[go: up one dir, main page]

WO2024201639A1 - Piezoelectric element, ultrasonic transducer, and method of manufacturing same - Google Patents

Piezoelectric element, ultrasonic transducer, and method of manufacturing same Download PDF

Info

Publication number
WO2024201639A1
WO2024201639A1 PCT/JP2023/012118 JP2023012118W WO2024201639A1 WO 2024201639 A1 WO2024201639 A1 WO 2024201639A1 JP 2023012118 W JP2023012118 W JP 2023012118W WO 2024201639 A1 WO2024201639 A1 WO 2024201639A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
electrode
piezoelectric element
electrode terminal
opening
Prior art date
Application number
PCT/JP2023/012118
Other languages
French (fr)
Japanese (ja)
Inventor
佑夢哉 宇野
知 高杉
Original Assignee
サンコール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社 filed Critical サンコール株式会社
Priority to JP2025507766A priority Critical patent/JP7671420B2/en
Priority to PCT/JP2023/012118 priority patent/WO2024201639A1/en
Publication of WO2024201639A1 publication Critical patent/WO2024201639A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Definitions

  • the present invention relates to a piezoelectric element, an ultrasonic transducer including a piezoelectric element and a wiring body having first and second wiring electrically connected to the external electrode and internal electrode of the piezoelectric element, respectively, and a method for manufacturing an ultrasonic transducer.
  • a piezoelectric element As a laminated piezoelectric element, a piezoelectric element has been proposed that includes a piezoelectric element body formed from a piezoelectric material, an upper electrode and a lower electrode provided on the upper end surface and the lower end surface, respectively, an internal electrode that divides the piezoelectric element body into a first piezoelectric portion on the upper side and a second piezoelectric portion on the lower side in the thickness direction, a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end electrically connected to the lower electrode and a tip end with a lower electrode side gap between it and the upper electrode to form a lower electrode terminal, and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end electrically connected to the internal electrode and a tip end with an internal electrode side gap between it and the upper electrode to form an internal electrode terminal (see Patent Document 1 below).
  • the laminated piezoelectric element having such a configuration is useful in that it is possible to electrically connect the corresponding wiring from the upper end surface on one side in the thickness direction to both the upper electrode and the lower electrode that form the external electrode, as well as to all of the internal electrodes.
  • the first wiring can be electrically connected to both the upper electrode and the lower electrode on the upper end surface of the piezoelectric element, and further by providing a second conductive adhesive on the internal electrode terminal and bonding a second wiring that corresponds to the second conductive adhesive, the second wiring can be electrically connected to the internal electrode on the upper end surface of the piezoelectric element.
  • the piezoelectric element converts the voltage applied between the external electrode and the internal electrode into bending vibration, or converts the propagated vibration into a voltage between the first and second electrodes.
  • it is necessary to enlarge as much as possible the opposing area between the upper electrode and the internal electrode, and the opposing area between the internal electrode and the lower electrode.
  • the increase in the area of the top electrode leads to a narrowing of the gap on the internal electrode side, and the risk of the second conductive adhesive coming into contact with the top electrode increases due to variations in the amount of the second conductive adhesive applied to the internal electrode terminal and variations in the application position. This leads to a decrease in yield due to a short circuit between the external electrode (the upper electrode) and the internal electrode, or a decrease in the efficiency of the application work of the second conductive adhesive.
  • narrowing the gap on the internal electrode side may cause ion migration and lead to short circuit failures under environmental conditions in which the piezoelectric element is used, such as high temperature and humidity, even if the second conductive adhesive does not come into contact with the upper electrode during application of the second conductive adhesive.
  • the present invention has been made in consideration of such conventional technology, and has as its first object to provide a multi-layer piezoelectric element that can electrically connect external electrodes, including upper and lower electrodes, and internal electrodes to their corresponding wiring at the upper end surface on one side in the thickness direction, and that can effectively prevent short circuits between the external electrodes and internal electrodes while improving the conversion efficiency between voltage and flexural vibration.
  • the second object of the present invention is to provide an ultrasonic transducer equipped with a stacked piezoelectric element that can effectively prevent short circuits between the external and internal electrodes while improving the conversion efficiency between voltage and flexural vibration.
  • the third object of the present invention is to provide an efficient method for manufacturing the ultrasonic transducer.
  • a first aspect of the present invention comprises a piezoelectric element body formed of a piezoelectric material, an upper electrode and a lower electrode respectively provided on the upper end surface and the lower end surface of the piezoelectric element body to form external electrodes, an internal electrode dividing the piezoelectric element body into upper and lower parts in the thickness direction, a lower electrode connector provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower electrode and a lower electrode side gap existing between the tip end and the upper electrode to form a lower electrode terminal, and a lower electrode connector provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side with an internal electrode side gap existing between the top electrode.
  • the present invention provides a laminated piezoelectric element that includes an internal electrode connector that is provided on the upper end surface of the piezoelectric element body in a state where the internal electrode connector is present and forms an internal electrode terminal, and an insulating cover that integrally covers at least a portion of the internal electrode terminal, an internal electrode terminal facing region of the upper surface electrode that faces the internal electrode terminal through the internal electrode side gap, and an area of the internal electrode side gap that is sandwiched between the internal electrode terminal and the internal electrode terminal facing region, and the insulating cover is provided with an internal electrode opening that exposes at least a portion of the internal electrode terminal but does not expose the internal electrode terminal facing region.
  • the laminated piezoelectric element according to the first aspect of the present invention allows electrical connection between the external electrodes, including the upper and lower electrodes, and the corresponding wiring, as well as between the internal electrodes and the corresponding wiring, on the upper end surface on one side of the thickness direction of the piezoelectric element. Furthermore, it is possible to effectively prevent short circuits between the upper and internal electrodes, while improving the conversion efficiency of voltage and bending vibration by expanding the upper electrodes as much as possible.
  • the internal electrode opening may be configured to expose a region of the internal electrode side gap adjacent to an exposed region of the internal electrode terminal.
  • the internal electrode opening may be configured so as not to expose the internal electrode gap.
  • the insulating cover body is configured to integrally cover at least a portion of the lower electrode terminal, a lower electrode terminal opposing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and a region of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal opposing region.
  • the insulating cover body in addition to the internal electrode opening, is provided with an external electrode opening that integrally exposes at least a portion of the lower surface electrode terminal and at least a portion of the upper surface electrode.
  • the insulating cover body may be configured to cover the entire upper end surface of the piezoelectric element body in a plan view.
  • the insulating cover body may be configured to cover a portion of the upper end surface of the piezoelectric element body in a plan view.
  • a second aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, a lower sealing plate having a central opening of a size that surrounds all of the plurality of openings in a plan view and adhered to the upper surface of the flexible resin film so that the central opening surrounds all of the plurality of openings, a plurality of piezoelectric elements arranged on the upper surface of the flexible resin film within the central opening so as to overlap with the plurality of openings in a plan view, and
  • the piezoelectric element includes an insulating resin material that fixes the plurality of piezoelectric elements at their respective positions, and a wiring body having first and second wiring and fixed to the upper surface of the lower sealing plate, the piezoelectric element including a piezoelectric element body formed from a piezoelectric material, upper and lower electrodes that are provided on the piezoelectric element
  • the insulating resin material is interposed between the lower end surfaces of the plurality of piezoelectric elements and the flexible resin film, and is provided so as to cover the outer side and upper end surfaces of the plurality of piezoelectric elements, and a portion of the insulating resin material which covers the upper end surfaces of the piezoelectric elements to form an insulating cover body has a thickness of about 100 nm.
  • An ultrasonic transducer in which an opening for an external electrode integrally exposes at least a portion of the lower electrode and at least a portion of the upper electrode, and an opening for an internal electrode exposes at least a portion of the internal electrode terminal but does not expose the internal electrode terminal facing region, the first wiring is electrically connected to the lower electrode terminal and the upper electrode exposed by the opening for the external electrode via a first conductive bonding member, and the second wiring is electrically connected to the internal electrode terminal exposed by the opening for the internal electrode via a second conductive bonding member.
  • the insulating resin material includes a first insulating resin material that fixes the lower end surfaces of the multiple piezoelectric elements to the flexible resin film, and a second insulating resin material that covers the outer surfaces and upper end surfaces of the multiple piezoelectric elements.
  • the insulating resin material is a single material.
  • the lower sealing plate preferably has a partition wall that divides the central opening into multiple openings each large enough to surround one of the piezoelectric elements.
  • the wiring body has an insulating base layer that supports the first and second wirings, and an insulating cover layer that covers at least a portion of the first and second wirings from the side opposite the base layer, and the base layer and the cover layer have a plurality of piezoelectric element overlapping portions that are partially overlapped with each of the plurality of piezoelectric elements in a planar view, and a tip portion that holds the plurality of piezoelectric element overlapping portions together.
  • the piezoelectric element overlapping portion of the piezoelectric element side insulating layer located on the side of the base layer and the cover layer facing the piezoelectric element has an external electrode tab area that overlaps in a plan view with an area that integrally surrounds at least a part of the lower electrode terminal and at least a part of the lower electrode terminal facing area, and has an external electrode connection opening, and an internal electrode tab area that overlaps in a plan view with at least a part of the internal electrode terminal, and has an internal electrode connection opening.
  • the piezoelectric element overlapping portion of the insulating layer located on the side of the base layer and the cover layer that is spaced from the piezoelectric element may have an external electrode tab region that overlaps in a planar view with a region that integrally surrounds at least a portion of the lower electrode terminal and at least a portion of the lower electrode terminal facing region, the external electrode tab region having a first access opening, and an internal electrode tab region that overlaps in a planar view with at least a portion of the internal electrode terminal, the second tab region having a second access opening.
  • a third aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, which are adhered to the flexible resin film so that their central regions overlap with the corresponding openings in a plan view and their peripheral regions overlap with the upper surface of the substrate, and a wiring body having first and second wiring electrically connected to the external and internal electrodes of the piezoelectric elements, respectively, wherein the piezoelectric elements comprise a piezoelectric element body formed of a piezoelectric material, and upper and lower electrodes that are provided on the upper end surface and lower surface of the lower end surface of the piezoelectric element body, respectively, and form the external electrodes.
  • the method comprising the steps of: preparing a rigid plate material having the same thickness as the rigid substrate; and forming the rigid substrate by forming the plurality of openings in the rigid plate material; a flexible resin film fixing step of fixing the flexible resin film to the upper surface of the rigid substrate so as to cover a number of openings; a piezoelectric element fixing step of fixing the plurality of piezoelectric elements to the upper surface of the flexible resin film with an insulating adhesive so as to overlap the plurality of openings in a plan view; an insulating cover installation step of providing an insulating cover body on the upper
  • the electrode exposure step is preferably configured to form the internal electrode opening by irradiating a laser beam onto an area of the insulating cover body where the internal electrode opening is to be formed.
  • the insulating cover body is configured so as not to cover at least a portion of the lower electrode terminal, a lower electrode terminal facing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and a region of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal facing region.
  • the insulating cover body is configured to integrally cover at least a portion of the lower electrode terminal, a lower electrode terminal opposing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and a region of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal opposing region.
  • the electrode exposure process is configured to form, in addition to the internal electrode opening, an opening for an external electrode that integrally exposes at least a portion of the lower electrode terminal and at least a portion of the upper electrode
  • the conductive bonding material installation process is configured to provide the first conductive bonding material in the opening for the external electrode.
  • the manufacturing method according to the third aspect may further include a lower sealing plate fixing step of preparing a lower sealing plate having approximately the same thickness as the piezoelectric element and a central opening of a size that integrally surrounds the multiple openings in the rigid substrate, and fixing the lower sealing plate to the upper surface of the flexible resin film so that the central opening integrally surrounds the multiple openings in a plan view.
  • the lower sealing plate fixing process is performed at any timing after the flexible resin film fixing process and before the wiring body installation process, and the wiring body installation process is configured to place the wiring body on the lower sealing plate.
  • the manufacturing method according to the third aspect may further include an insulating resin filling step, which is performed after the lower sealing plate fixing step and the piezoelectric element fixing step and before the wiring body installation step, of filling the lateral portions of each of the plurality of piezoelectric elements with an insulating resin material in the space surrounded by the central opening of the lower sealing plate.
  • an insulating resin filling step which is performed after the lower sealing plate fixing step and the piezoelectric element fixing step and before the wiring body installation step, of filling the lateral portions of each of the plurality of piezoelectric elements with an insulating resin material in the space surrounded by the central opening of the lower sealing plate.
  • the lower sealing plate preferably has a partition wall that divides the central opening into a plurality of openings each large enough to surround one of the piezoelectric elements.
  • a fourth aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, which are adhered to the flexible resin film so that their central regions overlap with the corresponding openings in a plan view and their peripheral regions overlap with the upper surface of the substrate, and a wiring body having first and second wiring electrically connected to the external and internal electrodes of the piezoelectric elements, respectively, wherein the piezoelectric elements comprise a piezoelectric element body formed of a piezoelectric material, upper and lower electrodes provided on the upper and lower end surfaces of the piezoelectric element body, respectively, and forming the external electrodes, and a wiring body extending in the thickness direction of the piezoelectric element body.
  • a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower electrode and a tip end side with an internal electrode side gap between it and the upper electrode to form a lower electrode terminal; and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side with an internal electrode side gap between it and the upper electrode to form an internal electrode terminal, the method comprising the steps of: preparing a rigid plate material of the same thickness as the rigid substrate, forming the rigid substrate by forming the plurality of openings in the rigid plate material; and depositing the flexible resin film on the upper surface of the rigid substrate so as to cover the plurality of openings.
  • a lower sealing plate installation step of preparing a lower sealing plate having a central opening of a size sufficient to surround all of the plurality of openings in a plan view, and fixing the lower sealing plate to the upper surface of the flexible resin film so that the central opening surrounds all of the plurality of openings;
  • a piezoelectric element installation step of fixing the plurality of piezoelectric elements to the upper surface of the flexible resin film with a first insulating resin material so as to overlap with the plurality of openings in a plan view; an insulating resin material installation step of providing a second insulating resin material within the central opening so as to cover outer side surfaces of the plurality of piezoelectric elements and to cover upper end surfaces of the plurality of piezoelectric elements to form an insulating cover body;
  • the method for manufacturing an ultrasonic transducer includes an electrode exposure process for forming an external electrode opening that integrally exposes at least a portion of the upper electrode and an internal electrode opening that exposes at least a portion of the internal electrode terminal but does not expose
  • a fifth aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, which are adhered to the flexible resin film so that their central regions overlap with the corresponding openings in a plan view and their peripheral regions overlap with the upper surface of the substrate, and a wiring body having first and second wiring electrically connected to the external and internal electrodes of the piezoelectric elements, respectively, wherein the piezoelectric elements comprise a piezoelectric element body formed of a piezoelectric material, upper and lower electrodes provided on the upper and lower end surfaces of the piezoelectric element body, respectively, which form the external electrodes, and a wiring body extending in a thickness direction through the piezoelectric element body.
  • a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower electrode and a tip end side with a lower electrode side gap between it and the upper electrode to form a lower electrode terminal
  • an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side with an internal electrode side gap between it and the upper electrode to form an internal electrode terminal
  • the method for manufacturing an ultrasonic transducer includes an electrode exposure process for forming an external electrode opening that integrally exposes at least a portion of the upper electrode and an internal electrode opening that exposes at least a portion of the internal electrode terminal but does not expose the internal electrode terminal facing
  • a sixth aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, the piezoelectric elements being adhered to the flexible resin film so as to overlap the corresponding openings in a plan view at their central regions and overlap the upper surface of the substrate at their peripheral regions, and a wiring body having first and second wiring electrically connected to the external and internal electrodes of the piezoelectric elements, respectively, the piezoelectric elements comprising a piezoelectric element body formed of a piezoelectric material, upper and lower electrodes provided on the upper and lower end surfaces of the piezoelectric element body, respectively, which form the external electrodes, and the internal electrodes which divide the piezoelectric element body into upper and lower portions in the thickness direction.
  • the method comprising the steps of: preparing a rigid plate material of the same thickness as the rigid substrate, forming the rigid substrate by forming the multiple openings in the rigid plate material; a lower sealing plate having a central opening of a size sufficient to surround all of the plurality of openings in a plan view, and a lower sealing plate installation step of fixing the lower sealing plate to an upper surface of the flexible resin film such that the central opening surrounds all of the plurality of openings; an insulating resin material filling step of filling the central opening with an insulating resin material;
  • the electrode exposure step is preferably configured to form the external electrode opening and the internal electrode opening by irradiating a laser beam onto an area of the insulating cover where the external electrode opening is to be formed and an area where the internal electrode opening is to be formed.
  • the lower sealing plate preferably has a partition wall that divides the central opening into a plurality of openings each large enough to surround one of the piezoelectric elements.
  • FIG. 1 is a plan view of an ultrasonic transducer including a piezoelectric element according to a first embodiment of the present invention.
  • FIG. 2 is a partial vertical cross-sectional view of the ultrasonic transducer taken along line II-II in FIG.
  • FIG. 3 is an enlarged view of part III in FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is an enlarged view of a portion V in FIG. 6(a) to (d) are plan views of the components of the ultrasonic transducer, namely, a rigid substrate, a flexible resin film, a plurality of piezoelectric elements, and a lower sealing plate, respectively.
  • the components of FIG. 2 are plan views of the components of the ultrasonic transducer, namely, a rigid substrate, a flexible resin film, a plurality of piezoelectric elements, and a lower sealing plate, respectively.
  • FIGS. 7(a) to (e) are plan views of the cover layer, first and second wiring, base layer, intermediate region in the first wiring, and back cover layer in the wiring body which is a component of the ultrasonic transducer, respectively.
  • FIGS. 7(a) to (e) are stacked in order from bottom to top.
  • FIG. 8(a) is a plan view of the piezoelectric element according to the first embodiment
  • FIG. 8(b) is a cross-sectional view taken along line VIII-VIII in FIG. 8(a).
  • FIG. 9(a) is a plan view of a piezoelectric element according to a first modified example of the first embodiment
  • FIG. 9(b) is a cross-sectional view taken along line IX-IX in FIG. 8(a).
  • FIG. 10(a) is a plan view of a piezoelectric element according to a second modified example of the first embodiment, and FIG. 10(b) is a cross-sectional view taken along line X-X in FIG. 10(a).
  • FIG. 11(a) is a plan view of a piezoelectric element according to a third modified example of the first embodiment, and FIG. 11(b) is a cross-sectional view taken along line XI-XI in FIG. 11(a).
  • FIG. 12(a) is a plan view of a piezoelectric element according to a fourth modified example of the first embodiment, and FIG.
  • FIG. 12(b) is a cross-sectional view taken along line XII-XII in FIG. 12(a).
  • FIG. 13(a) is a plan view of a piezoelectric element according to a fifth modified example of the first embodiment, and FIG. 13(b) is a cross-sectional view taken along line XIII-XIII in FIG. 13(a).
  • FIG. 14(a) is a plan view of a piezoelectric element according to a sixth modified example of the first embodiment, and FIG. 14(b) is a cross-sectional view taken along line XIV-XIV in FIG. 14(a).
  • FIG. 15(a) is a plan view of a piezoelectric element according to a seventh modified example of the first embodiment, and FIG.
  • FIG. 15(b) is a cross-sectional view taken along line XV-XV in FIG. 15(a).
  • FIG. 16 is a plan view of the wiring body, with some components not shown.
  • FIG. 17 is a bottom view of the wiring body, with some components not shown.
  • Figures 18(a) to (c) are plan views of the upper sealing plate, sound-absorbing material and reinforcing plate, which are components of the ultrasonic transducer, respectively. In the state shown in Figure 2, the components of Figures 18(a) to (c) are stacked in order from bottom to top.
  • FIG. 19 is a vertical cross-sectional view showing a state after a flexible resin film fixing step in the manufacturing method (hereinafter referred to as the first manufacturing method) of the ultrasonic transducer including the piezoelectric element according to the first embodiment.
  • FIG. 20 is a vertical cross-sectional view showing a state after the lower sealing plate fixing step in the first manufacturing method.
  • FIG. 21 is a vertical cross-sectional view showing a state after the insulating resin filling step in the first manufacturing method.
  • FIG. 22 is a vertical cross-sectional view showing a state after the insulating cover body installation step in the first manufacturing method.
  • FIG. 23 is an enlarged view of a portion XXIII in FIG. FIG.
  • FIG. 24 is a plan view of the piezoelectric element after the insulating cover installation step.
  • FIG. 25 is a vertical cross-sectional view showing a state after the electrode exposing step in the first manufacturing method.
  • FIG. 26 is an enlarged view of a portion XXVI in FIG.
  • FIG. 27 is a plan view of the piezoelectric element after the electrode exposing step.
  • FIG. 28 is a vertical cross-sectional view showing a state after the conductive bonding material applying step in the first manufacturing method.
  • FIG. 29 is an enlarged view of a portion XXIX in FIG.
  • FIG. 30 is a vertical cross-sectional view showing a state after the wiring body providing step in the first manufacturing method.
  • FIG. 31 is an enlarged view of a portion XXXI in FIG. FIG.
  • FIG. 32 is a vertical cross-sectional view showing a state after the upper sealing plate installation step in the first manufacturing method.
