット
51 DC/DCコンバータ
52 蓄電池
6 上位装置
1
Claims (6)
前記電圧が上限閾値を超える場合、または下限閾値を下回る場合に、前記パワーコンディショナが負荷側へ出力する電力であるPCS出力電力の出力制限値をゼロにする出力制限部と、
前記出力制限値をゼロにした後、前記出力制限値を漸増または漸減させる制限解除部と、
を備える制御装置。 A voltage acquisition unit that acquires a voltage of a DC bus that connects a power conditioner (PCS) and the storage battery unit;
An output limiting unit that sets an output limit value of a PCS output power, which is power output by the power conditioner to a load side, to zero when the voltage exceeds an upper threshold or falls below a lower threshold;
a limit release unit that gradually increases or decreases the output limit value after setting the output limit value to zero;
A control device comprising:
請求項1に記載の制御装置。 A limit value setting unit that stops the gradual increase or decrease of the output limit value and fixes it when the voltage reaches an upper limit value or a lower limit value of a predetermined normal operation voltage range.
The control device according to claim 1 .
請求項2に記載の制御装置。 the limit value setting unit receives a new output limit value from a higher-level device, and if the new output limit value is smaller than the output limit value, overwrites the output limit value with the new output limit value.
The control device according to claim 2.
前記電圧が上限閾値を超える場合、または下限閾値を下回る場合に、前記パワーコンディショナが負荷側へ出力する電力であるPCS出力電力の出力制限値をゼロにするステップと、
前記出力制限値をゼロにした後、前記出力制限値を漸増または漸減させるステップと、
を有する制御方法。 Acquiring a voltage of a DC bus connecting a power conditioner (PCS) and a storage battery unit;
When the voltage exceeds an upper threshold or falls below a lower threshold, setting an output limit value of a PCS output power, which is the power output by the power conditioner to a load side, to zero;
setting the output limit value to zero and then gradually increasing or decreasing the output limit value;
The control method includes:
前記電圧が上限閾値を超える場合、または下限閾値を下回る場合に、前記パワーコンディショナが負荷側へ出力する電力であるPCS出力電力の出力制限値をゼロにするステップと、
前記出力制限値をゼロにした後、前記出力制限値を漸増または漸減させるステップと、
を制御装置に実行させるプログラム。 Acquiring a voltage of a DC bus connecting a power conditioner (PCS) and a storage battery unit;
When the voltage exceeds an upper threshold or falls below a lower threshold, setting an output limit value of a PCS output power, which is the power output by the power conditioner to a load side, to zero;
setting the output limit value to zero and then gradually increasing or decreasing the output limit value;
A program that causes a control device to execute the above.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-057834 | 2023-03-31 | ||
JP2023057834A JP2024145469A (en) | 2023-03-31 | 2023-03-31 | CONTROL DEVICE, POWER CONDITIONER, CONTROL METHOD, AND PROGRAM |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024202142A1 true WO2024202142A1 (en) | 2024-10-03 |
Family
ID=92903751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/036062 WO2024202142A1 (en) | 2023-03-31 | 2023-10-03 | Control apparatus, power conditioner, control method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024145469A (en) |
WO (1) | WO2024202142A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009033840A (en) * | 2007-07-26 | 2009-02-12 | Ntt Facilities Inc | Power supply system and control method for power supply system |
JP2019118212A (en) * | 2017-12-27 | 2019-07-18 | パナソニックIpマネジメント株式会社 | Control command system and power conversion device |
WO2019163729A1 (en) * | 2018-02-23 | 2019-08-29 | 三菱電機株式会社 | Motor drive apparatus and motor drive system |
JP2021044972A (en) * | 2019-09-12 | 2021-03-18 | 三菱電機株式会社 | Energy management system, charging system and charge/discharge management method |
-
2023
- 2023-03-31 JP JP2023057834A patent/JP2024145469A/en active Pending
- 2023-10-03 WO PCT/JP2023/036062 patent/WO2024202142A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009033840A (en) * | 2007-07-26 | 2009-02-12 | Ntt Facilities Inc | Power supply system and control method for power supply system |
JP2019118212A (en) * | 2017-12-27 | 2019-07-18 | パナソニックIpマネジメント株式会社 | Control command system and power conversion device |
WO2019163729A1 (en) * | 2018-02-23 | 2019-08-29 | 三菱電機株式会社 | Motor drive apparatus and motor drive system |
JP2021044972A (en) * | 2019-09-12 | 2021-03-18 | 三菱電機株式会社 | Energy management system, charging system and charge/discharge management method |
Also Published As
Publication number | Publication date |
---|---|
JP2024145469A (en) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7169497B2 (en) | battery management device | |
US8390258B2 (en) | Discharger and discharger control method including a manual switch to provide power to a control means from an input of the discharger | |
JP2022503514A (en) | Battery management device | |
US12088103B2 (en) | Direct current distribution based charging/discharging system for battery formation | |
TWI857977B (en) | Power storage system | |
US7449864B2 (en) | Apparatus and method for controlling battery discharge between internal battery and external battery | |
JP4485489B2 (en) | DC power supply system and test method thereof, and program for executing DC power supply system test method | |
JPH1155866A (en) | Battery charger | |
WO2024202142A1 (en) | Control apparatus, power conditioner, control method, and program | |
US11462927B2 (en) | Method, rated voltage adjusting device, and electric storage device | |
US20230071916A1 (en) | Energy storage system including newly installed battery racks and method for controlling the same | |
CN116365652A (en) | Battery pack control method, battery pack and energy storage device | |
JP2019198169A (en) | Method for controlling nickel zinc battery | |
US11670958B2 (en) | Electrical apparatus, power supply system and method of manufacturing the electrical apparatus | |
JP2022098137A (en) | Uninterruptible power supply apparatus, computer program and control method | |
JP7556250B2 (en) | Power generation system, control method and program | |
JP7556249B2 (en) | Power generation system, control method and program | |
JP2006338995A (en) | Capacity adjustment device of battery pack and capacity adjustment method of battery pack | |
JP2024145473A (en) | CONTROL DEVICE FOR ELECTRICITY STORAGE SYSTEM, ... CONTROL METHOD FOR ELECTRICITY STORAGE SYSTEM, AND PROGRAM | |
US20240047978A1 (en) | Power storage system | |
JP7616187B2 (en) | Energy Storage System | |
US20240313537A1 (en) | Control device and control method | |
US20240166086A1 (en) | Method and system for controlling battery of vehicle, and vehicle thereof | |
JP2001286076A (en) | Control method of system stabilization device | |
CN116826910A (en) | Charge-discharge control method, temperature control device, and readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23930773 Country of ref document: EP Kind code of ref document: A1 |