  • FIG. 33 is a partial vertical cross-sectional view of an ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 34 is an enlarged view of a portion XXXIV in FIG.
  • FIG. 35 is a partially enlarged vertical cross-sectional view of an ultrasonic transducer according to a modified example of the second embodiment.
  • FIG. 36 is a vertical cross-sectional view showing a state after a flexible resin film fixing step in the manufacturing method of the ultrasonic transducer according to the second embodiment (hereinafter referred to as the second manufacturing method).
  • FIG. 33 is a partial vertical cross-sectional view of an ultrasonic transducer according to the second embodiment of the present invention.
  • FIG. 34 is an enlarged view of a portion XXXIV in FIG.
  • FIG. 35 is a partially enlarged vertical cross-sectional view of an ultrasonic trans
  • FIG. 37 is a vertical cross-sectional view showing a state after the lower sealing plate fixing step in the second manufacturing method.
  • FIG. 38 is a vertical cross-sectional view showing a state after the piezoelectric element fixing step in the second manufacturing method.
  • FIG. 39 is a vertical cross-sectional view showing a state after the insulating resin material applying step in the second manufacturing method.
  • FIG. 40 is an enlarged view of the XXXX portion in FIG.
  • FIG. 41 is a plan view of the piezoelectric element after the insulating resin material providing step.
  • FIG. 42 is a partially enlarged vertical sectional view of a state after the electrode exposing step in the second manufacturing method.
  • FIG. 43 is a plan view of the piezoelectric element after the electrode exposing step.
  • FIG. 44 is a vertical cross-sectional view showing a state after the conductive bonding material applying step in the second manufacturing method.
  • FIG. 45 is an enlarged view of the XXXXV portion in FIG.
  • FIG. 46 is a vertical cross-sectional view showing a state after the wiring body providing step in the second manufacturing method.
  • FIG. 47 is an enlarged view of part XXXXVII in FIG.
  • FIG. 48 is a vertical cross-sectional view showing a state after the upper sealing plate installation step in the second manufacturing method.
  • FIG. 49 is a vertical cross-sectional view showing a state after the insulating resin filling step in the second manufacturing method.
  • FIG. 50 is a vertical cross-sectional view showing a state after the piezoelectric element fixing step in the second manufacturing method.
  • FIG. 51 is an enlarged view of part XXXXXI in FIG.
  • FIG. 52 is a plan view of a piezoelectric element according to another embodiment of the present invention.
  • FIG. 53 is a plan view of a lower sealing plate used in an ultrasonic transducer according to a modified example of the present invention.
  • FIG. 54 is a partial longitudinal sectional view of the ultrasonic transducer according to a modified example of the present invention having the lower sealing plate shown in FIG.
  • FIG. 1 shows a plan view of an ultrasonic transducer 1 including a piezoelectric element 30 according to the present embodiment.
  • FIG. 2 is a partial vertical sectional front view taken along line II-II in FIG.
  • FIG. 3 is an enlarged view of part III in FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2
  • FIG. 5 is an enlarged view of portion V in FIG.
  • the ultrasonic transducer 1 receives a voltage to emit ultrasonic waves, and generates a voltage in response to receiving ultrasonic waves.
  • the ultrasonic transducer 1 comprises, from bottom to top with reference to the cross-sectional view of FIG. 2, a rigid substrate 10, a flexible resin film 20, a plurality of piezoelectric elements 30, a lower sealing plate 40, and a wiring body 100.
  • FIG. 6(a) to (d) are plan views showing the rigid substrate 10, the flexible resin film 20, the plurality of piezoelectric elements 30, and the lower sealing plate 40, respectively.
  • 7(a) to (e) are plan views showing the respective components of the wiring body 100.
  • FIG. 6(a) to (d) and Figures 7(a) to (e) center lines are drawn at the same position in a plan view in order to make it easier to understand the relative positional relationship of each component member.
  • the rigid substrate 10 is made of, for example, a metal substrate such as stainless steel having a thickness of 0.1 mm to 0.4 mm, carbon fiber reinforced plastic, ceramics, or the like. As shown in FIGS. 2 and 6A, the rigid substrate 10 is provided with a plurality of openings 15 penetrating between the upper surface 11 and the lower surface 12 .
  • the opening 15 has a cavity 16 that opens to the upper surface 11 of the rigid substrate 10, and a waveguide 17 that has one end that opens to the bottom surface of the cavity 16 and the other end that opens to the lower surface 12 of the rigid substrate 10.
  • the cavity 16 has the same shape as the piezoelectric element 30 in a plan view.
  • the piezoelectric element 30 has a rectangular shape when viewed from above, and therefore the cavity 16 also has a rectangular shape when viewed from above.
  • the opening width of the cavity 16 is set so that when the piezoelectric element 30 is placed via the flexible resin film 20, the periphery of the piezoelectric element 30 overlaps with the upper surface 11 of the rigid substrate 10 in a plan view.
  • the waveguide 17 has an opening width smaller than that of the cavity 16 .
  • the waveguide 17 has a circular shape in a plan view.
  • nine openings 15 (3 x 3) are provided in the rigid substrate 10, and nine piezoelectric elements 30 are arranged so as to overlap the nine openings 15 in a planar view with the flexible resin film 20 sandwiched between them.
  • piezoelectric elements 30 each acting as a vibrator are arranged in a 3 ⁇ 3 array.
  • the flexible resin film 20 is fixed to the upper surface 11 of the substrate 10 so as to cover the plurality of openings 15 .
  • the flexible resin film 20 is formed of an insulating resin such as polyimide having a thickness of, for example, 20 ⁇ m to 100 ⁇ m.
  • the flexible resin film 20 is fixed to the rigid substrate 10 by various methods such as adhesive or thermocompression bonding.
  • FIG. 8(a) shows a plan view of the piezoelectric element 30, and FIG. 8(b) shows a cross-sectional view taken along line VIII-VIII in FIG. 8(a).
  • the piezoelectric element 30 is fixed to the upper surface of the flexible resin film 20 so that the central portion in a plan view overlaps with the corresponding opening 15 (the hollow portion 16) and the peripheral portion in a plan view overlaps with the portion of the rigid substrate 10 that surrounds the corresponding opening 15 (the hollow portion 16).
  • the piezoelectric element 30 is of a laminated type.
  • the piezoelectric element 30 includes a piezoelectric element body 32 formed of a piezoelectric material such as lead zirconate titanate (PZT), an internal electrode 34 dividing the piezoelectric element body 32 into a first piezoelectric portion 32a on the upper side and a second piezoelectric portion 32b on the lower side in the thickness direction, an upper electrode 36 fixed to a part of the upper end surface of the first piezoelectric portion 32a, a lower electrode 37 fixed to the lower end surface of the second piezoelectric portion 32b, an internal electrode connector 35 provided on the upper end surface of the piezoelectric element body 32 with its base end side electrically connected to the internal electrode 34 and its tip end side being separated from the upper electrode 36 by an internal electrode side gap 34a to form an internal electrode terminal 34T, and a lower electrode connector 38 provided on the upper end surface of the piezoelectric element body 32 with its base end side electrically connected to the lower electrode 37 and its tip end
  • the piezoelectric element 30 acts as a vibrating body of the ultrasonic transducer 1 .
  • the piezoelectric element 30 may have a resonance frequency of about 70 kHz and a planar shape of a rectangle with each side measuring 3.0 mm.
  • the layer thickness of the first and second piezoelectric portions 32a, 32b may be 0.1 mm to 0.2 mm.
  • the upper electrode 36, the lower electrode 37, and the internal electrode 34 can be formed from a metal film such as Au, AgPd, or Pt having a thickness of about 1 ⁇ m to 10 ⁇ m.
  • the upper electrode 36 and the lower electrode 37 form external electrodes, and are configured to expand and contract when a voltage is applied between the external electrode and the internal electrode 34.
  • the first and second piezoelectric regions 32a, 32b have the same polarization direction in the thickness direction, so that by applying a predetermined voltage at a predetermined frequency between the external electrodes (the upper electrode 36 and the lower electrode 37) and the internal electrode 34, electric fields in opposite directions are applied to the first and second piezoelectric regions 32a, 32b.
  • the upper electrode 36 and the lower electrode 37 are insulated from each other, so that when the piezoelectric element 30 is produced, the polarization directions of the first and second piezoelectric portions 32a, 32b can be made the same by applying a voltage between the upper electrode 36 and the lower electrode 37.
  • the electrical connection of the wiring (in this embodiment, the first wiring 130a in the wiring body 100 described below) to be connected to the external electrodes (the upper electrode 36 and the lower electrode 37) to the upper electrode 36 and the lower electrode 37, and the electrical connection of the wiring (in this embodiment, the second wiring 130b in the wiring body 100 described below) to be connected to the internal electrode 34 to the internal electrode 34 can all be made on the upper end surface on one side in the thickness direction of the piezoelectric element 30.
  • the lower electrode terminal 37T is provided on the upper end surface of the piezoelectric element body 32 in a state spaced apart from the upper electrode 36 via the lower electrode side gap 37a
  • the internal electrode terminal 34T is provided on the upper end surface of the piezoelectric element body 32 in a state spaced apart from the upper electrode 36 via the internal electrode side gap 34a.
  • a first conductive adhesive 190a is provided to integrally cover at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361 of the upper electrode 36 that faces the lower electrode terminal 37T through the lower electrode side gap 37a
  • a second conductive adhesive 190b is provided to cover at least a portion of the internal electrode terminal 34T while the wiring to be connected to the external electrode (the first wiring 130a in this embodiment) is fixed to the first conductive adhesive 190a, and the wiring to be connected to the internal electrode 34 (the second wiring 130b in this embodiment) is fixed to the second conductive adhesive 190b.
  • the first and second conductive bonding materials 190a, 190b may be, for example, a conductive adhesive or cream solder.
  • an insulating cover body 300A is provided on the upper end surface of the piezoelectric element 30 in this embodiment so as to integrally cover at least a portion of the internal electrode terminal 34T, an internal electrode terminal facing region 362 of the upper surface electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and a region of the internal electrode side gap 34a that is sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362.
  • the insulating cover body 300A is formed, for example, by a coating of insulating resin such as polyimide resin, silicone resin, epoxy resin, ceramics, etc., with a thickness of several ⁇ m to several tens of ⁇ m.
  • insulating resin such as polyimide resin, silicone resin, epoxy resin, ceramics, etc.
  • the resin can be applied to a predetermined position using a dispenser or screen printing, etc., and then heated to a predetermined temperature (e.g., 120°C to 150°C) to harden, thereby efficiently forming the insulating cover body 300A.
  • a predetermined temperature e.g. 120°C to 150°C
  • the insulating cover body 300A is configured to cover the entire internal electrode terminal 34T.
  • the insulating cover body 300A is provided with an internal electrode opening 315A (through hole or cutout) that exposes at least a portion of the internal electrode terminal 34T but does not expose the internal electrode terminal facing region 362.
  • This configuration makes it possible to effectively prevent a short circuit between the external electrode (the upper electrode 36) and the internal electrode 34 while improving the conversion efficiency between the voltage and the flexural vibration in the piezoelectric element 30 as much as possible.
  • the increase in the area of the upper electrode 36 leads to a narrowing of the internal electrode side gap 34a, and when the second conductive adhesive 190b that electrically connects the internal electrode terminal 34T to the wiring to be connected (the second wiring 130b in this embodiment) is provided on the internal electrode terminal 34T, there is an increased risk that the second conductive adhesive 190b will come into contact with the upper electrode 36 due to variations in the amount of application or the application position of the second conductive adhesive 190b. This leads to a decrease in yield due to a short circuit between the external electrode (the upper electrode 36) and the internal electrode 34, or a decrease in the efficiency of the installation work of the second conductive adhesive 190b.
  • the internal electrode terminal 34T, the internal electrode terminal facing region 362 of the upper surface electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and the region of the internal electrode side gap 34a sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362 are integrally covered by the insulating cover body 300A, and at least a portion of the internal electrode terminal 34T is exposed through the internal electrode opening 315A formed in the insulating cover body 300A.
  • the area of the upper electrode 36 is enlarged to improve the conversion efficiency of the piezoelectric element 30, and even if the internal electrode side gap 34a is narrowed, the second conductive adhesive material 190b applied to the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A comes into contact with the upper electrode 36, effectively preventing a short circuit between the upper electrode 36 (i.e., the external electrode) and the internal electrode 34.
  • the narrowing of the internal electrode side gap 34a may cause ion migration and lead to short circuit failure under environmental conditions in which the piezoelectric element 30 is used, such as high temperature and high humidity. However, in this embodiment, such a situation can be effectively prevented.
  • the edge of the internal electrode opening 315A can effectively prevent the second conductive adhesive 190b applied to the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A from flowing out, and the application of the second conductive adhesive 190b can be performed using the internal electrode opening 315A as a marker.
  • the internal electrode opening 315A is suitably formed by irradiating a desired portion of the insulating cover body 300A with laser light from a laser device and peeling off the desired portion.
  • the internal electrode opening 315A has an opening diameter of, for example, about 0.5 to 1 mm, and the internal electrode terminal 34T has a thickness of, for example, about 0.1 to 0.2 mm, so it is preferable to use laser light with a small spot diameter and high absorption rate in the target organic material (in this case, the insulating cover body 300A).
  • the third harmonic (355 nm) which is a laser wavelength shorter than the fundamental wavelength (1064 nm)
  • the spot diameter can be reduced to nearly the wavelength, enabling fine peeling to be performed.
  • photolysis processing can be performed that directly cuts the molecular bonds, enabling efficient processing with little thermal impact.
  • UV laser light of the third harmonic (355 nm) of a solid-state laser or DUV laser light of the fourth harmonic (266 nm) is preferably used.
  • the internal electrode opening 315A can also be formed using an ion beam, an electron beam, or ion milling.
  • FIGS. 9(a) and (b) show a plan view and a cross-sectional view taken along line IX-IX in FIG. 9(a), respectively, of a piezoelectric element 30 according to a first modified example of this embodiment.
  • the internal electrode opening 315A is configured to expose at least a portion of the internal electrode terminal 34T, as well as a region of the internal electrode side gap 34a adjacent to the exposed region of the internal electrode terminal 34T.
  • the internal electrode opening 315B in the first modified example is configured to expose only at least a portion of the internal electrode terminal 34T, and not to expose the internal electrode side gap 34a.
  • 10A and 10B are a plan view and a cross-sectional view taken along line XX in FIG. 10A, respectively, of a piezoelectric element 30 according to a second modified example of the present embodiment.
  • 11A and 11B are a plan view and a cross-sectional view taken along line XI-XI in FIG. 11A, respectively, of a piezoelectric element 30 according to a third modified example of the present embodiment.
  • the insulating cover body 300A is configured to cover the entire inner electrode terminal 34T.
  • the piezoelectric elements according to the second and third modified examples are provided with an insulating cover body 300B instead of the insulating cover body 300A.
  • the insulating cover body 300B is configured to integrally cover a portion of the inner electrode terminal 34T, an internal electrode terminal facing region 362 of the upper electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and a region of the internal electrode side gap 34a that is sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362.
  • the internal electrode opening 315A in the second modified example is configured to expose at least a portion of the internal electrode terminal 34T as well as a region of the internal electrode side gap 34a adjacent to the exposed region of the internal electrode terminal 34T
  • the internal electrode opening 315B in the third modified example is configured to expose only at least a portion of the internal electrode terminal 34T and not expose the internal electrode side gap 34a.
  • FIGS. 12(a) and 12(b) are a plan view and a cross-sectional view taken along line XII-XII in FIG. 12(a), respectively, of a piezoelectric element 30 according to a fourth modified example of the present embodiment.
  • 13(a) and 13(b) are a plan view and a cross-sectional view taken along line XIII-XIII in FIG. 13(a) of a piezoelectric element 30 according to a fifth modified example of the present embodiment, respectively.
  • 14(a) and 14(b) are a plan view and a cross-sectional view taken along line XIV-XIV in FIG. 14(a), respectively, of a piezoelectric element 30 according to a sixth modified example of the present embodiment.
  • 15(a) and 15(b) are a plan view and a cross-sectional view taken along line XV-XV in FIG. 15(a), respectively, of a piezoelectric element 30 according to a seventh modified example of the present embodiment
  • the insulating cover body 300A in the present embodiment and the first modified example, and the insulating cover body 300B in the second and third modified examples are configured to integrally cover at least a part of the internal electrode terminal 34T, the internal electrode terminal facing region 362 of the upper electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and the region of the internal electrode side gap 34a sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362, while not covering the lower electrode terminal 37T, the lower electrode terminal facing region 361 of the upper electrode 36 that faces the lower electrode terminal 37T through the lower electrode side gap 37a, and the region of the lower electrode side gap 37a sandwiched between the lower electrode terminal 37T and the lower electrode terminal facing region 361.
  • the insulating cover body 300C of the piezoelectric element 30 according to the fourth and fifth modified examples and the insulating cover body 300D of the piezoelectric element 30 according to the sixth and seventh modified examples are configured to integrally cover at least a part of the internal electrode terminal 34T, the internal electrode terminal facing region 362 of the upper electrode 36 facing the internal electrode terminal 34T through the internal electrode side gap 34a, and the region of the internal electrode side gap 34a sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362, as well as at least a part of the lower electrode terminal 37T, the lower electrode terminal facing region 361 of the upper electrode 36 facing the lower electrode terminal 37T through the lower electrode side gap 36a, and the region of the lower electrode side gap 37a sandwiched between the lower electrode terminal 37T and the lower electrode terminal facing region 361.
  • the insulating cover body 300C of the piezoelectric element 30 according to the fourth and fifth modified examples is configured to cover substantially the entire upper end surface of the piezoelectric element 30.
  • the insulating cover body 300D of the piezoelectric element 30 according to the sixth and seventh modifications is sized to cover a part of the upper end surface of the piezoelectric element 30.
  • the insulating cover bodies 300C and 300D are provided with the internal electrode opening 315A and the external electrode opening 310A (through hole or cutout) that integrally exposes at least a portion of the lower electrode terminal 37T and at least a portion of the upper electrode 36.
  • the insulating cover body 300C is provided with the internal electrode opening 315B and the external electrode opening 310A.
  • the insulating cover body is provided with an opening 315A for the internal electrode and an opening 310B (through hole or cutout) for the external electrode that integrally exposes the entire lower electrode terminal 37T and at least a portion of the upper electrode 36.
  • the wiring body 100 is configured to transmit an applied voltage supplied from the outside to the multiple piezoelectric elements 30.
  • FIGS. 16 and 17 respectively show a plan view (viewed from the side opposite to the piezoelectric element 30) and a bottom view (viewed from the side of the piezoelectric element 30) of the wiring body 100.
  • a cover layer 150 described below is omitted in FIGS.
  • the wiring body 100 has an insulating base layer 110, a conductor layer 120 including the first and second wirings 130a, 130b fixed to the base layer 110, and an insulating cover layer 150 that covers at least a portion of the conductor layer 120 from the side opposite the base layer 110.
  • the base layer 110 and the cover layer 150 are formed from an insulating resin such as polyimide.
  • the base layer 110 has a plurality of base-side piezoelectric element overlapping portions 111 that partially overlap with each of the plurality of piezoelectric elements 30 in a planar view, and a base-side tip portion 116 that integrally holds the plurality of base-side piezoelectric element overlapping portions 111.
  • the ultrasonic transducer 1 has nine piezoelectric elements 30, numbered 1 through 9. Therefore, the base layer 110 has nine base-side piezoelectric element overlapping portions 111 that correspond to the nine piezoelectric elements 30, respectively.
  • the cover layer 150 has a plurality of cover-side piezoelectric element overlapping portions 151 that partially overlap with each of the plurality of piezoelectric elements 30 in a plan view, and a cover-side tip portion 156 that holds the plurality of cover-side piezoelectric element overlapping portions 151 together.
  • the cover-side piezoelectric element overlapping portions 151 are also provided in a number corresponding to the number of the piezoelectric elements.
  • the piezoelectric element overlapping portion 151 of the base layer 110 and the insulating layer on the piezoelectric element side located on the side of the cover layer 150 facing the piezoelectric element has an external electrode tab region 152a that overlaps in a plan view with a region that integrally surrounds at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361, and an internal electrode tab region 152b that overlaps in a plan view with a region that surrounds at least a portion of the internal electrode terminal 34T.
  • the external electrode tab region 152a and the internal electrode tab region 152b are provided with an external electrode connection opening 155a and an internal electrode connection opening 155b, respectively.
  • the first and second wirings 130a and 130b are formed of a conductive metal such as Cu.
  • the first and second wirings 130a and 130b can be formed by etching away unnecessary portions of a Cu foil having a thickness of about 12 to 25 ⁇ m that is laminated on the base layer 110.
  • Ni/Au plating is applied to exposed portions of Cu forming the first and second wirings 130a and 130b.
  • a portion of the first wiring 130a straddles the external electrode connection opening 155a, and a portion of the second wiring 130b straddles the internal electrode connection opening 155b.
  • the wiring body 100 is fixed to the upper surface of the lower sealing plate 40 in a state in which the external electrode connection opening 155a overlaps in a plan view with a region that integrally includes at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode facing region 361, and the internal electrode connection opening 155b overlaps in a plan view with at least a portion of the internal electrode terminal 34T, and the portion of the first wiring 130a that straddles the external electrode connection opening 155a is bonded to the first conductive adhesive 190a, and the portion of the second wiring 130b that straddles the internal electrode connection opening 155b is bonded to the second conductive adhesive 190b.
  • the piezoelectric element overlapping portion 111 of the insulating layer (in this embodiment, the base layer 110 (see FIG. 2)) located on the side of the base layer 110 and the cover layer 150 that is separated from the piezoelectric element 30, like the piezoelectric element side insulating layer (in this embodiment, the cover layer 150), has an external electrode tab region 112a that overlaps in plan view with a region that integrally surrounds at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361, and an internal electrode tab region 112b that overlaps in plan view with at least a portion of the internal electrode terminal 34T.
  • the outer electrode tab region 112a and the inner electrode tab region 112b are provided with first and second access openings 115a, 115b, respectively.
  • the first wiring 130a is a common wiring that is electrically connected to the external electrodes of the plurality of piezoelectric elements 30 as a whole
  • the second wiring 130b is an individual wiring that is electrically connected to each of the internal electrodes 34 of the plurality of piezoelectric elements 30 individually.
  • the first wiring 130a is arranged on the surface of the base layer 110 facing the piezoelectric elements at the tip side 136a, which is electrically connected to the external electrodes of the plurality of piezoelectric elements 30, and the base side 138a, which forms a connection terminal with the outside, and is arranged on the surface of the base layer 110 facing the piezoelectric elements 30 at the intermediate portion 137a, which connects the tip side 136a and the base side 138a.
  • the tip side 136a and the middle portion 137a of the first wiring 130a are electrically connected via a through hole 109 formed in the base layer 110, and the middle portion 137a and the base side 138a of the first wiring 130a are electrically connected via a through hole 108 formed in the base layer 110.
  • the portion of the first wiring 130a that is disposed on the surface of the base layer 110 opposite the piezoelectric element 30 is covered by a back cover layer 160 (see FIG. 6(e)).
  • the second wiring 130b is arranged on the surface of the base layer 110 facing the piezoelectric element throughout the entire area.
  • the wiring body 100 is fixed to the lower sealing body 40 with the cover layer 150 facing the piezoelectric element 30 and the base layer 110 positioned on the opposite side of the conductor layer 120 from the piezoelectric element 30.
  • the lower sealing plate 40 has a central opening 42 large enough to integrally surround the multiple (nine in this embodiment) openings 15 in the rigid substrate 10, and is fixed to the upper surface of the flexible resin film 20 so that the central opening 42 integrally surrounds the multiple openings 15 in a plan view.
  • the lower sealing plate 40 has approximately the same thickness as the piezoelectric element 30, and is fixed to the upper surface of the flexible resin film 20 by adhesive or thermocompression bonding, etc.
  • the lower sealing plate 40 is preferably made of a metal such as stainless steel, carbon fiber reinforced plastic, ceramics, etc.
  • the lower sealing plate 40 seals the sides of the piezoelectric element group consisting of the multiple piezoelectric elements 30, and also acts as a base to which the wiring body 100 is fixed.
  • the portions on the sides of the plurality of piezoelectric elements 30 are filled with an insulating resin material 50 .
  • the insulating resin material 50 is, for example, a flexible resin material such as silicone.
  • the insulating resin material 50 By providing the insulating resin material 50, it is possible to effectively block external influences on the plurality of piezoelectric elements 30.
  • the vibration damping of the piezoelectric elements 30 can be increased, and the reverberation of the sound waves generated in bursts by the multiple piezoelectric elements 30 can be suppressed, thereby making it possible to maximize the range in which the distance of an object can be detected using reflected waves.
  • FIGS 18(a) to (c) are plan views of the upper sealing plate 60, the sound absorbing material 70, and the reinforcing plate 75, respectively.
  • center lines are drawn in the same position as in Figures 6(a) to (d) and Figures 7(a) to (e) when viewed from above.
  • the upper sealing plate 60 is fixed to the lower sealing plate 40 and the upper surface of the wiring assembly 100 via a flexible resin material 55 .
  • the upper sealing plate 60 has a plurality of openings 65 (nine in this embodiment) corresponding to the plurality of piezoelectric elements 30, respectively.
  • the upper sealing plate 60 is made of, for example, a metal such as stainless steel, carbon fiber reinforced plastic, or ceramics, with a thickness of 0.1 mm to 0.3 mm.
  • the sound absorbing material 70 is fixed to the upper surface of the upper sealing plate 60 by adhesive or the like so as to cover the multiple openings 65 of the upper sealing plate 60.
  • the sound-absorbing material 70 is made of, for example, silicone resin or other foamable resin with a thickness of approximately 0.3 mm to 1.5 mm.
  • the reinforcing plate 75 is fixed to the upper surface of the sound-absorbing material 70 by adhesive or the like.
  • the reinforcing plate 75 is made of, for example, a metal such as stainless steel, carbon fiber reinforced plastic, or ceramics, with a thickness of approximately 0.2 mm to 0.5 mm.
  • the manufacturing method includes: a rigid substrate forming step of preparing a rigid plate having the same thickness as the rigid substrate 10, and forming the plurality of openings 15 in the rigid plate by etching or the like to obtain the rigid substrate 10; and a flexible resin film fixing step of fixing the flexible resin film 20 to the upper surface of the rigid substrate 10 by adhesive or thermocompression bonding so as to cover the plurality of openings 15.
  • FIG. 19 shows a vertical cross-sectional view of the pre-assembly after the flexible resin film fixing step.
  • the manufacturing method includes a lower sealing plate fixing process in which a lower sealing plate 40 is prepared which has approximately the same thickness as the piezoelectric element 30 and which has a central opening 42 of a size which integrally surrounds the multiple openings 15 in the rigid substrate 10, and which fixes the lower sealing plate 40 to the upper surface of the flexible resin film 20 with an adhesive so that the central opening 42 integrally surrounds the multiple openings 15 in a planar view.
  • FIG. 20 is a vertical cross-sectional view of the pre-assembly after the lower sealing plate fixing step.
  • the manufacturing method further includes a piezoelectric element fixing step in which the piezoelectric elements 30 are fixed to the upper surface of the flexible resin film 20 with an insulating resin material (not shown) that acts as an adhesive so that the piezoelectric elements 30 overlap with the openings 15 in a plan view.
  • the manufacturing method includes an insulating resin filling process for filling the side portions of each of the plurality of piezoelectric elements 30 with insulating resin material within the space surrounded by the central opening 42 of the lower sealing plate 40.
  • the insulating resin material is preferably a flexible resin material such as a silicone resin.
  • FIG. 21 shows a vertical cross-sectional view of the pre-assembly after the insulating resin filling step.
  • the insulating resin filling process involves pouring a thermosetting insulating resin such as silicone resin into the central opening 42 of the lower sealing plate 40 and curing it by heating it at, for example, about 100°C to 150°C for several tens of minutes.
  • the manufacturing method further includes an insulating cover installation step of providing the insulating cover 300A on the upper end surface of the piezoelectric element 30 so as to integrally cover at least a portion of the internal electrode terminal 34T, an internal electrode terminal facing region 362 of the upper surface electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and a region of the internal electrode side gap 34a that is sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362.
  • FIG. 22 shows a vertical cross-sectional view of the pre-assembly after the insulating cover body installation step.
  • FIG. 23 is an enlarged view of a portion XXIII in FIG.
  • FIG. 24 is a plan view of the piezoelectric element 30 after the insulating cover installation step.
  • the insulating cover body installation process uses the insulating cover body 300A, but it is also possible to use any of the insulating cover bodies 300B to 300D instead.
  • the insulating cover body 300A can be efficiently formed, for example, by applying epoxy resin or silicone resin to a predetermined position using a dispenser or screen printing, and then heating and curing it at a predetermined temperature (for example, 120°C to 150°C).
  • the manufacturing method further includes an electrode exposure process for forming the internal electrode opening 315A (or 315B) in the insulating cover body 300A, which exposes at least a portion of the internal electrode terminal 34T while not exposing the internal electrode terminal facing region 362.
  • FIG. 25 shows a vertical cross-sectional view of the pre-assembly after the electrode exposing step.
  • FIG. 26 shows an enlarged view of the portion XXVI in FIG.
  • FIG. 27 is a plan view of the piezoelectric element 30 after the electrode exposing step.
  • the electrode exposure process forms the internal electrode opening 315A by irradiating the area of the insulating cover body 300A where the internal electrode opening 315A is to be formed with laser light L and peeling off that area of the insulating cover body 300A.
  • the internal electrode opening 315A can be formed by ion beam, electron beam or ion milling.
  • the electrode exposure process is configured to form, in addition to the internal electrode opening 315A, the external electrode opening 310A (or 310B) that integrally exposes at least a portion of the lower electrode terminal 37T and at least a portion of the upper electrode 36.
  • the external electrode opening 310A is formed in the same manner as the internal electrode opening 315A.
  • the manufacturing method further includes a conductive adhesive installation process in which a first conductive adhesive 190a is provided to integrally cover at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361 of the upper electrode 36 that faces the lower electrode terminal 37T through the lower electrode side gap 37a, and a second conductive adhesive 190b is provided on the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A.
  • a first conductive adhesive 190a is provided to integrally cover at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361 of the upper electrode 36 that faces the lower electrode terminal 37T through the lower electrode side gap 37a
  • a second conductive adhesive 190b is provided on the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A.
  • FIG. 28 shows a vertical cross-sectional view of the pre-assembly after the conductive bonding material providing step.
  • FIG. 29 shows an enlarged view of the portion XXIX in FIG.
  • the first conductive bonding material 190a is provided in the openings 310A, 310B for the external electrodes.
  • the manufacturing method further includes a wiring body installation process for installing the wiring body 100 so that a portion of the first wiring 130a contacts the first conductive bonding material 190a and a portion of the second wiring 130b contacts the second conductive bonding material 190b.
  • FIG. 30 shows a vertical cross-sectional view of the pre-assembly after the wiring body installation step.
  • FIG. 31 shows an enlarged view of a portion XXXI in FIG.
  • the wiring body installation process is configured to fix the wiring body 100 to the lower sealing plate 40 with an insulating adhesive (not shown) so that the portion of the first wiring 130a that spans the external electrode connection opening 155a contacts the first conductive bonding material 190a and the portion of the second wiring 130b that spans the internal electrode connection opening 155b contacts the second conductive bonding material 190b.
  • the insulating adhesive that bonds the wiring body 100 to the lower sealing plate 40 can be, for example, a thermosetting insulating adhesive.
  • the first and second conductive bonding materials 190a, 190b may be, for example, a thermosetting conductive adhesive or cream solder, and are applied to a predetermined area by a dispenser, screen printing, transfer, or the like.
  • the wiring body installation process includes a process of performing a heat treatment with the wiring body 100 positioned in a predetermined position to harden the thermosetting insulating adhesive and the first and second conductive bonding materials 190a, 190b.
  • the heating temperature is set to about 120°C to 150°C when the first and second conductive bonding materials 190a, 190b are thermosetting conductive adhesives, and can be set to 230°C to 260°C when they are cream solder. In the case of cream solder, it melts when heated and solidifies when cooled from the molten state.
  • the lower sealing plate fixing step is performed after the flexible resin film fixing step and before the piezoelectric element fixing step, but the lower sealing plate fixing step can be performed at any timing after the flexible resin film fixing step and before the wiring body installation step.
  • the insulating resin filling step is performed after the piezoelectric element fixing step and before the insulating cover body installation step, but the insulating resin filling step can be performed at any timing after the lower sealing plate fixing step and the piezoelectric element fixing step and before the wiring body installation step.
  • the manufacturing method further includes an upper sealing plate installation process for installing the upper sealing plate 60 after the wiring body installation process.
  • the upper sealing plate installation process includes a process of applying a thermosetting flexible resin material such as silicone resin to the upper surface of the wiring body 100, a process of placing the upper sealing plate 60 on the flexible resin material, and a process of curing the flexible resin material by heating, for example, at approximately 100°C to 150°C for several tens of minutes.
  • FIG. 32 shows a vertical cross-sectional view of the pre-assembly after the upper sealing plate installation step.
  • the manufacturing method further includes a sound-absorbing material installation process and a reinforcing plate installation process after the upper sealing plate installation process (see Figure 2).
  • the sound-absorbing material installation process includes a process of applying a thermosetting insulating adhesive to the upper surface of the upper sealing plate 60, a process of placing the sound-absorbing material 70 such as silicone resin or other foamable resin on the thermosetting insulating adhesive, and a process of curing the thermosetting insulating adhesive by heating, for example, at about 120°C to 150°C for several tens of minutes.
  • the reinforcing plate installation process includes a process of applying a thermosetting insulating adhesive to the upper surface of the sound absorbing material 70, a process of placing the reinforcing plate 75 on the thermosetting insulating adhesive, and a process of curing the thermosetting insulating adhesive by heating, for example, at about 120°C to 150°C for several tens of minutes.
  • FIG. 33 shows a partial vertical cross-sectional view of the ultrasonic transducer 2 according to the present embodiment.
  • FIG. 34 shows an enlarged view of a portion XXXIV in FIG.
  • the same members as those in the first embodiment are given the same reference numerals, and detailed explanations thereof will be omitted as appropriate.
  • the ultrasonic transducer 2 has the rigid substrate 10, the flexible resin film 20, the lower sealing plate 40, the multiple piezoelectric elements 30, an insulating resin material 350, and the wiring body 100.
  • the plurality of piezoelectric elements 30 are arranged on the upper surface of the flexible resin film 20 within the central opening 42 so as to overlap with each of the plurality of openings 15 in a plan view.
  • the insulating resin material 350 is interposed between the lower end surfaces of the piezoelectric elements 30 and the flexible resin film 20, and is arranged to cover the outer surfaces and upper end surfaces of the piezoelectric elements 30.
  • the insulating resin material 350 includes a first insulating resin material 360 that fixes the lower end surface of the piezoelectric element 30 to the flexible resin film 20, and a second insulating resin material 370 that covers the outer surface and upper end surface of the piezoelectric element 30.
  • the second insulating resin material 370 is, for example, a flexible resin material such as silicone.
  • the portion of the insulating resin material 350 (the second insulating resin material 370 in this embodiment) covering the upper end surface of the piezoelectric element 30 is provided with the external electrode opening 310A (or 310B) that integrally exposes at least a portion of the lower electrode terminal 37T and at least a portion of the upper electrode 36, and the internal electrode opening 315A (or 315B) that exposes at least a portion of the internal electrode terminal 34T but does not expose the internal electrode terminal facing region 362.
  • the wiring body 100 is fixed to the lower sealing plate 40 in a state in which the first wiring 130a is electrically connected to the lower electrode terminal 37T and the upper electrode 361 exposed by the external electrode opening 310A via the first conductive bonding material 190a, and the second wiring 130b is electrically connected to the internal electrode terminal 34T exposed by the internal electrode opening 315A via the second conductive bonding material 190b, as in the ultrasonic transducer 1 of the first embodiment.
  • the insulating resin material 350 has the first insulating resin material 360 and the second insulating resin material 370, but it is also possible to provide an insulating resin material 350B made of a single material instead of the insulating resin material 350.
  • FIG. 35 is a partially enlarged vertical cross-sectional view of a modified example in which the insulating resin material 350B is made of a single material.
  • the manufacturing method includes: a rigid substrate forming step of preparing a rigid plate having the same thickness as the rigid substrate 10, and forming the plurality of openings 15 in the rigid plate by etching or the like to obtain the rigid substrate 10; and a flexible resin film fixing step of fixing the flexible resin film 20 to the upper surface of the rigid substrate 10 by adhesive or thermocompression bonding so as to cover the plurality of openings 15.
  • FIG. 36 shows a vertical cross-sectional view of the pre-assembly after the flexible resin film fixing step.
  • the manufacturing method includes a lower sealing plate fixing process in which a lower sealing plate 40 is prepared which has approximately the same thickness as the piezoelectric element 30 and which has a central opening 42 of a size which integrally surrounds the multiple openings 15 in the rigid substrate 10, and which fixes the lower sealing plate 40 to the upper surface of the flexible resin film 20 with an adhesive so that the central opening 42 integrally surrounds the multiple openings 15 in a planar view.
  • FIG. 37 is a vertical cross-sectional view of the pre-assembly after the lower sealing plate fixing step.
  • the manufacturing method further includes a piezoelectric element fixing step of fixing the plurality of piezoelectric elements 30 to the upper surface of the flexible resin film 20 with a first insulating resin material 360 so as to overlap the plurality of openings 15 respectively in a plan view.
  • FIG. 38 is a vertical cross-sectional view of the pre-assembly after the piezoelectric element fixing step.
  • the order of the lower sealing plate fixing step and the piezoelectric element fixing step may be reversed. That is, it is also possible to carry out the piezoelectric element fixing step first, and then carry out the lower sealing plate fixing step.
  • the manufacturing method further includes an insulating resin material installation step of providing a second insulating resin material 370 so as to cover the outer side surfaces of the plurality of piezoelectric elements 30 within the central opening 42 and to cover the upper end surfaces of the plurality of piezoelectric elements 30 to form an insulating cover body 300E.
  • FIG. 39 shows a vertical cross-sectional view after the insulating resin material providing step.
  • FIG. 40 shows an enlarged view of the XXXX portion in FIG.
  • FIG. 41 shows a plan view of the piezoelectric element 30 after the insulating resin material application step.
  • the second insulating resin material 370 is preferably a flexible resin material such as a silicone resin.
  • the insulating resin application process is configured to apply a thermosetting insulating resin material such as silicone resin so as to cover the upper end surfaces and outer surfaces of the plurality of piezoelectric elements 30, and then heat-treat the resin at, for example, about 100°C to 150°C for several tens of minutes to harden the resin.
  • the manufacturing method further includes an electrode exposure process for forming the external electrode opening 310A, which integrally exposes at least a portion of the lower electrode terminal 37T and at least a portion of the upper electrode 36, in the insulating cover body 300E, and the internal electrode opening 315A, which exposes at least a portion of the internal electrode terminal 34T but does not expose the internal electrode terminal facing region 362.
  • FIG. 42 is an enlarged partial vertical cross-sectional view of the pre-assembly after the electrode exposing step.
  • FIG. 43 is a plan view of the piezoelectric element 30 after the electrode exposing step.
  • the electrode exposure process irradiates laser light L onto the area of the insulating cover body 300E where the external electrode opening 310A is to be formed and the area of the insulating cover body 300E where the internal electrode opening 315A is to be formed, and forms the external electrode opening 310A and the internal electrode opening 315A by peeling off the areas of the insulating cover body 300E.
  • the external electrode opening 310A and the internal electrode opening 315A can be formed by an ion beam, an electron beam, or ion milling.
  • the manufacturing method further includes a conductive adhesive installation step of providing a first conductive adhesive 190a to integrally cover the lower electrode terminal 37T and the upper electrode 36 portions exposed through the external electrode opening 310A, and providing a second conductive adhesive 190b on the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A.
  • FIG. 44 shows a vertical cross-sectional view of the pre-assembly after the conductive bonding material providing step.
  • FIG. 45 shows an enlarged view of the XXXXV portion in FIG.
  • the manufacturing method further includes a wiring body installation process for installing the wiring body 100 so that a portion of the first wiring 130a contacts the first conductive bonding material 190a and a portion of the second wiring 130b contacts the second conductive bonding material 190b.
  • FIG. 46 shows a vertical cross-sectional view of the pre-assembly after the wiring body installation step.
  • FIG. 47 shows an enlarged view of the XXXXVII portion in FIG.
  • the wiring body installation process is configured to fix the wiring body 100 to the lower sealing plate 40 with an insulating adhesive so that the portion of the first wiring 130a that spans the external electrode connection opening 155a contacts the first conductive bonding material 190a and the portion of the second wiring 130b that spans the internal electrode connection opening 155b contacts the second conductive bonding material 190b.
  • the insulating adhesive that bonds the wiring body 100 to the lower sealing plate 40 can be, for example, a thermosetting insulating adhesive.
  • the first and second conductive bonding materials 190a, 190b may be, for example, a thermosetting conductive adhesive or cream solder, and are applied to a predetermined area by a dispenser, screen printing, transfer, or the like.
  • the wiring body installation process includes a process of heating the wiring body in a predetermined position to harden the thermosetting insulating adhesive and the first and second conductive bonding materials 190a, 190b.
  • the heating temperature is set to about 120°C to 150°C when the first and second conductive bonding materials 190a, 190b are thermosetting conductive adhesives, and can be set to 230°C to 260°C when they are cream solder. In the case of cream solder, it melts when heated and solidifies when cooled from the molten state.
  • the manufacturing method further includes an upper sealing plate installation process for installing the upper sealing plate 60 after the wiring body installation process.
  • the upper sealing plate installation process includes a process of applying a thermosetting flexible resin material such as silicone resin to the upper surface of the wiring body 100, a process of placing the upper sealing plate 60 on the flexible resin material, and a process of curing the flexible resin material by heating, for example, at approximately 100°C to 150°C for several tens of minutes.
  • FIG. 48 shows a vertical cross-sectional view of the pre-assembly after the upper sealing plate installation step.
  • the manufacturing method further includes a sound-absorbing material installation process and a reinforcing plate installation process after the upper sealing plate installation process (see Figure 2).
  • the sound-absorbing material installation process includes a process of applying a thermosetting insulating adhesive to the upper surface of the upper sealing plate 60, a process of placing the sound-absorbing material 70 such as silicone resin or other foamable resin on the thermosetting insulating adhesive, and a process of curing the thermosetting insulating adhesive by heating, for example, at about 120°C to 150°C for several tens of minutes.
  • the reinforcing plate installation process includes a process of applying a thermosetting insulating adhesive to the upper surface of the sound absorbing material 70, a process of placing the reinforcing plate 75 on the thermosetting insulating adhesive, and a process of curing the thermosetting insulating adhesive by heating, for example, at about 120°C to 150°C for several tens of minutes.
  • the insulating resin material (the first insulating resin material 360) that adheres the piezoelectric element 30 to the flexible resin film 20 and the insulating resin material (the second insulating resin material 370) that covers the upper end surface of the piezoelectric element 30 and forms the insulating cover body 300E are different, but it is also possible to form them from a single material.
  • the manufacturing method according to this modified example is configured to carry out the lower sealing plate installation process, the insulating resin filling process, and the piezoelectric element fixing process in this order after the flexible resin film fixing process.
  • the lower sealing plate installation process is configured to prepare a lower sealing plate 40B that is thicker than the piezoelectric element 30 and has a central opening 42 large enough to surround all of the multiple openings 15 in a plan view, and to adhere the lower sealing plate 40B to the upper surface of the flexible resin film 20 so that the central opening 42 surrounds all of the multiple openings 15.
  • the insulating resin filling step is configured to fill the central opening 42 with an insulating resin material 380 .
  • the insulating resin material 380 is, for example, a thermosetting type.
  • FIG. 49 shows a vertical cross-sectional view of the pre-assembly after the insulating resin filling step.
  • FIG. 50 is a vertical cross-sectional view of the pre-assembly after the piezoelectric element fixing step.
  • FIG. 51 shows an enlarged view of part XXXXXI in FIG.
  • the piezoelectric element fixing process is configured to place the multiple piezoelectric elements 30 on the upper surface of the flexible resin film 20 in the insulating resin material 380 in an uncured state so that a portion of the insulating resin material 380 covers the upper end surface of the piezoelectric elements 30 and overlaps with each of the multiple openings 15 in a planar view, and then to fix the multiple piezoelectric elements 30 to the flexible resin film 20 by curing the insulating resin material 380, and to form an insulating cover body 300E on the upper end surface of the piezoelectric elements 30.
  • the amount of the insulating resin material 380 filled in the piezoelectric element fixing process is adjusted so that, when the piezoelectric element 300 is placed on the upper surface of the flexible resin film 20 as shown in FIG. 51, the amount of the insulating resin material 380 filled in the piezoelectric element 30 covers the peripheral areas of the upper end surface of the piezoelectric element 30, including at least a part of the internal electrode terminal 34T, the internal electrode terminal facing area 362 of the upper surface electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and the area of the internal electrode side gap 34a sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing area 362, but does not cover the central area of the upper end surface of the piezoelectric element.
  • This preferred configuration effectively prevents or reduces the adhesion of the insulating resin material 380 to the pick nozzle when mounting the piezoelectric element 30, and allows the mounting work of the piezoelectric element 30 to be performed accurately and efficiently.
  • the piezoelectric element 30 has the bottom electrode terminal 37T and the internal electrode terminal 34T disposed midway along one side and the other side that form the outer shape in a plan view, respectively, but the present invention is not, of course, limited to such a configuration.
  • FIG. 52 shows a plan view of a piezoelectric element 30B provided with the insulating cover body 300A according to another embodiment of the present invention.
  • the piezoelectric element 30B has the lower electrode terminal 37T and the internal electrode terminal 34T disposed at corners of a rectangular shape in a plan view.
  • the lower sealing plate 40 is used, but in the present invention, it is also possible to use the lower sealing plate 40B instead of the lower sealing plate 40.
  • FIG. 53 shows a plan view of the lower sealing plate 40B.
  • FIG. 54 shows a partial vertical cross-sectional view of an ultrasonic transducer 1B according to a modification of the first embodiment in which the lower sealing plate 40B is used instead of the lower sealing plate 40. As shown in FIG.
  • the lower sealing plate 40B has partition walls 45 that divide the central opening 42 into multiple openings 43 large enough to surround each of the multiple piezoelectric elements 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

This piezoelectric element includes: an upper surface electrode and a lower surface electrode that form an external electrode; an internal electrode; a lower surface electrode connection body that includes a lower surface electrode terminal adjacent to the upper surface electrode across a lower surface electrode-side gap; an internal electrode connection body including an internal electrode terminal adjacent to the upper surface electrode across an internal electrode-side gap; and an insulating cover body integrally covering at least a portion of the internal electrode terminal, an internal electrode terminal facing region of the upper surface electrode that faces the internal electrode terminal across the internal electrode-side gap, and a region of the internal electrode-side gap that is sandwiched by the internal electrode terminal and the internal electrode terminal facing region. The insulating cover body is provided with an internal electrode opening that exposes at least a portion of the internal electrode terminal while not exposing the internal electrode terminal facing region.

Description

圧電素子、超音波トランスデューサー及びその製造方法Piezoelectric element, ultrasonic transducer and manufacturing method thereof

 本発明は、圧電素子、圧電素子と前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備えた超音波トランスデューサー、並びに、超音波トランスデューサーの製造方法に関する。 The present invention relates to a piezoelectric element, an ultrasonic transducer including a piezoelectric element and a wiring body having first and second wiring electrically connected to the external electrode and internal electrode of the piezoelectric element, respectively, and a method for manufacturing an ultrasonic transducer.

 積層型圧電素子として、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられた上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上方側の第1圧電部位及び下方側の第2圧電部位に区画する内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間を存した状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間を存した状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを備えた圧電素子が提案されている(下記特許文献1参照)。 As a laminated piezoelectric element, a piezoelectric element has been proposed that includes a piezoelectric element body formed from a piezoelectric material, an upper electrode and a lower electrode provided on the upper end surface and the lower end surface, respectively, an internal electrode that divides the piezoelectric element body into a first piezoelectric portion on the upper side and a second piezoelectric portion on the lower side in the thickness direction, a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end electrically connected to the lower electrode and a tip end with a lower electrode side gap between it and the upper electrode to form a lower electrode terminal, and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end electrically connected to the internal electrode and a tip end with an internal electrode side gap between it and the upper electrode to form an internal electrode terminal (see Patent Document 1 below).

 斯かる構成の積層型圧電素子は、外部電極を形成する前記上面電極及び前記下面電極の双方、並びに、前記内部電極の全てに対して、厚み方向一方側の上端面から対応する配線の電気接続を行うことができる点において、有用である。 The laminated piezoelectric element having such a configuration is useful in that it is possible to electrically connect the corresponding wiring from the upper end surface on one side in the thickness direction to both the upper electrode and the lower electrode that form the external electrode, as well as to all of the internal electrodes.

 即ち、前記下面電極端子と前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子に対向する下面電極端子対向領域との双方に跨るように第1導電性接着材を設け、前記第1導電性接着材に対応する第1配線を接合させることによって、前記上面電極及び前記下面電極の双方への前記第1配線の電気接続を前記圧電素子の上端面で行うことができ、さらに、前記内部電極端子上に第2導電性接着材を設け、前記第2導電性接着材に対応する第2配線を接合させることによって、前記内部電極への前記第2配線の電気接続を前記圧電素子の上端面で行うことができる。 In other words, by providing a first conductive adhesive across both the lower electrode terminal and the lower electrode terminal facing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and by bonding a first wiring that corresponds to the first conductive adhesive, the first wiring can be electrically connected to both the upper electrode and the lower electrode on the upper end surface of the piezoelectric element, and further by providing a second conductive adhesive on the internal electrode terminal and bonding a second wiring that corresponds to the second conductive adhesive, the second wiring can be electrically connected to the internal electrode on the upper end surface of the piezoelectric element.

 ところで、前記圧電素子は、前記外部電極及び前記内部電極間に印加された電圧をたわみ振動へ変換、又は、伝播される振動を前記第1及び第2電極間の電圧へ変換するものであるが、電圧及びたわみ振動の間の変換効率を向上させる為には、前記上面電極及び前記内部電極の間の対向面積、並びに、前記内部電極及び前記下面電極の間の対向面積を可及的に拡大させる必要がある。 The piezoelectric element converts the voltage applied between the external electrode and the internal electrode into bending vibration, or converts the propagated vibration into a voltage between the first and second electrodes. In order to improve the conversion efficiency between voltage and bending vibration, it is necessary to enlarge as much as possible the opposing area between the upper electrode and the internal electrode, and the opposing area between the internal electrode and the lower electrode.

 しかしながら、前記上面電極及び前記内部電極の間の対向面積の可及的な拡大を図る為には、前記上面電極自体の面積の可及的な拡大を図る必要があり、下記問題が生じる。 However, in order to maximize the opposing area between the top electrode and the internal electrode, it is necessary to maximize the area of the top electrode itself, which gives rise to the following problems.

 即ち、前記上面電極の面積拡大は前記内部電極側隙間の狭小化を招くことになり、前記内部電極端子上に塗布する前記第2導電性接着材の塗布量のばらつきや塗布位置のばらつきによって、前記第2導電性接着材が前記上面電極に接触する危険性が増大する。これは、前記外部電極(前記上部電極)及び前記内部電極間の短絡による歩留まりの低下、又は、前記第2導電性接着材の塗布作業の効率低下を招く。 In other words, the increase in the area of the top electrode leads to a narrowing of the gap on the internal electrode side, and the risk of the second conductive adhesive coming into contact with the top electrode increases due to variations in the amount of the second conductive adhesive applied to the internal electrode terminal and variations in the application position. This leads to a decrease in yield due to a short circuit between the external electrode (the upper electrode) and the internal electrode, or a decrease in the efficiency of the application work of the second conductive adhesive.

 さらに、前記内部電極側隙間の狭小化は、前記第2導電性接着材の塗布作業の際に当該第2導電性接着材が前記上面電極に接触しなかったとしても、高温高湿等の前記圧電素子の使用環境条件下においては、イオンマイグレーションが発生して短絡不良を招く恐れがある。 Furthermore, narrowing the gap on the internal electrode side may cause ion migration and lead to short circuit failures under environmental conditions in which the piezoelectric element is used, such as high temperature and humidity, even if the second conductive adhesive does not come into contact with the upper electrode during application of the second conductive adhesive.

特許第6776481号公報Patent No. 6776481

 本発明は、斯かる従来技術に鑑みなされたものであり、厚み方向一方側の上端面において、上面電極及び下面電極を含む外部電極並びに内部電極とそれぞれに対応する配線との電気的接続を行うことができる積層型圧電素子であって、外部電極及び内部電極間の短絡を有効に防止しつつ、電圧及びたわみ振動の間の変換効率の向上を図り得る積層型圧電素子の提供を第1の目的とする。 The present invention has been made in consideration of such conventional technology, and has as its first object to provide a multi-layer piezoelectric element that can electrically connect external electrodes, including upper and lower electrodes, and internal electrodes to their corresponding wiring at the upper end surface on one side in the thickness direction, and that can effectively prevent short circuits between the external electrodes and internal electrodes while improving the conversion efficiency between voltage and flexural vibration.

 また、本発明は、外部電極及び内部電極間の短絡を有効に防止しつつ、電圧及びたわみ振動の間の変換効率の向上を図り得る積層型圧電素子を備えた超音波トランスデューサーの提供を第2の目的とする。 The second object of the present invention is to provide an ultrasonic transducer equipped with a stacked piezoelectric element that can effectively prevent short circuits between the external and internal electrodes while improving the conversion efficiency between voltage and flexural vibration.

 さらに、本発明は、前記超音波トランスデューサーの効率的な製造方法の提供を第3の目的とする。 Furthermore, the third object of the present invention is to provide an efficient method for manufacturing the ultrasonic transducer.

 前記第1の目的を達成する為には、本発明の第1態様は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体と、前記内部電極端子の少なくとも一部、前記上面電極のうち前記内部電極側隙間を介して前記内部電極端子と対向する内部電極端子対向領域、及び、前記内部電極側隙間のうち前記内部電極端子と前記内部電極端子対向領域とによって挟まれた領域を一体的に覆う絶縁性カバー体とを備え、前記絶縁性カバー体には、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口が設けられている積層型圧電素子を提供する。 In order to achieve the first object, a first aspect of the present invention comprises a piezoelectric element body formed of a piezoelectric material, an upper electrode and a lower electrode respectively provided on the upper end surface and the lower end surface of the piezoelectric element body to form external electrodes, an internal electrode dividing the piezoelectric element body into upper and lower parts in the thickness direction, a lower electrode connector provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower electrode and a lower electrode side gap existing between the tip end and the upper electrode to form a lower electrode terminal, and a lower electrode connector provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side with an internal electrode side gap existing between the top electrode. The present invention provides a laminated piezoelectric element that includes an internal electrode connector that is provided on the upper end surface of the piezoelectric element body in a state where the internal electrode connector is present and forms an internal electrode terminal, and an insulating cover that integrally covers at least a portion of the internal electrode terminal, an internal electrode terminal facing region of the upper surface electrode that faces the internal electrode terminal through the internal electrode side gap, and an area of the internal electrode side gap that is sandwiched between the internal electrode terminal and the internal electrode terminal facing region, and the insulating cover is provided with an internal electrode opening that exposes at least a portion of the internal electrode terminal but does not expose the internal electrode terminal facing region.

 本発明の第1態様に係る前記積層型圧電素子によれば、圧電素子の厚み方向一方側の上端面において、上面電極及び下面電極を含む外部電極と対応する配線との電気接続、並びに、内部電極と対応する配線との電気接続を行うことができ、さらに、前記上面電極及び内部電極間の短絡を有効に防止しつつ、前記上面電極の可及的な拡大による電圧及びたわみ振動の変換効率向上を図ることができる。 The laminated piezoelectric element according to the first aspect of the present invention allows electrical connection between the external electrodes, including the upper and lower electrodes, and the corresponding wiring, as well as between the internal electrodes and the corresponding wiring, on the upper end surface on one side of the thickness direction of the piezoelectric element. Furthermore, it is possible to effectively prevent short circuits between the upper and internal electrodes, while improving the conversion efficiency of voltage and bending vibration by expanding the upper electrodes as much as possible.

 前記第1態様において、前記内部電極用開口は、前記内部電極側隙間のうち前記内部電極端子の露出領域に隣接する領域を露出させるように構成され得る。
 これに代えて、前記内部電極用開口は、前記内部電極側隙間を露出させないように構成され得る。
In the first aspect, the internal electrode opening may be configured to expose a region of the internal electrode side gap adjacent to an exposed region of the internal electrode terminal.
Alternatively, the internal electrode opening may be configured so as not to expose the internal electrode gap.

 前記第1態様の第1形態においては、前記絶縁性カバー体は、前記下面電極端子の少なくとも一部、前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子と対向する下面電極端子対向領域、及び、前記下面電極側隙間のうち前記下面電極端子と前記下面電極端子対向領域とによって挟まれた領域を一体的に覆うように構成される。
 この場合、前記絶縁性カバー体には、前記内部電極用開口に加えて、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口が設けられる。
In a first form of the first aspect, the insulating cover body is configured to integrally cover at least a portion of the lower electrode terminal, a lower electrode terminal opposing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and a region of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal opposing region.
In this case, in addition to the internal electrode opening, the insulating cover body is provided with an external electrode opening that integrally exposes at least a portion of the lower surface electrode terminal and at least a portion of the upper surface electrode.

 前記第1態様の第1形態において、例えば、前記絶縁性カバー体は、平面視において前記圧電素子本体の上端面の全てを覆うように構成され得る。
 これに代えて、前記絶縁性カバー体は、平面視において前記圧電素子本体の上端面の一部を覆うように構成され得る。
In a first configuration of the first aspect, for example, the insulating cover body may be configured to cover the entire upper end surface of the piezoelectric element body in a plan view.
Alternatively, the insulating cover body may be configured to cover a portion of the upper end surface of the piezoelectric element body in a plan view.

 前記第2の目的を達成する為には、本発明の第2態様は、上面及び下面の間を貫通する複数の開口部が設けられた剛性の基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において前記複数の開口部の全てを囲む大きさの中央開口を有し、前記中央開口が前記複数の開口部の全てを囲むように前記可撓性樹脂膜の上面に固着された下側封止板と、平面視において前記複数の開口部とそれぞれ重合するように前記中央開口内において前記可撓性樹脂膜の上面に配置された複数の圧電素子と、前記複数の圧電素子をそれぞれの配置位置において固定する絶縁性樹脂材と、第1及び第2配線を有し、前記下側封止板の上面に固着された配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有し、前記絶縁性樹脂材は、前記複数の圧電素子の下端面及び前記可撓性樹脂膜の間に介挿されると共に、前記複数の圧電素子の外側面及び上端面を覆うように設けられており、前記絶縁性樹脂材のうち前記圧電素子の上端面を覆って絶縁性カバー体を形成する部分には、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口と、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口とが設けられ、前記第1配線は、前記外部電極用開口によって露出された前記下面電極端子及び前記上面電極に第1導電性接合部材を介して電気的に接続され、前記第2配線は、前記内部電極用開口によって露出された前記内部電極端子に第2導電性接合部材を介して電気的に接続されている超音波トランスデューサーを提供する。 In order to achieve the second object, a second aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, a lower sealing plate having a central opening of a size that surrounds all of the plurality of openings in a plan view and adhered to the upper surface of the flexible resin film so that the central opening surrounds all of the plurality of openings, a plurality of piezoelectric elements arranged on the upper surface of the flexible resin film within the central opening so as to overlap with the plurality of openings in a plan view, and The piezoelectric element includes an insulating resin material that fixes the plurality of piezoelectric elements at their respective positions, and a wiring body having first and second wiring and fixed to the upper surface of the lower sealing plate, the piezoelectric element including a piezoelectric element body formed from a piezoelectric material, upper and lower electrodes that are provided on the upper and lower end surfaces of the piezoelectric element body, respectively, and form external electrodes, an internal electrode that divides the piezoelectric element body into upper and lower parts in the thickness direction, and an internal electrode that is electrically connected at its base end to the lower electrode and is provided at its tip end on the upper end surface of the piezoelectric element body with a lower electrode side gap existing between the upper electrode and the internal electrode. and an internal electrode connector which is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side between the base end side and the upper electrode to form an internal electrode terminal, the insulating resin material is interposed between the lower end surfaces of the plurality of piezoelectric elements and the flexible resin film, and is provided so as to cover the outer side and upper end surfaces of the plurality of piezoelectric elements, and a portion of the insulating resin material which covers the upper end surfaces of the piezoelectric elements to form an insulating cover body has a thickness of about 100 nm. An ultrasonic transducer is provided in which an opening for an external electrode integrally exposes at least a portion of the lower electrode and at least a portion of the upper electrode, and an opening for an internal electrode exposes at least a portion of the internal electrode terminal but does not expose the internal electrode terminal facing region, the first wiring is electrically connected to the lower electrode terminal and the upper electrode exposed by the opening for the external electrode via a first conductive bonding member, and the second wiring is electrically connected to the internal electrode terminal exposed by the opening for the internal electrode via a second conductive bonding member.

 前記第2態様の第1形態においては、前記絶縁性樹脂材は、前記複数の圧電素子の下端面を前記可撓性樹脂膜に固着する第1絶縁性樹脂材と、前記複数の圧電素子の外側面及び上端面を覆う第2絶縁性樹脂材とを含むものとされる。
 前記第2態様の第2形態においては、前記絶縁性樹脂材は単一材料とされる。
In a first form of the second aspect, the insulating resin material includes a first insulating resin material that fixes the lower end surfaces of the multiple piezoelectric elements to the flexible resin film, and a second insulating resin material that covers the outer surfaces and upper end surfaces of the multiple piezoelectric elements.
In a second embodiment of the second aspect, the insulating resin material is a single material.

 前記第2態様において、好ましくは、前記下側封止板は、前記中央開口を、前記複数の圧電素子をそれぞれ囲む大きさの複数の開口に区画する隔壁を有するものとされる。 In the second aspect, the lower sealing plate preferably has a partition wall that divides the central opening into multiple openings each large enough to surround one of the piezoelectric elements.

 前記第2態様において、前記配線体は、前記第1及び第2配線を支持する絶縁性ベース層と、前記第1及び第2配線の少なくとも一部を前記ベース層とは反対側から覆う絶縁性カバー層とを有し、前記ベース層及び前記カバー層は、前記複数の圧電素子のそれぞれに平面視において部分的に重合する複数の圧電素子重合部位と、前記複数の圧電素子重合部位を一体的に保持する先端部位とを有するものとされる。 In the second aspect, the wiring body has an insulating base layer that supports the first and second wirings, and an insulating cover layer that covers at least a portion of the first and second wirings from the side opposite the base layer, and the base layer and the cover layer have a plurality of piezoelectric element overlapping portions that are partially overlapped with each of the plurality of piezoelectric elements in a planar view, and a tip portion that holds the plurality of piezoelectric element overlapping portions together.

 前記ベース層及び前記カバー層のうち前記圧電素子と対向する側に位置する圧電素子側絶縁層の圧電素子重合部位は、前記下面電極端子の少なくとも一部及び前記下面電極端子対向領域の少なくとも一部を一体的に囲む領域と平面視において重合する外部電極タブ領域であって、外部電極接続開口が設けられた外部電極タブ領域と、前記内部電極端子の少なくとも一部と平面視において重合する内部電極タブ領域であって、内部電極接続開口が設けられた内部電極タブ領域とを有する、 The piezoelectric element overlapping portion of the piezoelectric element side insulating layer located on the side of the base layer and the cover layer facing the piezoelectric element has an external electrode tab area that overlaps in a plan view with an area that integrally surrounds at least a part of the lower electrode terminal and at least a part of the lower electrode terminal facing area, and has an external electrode connection opening, and an internal electrode tab area that overlaps in a plan view with at least a part of the internal electrode terminal, and has an internal electrode connection opening.

 前記第1配線は一部が前記外部電極接続開口を跨ぎ、前記第2配線は一部が前記内部電極接続開口を跨いでおり、前記配線体は、前記外部電極接続開口が前記下面電極端子の少なくとも一部及び前記下面電極対向領域の少なくとも一部を一体的に含む領域と平面視において重合し且つ前記内部電極接続開口が前記内部電極端子の少なくとも一部と平面視において重合した状態で、前記下側封止板の上面に固着され、前記第1配線のうち前記外部電極接続開口を跨ぐ部分が前記第1導電性接合材に接合され、前記第2配線のうち前記内部電極接続開口を跨ぐ部分が前記第2導電性接合材に接合される。 A portion of the first wiring straddles the external electrode connection opening, and a portion of the second wiring straddles the internal electrode connection opening, and the wiring body is fixed to the upper surface of the lower sealing plate in a state in which the external electrode connection opening overlaps in a plan view with a region that integrally includes at least a portion of the lower electrode terminal and at least a portion of the lower electrode facing region, and the internal electrode connection opening overlaps in a plan view with at least a portion of the internal electrode terminal, and the portion of the first wiring that straddles the external electrode connection opening is bonded to the first conductive adhesive, and the portion of the second wiring that straddles the internal electrode connection opening is bonded to the second conductive adhesive.

 好ましくは、前記ベース層及び前記カバー層のうち前記圧電素子から離間された側に位置する絶縁層の圧電素子重合部位は、前記下面電極端子の少なくとも一部及び前記下面電極端子対向領域の少なくとも一部を一体的に囲む領域と平面視において重合する外部電極タブ領域であって、第1アクセス開口が設けられた外部電極タブ領域と、前記内部電極端子の少なくとも一部と平面視において重合する内部電極タブ領域であって、第2アクセス開口が設けられた第2タブ領域とを有し得る。 Preferably, the piezoelectric element overlapping portion of the insulating layer located on the side of the base layer and the cover layer that is spaced from the piezoelectric element may have an external electrode tab region that overlaps in a planar view with a region that integrally surrounds at least a portion of the lower electrode terminal and at least a portion of the lower electrode terminal facing region, the external electrode tab region having a first access opening, and an internal electrode tab region that overlaps in a planar view with at least a portion of the internal electrode terminal, the second tab region having a second access opening.

 前記第3の目的を達成する為に、本発明の第3態様は、上面及び下面の間を貫通する複数の開口部が設けられた剛性基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において中央領域が対応する開口部と重合し且つ周縁領域が前記基板の上面と重合するように前記可撓性樹脂膜に固着された前記複数の開口部と同数の圧電素子と、前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面下面にそれぞれ設けられ、前記外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する前記内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有している超音波トランスデューサーの製造方法であって、前記剛性基板と同一厚さの剛性板材を用意し、前記剛性板材に前記複数の開口部を形成して前記剛性基板を形成する剛性基板形成工程と、前記複数の開口部を覆うように前記可撓性樹脂膜を前記剛性基板の上面に固着する可撓性樹脂膜固着工程と、平面視において前記複数の開口部とそれぞれ重合するように前記複数の圧電素子を前記可撓性樹脂膜の上面に絶縁性接着材によって固着する圧電素子固着工程と、前記内部電極端子の少なくとも一部、前記上面電極のうち前記内部電極側隙間を介して前記内部電極端子と対向する内部電極端子対向領域、及び、前記内部電極側隙間のうち前記内部電極端子と前記内部電極端子対向領域とによって挟まれた領域を一体的に覆うように、前記圧電素子の上端面に絶縁性カバー体を設ける絶縁性カバー体設置工程と、前記絶縁性カバー体に、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口を形成する電極露出工程と、前記下面電極端子の少なくとも一部及び前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子と対向する下面電極端子対向領域の少なくとも一部を一体的に覆うように第1導電性接合材を設け、且つ、前記内部電極端子のうち前記内部電極用開口を介して露出された部分に第2導電性接合材を設ける導電性接合材設置工程と、前記第1配線の一部が前記第1導電性接合材に接触し且つ前記第2配線の一部が前記第2導電性接合材に接触するように、前記配線体を設置する配線体設置工程を備えた超音波トランスデューサーの製造方法を提供する。 In order to achieve the third object, a third aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, which are adhered to the flexible resin film so that their central regions overlap with the corresponding openings in a plan view and their peripheral regions overlap with the upper surface of the substrate, and a wiring body having first and second wiring electrically connected to the external and internal electrodes of the piezoelectric elements, respectively, wherein the piezoelectric elements comprise a piezoelectric element body formed of a piezoelectric material, and upper and lower electrodes that are provided on the upper end surface and lower surface of the lower end surface of the piezoelectric element body, respectively, and form the external electrodes. a lower surface electrode connector that is provided on the upper end surface of the piezoelectric element body with a lower surface electrode side gap between the lower surface electrode and the upper surface electrode at a base end side, and forms a lower surface electrode terminal; and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a lower surface electrode side gap between the lower surface electrode and the upper surface electrode at a base end side, and forms an internal electrode terminal, the method comprising the steps of: preparing a rigid plate material having the same thickness as the rigid substrate; and forming the rigid substrate by forming the plurality of openings in the rigid plate material; a flexible resin film fixing step of fixing the flexible resin film to the upper surface of the rigid substrate so as to cover a number of openings; a piezoelectric element fixing step of fixing the plurality of piezoelectric elements to the upper surface of the flexible resin film with an insulating adhesive so as to overlap the plurality of openings in a plan view; an insulating cover installation step of providing an insulating cover body on the upper end surface of the piezoelectric elements so as to integrally cover at least a part of the internal electrode terminals, an internal electrode terminal facing region of the upper surface electrode that faces the internal electrode terminals across the internal electrode side gap, and a region of the internal electrode side gap that is sandwiched between the internal electrode terminals and the internal electrode terminal facing region; The method for manufacturing an ultrasonic transducer includes an electrode exposing step of forming an internal electrode opening that exposes a portion of the lower electrode terminal while not exposing the internal electrode terminal facing region, a conductive bonding material installation step of providing a first conductive bonding material to integrally cover at least a portion of the lower electrode terminal and at least a portion of the lower electrode terminal facing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and providing a second conductive bonding material on the portion of the internal electrode terminal exposed through the internal electrode opening, and a wiring body installation step of installing the wiring body so that a portion of the first wiring contacts the first conductive bonding material and a portion of the second wiring contacts the second conductive bonding material.

 前記第3態様において、好ましくは、前記電極露出工程は、前記絶縁性カバー体のうち前記内部電極開口を形成すべき領域にレーザー光を照射することで前記内部電極開口を形成するように構成される。 In the third aspect, the electrode exposure step is preferably configured to form the internal electrode opening by irradiating a laser beam onto an area of the insulating cover body where the internal electrode opening is to be formed.

 前記第3態様の第1形態においては、前記絶縁性カバー体は、前記下面電極端子の少なくとも一部、前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子と対向する下面電極端子対向領域、及び、前記下面電極側隙間のうち前記下面電極端子と前記下面電極端子対向領域とによって挟まれた領域を覆わないように構成される。 In the first form of the third aspect, the insulating cover body is configured so as not to cover at least a portion of the lower electrode terminal, a lower electrode terminal facing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and a region of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal facing region.

 前記第3態様の第2形態においては、前記絶縁性カバー体は、前記下面電極端子の少なくとも一部、前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子と対向する下面電極端子対向領域、及び、前記下面電極側隙間のうち前記下面電極端子と前記下面電極端子対向領域とによって挟まれた領域を一体的に覆うように構成される。
 この場合、前記電極露出工程は、前記内部電極開口に加えて、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口を形成するように構成され、前記導電性接合材設置工程は、前記第1導電性接合材を前記外部電極用開口内に設けるように構成される。
In a second form of the third aspect, the insulating cover body is configured to integrally cover at least a portion of the lower electrode terminal, a lower electrode terminal opposing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and a region of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal opposing region.
In this case, the electrode exposure process is configured to form, in addition to the internal electrode opening, an opening for an external electrode that integrally exposes at least a portion of the lower electrode terminal and at least a portion of the upper electrode, and the conductive bonding material installation process is configured to provide the first conductive bonding material in the opening for the external electrode.

 前記第3態様に係る製造方法は、さらに、前記圧電素子と略同一厚さを有し且つ前記剛性基板における前記複数の開口部を一体的に囲む大きさの中央開口を有する下側封止板を用意し、平面視において前記中央開口が前記複数の開口部を一体的に囲むように前記可撓性樹脂膜の上面に前記下側封止板を固着する下側封止板固着工程を備え得る。 The manufacturing method according to the third aspect may further include a lower sealing plate fixing step of preparing a lower sealing plate having approximately the same thickness as the piezoelectric element and a central opening of a size that integrally surrounds the multiple openings in the rigid substrate, and fixing the lower sealing plate to the upper surface of the flexible resin film so that the central opening integrally surrounds the multiple openings in a plan view.

 前記下側封止板固着工程は、前記可撓性樹脂膜固着工程より後で且つ前記配線体設置工程より前の任意タイミングで実行され、前記配線体設置工程は、前記配線体を前記下側封止板に載置するように構成される。 The lower sealing plate fixing process is performed at any timing after the flexible resin film fixing process and before the wiring body installation process, and the wiring body installation process is configured to place the wiring body on the lower sealing plate.

 好ましくは、前記第3態様に係る製造方法は、さらに、前記下側封止板固着工程及び前記圧電素子固着工程より後で且つ前記配線体設置工程より前に、前記下側封止板の中央開口によって囲まれる空間のうち、前記複数の圧電素子のそれぞれの側方部分に絶縁性樹脂材を充填する絶縁性樹脂材充填工程を備え得る。 Preferably, the manufacturing method according to the third aspect may further include an insulating resin filling step, which is performed after the lower sealing plate fixing step and the piezoelectric element fixing step and before the wiring body installation step, of filling the lateral portions of each of the plurality of piezoelectric elements with an insulating resin material in the space surrounded by the central opening of the lower sealing plate.

 前記第3態様に係る製造方法において、好ましくは、前記下側封止板は、前記中央開口を、前記複数の圧電素子をそれぞれ囲む大きさの複数の開口に区画する隔壁を有するものとされる。 In the manufacturing method according to the third aspect, the lower sealing plate preferably has a partition wall that divides the central opening into a plurality of openings each large enough to surround one of the piezoelectric elements.

 前記第3の目的を達成する為に、本発明の第4態様は、上面及び下面の間を貫通する複数の開口部が設けられた剛性基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において中央領域が対応する開口部と重合し且つ周縁領域が前記基板の上面と重合するように前記可撓性樹脂膜に固着された前記複数の開口部と同数の圧電素子と、前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、前記外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する前記内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有している超音波トランスデューサーの製造方法であって、前記剛性基板と同一厚さの剛性板材を用意し、前記剛性板材に前記複数の開口部を形成して前記剛性基板を形成する剛性基板形成工程と、前記複数の開口部を覆うように前記可撓性樹脂膜を前記剛性基板の上面に固着する可撓性樹脂膜固着工程と、平面視において前記複数の開口部の全てを囲む大きさの中央開口を有する下側封止板を用意し、前記中央開口が前記複数の開口部の全てを囲むように前記可撓性樹脂膜の上面に前記下側封止板を固着する下側封止板設置工程と、平面視において前記複数の開口部とそれぞれ重合するように前記複数の圧電素子を第1絶縁性樹脂材によって前記可撓性樹脂膜の上面に固着する圧電素子固着工程と、前記中央開口内において前記複数の圧電素子の外側面を覆うと共に、前記複数の圧電素子の上端面を覆って絶縁性カバー体を形成するように、第2絶縁性樹脂材を設ける絶縁性樹脂材設置工程と、前記絶縁性カバー体に、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口と、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口とを形成する電極露出工程と、前記下面電極端子及び前記上面電極のうち前記外部電極用開口を介して露出された部分を一体的に覆うように第1導電性接合材を設け、且つ、前記内部電極端子のうち前記内部電極用開口を介して露出された部分に第2導電性接合材を設ける導電性接合材設置工程と、前記第1配線の一部が前記第1導電性接合材に接触し且つ前記第2配線の一部が前記第2導電性接合材に接触するように、前記配線体を設置する配線体設置工程を備えた超音波トランスデューサーの製造方法を提供する。 In order to achieve the third object, a fourth aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, which are adhered to the flexible resin film so that their central regions overlap with the corresponding openings in a plan view and their peripheral regions overlap with the upper surface of the substrate, and a wiring body having first and second wiring electrically connected to the external and internal electrodes of the piezoelectric elements, respectively, wherein the piezoelectric elements comprise a piezoelectric element body formed of a piezoelectric material, upper and lower electrodes provided on the upper and lower end surfaces of the piezoelectric element body, respectively, and forming the external electrodes, and a wiring body extending in the thickness direction of the piezoelectric element body. a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower electrode and a tip end side with an internal electrode side gap between it and the upper electrode to form a lower electrode terminal; and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side with an internal electrode side gap between it and the upper electrode to form an internal electrode terminal, the method comprising the steps of: preparing a rigid plate material of the same thickness as the rigid substrate, forming the rigid substrate by forming the plurality of openings in the rigid plate material; and depositing the flexible resin film on the upper surface of the rigid substrate so as to cover the plurality of openings. a lower sealing plate installation step of preparing a lower sealing plate having a central opening of a size sufficient to surround all of the plurality of openings in a plan view, and fixing the lower sealing plate to the upper surface of the flexible resin film so that the central opening surrounds all of the plurality of openings; a piezoelectric element installation step of fixing the plurality of piezoelectric elements to the upper surface of the flexible resin film with a first insulating resin material so as to overlap with the plurality of openings in a plan view; an insulating resin material installation step of providing a second insulating resin material within the central opening so as to cover outer side surfaces of the plurality of piezoelectric elements and to cover upper end surfaces of the plurality of piezoelectric elements to form an insulating cover body; The method for manufacturing an ultrasonic transducer includes an electrode exposure process for forming an external electrode opening that integrally exposes at least a portion of the upper electrode and an internal electrode opening that exposes at least a portion of the internal electrode terminal but does not expose the internal electrode terminal facing region, a conductive bonding material installation process for providing a first conductive bonding material to integrally cover the portions of the lower electrode terminal and the upper electrode exposed through the external electrode opening and providing a second conductive bonding material on the portion of the internal electrode terminal exposed through the internal electrode opening, and a wiring body installation process for installing the wiring body so that a portion of the first wiring contacts the first conductive bonding material and a portion of the second wiring contacts the second conductive bonding material.

 前記第3の目的を達成する為に、本発明の第5態様は、上面及び下面の間を貫通する複数の開口部が設けられた剛性基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において中央領域が対応する開口部と重合し且つ周縁領域が前記基板の上面と重合するように前記可撓性樹脂膜に固着された前記複数の開口部と同数の圧電素子と、前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、前記外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する前記内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有している超音波トランスデューサーの製造方法であって、前記剛性基板と同一厚さの剛性板材を用意し、前記剛性板材に前記複数の開口部を形成して前記剛性基板を形成する剛性基板形成工程と、前記複数の開口部を覆うように前記可撓性樹脂膜を前記剛性基板の上面に固着する可撓性樹脂膜固着工程と、平面視において前記複数の開口部とそれぞれ重合するように前記複数の圧電素子を第1絶縁性樹脂材によって前記可撓性樹脂膜の上面に固着する圧電素子固着工程と、平面視において前記複数の開口部の全てを囲む大きさの中央開口を有する下側封止板を用意し、前記中央開口が前記複数の開口部の全てを囲むように前記可撓性樹脂膜の上面に前記下側封止板を固着する下側封止板設置工程と、前記中央開口内において前記複数の圧電素子の外側面を覆うと共に、前記複数の圧電素子の上端面を覆って絶縁性カバー体を形成するように、第2絶縁性樹脂材を設ける絶縁性樹脂材設置工程と、前記絶縁性カバー体に、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口と、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口とを形成する電極露出工程と、前記下面電極端子及び前記上面電極のうち前記外部電極用開口を介して露出された部分を一体的に覆うように第1導電性接合材を設け、且つ、前記内部電極端子のうち前記内部電極用開口を介して露出された部分に第2導電性接合材を設ける導電性接合材設置工程と、前記第1配線の一部が前記第1導電性接合材に接触し且つ前記第2配線の一部が前記第2導電性接合材に接触するように、前記配線体を設置する配線体設置工程を備えた超音波トランスデューサーの製造方法を提供する。 In order to achieve the third object, a fifth aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, which are adhered to the flexible resin film so that their central regions overlap with the corresponding openings in a plan view and their peripheral regions overlap with the upper surface of the substrate, and a wiring body having first and second wiring electrically connected to the external and internal electrodes of the piezoelectric elements, respectively, wherein the piezoelectric elements comprise a piezoelectric element body formed of a piezoelectric material, upper and lower electrodes provided on the upper and lower end surfaces of the piezoelectric element body, respectively, which form the external electrodes, and a wiring body extending in a thickness direction through the piezoelectric element body. a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower electrode and a tip end side with a lower electrode side gap between it and the upper electrode to form a lower electrode terminal; and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side with an internal electrode side gap between it and the upper electrode to form an internal electrode terminal, the method comprising the steps of: preparing a rigid plate material of the same thickness as the rigid substrate, forming the rigid substrate by forming the plurality of openings in the rigid plate material; and depositing the flexible resin film on the upper surface of the rigid substrate so as to cover the plurality of openings. a piezoelectric element fixing step of fixing the plurality of piezoelectric elements to an upper surface of the flexible resin film with a first insulating resin material so as to overlap with the plurality of openings in a plan view; a lower sealing plate installation step of preparing a lower sealing plate having a central opening of a size sufficient to surround all of the plurality of openings in a plan view and fixing the lower sealing plate to the upper surface of the flexible resin film so that the central opening surrounds all of the plurality of openings; an insulating resin material installation step of providing a second insulating resin material within the central opening so as to cover outer sides of the plurality of piezoelectric elements and to cover upper end faces of the plurality of piezoelectric elements to form an insulating cover body; The method for manufacturing an ultrasonic transducer includes an electrode exposure process for forming an external electrode opening that integrally exposes at least a portion of the upper electrode and an internal electrode opening that exposes at least a portion of the internal electrode terminal but does not expose the internal electrode terminal facing region, a conductive bonding material installation process for providing a first conductive bonding material to integrally cover the portions of the lower electrode terminal and the upper electrode exposed through the external electrode opening and providing a second conductive bonding material on the portion of the internal electrode terminal exposed through the internal electrode opening, and a wiring body installation process for installing the wiring body so that a portion of the first wiring contacts the first conductive bonding material and a portion of the second wiring contacts the second conductive bonding material.

 前記第3の目的を達成する為に、本発明の第6態様は、上面及び下面の間を貫通する複数の開口部が設けられた剛性基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において中央領域が対応する開口部と重合し且つ周縁領域が前記基板の上面と重合するように前記可撓性樹脂膜に固着された前記複数の開口部と同数の圧電素子と、前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、前記外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する前記内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有している超音波トランスデューサーの製造方法であって、前記剛性基板と同一厚さの剛性板材を用意し、前記剛性板材に前記複数の開口部を形成して前記剛性基板を形成する剛性基板形成工程と、前記複数の開口部を覆うように前記可撓性樹脂膜を前記剛性基板の上面に固着する可撓性樹脂膜固着工程と、前記圧電素子より厚みが大とされた下側封止板であって、平面視において前記複数の開口部の全てを囲む大きさの中央開口を有する下側封止板を用意し、前記中央開口が前記複数の開口部の全てを囲むように前記可撓性樹脂膜の上面に前記下側封止板を固着する下側封止板設置工程と、前記中央開口内に絶縁性樹脂材を充填する絶縁性樹脂材充填工程と、前記絶縁性樹脂材の一部が前記圧電素子の上端面を覆った状態で平面視において前記複数の開口部とそれぞれ重合するように前記複数の圧電素子を前記絶縁性樹脂材中において前記可撓性樹脂膜の上面に設置して、前記絶縁性樹脂材によって前記複数の圧電素子を前記可撓性樹脂膜に固着する圧電素子固着工程と、前記絶縁性樹脂材のうち前記圧電素子の上端面を覆って絶縁性カバー体を形成する部分に、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口と、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口とを形成する電極露出工程と、前記下面電極端子及び前記上面電極のうち前記外部電極用開口を介して露出された部分を一体的に覆うように第1導電性接合材を設け、且つ、前記内部電極端子のうち前記内部電極用開口を介して露出された部分に第2導電性接合材を設ける導電性接合材設置工程と、前記第1配線の一部が前記第1導電性接合材に接触し且つ前記第2配線の一部が前記第2導電性接合材に接触するように、前記配線体を設置する配線体設置工程を備えた超音波トランスデューサーの製造方法を提供する。 In order to achieve the third object, a sixth aspect of the present invention comprises a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film adhered to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, the piezoelectric elements being adhered to the flexible resin film so as to overlap the corresponding openings in a plan view at their central regions and overlap the upper surface of the substrate at their peripheral regions, and a wiring body having first and second wiring electrically connected to the external and internal electrodes of the piezoelectric elements, respectively, the piezoelectric elements comprising a piezoelectric element body formed of a piezoelectric material, upper and lower electrodes provided on the upper and lower end surfaces of the piezoelectric element body, respectively, which form the external electrodes, and the internal electrodes which divide the piezoelectric element body into upper and lower portions in the thickness direction. a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower electrode and a tip end side with a lower electrode side gap between it and the upper electrode to form a lower electrode terminal, and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side with an internal electrode side gap between it and the upper electrode to form an internal electrode terminal, the method comprising the steps of: preparing a rigid plate material of the same thickness as the rigid substrate, forming the rigid substrate by forming the multiple openings in the rigid plate material; a lower sealing plate having a central opening of a size sufficient to surround all of the plurality of openings in a plan view, and a lower sealing plate installation step of fixing the lower sealing plate to an upper surface of the flexible resin film such that the central opening surrounds all of the plurality of openings; an insulating resin material filling step of filling the central opening with an insulating resin material; a piezoelectric element fixing step of installing the plurality of piezoelectric elements in the insulating resin material on the upper surface of the flexible resin film such that a portion of the insulating resin material covers the upper end surfaces of the piezoelectric elements and overlaps with the plurality of openings in a plan view, and fixing the plurality of piezoelectric elements to the flexible resin film with the insulating resin material; The method for manufacturing an ultrasonic transducer includes an electrode exposure process for forming an external electrode opening that integrally exposes at least a portion of the electrode terminal and at least a portion of the upper electrode, and an internal electrode opening that exposes at least a portion of the internal electrode terminal but does not expose the internal electrode terminal facing region, a conductive bonding material installation process for providing a first conductive bonding material to integrally cover the portions of the lower electrode terminal and the upper electrode exposed through the external electrode opening, and providing a second conductive bonding material on the portion of the internal electrode terminal exposed through the internal electrode opening, and a wiring body installation process for installing the wiring body so that a portion of the first wiring contacts the first conductive bonding material and a portion of the second wiring contacts the second conductive bonding material.

 前記第4から第6態様に係る製造方法において、好ましくは、前記電極露出工程は、前記絶縁性カバー体のうち前記外部電極用開口を形成すべき領域及び前記内部電極開口を形成すべき領域にレーザー光を照射することで前記外部電極用開口及び前記内部電極開口を形成するように構成される。 In the manufacturing methods according to the fourth to sixth aspects, the electrode exposure step is preferably configured to form the external electrode opening and the internal electrode opening by irradiating a laser beam onto an area of the insulating cover where the external electrode opening is to be formed and an area where the internal electrode opening is to be formed.

 前記第4から第6態様に係る製造方法において、好ましくは、前記下側封止板は、前記中央開口を、前記複数の圧電素子をそれぞれ囲む大きさの複数の開口に区画する隔壁を有するものとされる。 In the manufacturing methods according to the fourth to sixth aspects, the lower sealing plate preferably has a partition wall that divides the central opening into a plurality of openings each large enough to surround one of the piezoelectric elements.

図1は、本発明の実施の形態1に係る圧電素子を含む超音波トランスデューサーの平面図である。FIG. 1 is a plan view of an ultrasonic transducer including a piezoelectric element according to a first embodiment of the present invention. 図2は、図1におけるII-II線に沿った前記超音波トランスデューサーの部分縦断面図である。FIG. 2 is a partial vertical cross-sectional view of the ultrasonic transducer taken along line II-II in FIG. 図3は、図2におけるIII部拡大図である。FIG. 3 is an enlarged view of part III in FIG. 図4は、図2におけるIV-IV部に沿った断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 図5は、図4におけるV部拡大図である。FIG. 5 is an enlarged view of a portion V in FIG. 図6(a)~(d)は、それぞれ、前記超音波トランスデューサーの構成部材である、剛性基板、可撓性樹脂膜、複数の圧電素子及び下側封止板の平面図であり、図2に示す状態において、図6(a)~(d)の構成部材は下から上に順に積層されている。6(a) to (d) are plan views of the components of the ultrasonic transducer, namely, a rigid substrate, a flexible resin film, a plurality of piezoelectric elements, and a lower sealing plate, respectively. In the state shown in FIG. 2, the components of FIG. 6(a) to (d) are stacked in order from bottom to top. 図7(a)~(e)は、それぞれ、前記超音波トランスデューサーの構成部材である配線体における、カバー層、第1及び第2配線、ベース層、前記第1配線における中間領域及び裏面側カバー層の平面図であり、図2に示す状態において、図7(a)~(e)の構成部材は下から上に順に積層されている。7(a) to (e) are plan views of the cover layer, first and second wiring, base layer, intermediate region in the first wiring, and back cover layer in the wiring body which is a component of the ultrasonic transducer, respectively. In the state shown in FIG. 2, the components in FIGS. 7(a) to (e) are stacked in order from bottom to top. 図8(a)は、前記実施の形態1に係る圧電素子の平面図であり、図8(b)は、図8(a)におけるVIII-VIII線に沿った断面図である。FIG. 8(a) is a plan view of the piezoelectric element according to the first embodiment, and FIG. 8(b) is a cross-sectional view taken along line VIII-VIII in FIG. 8(a). 図9(a)は、前記実施の形態1の第1変形例に係る圧電素子の平面図であり、図9(b)は、図8(a)におけるIX-IX線に沿った断面図である。FIG. 9(a) is a plan view of a piezoelectric element according to a first modified example of the first embodiment, and FIG. 9(b) is a cross-sectional view taken along line IX-IX in FIG. 8(a). 図10(a)は、前記実施の形態1の第2変形例に係る圧電素子の平面図であり、図10(b)は、図10(a)におけるX-X線に沿った断面図である。FIG. 10(a) is a plan view of a piezoelectric element according to a second modified example of the first embodiment, and FIG. 10(b) is a cross-sectional view taken along line X-X in FIG. 10(a). 図11(a)は、前記実施の形態1の第3変形例に係る圧電素子の平面図であり、図11(b)は、図11(a)におけるXI-XI線に沿った断面図である。FIG. 11(a) is a plan view of a piezoelectric element according to a third modified example of the first embodiment, and FIG. 11(b) is a cross-sectional view taken along line XI-XI in FIG. 11(a). 図12(a)は、前記実施の形態1の第4変形例に係る圧電素子の平面図であり、図12(b)は、図12(a)におけるXII-XII線に沿った断面図である。FIG. 12(a) is a plan view of a piezoelectric element according to a fourth modified example of the first embodiment, and FIG. 12(b) is a cross-sectional view taken along line XII-XII in FIG. 12(a). 図13(a)は、前記実施の形態1の第5変形例に係る圧電素子の平面図であり、図13(b)は、図13(a)におけるXIII-XIII線に沿った断面図である。FIG. 13(a) is a plan view of a piezoelectric element according to a fifth modified example of the first embodiment, and FIG. 13(b) is a cross-sectional view taken along line XIII-XIII in FIG. 13(a). 図14(a)は、前記実施の形態1の第6変形例に係る圧電素子の平面図であり、図14(b)は、図14(a)におけるXIV-XIV線に沿った断面図である。FIG. 14(a) is a plan view of a piezoelectric element according to a sixth modified example of the first embodiment, and FIG. 14(b) is a cross-sectional view taken along line XIV-XIV in FIG. 14(a). 図15(a)は、前記実施の形態1の第7変形例に係る圧電素子の平面図であり、図15(b)は、図15(a)におけるXV-XV線に沿った断面図である。FIG. 15(a) is a plan view of a piezoelectric element according to a seventh modified example of the first embodiment, and FIG. 15(b) is a cross-sectional view taken along line XV-XV in FIG. 15(a). 図16は、前記配線体の平面図であり、一部の構成部材の図示を省略している。FIG. 16 is a plan view of the wiring body, with some components not shown. 図17は、前記配線体の底面図であり、一部の構成部材の図示を省略している。FIG. 17 is a bottom view of the wiring body, with some components not shown. 図18(a)~(c)は、それぞれ、前記超音波トランスデューサーの構成部材である、上側封止板、吸音材及び補強板の平面図であり、図2に示す状態において、図18(a)~(c)の構成部材は下から上に順に積層されている。Figures 18(a) to (c) are plan views of the upper sealing plate, sound-absorbing material and reinforcing plate, which are components of the ultrasonic transducer, respectively. In the state shown in Figure 2, the components of Figures 18(a) to (c) are stacked in order from bottom to top. 図19は、前記実施の形態1に係る圧電素子を含む超音波トランスデューサーの製造方法(以下、第1製造方法という)における可撓性樹脂膜固着工程後の状態を示す縦断面図である。FIG. 19 is a vertical cross-sectional view showing a state after a flexible resin film fixing step in the manufacturing method (hereinafter referred to as the first manufacturing method) of the ultrasonic transducer including the piezoelectric element according to the first embodiment. 図20は、前記第1製造方法における下側封止板固着工程後の状態を示す縦断面図である。FIG. 20 is a vertical cross-sectional view showing a state after the lower sealing plate fixing step in the first manufacturing method. 図21は、前記第1製造方法における絶縁性樹脂材充填工程後の状態を示す縦断面図である。FIG. 21 is a vertical cross-sectional view showing a state after the insulating resin filling step in the first manufacturing method. 図22は、前記第1製造方法における絶縁性カバー体設置工程後の状態を示す縦断面図である。FIG. 22 is a vertical cross-sectional view showing a state after the insulating cover body installation step in the first manufacturing method. 図23は、図22におけるXXIII部拡大図である。FIG. 23 is an enlarged view of a portion XXIII in FIG. 図24は、前記絶縁性カバー体設置工程後の前記圧電素子の平面図である。FIG. 24 is a plan view of the piezoelectric element after the insulating cover installation step. 図25は、前記第1製造方法における電極露出工程後の状態を示す縦断面図である。FIG. 25 is a vertical cross-sectional view showing a state after the electrode exposing step in the first manufacturing method. 図26は、図25におけるXXVI部拡大図である。FIG. 26 is an enlarged view of a portion XXVI in FIG. 図27は、前記電極露出工程後の前記圧電素子の平面図である。FIG. 27 is a plan view of the piezoelectric element after the electrode exposing step. 図28は、前記第1製造方法における導電性接合材設置工程後の状態を示す縦断面図である。FIG. 28 is a vertical cross-sectional view showing a state after the conductive bonding material applying step in the first manufacturing method. 図29は、図28におけるXXIX部拡大図である。FIG. 29 is an enlarged view of a portion XXIX in FIG. 図30は、前記第1製造方法における配線体設置工程後の状態を示す縦断面図である。FIG. 30 is a vertical cross-sectional view showing a state after the wiring body providing step in the first manufacturing method. 図31は、図30におけるXXXI部拡大図である。FIG. 31 is an enlarged view of a portion XXXI in FIG. 図32は、前記第1製造方法における上側封止板設置工程後の状態を示す縦断面図である。FIG. 32 is a vertical cross-sectional view showing a state after the upper sealing plate installation step in the first manufacturing method. 図33は、本発明の実施の形態2に係る超音波トランスデューサーの部分縦断面図である。FIG. 33 is a partial vertical cross-sectional view of an ultrasonic transducer according to the second embodiment of the present invention. 図34は、図33におけるXXXIV部拡大図である。FIG. 34 is an enlarged view of a portion XXXIV in FIG. 図35は、前記実施の形態2の変形例に係る超音波トランスデューサーの部分拡大縦断面図である。FIG. 35 is a partially enlarged vertical cross-sectional view of an ultrasonic transducer according to a modified example of the second embodiment. 図36は、前記実施の形態2に係る超音波トランスデューサーの製造方法(以下、第2製造方法という)における可撓性樹脂膜固着工程後の状態を示す縦断面図である。FIG. 36 is a vertical cross-sectional view showing a state after a flexible resin film fixing step in the manufacturing method of the ultrasonic transducer according to the second embodiment (hereinafter referred to as the second manufacturing method). 図37は、前記第2製造方法における下側封止板固着工程後の状態を示す縦断面図である。FIG. 37 is a vertical cross-sectional view showing a state after the lower sealing plate fixing step in the second manufacturing method. 図38は、前記第2製造方法における圧電素子固着工程後の状態を示す縦断面図である。FIG. 38 is a vertical cross-sectional view showing a state after the piezoelectric element fixing step in the second manufacturing method. 図39は、前記第2製造方法における絶縁性樹脂材設置工程後の状態を示す縦断面図である。FIG. 39 is a vertical cross-sectional view showing a state after the insulating resin material applying step in the second manufacturing method. 図40は、図39におけるXXXX部拡大図である。FIG. 40 is an enlarged view of the XXXX portion in FIG. 図41は、前記絶縁性樹脂材設置工程後の前記圧電素子の平面図である。FIG. 41 is a plan view of the piezoelectric element after the insulating resin material providing step. 図42は、前記第2製造方法における電極露出工程後の状態の部分拡大縦断面図である。FIG. 42 is a partially enlarged vertical sectional view of a state after the electrode exposing step in the second manufacturing method. 図43は、前記電極露出工程後の前記圧電素子の平面図である。FIG. 43 is a plan view of the piezoelectric element after the electrode exposing step. 図44は、前記第2製造方法における導電性接合材設置工程後の状態を示す縦断面図である。FIG. 44 is a vertical cross-sectional view showing a state after the conductive bonding material applying step in the second manufacturing method. 図45は、図44におけるXXXXV部拡大図である。FIG. 45 is an enlarged view of the XXXXV portion in FIG. 図46は、前記第2製造方法における配線体設置工程後の状態を示す縦断面図である。FIG. 46 is a vertical cross-sectional view showing a state after the wiring body providing step in the second manufacturing method. 図47は、図46におけるXXXXVII部拡大図である。FIG. 47 is an enlarged view of part XXXXVII in FIG. 図48は、前記第2製造方法における上側封止板設置工程後の状態を示す縦断面図である。FIG. 48 is a vertical cross-sectional view showing a state after the upper sealing plate installation step in the second manufacturing method. 図49は、前記第2製造方法における絶縁性樹脂材充填工程後の状態を示す縦断面図である。FIG. 49 is a vertical cross-sectional view showing a state after the insulating resin filling step in the second manufacturing method. 図50は、前記第2製造方法における圧電素子固着工程後の状態を示す縦断面図である。FIG. 50 is a vertical cross-sectional view showing a state after the piezoelectric element fixing step in the second manufacturing method. 図51は、図50におけるXXXXXI部拡大図である。FIG. 51 is an enlarged view of part XXXXXI in FIG. 図52は、本発明の他の実施の形態に係る圧電素子の平面図である。FIG. 52 is a plan view of a piezoelectric element according to another embodiment of the present invention. 図53は、本発明の変形例に係る超音波トランスデューサーに用いられる下側封止板の平面図である。FIG. 53 is a plan view of a lower sealing plate used in an ultrasonic transducer according to a modified example of the present invention. 図54は、図53に示す下側封止板を備えた本発明の変形例に係る前記超音波トランスデューサーの部分縦断面図である。FIG. 54 is a partial longitudinal sectional view of the ultrasonic transducer according to a modified example of the present invention having the lower sealing plate shown in FIG.

実施の形態1
 以下、本発明に係る圧電素子の一実施の形態について、添付図面を参照しつつ説明する。
 図1に、本実施の形態に係る圧電素子30を含む超音波トランスデューサー1の平面図を示す。
 なお、図1においては、理解容易化の為に、前記超音波トランスデューサー1における構成部材の一部の図示を省略している。
 図2に、図1におけるII-II線に沿った部分縦断正面図を示す。
 さらに、図3に、図2におけるIII部拡大図を示す。
 また、図4に、図2におけるIV-IV部に沿った断面図を、図5に、図4におけるV部拡大図を、それぞれ示す。
First embodiment
Hereinafter, an embodiment of a piezoelectric element according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a plan view of an ultrasonic transducer 1 including a piezoelectric element 30 according to the present embodiment.
In FIG. 1, in order to facilitate understanding, some of the components of the ultrasonic transducer 1 are omitted.
FIG. 2 is a partial vertical sectional front view taken along line II-II in FIG.
FIG. 3 is an enlarged view of part III in FIG.
4 is a cross-sectional view taken along line IV-IV in FIG. 2, and FIG. 5 is an enlarged view of portion V in FIG.

 まず、前記超音波トランスデューサー1について説明する。
 前記超音波トランスデューサー1は、電圧の供給を受けて超音波を放射し、且つ、超音波の受信に応じて電圧を発生する。
First, the ultrasonic transducer 1 will be described.
The ultrasonic transducer 1 receives a voltage to emit ultrasonic waves, and generates a voltage in response to receiving ultrasonic waves.

 前記超音波トランスデューサー1は、図2の断面図を基準にして下から上に順に、剛性基板10、可撓性樹脂膜20、複数の圧電素子30、下側封止板40及び配線体100を備えている。 The ultrasonic transducer 1 comprises, from bottom to top with reference to the cross-sectional view of FIG. 2, a rigid substrate 10, a flexible resin film 20, a plurality of piezoelectric elements 30, a lower sealing plate 40, and a wiring body 100.

 図6(a)~(d)に、それぞれ、前記剛性基板10、前記可撓性樹脂膜20、前記複数の圧電素子30及び前記下側封止板40の平面図を示す。
 また、図7(a)~(e)に、前記配線体100の構成部材毎の平面図を示す。
 なお、図6(a)~(d)及び図7(a)~(e)において、各構成部材の相対位置関係の理解容易化の為に平面視同一位置に中心線を記載している。
6(a) to (d) are plan views showing the rigid substrate 10, the flexible resin film 20, the plurality of piezoelectric elements 30, and the lower sealing plate 40, respectively.
7(a) to (e) are plan views showing the respective components of the wiring body 100. FIG.
In addition, in Figures 6(a) to (d) and Figures 7(a) to (e), center lines are drawn at the same position in a plan view in order to make it easier to understand the relative positional relationship of each component member.

 前記剛性基板10は、例えば、厚さ0.1mm~0.4mmのステンレス等の金属基板や炭素繊維強化プラスチック及びセラミックス等によって形成される。
 図2及び図6(a)に示すように、前記剛性基板10には、上面11及び下面12の間を貫通する複数の開口部15が設けられている。
The rigid substrate 10 is made of, for example, a metal substrate such as stainless steel having a thickness of 0.1 mm to 0.4 mm, carbon fiber reinforced plastic, ceramics, or the like.
As shown in FIGS. 2 and 6A, the rigid substrate 10 is provided with a plurality of openings 15 penetrating between the upper surface 11 and the lower surface 12 .

 前記開口部15は、前記剛性基板10の上面11に開く空洞部16と、一端側が前記空洞部16の底面に開き且つ他端側が前記剛性基板10の下面12に開く導波路17とを有している。 The opening 15 has a cavity 16 that opens to the upper surface 11 of the rigid substrate 10, and a waveguide 17 that has one end that opens to the bottom surface of the cavity 16 and the other end that opens to the lower surface 12 of the rigid substrate 10.

 前記空洞部16は、平面視において前記圧電素子30と同一形状とされている。
 本実施の形態においては、前記圧電素子30は平面視矩形状とされており、従って、前記空洞部16も平面視矩形状とされている。
The cavity 16 has the same shape as the piezoelectric element 30 in a plan view.
In this embodiment, the piezoelectric element 30 has a rectangular shape when viewed from above, and therefore the cavity 16 also has a rectangular shape when viewed from above.

 前記空洞部16の開口幅は、前記圧電素子30が前記可撓性樹脂膜20を介して載置された際に、平面視において前記圧電素子30の周縁が前記剛性基板10の上面11と重合するように設定されている。 The opening width of the cavity 16 is set so that when the piezoelectric element 30 is placed via the flexible resin film 20, the periphery of the piezoelectric element 30 overlaps with the upper surface 11 of the rigid substrate 10 in a plan view.

 前記導波路17は、前記空洞部16よりも小さい開口幅を有している。
 本実施の形態においては、前記導波路17は平面視円形状とされている。
The waveguide 17 has an opening width smaller than that of the cavity 16 .
In this embodiment, the waveguide 17 has a circular shape in a plan view.

 本実施の形態においては、図6(a)に示すように、前記剛性基板10には3×3の9個の前記開口部15が設けられており、前記可撓性樹脂膜20を挟んだ状態で9個の前記開口部15とそれぞれ平面視において重合するように9個の前記圧電素子30が配列されている。 In this embodiment, as shown in FIG. 6(a), nine openings 15 (3 x 3) are provided in the rigid substrate 10, and nine piezoelectric elements 30 are arranged so as to overlap the nine openings 15 in a planar view with the flexible resin film 20 sandwiched between them.

 即ち、前記超音波トランスデューサー1においては、それぞれが振動体として作用する9個の前記圧電素子30が3×3に配置されている。
 例えば、前記超音波トランスデューサー1の放射音波の指向性を鋭くし、放射音波の強度を高めるためには 3×3 より多い振動体(圧電素子30)を配置させることができる。
That is, in the ultrasonic transducer 1, nine piezoelectric elements 30 each acting as a vibrator are arranged in a 3×3 array.
For example, in order to sharpen the directivity of the radiated sound waves of the ultrasonic transducer 1 and increase the intensity of the radiated sound waves, it is possible to arrange more than 3×3 vibrators (piezoelectric elements 30).

 前記可撓性樹脂膜20は、前記複数の開口部15を覆うように前記基板10の上面11に固着される。
 前記可撓性樹脂膜20は、例えば、厚さ20μm~100μmのポリイミド等の絶縁性樹脂によって形成される。
 前記可撓性樹脂膜20は、接着材又は熱圧着等の種々の方法によって前記剛性基板10に固着される。
The flexible resin film 20 is fixed to the upper surface 11 of the substrate 10 so as to cover the plurality of openings 15 .
The flexible resin film 20 is formed of an insulating resin such as polyimide having a thickness of, for example, 20 μm to 100 μm.
The flexible resin film 20 is fixed to the rigid substrate 10 by various methods such as adhesive or thermocompression bonding.

 図8(a)に、前記圧電素子30の平面図を、図8(b)に、図8(a)におけるVIII-VIII線に沿った断面図を、それぞれ示す。 FIG. 8(a) shows a plan view of the piezoelectric element 30, and FIG. 8(b) shows a cross-sectional view taken along line VIII-VIII in FIG. 8(a).

 前記圧電素子30は、平面視中央部分が対応する前記開口部15(前記空洞部16)に重合し且つ平面視周縁部が前記剛性基板10のうち対応する前記開口部15(前記空洞部16)を囲繞する部分に重合するように、前記可撓性樹脂膜20の上面に固着されている。 The piezoelectric element 30 is fixed to the upper surface of the flexible resin film 20 so that the central portion in a plan view overlaps with the corresponding opening 15 (the hollow portion 16) and the peripheral portion in a plan view overlaps with the portion of the rigid substrate 10 that surrounds the corresponding opening 15 (the hollow portion 16).

 前記圧電素子30は積層型とされている。
 詳しくは、前記圧電素子30は、チタン酸ジルコン酸鉛(PZT)等の圧電材によって形成される圧電素子本体32と、前記圧電素子本体32を厚み方向に関し上方側の第1圧電部位32a及び下方側の第2圧電部位32bに区画する内部電極34と、前記第1圧電部位32aの上端面の一部に固着された上面電極36と、前記第2圧電部位32bの下端面に固着された下面電極37と、基端側が前記内部電極34に電気的に接続され且つ先端側が前記上面電極36との間に内部電極側隙間34aが存する状態で前記圧電素子本体32の上端面に設けられて内部電極端子34Tを形成する内部電極用接続体35と、基端側が前記下面電極37に電気的に接続され且つ先端側が前記上面電極36との間に下面電極側隙間37aが存する状態で前記圧電素子本体32の上端面に設けられて下面電極端子37Tを形成する下面電極用接続体38とを有している。
The piezoelectric element 30 is of a laminated type.
In detail, the piezoelectric element 30 includes a piezoelectric element body 32 formed of a piezoelectric material such as lead zirconate titanate (PZT), an internal electrode 34 dividing the piezoelectric element body 32 into a first piezoelectric portion 32a on the upper side and a second piezoelectric portion 32b on the lower side in the thickness direction, an upper electrode 36 fixed to a part of the upper end surface of the first piezoelectric portion 32a, a lower electrode 37 fixed to the lower end surface of the second piezoelectric portion 32b, an internal electrode connector 35 provided on the upper end surface of the piezoelectric element body 32 with its base end side electrically connected to the internal electrode 34 and its tip end side being separated from the upper electrode 36 by an internal electrode side gap 34a to form an internal electrode terminal 34T, and a lower electrode connector 38 provided on the upper end surface of the piezoelectric element body 32 with its base end side electrically connected to the lower electrode 37 and its tip end being separated from the upper electrode 36 by a lower electrode side gap 37a to form a lower electrode terminal 37T.

 前記圧電素子30は超音波トランスデューサー1の振動体として作用する。
 例えば、前記圧電素子30に印加する駆動電圧の周波数が40kHzとされる場合には、前記圧電素子30は、共振周波数が70kHz程度とされ、平面視形状は1辺3.0mmの四角形状とされ得る。
 この場合、前記第1及び第2圧電部位32a、32bの層厚は、0.1mm~0.2mmとされ得る。
The piezoelectric element 30 acts as a vibrating body of the ultrasonic transducer 1 .
For example, when the frequency of the drive voltage applied to the piezoelectric element 30 is 40 kHz, the piezoelectric element 30 may have a resonance frequency of about 70 kHz and a planar shape of a rectangle with each side measuring 3.0 mm.
In this case, the layer thickness of the first and second piezoelectric portions 32a, 32b may be 0.1 mm to 0.2 mm.

 前記上面電極36、前記下面電極37及び前記内部電極34は、厚さ1μm~10μm程度のAu、AgPd、Pt当の金属膜によって形成され得る。 The upper electrode 36, the lower electrode 37, and the internal electrode 34 can be formed from a metal film such as Au, AgPd, or Pt having a thickness of about 1 μm to 10 μm.

 前記圧電素子30においては、前記上面電極36及び前記下面電極37が外部電極を形成しており、前記外部電極及び前記内部電極34の間に電圧が印可されると伸縮するように構成されている。 In the piezoelectric element 30, the upper electrode 36 and the lower electrode 37 form external electrodes, and are configured to expand and contract when a voltage is applied between the external electrode and the internal electrode 34.

 即ち、前記第1及び第2圧電部位32a、32bは、分極方向が厚み方向に関し同一とされており、これにより、前記外部電極(前記上面電極36及び前記下面電極37)と前記内部電極34との間に所定の電圧を所定周波数で印可することによって、前記第1及び第2圧電部位32a、32bには互いに対して逆方向の電界が加わるようになっている。 In other words, the first and second piezoelectric regions 32a, 32b have the same polarization direction in the thickness direction, so that by applying a predetermined voltage at a predetermined frequency between the external electrodes (the upper electrode 36 and the lower electrode 37) and the internal electrode 34, electric fields in opposite directions are applied to the first and second piezoelectric regions 32a, 32b.

 なお、前記上面電極36及び前記下面電極37は互いに対して絶縁されており、従って、前記圧電素子30を作成する際には、前記上面電極36及び前記下面電極37の間に電圧を印可することによって、前記第1及び第2圧電部位32a、32bの分極方向を同一とすることができる。 The upper electrode 36 and the lower electrode 37 are insulated from each other, so that when the piezoelectric element 30 is produced, the polarization directions of the first and second piezoelectric portions 32a, 32b can be made the same by applying a voltage between the upper electrode 36 and the lower electrode 37.

 斯かる構成の前記圧電素子30においては、前記外部電極(前記上面電極36及び前記下面電極37)に接続されるべき配線(本実施の形態においては、前記配線体100における下記第1配線130a)の前記上面電極36及び前記下面電極37への電気的接続、並びに、前記内部電極34に接続されるべき配線(本実施の形態においては、前記配線体100における下記第2配線130b)の前記内部電極34への電気接続の全てを、前記圧電素子30における厚み方向一方側の上端面において行うことができる。 In the piezoelectric element 30 having such a configuration, the electrical connection of the wiring (in this embodiment, the first wiring 130a in the wiring body 100 described below) to be connected to the external electrodes (the upper electrode 36 and the lower electrode 37) to the upper electrode 36 and the lower electrode 37, and the electrical connection of the wiring (in this embodiment, the second wiring 130b in the wiring body 100 described below) to be connected to the internal electrode 34 to the internal electrode 34 can all be made on the upper end surface on one side in the thickness direction of the piezoelectric element 30.

 即ち、前記圧電素子30においては、前述の通り、前記下面電極端子37Tが前記下面電極側隙間37aを介して前記上面電極36から離間された状態で前記圧電素子本体32の上端面に設けられ、且つ、前記内部電極端子34Tが前記内部電極側隙間34aを介して前記上面電極36から離間された状態で前記圧電素子本体32の上端面に設けられている。 In other words, in the piezoelectric element 30, as described above, the lower electrode terminal 37T is provided on the upper end surface of the piezoelectric element body 32 in a state spaced apart from the upper electrode 36 via the lower electrode side gap 37a, and the internal electrode terminal 34T is provided on the upper end surface of the piezoelectric element body 32 in a state spaced apart from the upper electrode 36 via the internal electrode side gap 34a.

 従って、図4に示すように、前記下面電極端子37Tの少なくとも一部及び前記上面電極36のうち前記下面電極側隙間37aを介して前記下面電極端子37Tと対向する下面電極端子対向領域361の少なくとも一部を一体的に覆うように第1導電性接合材190aを設け、前記外部電極に接続すべき配線(本実施の形態においては前記第1配線130a)を前記第1導電性接合材190aに固着させつつ、前記内部電極端子34Tの少なくとも一部を覆うように第2導電性接合材190bを設け、前記内部電極34に接続すべき配線(本実施の形態においては前記第2配線130b)を前記第2導電性接合材190bに固着させることにより、前記外部電極に接続すべき配線(本実施の形態においては前記第1配線130a)と前記外部電極との電気接続、及び、前記内部電極34に接続すべき配線(本実施の形態においては前記第2配線130b)と前記内部電極34との電気接続を、前記圧電素子30の厚み方向一方側の上端面において行うことができる。 Therefore, as shown in FIG. 4, a first conductive adhesive 190a is provided to integrally cover at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361 of the upper electrode 36 that faces the lower electrode terminal 37T through the lower electrode side gap 37a, and a second conductive adhesive 190b is provided to cover at least a portion of the internal electrode terminal 34T while the wiring to be connected to the external electrode (the first wiring 130a in this embodiment) is fixed to the first conductive adhesive 190a, and the wiring to be connected to the internal electrode 34 (the second wiring 130b in this embodiment) is fixed to the second conductive adhesive 190b. This allows the electrical connection between the wiring to be connected to the external electrode (the first wiring 130a in this embodiment) and the external electrode, and the electrical connection between the wiring to be connected to the internal electrode 34 (the second wiring 130b in this embodiment) and the internal electrode 34 to be made on the upper end surface on one side in the thickness direction of the piezoelectric element 30.

 前記第1及び第2導電性接合材190a、190bとしては、例えば、導電性接着材又はクリームはんだを用いることができる。 The first and second conductive bonding materials 190a, 190b may be, for example, a conductive adhesive or cream solder.

 図4及び図7に示すように、本実施の形態に係る前記圧電素子30の上端面には、前記内部電極端子34Tの少なくとも一部、前記上面電極36のうち前記内部電極側隙間34aを介して前記内部電極端子34Tと対向する内部電極端子対向領域362、及び、前記内部電極側隙間34aのうち前記内部電極端子34Tと前記内部電極端子対向領域362とによって挟まれた領域を一体的に覆うように、絶縁性カバー体300Aが設けられている。 As shown in Figures 4 and 7, an insulating cover body 300A is provided on the upper end surface of the piezoelectric element 30 in this embodiment so as to integrally cover at least a portion of the internal electrode terminal 34T, an internal electrode terminal facing region 362 of the upper surface electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and a region of the internal electrode side gap 34a that is sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362.

 前記絶縁性カバー体300Aは、例えば、厚さ数μm~数十μmの、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂、セラミックス等の絶縁性樹脂による被膜によって形成される。 The insulating cover body 300A is formed, for example, by a coating of insulating resin such as polyimide resin, silicone resin, epoxy resin, ceramics, etc., with a thickness of several μm to several tens of μm.

 前記絶縁性カバー体300Aをエポキシ樹脂又はシリコーン樹脂の被膜によって形成する場合には、前記樹脂をディスペンサー又はスクリーン印刷等によって所定位置に塗布し、その後に、所定温度(例えば、120℃~150℃)で加熱して硬化させることによって効率的に形成することができる。 When the insulating cover body 300A is formed by a coating of epoxy resin or silicone resin, the resin can be applied to a predetermined position using a dispenser or screen printing, etc., and then heated to a predetermined temperature (e.g., 120°C to 150°C) to harden, thereby efficiently forming the insulating cover body 300A.

 図8(a)に示すように、本実施の形態においては、前記絶縁性カバー体300Aは、前記内部電極端子34Tの全体を覆うように構成されている。
 前記絶縁性カバー体300Aには、前記内部電極端子34Tの少なくとも一部を露出させつつ前記内部電極端子対向領域362は露出させない内部電極用開口315A(貫通孔又は切り欠き)が設けられている。
As shown in FIG. 8(a), in this embodiment, the insulating cover body 300A is configured to cover the entire internal electrode terminal 34T.
The insulating cover body 300A is provided with an internal electrode opening 315A (through hole or cutout) that exposes at least a portion of the internal electrode terminal 34T but does not expose the internal electrode terminal facing region 362.

 斯かる構成によれば、前記圧電素子30における電圧及びたわみ振動の間の変換効率の可及的な向上を図りつつ、前記外部電極(前記上面電極36)及び前記内部電極34間の短絡を有効に防止することができる。 This configuration makes it possible to effectively prevent a short circuit between the external electrode (the upper electrode 36) and the internal electrode 34 while improving the conversion efficiency between the voltage and the flexural vibration in the piezoelectric element 30 as much as possible.

 即ち、前記圧電素子30の電圧及びたわみ振動の間の変換効率を向上させる為には、前記外部電極及び前記内部電極34の対向面積、即ち、前記上面電極36及び前記内部電極34の対向面積、並びに、前記内部電極34及び前記下面電極37の対向面積を可及的に拡大させる必要があり、前記上面電極36の面積の可及的な拡大を図れば、前記上面電極36及び前記内部電極34の対向面積の拡大を実現できる。 In other words, in order to improve the conversion efficiency between the voltage and the flexural vibration of the piezoelectric element 30, it is necessary to increase as much as possible the opposing areas of the external electrode and the internal electrode 34, i.e., the opposing areas of the upper electrode 36 and the internal electrode 34, and the opposing areas of the internal electrode 34 and the lower electrode 37. By increasing the area of the upper electrode 36 as much as possible, it is possible to increase the opposing areas of the upper electrode 36 and the internal electrode 34.

 しかしながら、前記上面電極36の面積拡大は前記内部電極側隙間34aの狭小化を招くことになり、前記内部電極端子34Tと接続すべき配線(本実施の形態においては前記第2配線130b)とを電気的に接続する第2導電性接合材190bを前記内部電極端子34T上に設ける際に前記第2導電性接合材190bの塗布量のばらつきや塗布位置のばらつきによって、前記第2導電性接合材190bが前記上面電極36に接触する危険性が増大する。これは、前記外部電極(前記上部電極36)及び前記内部電極34間の短絡による歩留まりの低下、又は、前記第2導電性接合材190bの設置作業の効率低下を招く。 However, the increase in the area of the upper electrode 36 leads to a narrowing of the internal electrode side gap 34a, and when the second conductive adhesive 190b that electrically connects the internal electrode terminal 34T to the wiring to be connected (the second wiring 130b in this embodiment) is provided on the internal electrode terminal 34T, there is an increased risk that the second conductive adhesive 190b will come into contact with the upper electrode 36 due to variations in the amount of application or the application position of the second conductive adhesive 190b. This leads to a decrease in yield due to a short circuit between the external electrode (the upper electrode 36) and the internal electrode 34, or a decrease in the efficiency of the installation work of the second conductive adhesive 190b.

 この点に関し、本実施の形態においては、前述の通り、前記内部電極端子34Tの少なくとも一部、前記上面電極36のうち前記内部電極側隙間34aを介して前記内部電極端子34Tと対向する内部電極端子対向領域362、及び、前記内部電極側隙間34aのうち前記内部電極端子34Tと前記内部電極端子対向領域362とによって挟まれた領域が前記絶縁性カバー体300Aによって一体的に覆われ、前記内部電極端子34Tの少なくとも一部が、前記絶縁性カバー体300Aに形成された前記内部電極用開口315Aを介して露出されている。 In this regard, in the present embodiment, as described above, at least a portion of the internal electrode terminal 34T, the internal electrode terminal facing region 362 of the upper surface electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and the region of the internal electrode side gap 34a sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362 are integrally covered by the insulating cover body 300A, and at least a portion of the internal electrode terminal 34T is exposed through the internal electrode opening 315A formed in the insulating cover body 300A.

 従って、前記圧電素子30の変換効率向上を図るべく前記上面電極36の面積を拡大させ、これにより、前記内部電極側隙間34aが狭くなったとしても、前記内部電極端子34Tのうち前記内部電極用開口315Aを介して露出する部分に塗布される前記第2導電性接合材190bが前記上面電極36に接触して、前記上部電極36(即ち、前記外部電極)及び前記内部電極34間が短絡することを有効に防止することができる。 Therefore, the area of the upper electrode 36 is enlarged to improve the conversion efficiency of the piezoelectric element 30, and even if the internal electrode side gap 34a is narrowed, the second conductive adhesive material 190b applied to the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A comes into contact with the upper electrode 36, effectively preventing a short circuit between the upper electrode 36 (i.e., the external electrode) and the internal electrode 34.

 また、前記内部電極側隙間34aの狭小化は、前記第2導電性接合材190bの設置作業の際に当該第2導電性接合材190bが前記上面電極36に接触しなかったとしても、高温高湿等の前記圧電素子30の使用環境条件下においては、イオンマイグレーションが発生して短絡不良を招く恐れがあるが、本実施の形態においては、斯かる事態も有効に防止することができる。 In addition, even if the second conductive adhesive 190b does not come into contact with the upper electrode 36 during installation, the narrowing of the internal electrode side gap 34a may cause ion migration and lead to short circuit failure under environmental conditions in which the piezoelectric element 30 is used, such as high temperature and high humidity. However, in this embodiment, such a situation can be effectively prevented.

 さらに、前記内部電極用開口315Aのエッジによって、前記内部電極端子34Tのうち前記内部電極用開口315Aを介して露出する部分に塗布される前記第2導電性接合材190bが流れ出ることを有効に防止できると共に、前記内部電極用開口315Aを目印として前記第2導電性接合材190bの塗布作業を行うことができる。 Furthermore, the edge of the internal electrode opening 315A can effectively prevent the second conductive adhesive 190b applied to the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A from flowing out, and the application of the second conductive adhesive 190b can be performed using the internal electrode opening 315A as a marker.

 前記内部電極用開口315Aは、前記絶縁性カバー体300Aの所望部分にレーザー装置によるレーザー光を照射し、当該所定部分を剥離することによって好適に形成される。 The internal electrode opening 315A is suitably formed by irradiating a desired portion of the insulating cover body 300A with laser light from a laser device and peeling off the desired portion.

 前記内部電極用開口315Aは、例えば、開口径が0.5~1mm程度とされるものであり、さらに、前記内部電極端子34Tは、例えば、厚みが0.1~0.2mm程度とされるものであるから、スポット径が小さく、且つ、対象となる有機材料(この場合には、前記絶縁性カバー体300A)への吸収率が高いレーザー光を用いることが好ましい。 The internal electrode opening 315A has an opening diameter of, for example, about 0.5 to 1 mm, and the internal electrode terminal 34T has a thickness of, for example, about 0.1 to 0.2 mm, so it is preferable to use laser light with a small spot diameter and high absorption rate in the target organic material (in this case, the insulating cover body 300A).

 具体的には、樹脂材料の加工に有効である固体レーザーのレーザー波長のうち、基本波長(1064nm)より短いレーザー波長である第三高調波(355nm)を使用することができる。
 かかるレーザー光によれば、レンズに集光した際にスポット径を波長付近まで縮めることができ、微細な剥離を行うことができる。
Specifically, among the laser wavelengths of solid-state lasers that are effective for processing resin materials, the third harmonic (355 nm), which is a laser wavelength shorter than the fundamental wavelength (1064 nm), can be used.
When such laser light is focused on a lens, the spot diameter can be reduced to nearly the wavelength, enabling fine peeling to be performed.

 また、レーザー光は、波長が短いほど光エネルギーが高くなり、分子結合の弱い材料に対しては分子結合を直接切断できる光分解加工ができるため、効率的な熱影響の少ない加工が可能となる。 In addition, the shorter the wavelength of laser light, the higher the light energy, and for materials with weak molecular bonds, photolysis processing can be performed that directly cuts the molecular bonds, enabling efficient processing with little thermal impact.

 樹脂材料への吸収率が高いレーザー光としては、固体レーザーの第三高調波(355nm)のUVレーザー光、又は、第四高調波(266nm)のDUVレーザー光が好適に使用される。 As laser light with a high absorption rate in resin materials, UV laser light of the third harmonic (355 nm) of a solid-state laser or DUV laser light of the fourth harmonic (266 nm) is preferably used.

 なお、前記内部電極用開口315Aの形成を、イオンビーム、電子ビーム、イオンミリングによって行うことも可能である。 The internal electrode opening 315A can also be formed using an ion beam, an electron beam, or ion milling.

 図9(a)及び(b)に、それぞれ、本実施の形態の第1変形例に係る圧電素子30の平面図及び図9(a)におけるIX-IX線に沿った断面図を示す。 FIGS. 9(a) and (b) show a plan view and a cross-sectional view taken along line IX-IX in FIG. 9(a), respectively, of a piezoelectric element 30 according to a first modified example of this embodiment.

 図8(a)及び(b)に示すように、本実施の形態においては、前記内部電極用開口315Aは、前記内部電極端子34Tの少なくとも一部に加えて、前記内部電極側隙間34aのうち前記内部電極端子34Tの露出領域に隣接する領域を露出させるように構成されている。 As shown in Figures 8(a) and (b), in this embodiment, the internal electrode opening 315A is configured to expose at least a portion of the internal electrode terminal 34T, as well as a region of the internal electrode side gap 34a adjacent to the exposed region of the internal electrode terminal 34T.

 これに対し、前記第1変形例における内部電極用開口315Bは、前記内部電極端子34Tの少なくとも一部のみを露出させ、前記内部電極側隙間34aを露出させないように構成されている。 In contrast, the internal electrode opening 315B in the first modified example is configured to expose only at least a portion of the internal electrode terminal 34T, and not to expose the internal electrode side gap 34a.

 また、図10(a)及び(b)に、それぞれ、本実施の形態の第2変形例に係る圧電素子30の平面図及び図10(a)におけるX-X線に沿った断面図を示す。
 さらに、図11(a)及び(b)に、それぞれ、本実施の形態の第3変形例に係る圧電素子30の平面図及び図11(a)におけるXI-XI線に沿った断面図を示す。
10A and 10B are a plan view and a cross-sectional view taken along line XX in FIG. 10A, respectively, of a piezoelectric element 30 according to a second modified example of the present embodiment.
11A and 11B are a plan view and a cross-sectional view taken along line XI-XI in FIG. 11A, respectively, of a piezoelectric element 30 according to a third modified example of the present embodiment.

 本実施の形態及び第1変形例においては、前記絶縁性カバー体300Aは前記内側電極端子34Tの全てを覆うように構成されている。 In this embodiment and the first modified example, the insulating cover body 300A is configured to cover the entire inner electrode terminal 34T.

 これに対し、第2変形例及び第3変形例に係る圧電素子には、前記絶縁性カバー体300Aに代えて絶縁性カバー体300Bが設けられている。 In contrast, the piezoelectric elements according to the second and third modified examples are provided with an insulating cover body 300B instead of the insulating cover body 300A.

 前記絶縁性カバー体300Bは、前記内側電極端子34Tの一部、前記上面電極36のうち前記内部電極側隙間34aを介して前記内部電極端子34Tと対向する内部電極端子対向領域362、及び、前記内部電極側隙間34aのうち前記内部電極端子34Tと前記内部電極端子対向領域362とによって挟まれた領域を一体的に覆うように構成されている。 The insulating cover body 300B is configured to integrally cover a portion of the inner electrode terminal 34T, an internal electrode terminal facing region 362 of the upper electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and a region of the internal electrode side gap 34a that is sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362.

 なお、第2変形例における前記内部電極用開口315Aは、前記内部電極端子34Tの少なくとも一部に加えて、前記内部電極側隙間34aのうち前記内部電極端子34Tの露出領域に隣接する領域を露出させるように構成され、第3変形例における前記内部電極用開口315Bは、前記内部電極端子34Tの少なくとも一部のみを露出させ、前記内部電極側隙間34aを露出させないように構成されている。 In addition, the internal electrode opening 315A in the second modified example is configured to expose at least a portion of the internal electrode terminal 34T as well as a region of the internal electrode side gap 34a adjacent to the exposed region of the internal electrode terminal 34T, and the internal electrode opening 315B in the third modified example is configured to expose only at least a portion of the internal electrode terminal 34T and not expose the internal electrode side gap 34a.

 さらに、図12(a)及び(b)に、それぞれ、本実施の形態の第4変形例に係る圧電素子30の平面図及び図12(a)におけるXII-XII線に沿った断面図を示す。
 また、図13(a)及び(b)に、それぞれ、本実施の形態の第5変形例に係る圧電素子30の30平面図及び図13(a)におけるXIII-XIII線に沿った断面図を示す。
 また、図14(a)及び(b)に、それぞれ、本実施の形態の第6変形例に係る圧電素子30の平面図及び図14(a)におけるXIV-XIV線に沿った断面図を示す。
 また、図15(a)及び(b)に、それぞれ、本実施の形態の第7変形例に係る圧電素子30の平面図及び図15(a)におけるXV-XV線に沿った断面図を示す。
Further, FIGS. 12(a) and 12(b) are a plan view and a cross-sectional view taken along line XII-XII in FIG. 12(a), respectively, of a piezoelectric element 30 according to a fourth modified example of the present embodiment.
13(a) and 13(b) are a plan view and a cross-sectional view taken along line XIII-XIII in FIG. 13(a) of a piezoelectric element 30 according to a fifth modified example of the present embodiment, respectively.
14(a) and 14(b) are a plan view and a cross-sectional view taken along line XIV-XIV in FIG. 14(a), respectively, of a piezoelectric element 30 according to a sixth modified example of the present embodiment.
15(a) and 15(b) are a plan view and a cross-sectional view taken along line XV-XV in FIG. 15(a), respectively, of a piezoelectric element 30 according to a seventh modified example of the present embodiment.

 本実施の形態及び前記第1変形例における前記絶縁性カバー体300A並びに前記第2及び第3変形例における前記絶縁性カバー体300Bは、前記内部電極端子34Tの少なくとも一部、前記上面電極36のうち前記内部電極側隙間34aを介して前記内部電極端子34Tと対向する内部電極端子対向領域362、及び、前記内部電極側隙間34aのうち前記内部電極端子34Tと前記内部電極端子対向領域362とによって挟まれた領域を一体的に覆いつつ、前記下面電極端子37T、前記上面電極36のうち前記下面電極側隙間37aを介して前記下面電極端子37Tと対向する下面電極端子対向領域361及び前記下面電極側隙間37aのうち前記下面電極端子37Tと前記下面電極端子対向領域361とによって挟まれた領域を覆わないように構成されている。 The insulating cover body 300A in the present embodiment and the first modified example, and the insulating cover body 300B in the second and third modified examples are configured to integrally cover at least a part of the internal electrode terminal 34T, the internal electrode terminal facing region 362 of the upper electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and the region of the internal electrode side gap 34a sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362, while not covering the lower electrode terminal 37T, the lower electrode terminal facing region 361 of the upper electrode 36 that faces the lower electrode terminal 37T through the lower electrode side gap 37a, and the region of the lower electrode side gap 37a sandwiched between the lower electrode terminal 37T and the lower electrode terminal facing region 361.

 これに対し、前記第4及び第5変形例に係る圧電素子30の絶縁性カバー体300C並びに前記第6及び第7変形例に係る圧電素子30の絶縁性カバー体300Dは、前記内部電極端子34Tの少なくとも一部、前記上面電極36のうち前記内部電極側隙間34aを介して前記内部電極端子34Tと対向する内部電極端子対向領域362、及び、前記内部電極側隙間34aのうち前記内部電極端子34Tと前記内部電極端子対向領域362とによって挟まれた領域に加えて、前記下面電極端子37Tの少なくとも一部、前記上面電極36のうち前記下面電極側隙間36aを介して前記下面電極端子37Tと対向する下面電極端子対向領域361、及び、前記下面電極側隙間37aのうち前記下面電極端子37Tと前記下面電極端子対向領域361とによって挟まれた領域を一体的に覆うように構成されている。 In contrast, the insulating cover body 300C of the piezoelectric element 30 according to the fourth and fifth modified examples and the insulating cover body 300D of the piezoelectric element 30 according to the sixth and seventh modified examples are configured to integrally cover at least a part of the internal electrode terminal 34T, the internal electrode terminal facing region 362 of the upper electrode 36 facing the internal electrode terminal 34T through the internal electrode side gap 34a, and the region of the internal electrode side gap 34a sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362, as well as at least a part of the lower electrode terminal 37T, the lower electrode terminal facing region 361 of the upper electrode 36 facing the lower electrode terminal 37T through the lower electrode side gap 36a, and the region of the lower electrode side gap 37a sandwiched between the lower electrode terminal 37T and the lower electrode terminal facing region 361.

 詳しくは、前記第4及び第5変形例に係る圧電素子30の前記絶縁性カバー体300Cは、当該圧電素子30の上端面の実質的に全体を覆うように構成されている。
 一方、前記第6及び第7変形例に係る圧電素子30の前記絶縁性カバー体300Dは、当該圧電素子30の上端面の一部を覆う大きさとされている。
In detail, the insulating cover body 300C of the piezoelectric element 30 according to the fourth and fifth modified examples is configured to cover substantially the entire upper end surface of the piezoelectric element 30.
On the other hand, the insulating cover body 300D of the piezoelectric element 30 according to the sixth and seventh modifications is sized to cover a part of the upper end surface of the piezoelectric element 30.

 その上で、前記第4及び第6変形例においては、前記絶縁性カバー体300C、300Dに、前記内部電極用開口315Aと、前記下面電極端子37Tの少なくとも一部及び前記上面電極36の少なくとも一部を一体的に露出させる外部電極用開口310A(貫通孔又は切り欠き)とが設けられている。 In addition, in the fourth and sixth modified examples, the insulating cover bodies 300C and 300D are provided with the internal electrode opening 315A and the external electrode opening 310A (through hole or cutout) that integrally exposes at least a portion of the lower electrode terminal 37T and at least a portion of the upper electrode 36.

 また、前記第5変形例においては、前記絶縁性カバー体300Cに、前記内部電極用開口315B及び前記外部電極用開口310Aが設けられている。
 また、前記第7変形例においては、前記絶縁性カバー体に、前記内部電極用開口315Aと、前記下面電極端子37Tの全体及び前記上面電極36の少なくとも一部を一体的に露出させる外部電極用開口310B(貫通孔又は切り欠き)とが設けられている。
In the fifth modification, the insulating cover body 300C is provided with the internal electrode opening 315B and the external electrode opening 310A.
In addition, in the seventh modified example, the insulating cover body is provided with an opening 315A for the internal electrode and an opening 310B (through hole or cutout) for the external electrode that integrally exposes the entire lower electrode terminal 37T and at least a portion of the upper electrode 36.

 前記配線体100は、外部から供給される印可電圧を前記複数の圧電素子30へ伝達するように構成されている。 The wiring body 100 is configured to transmit an applied voltage supplied from the outside to the multiple piezoelectric elements 30.

 図16及び図17、それぞれ、前記配線体100の平面図(前記圧電素子30とは反対側から視た図)及び底面図(前記圧電素子30の側から視た図)を示す。
 なお、理解容易化の為に、図16及び図17においては下記カバー層150の図示を省略している。
16 and 17 respectively show a plan view (viewed from the side opposite to the piezoelectric element 30) and a bottom view (viewed from the side of the piezoelectric element 30) of the wiring body 100.
For ease of understanding, a cover layer 150 described below is omitted in FIGS.

 図7、図16及び図17等に示すように、前記配線体100は、絶縁性ベース層110と、前記ベース層110に固着された前記第1及び第2配線130a、130bを含む導体層120と、導体層120の少なくとも一部を前記ベース層110とは反対側から覆う絶縁性カバー層150とを有している。 As shown in Figures 7, 16, and 17, the wiring body 100 has an insulating base layer 110, a conductor layer 120 including the first and second wirings 130a, 130b fixed to the base layer 110, and an insulating cover layer 150 that covers at least a portion of the conductor layer 120 from the side opposite the base layer 110.

 前記ベース層110及び前記カバー層150は、例えば、ポリイミド等の絶縁性樹脂によって形成される。 The base layer 110 and the cover layer 150 are formed from an insulating resin such as polyimide.

 図16に示すように、前記ベース層110は、前記複数の圧電素子30のそれぞれに平面視において部分的に重合する複数のベース側圧電素子重合部位111と、前記複数のベース側圧電素子重合部位111を一体的に保持するベース側先端部位116とを有している。 As shown in FIG. 16, the base layer 110 has a plurality of base-side piezoelectric element overlapping portions 111 that partially overlap with each of the plurality of piezoelectric elements 30 in a planar view, and a base-side tip portion 116 that integrally holds the plurality of base-side piezoelectric element overlapping portions 111.

 前述の通り、前記超音波トランスデューサー1は、第1~第9の9個の圧電素子30を有している。従って、前記ベース層110は、9個の前記圧電素子30にそれぞれ対応する9個の前記ベース側圧電素子重合部位111を有している。 As mentioned above, the ultrasonic transducer 1 has nine piezoelectric elements 30, numbered 1 through 9. Therefore, the base layer 110 has nine base-side piezoelectric element overlapping portions 111 that correspond to the nine piezoelectric elements 30, respectively.

 同様に、図7(a)に示すように、前記カバー層150は、前記複数の圧電素子30のそれぞれに平面視において部分的に重合する複数のカバー側圧電素子重合部位151と、前記複数のカバー側圧電素子重合部位151を一体的に保持するカバー側先端部位156とを有している。 Similarly, as shown in FIG. 7(a), the cover layer 150 has a plurality of cover-side piezoelectric element overlapping portions 151 that partially overlap with each of the plurality of piezoelectric elements 30 in a plan view, and a cover-side tip portion 156 that holds the plurality of cover-side piezoelectric element overlapping portions 151 together.

 前記カバー側圧電素子重合部位151も、前記複数の圧電素子の個数に対応した個数だけ設けられている。 The cover-side piezoelectric element overlapping portions 151 are also provided in a number corresponding to the number of the piezoelectric elements.

 前記ベース層110及び前記カバー層150のうち前記圧電素子と対向する側に位置する圧電素子側の絶縁層(本実施の形態においては、前記カバー層150(図2参照))の前記圧電素子重合部位151は、前記下面電極端子37Tの少なくとも一部及び前記下面電極端子対向領域361の少なくとも一部を一体的に囲む領域と平面視において重合する外部電極タブ領域152aと、前記内部電極端子34Tの少なくとも一部を囲む領域と平面視において重合する内部電極タブ領域152bとを有している。 The piezoelectric element overlapping portion 151 of the base layer 110 and the insulating layer on the piezoelectric element side (in this embodiment, the cover layer 150 (see FIG. 2)) located on the side of the cover layer 150 facing the piezoelectric element has an external electrode tab region 152a that overlaps in a plan view with a region that integrally surrounds at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361, and an internal electrode tab region 152b that overlaps in a plan view with a region that surrounds at least a portion of the internal electrode terminal 34T.

 図2、図5及び図7に示すように、前記外部電極タブ領域152a及び前記内部電極タブ領域152bには、それぞれ、外部電極接続開口155a及び内部電極接続開口155bが設けられている。 As shown in Figures 2, 5 and 7, the external electrode tab region 152a and the internal electrode tab region 152b are provided with an external electrode connection opening 155a and an internal electrode connection opening 155b, respectively.

 前記第1及び第2配線130a、130bは、例えば、Cu等の導電性金属によって形成される。
 前記第1及び第2配線130a、130bは、前記ベース層110上に積層された厚さ12~25μm程度のCu箔に対して不要部分をエッチング除去することによって形成可能である。
 好ましくは、前記第1及び第2配線130a、130bを形成するCuの露出部分にNi/Auメッキを施すことができる。
The first and second wirings 130a and 130b are formed of a conductive metal such as Cu.
The first and second wirings 130a and 130b can be formed by etching away unnecessary portions of a Cu foil having a thickness of about 12 to 25 μm that is laminated on the base layer 110.
Preferably, Ni/Au plating is applied to exposed portions of Cu forming the first and second wirings 130a and 130b.

 図5に示すように、前記第1配線130aは一部が前記外部電極接続開口155aを跨ぎ、前記第2配線130bは一部が前記内部電極接続開口155bを跨いでいる。 As shown in FIG. 5, a portion of the first wiring 130a straddles the external electrode connection opening 155a, and a portion of the second wiring 130b straddles the internal electrode connection opening 155b.

 前記配線体100は、前記外部電極接続開口155aが前記下面電極端子37Tの少なくとも一部及び前記下面電極対向領域361の少なくとも一部を一体的に含む領域と平面視において重合し且つ前記内部電極接続開口155bが前記内部電極端子34Tの少なくとも一部と平面視において重合した状態で、前記下側封止板40の上面に固着され、前記第1配線130aのうち前記外部電極接続開口155aを跨ぐ部分が前記第1導電性接合材190aに接合され、且つ、前記第2配線130bのうち前記内部電極接続開口155bを跨ぐ部分が前記第2導電性接合材190bに接合されている。 The wiring body 100 is fixed to the upper surface of the lower sealing plate 40 in a state in which the external electrode connection opening 155a overlaps in a plan view with a region that integrally includes at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode facing region 361, and the internal electrode connection opening 155b overlaps in a plan view with at least a portion of the internal electrode terminal 34T, and the portion of the first wiring 130a that straddles the external electrode connection opening 155a is bonded to the first conductive adhesive 190a, and the portion of the second wiring 130b that straddles the internal electrode connection opening 155b is bonded to the second conductive adhesive 190b.

 本実施の形態においては、前記ベース層110及び前記カバー層150のうち前記圧電素子30から離間された側に位置する絶縁層(本実施の形態においては、前記ベース層110(図2参照))の前記圧電素子重合部位111も、前記圧電素子側絶縁層(本実施の形態においては、前記カバー層150)におけると同様に、前記下面電極端子37Tの少なくとも一部及び前記下面電極端子対向領域361の少なくとも一部を一体的に囲む領域と平面視において重合する外部電極タブ領域112aと、前記内部電極端子34Tの少なくとも一部と平面視において重合する内部電極タブ領域112bとを有している。 In this embodiment, the piezoelectric element overlapping portion 111 of the insulating layer (in this embodiment, the base layer 110 (see FIG. 2)) located on the side of the base layer 110 and the cover layer 150 that is separated from the piezoelectric element 30, like the piezoelectric element side insulating layer (in this embodiment, the cover layer 150), has an external electrode tab region 112a that overlaps in plan view with a region that integrally surrounds at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361, and an internal electrode tab region 112b that overlaps in plan view with at least a portion of the internal electrode terminal 34T.

 前記外部電極タブ領域112a及び前記内部電極タブ領域112bには、それぞれ、第1及び第2アクセス開口115a、115bが設けられている。 The outer electrode tab region 112a and the inner electrode tab region 112b are provided with first and second access openings 115a, 115b, respectively.

 なお、本実施の形態においては、前記第1配線130aは、前記複数の圧電素子30の外部電極に一体的に電気接続される共通配線とされており、前記第2配線130bは、前記複数の圧電素子30の内部電極34のそれぞれに個別的に電気接続される個別配線とされている。 In this embodiment, the first wiring 130a is a common wiring that is electrically connected to the external electrodes of the plurality of piezoelectric elements 30 as a whole, and the second wiring 130b is an individual wiring that is electrically connected to each of the internal electrodes 34 of the plurality of piezoelectric elements 30 individually.

 前記第1配線130aは、前記複数の圧電素子30の外部電極に電気的に接続される先端側136a及び外部との接続端子を形成する基端側138aにおいては、前記ベース層110における圧電素子側の面上に配置され、且つ、先端側136a及び基端側138aを連結する中間部分137aにおいては前記ベース層110における圧電素子30とは反対側の面上に配置されている。 The first wiring 130a is arranged on the surface of the base layer 110 facing the piezoelectric elements at the tip side 136a, which is electrically connected to the external electrodes of the plurality of piezoelectric elements 30, and the base side 138a, which forms a connection terminal with the outside, and is arranged on the surface of the base layer 110 facing the piezoelectric elements 30 at the intermediate portion 137a, which connects the tip side 136a and the base side 138a.

 前記第1配線130aの先端側136a及び中間部分137aは、前記ベース層110に形成された貫通孔109を介して電気的に接続されており、前記第1配線130aの中間部分137a及び基端側138aは、前記ベース層110に形成された貫通孔108を介して電気的に接続されている。 The tip side 136a and the middle portion 137a of the first wiring 130a are electrically connected via a through hole 109 formed in the base layer 110, and the middle portion 137a and the base side 138a of the first wiring 130a are electrically connected via a through hole 108 formed in the base layer 110.

 前記第1配線130aのうち前記ベース層110における圧電素子30とは反対側の面上に配置された部分は、裏面側カバー層160(図6(e)参照)によって覆われている。 The portion of the first wiring 130a that is disposed on the surface of the base layer 110 opposite the piezoelectric element 30 is covered by a back cover layer 160 (see FIG. 6(e)).

 前記第2配線130bは、全域に亘って前記ベース層110における圧電素子側の面上に配置されている。 The second wiring 130b is arranged on the surface of the base layer 110 facing the piezoelectric element throughout the entire area.

 前述の通り、前記超音波トランスデューサー1においては、図2に示すように、前記配線体100は、前記カバー層150が前記圧電素子30と対向し且つ前記ベース層110が前記導体層120よりも前記圧電素子30とは反対側に位置する状態で、前記下側封止体40に固着されている。 As described above, in the ultrasonic transducer 1, as shown in FIG. 2, the wiring body 100 is fixed to the lower sealing body 40 with the cover layer 150 facing the piezoelectric element 30 and the base layer 110 positioned on the opposite side of the conductor layer 120 from the piezoelectric element 30.

 図2及び図6(d)に示すように、前記下側封止板40は、前記剛性基板10における前記複数(本実施の形態においては9個)の開口部15を一体的に囲む大きさの中央開口42を有しており、平面視において前記中央開口42が前記複数の開口部15を一体的に囲むように前記可撓性樹脂膜20の上面に固着されている。 As shown in Figures 2 and 6(d), the lower sealing plate 40 has a central opening 42 large enough to integrally surround the multiple (nine in this embodiment) openings 15 in the rigid substrate 10, and is fixed to the upper surface of the flexible resin film 20 so that the central opening 42 integrally surrounds the multiple openings 15 in a plan view.

 前記下側封止板40は、図2に示すように、前記圧電素子30と略同一の厚さを有しており、接着材又は熱圧着等によって前記可撓性樹脂膜20の上面に固着される。 As shown in FIG. 2, the lower sealing plate 40 has approximately the same thickness as the piezoelectric element 30, and is fixed to the upper surface of the flexible resin film 20 by adhesive or thermocompression bonding, etc.

 前記下側封止板40は、好ましくは、ステンレス等の金属や炭素繊維強化プラスチック及びセラミックス等によって形成される。 The lower sealing plate 40 is preferably made of a metal such as stainless steel, carbon fiber reinforced plastic, ceramics, etc.

 前記下側封止板40は、前記複数の圧電素子30からなる圧電素子群の側方を封止するとともに、前記配線体100が固着される基台として作用する。 The lower sealing plate 40 seals the sides of the piezoelectric element group consisting of the multiple piezoelectric elements 30, and also acts as a base to which the wiring body 100 is fixed.

 本実施の形態においては、図2に示すように、前記下側封止板40の中央開口42によって囲まれる空間のうち、前記複数の圧電素子30のそれぞれの側方部分には絶縁性樹脂材50が充填されている。
 前記絶縁性樹脂材50は、例えば、シリコーン等の柔軟性樹脂材とされる。
In this embodiment, as shown in FIG. 2, in the space surrounded by the central opening 42 of the lower sealing plate 40 , the portions on the sides of the plurality of piezoelectric elements 30 are filled with an insulating resin material 50 .
The insulating resin material 50 is, for example, a flexible resin material such as silicone.

 前記絶縁性樹脂材50を備えることにより、前記複数の圧電素子30に対する外部からの影響を効果的に遮断することができる。
 また、前記圧電素子30の振動減衰を大きくすることができ、前記複数の圧電素子30によってバースト状に発生した音波の残響を抑制して、反射波による物体の距離検知可能範囲を可及的に広げることができる。
By providing the insulating resin material 50, it is possible to effectively block external influences on the plurality of piezoelectric elements 30.
In addition, the vibration damping of the piezoelectric elements 30 can be increased, and the reverberation of the sound waves generated in bursts by the multiple piezoelectric elements 30 can be suppressed, thereby making it possible to maximize the range in which the distance of an object can be detected using reflected waves.

 図18(a)~(c)に、それぞれ、前記上側封止板60、前記吸音材70及び前記補強板75の平面図を示す。
 なお、図18(a)~(c)において、各構成部材の相対位置関係の理解容易化の為に、図6(a)~(d)及び図7(a)~(e)におけると平面視同一位置に中心線を記載している。
18(a) to (c) are plan views of the upper sealing plate 60, the sound absorbing material 70, and the reinforcing plate 75, respectively.
In addition, in Figures 18(a) to (c), in order to make it easier to understand the relative positional relationship of each component, center lines are drawn in the same position as in Figures 6(a) to (d) and Figures 7(a) to (e) when viewed from above.

 図2に示すように、前記上側封止板60は、前記下側封止板40及び前記配線アッセンブリ100の上面に柔軟性樹脂材55を介して固着されている。
 図2及び図11(a)に示すように、前記上側封止板60は、前記複数の圧電素子30のそれぞれに対応した複数(本実施の形態においては9個)の開口部65を有している。
As shown in FIG. 2 , the upper sealing plate 60 is fixed to the lower sealing plate 40 and the upper surface of the wiring assembly 100 via a flexible resin material 55 .
As shown in FIGS. 2 and 11A, the upper sealing plate 60 has a plurality of openings 65 (nine in this embodiment) corresponding to the plurality of piezoelectric elements 30, respectively.

 前記上側封止板60を備えることにより、前記振動体のたわみ振動動作への影響を可及的に防止しつつ、前記配線体100の支持安定化を図ることができる。 By providing the upper sealing plate 60, it is possible to stably support the wiring body 100 while minimizing the influence on the flexural vibration motion of the vibrating body.

 前記上側封止板60は、例えば、厚さ0.1mm~0.3mmのステンレス等の金属や炭素繊維強化プラスチック及びセラミックス等によって形成される。 The upper sealing plate 60 is made of, for example, a metal such as stainless steel, carbon fiber reinforced plastic, or ceramics, with a thickness of 0.1 mm to 0.3 mm.

 前記吸音材70は、前記上側封止板60の複数の開口部65を覆うように前記上側封止板60の上面に接着等によって固着されている。 The sound absorbing material 70 is fixed to the upper surface of the upper sealing plate 60 by adhesive or the like so as to cover the multiple openings 65 of the upper sealing plate 60.

 前記吸音材70は、例えば、厚さ0.3mm~1.5mm程度のシリコーン樹脂又は他の発泡性樹脂によって形成される。 The sound-absorbing material 70 is made of, for example, silicone resin or other foamable resin with a thickness of approximately 0.3 mm to 1.5 mm.

 前記吸音材70を備えることにより、前記圧電素子30によって生成される音波が放射されるべき側(図2において下側)とは反対側へ放射されることを有効に抑制することができる。 By providing the sound absorbing material 70, it is possible to effectively prevent the sound waves generated by the piezoelectric element 30 from being emitted in the direction opposite to the side where they should be emitted (the lower side in FIG. 2).

 前記補強板75は、前記吸音材70の上面に接着等によって固着されている。 The reinforcing plate 75 is fixed to the upper surface of the sound-absorbing material 70 by adhesive or the like.

 前記補強板75は、例えば、厚さ0.2mm~0.5mm程度のステンレス等の金属や炭素繊維強化プラスチック及びセラミックス等によって形成される。 The reinforcing plate 75 is made of, for example, a metal such as stainless steel, carbon fiber reinforced plastic, or ceramics, with a thickness of approximately 0.2 mm to 0.5 mm.

 前記補強板75を備えることにより、外力が前記基板10及び前記圧電素子30に影響を与えることを可及的に防止することができる。 By providing the reinforcing plate 75, it is possible to prevent external forces from affecting the substrate 10 and the piezoelectric element 30 as much as possible.

 以下、前記超音波トランスデューサー1の製造方法について説明する。
 前記製造方法は、
 前記剛性基板10と同一厚さを剛性板材を用意し、前記剛性板材にエッチング等によって前記複数の開口部15を形成して前記剛性基板10を得る剛性基板形成工程と、
 前記複数の開口部15を覆うように前記可撓性樹脂膜20を接着材又は熱圧着によって前記剛性基板10の上面に固着する可撓性樹脂膜固着工程と
を備えている。
 図19に、前記可撓性樹脂膜固着工程後のプリアッセンブリの縦断面図を示す。
A method for manufacturing the ultrasonic transducer 1 will now be described.
The manufacturing method includes:
a rigid substrate forming step of preparing a rigid plate having the same thickness as the rigid substrate 10, and forming the plurality of openings 15 in the rigid plate by etching or the like to obtain the rigid substrate 10;
and a flexible resin film fixing step of fixing the flexible resin film 20 to the upper surface of the rigid substrate 10 by adhesive or thermocompression bonding so as to cover the plurality of openings 15.
FIG. 19 shows a vertical cross-sectional view of the pre-assembly after the flexible resin film fixing step.

 本実施の形態においては、前記製造方法は、前記圧電素子30と略同一厚さを有し且つ前記剛性基板10における前記複数の開口部15を一体的に囲む大きさの中央開口42を有する下側封止板40を用意し、平面視において前記中央開口42が前記複数の開口部15を一体的に囲むように前記可撓性樹脂膜20の上面に前記下側封止板40を接着材によって固着する下側封止板固着工程を備えている。
 図20に、前記下側封止板固着工程後のプリアッセンブリの縦断面図を示す。
In this embodiment, the manufacturing method includes a lower sealing plate fixing process in which a lower sealing plate 40 is prepared which has approximately the same thickness as the piezoelectric element 30 and which has a central opening 42 of a size which integrally surrounds the multiple openings 15 in the rigid substrate 10, and which fixes the lower sealing plate 40 to the upper surface of the flexible resin film 20 with an adhesive so that the central opening 42 integrally surrounds the multiple openings 15 in a planar view.
FIG. 20 is a vertical cross-sectional view of the pre-assembly after the lower sealing plate fixing step.

 前記製造方法は、さらに、平面視において前記複数の開口部15とそれぞれ重合するように前記複数の圧電素子30を前記可撓性樹脂膜20の上面に接着材として作用する絶縁性樹脂材(図示せず)によって固着する圧電素子固着工程を備えている。 The manufacturing method further includes a piezoelectric element fixing step in which the piezoelectric elements 30 are fixed to the upper surface of the flexible resin film 20 with an insulating resin material (not shown) that acts as an adhesive so that the piezoelectric elements 30 overlap with the openings 15 in a plan view.

 本実施の形態においては、前記製造方法は、前記下側封止板40の中央開口42によって囲まれる空間のうち、前記複数の圧電素子30のそれぞれの側方部分に絶縁性樹脂材を充填する絶縁性樹脂材充填工程を備えている。
 前記絶縁性樹脂材は、好ましくは、シリコーン樹脂等の柔軟性樹脂材とされる。
 図21に、前記絶縁性樹脂材充填工程後のプリアッセンブリの縦断面図を示す。
In this embodiment, the manufacturing method includes an insulating resin filling process for filling the side portions of each of the plurality of piezoelectric elements 30 with insulating resin material within the space surrounded by the central opening 42 of the lower sealing plate 40.
The insulating resin material is preferably a flexible resin material such as a silicone resin.
FIG. 21 shows a vertical cross-sectional view of the pre-assembly after the insulating resin filling step.

 前記絶縁性樹脂材充填工程は、前記下側封止板40の中央開口42内にシリコーン樹脂等の熱硬化型絶縁性樹脂材を流し込み、例えば、100℃~150℃程度で数十分間、加熱処理して硬化させるように構成される。 The insulating resin filling process involves pouring a thermosetting insulating resin such as silicone resin into the central opening 42 of the lower sealing plate 40 and curing it by heating it at, for example, about 100°C to 150°C for several tens of minutes.

 前記製造方法は、さらに、前記内部電極端子34Tの少なくとも一部、前記上面電極36のうち前記内部電極側隙間34aを介して前記内部電極端子34Tと対向する内部電極端子対向領域362、及び、前記内部電極側隙間34aのうち前記内部電極端子34Tと前記内部電極端子対向領域362とによって挟まれた領域を一体的に覆うように、前記圧電素子30の上端面に前記絶縁性カバー体300Aを設ける絶縁性カバー体設置工程を備えている。 The manufacturing method further includes an insulating cover installation step of providing the insulating cover 300A on the upper end surface of the piezoelectric element 30 so as to integrally cover at least a portion of the internal electrode terminal 34T, an internal electrode terminal facing region 362 of the upper surface electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and a region of the internal electrode side gap 34a that is sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing region 362.

 図22に、前記絶縁性カバー体設置工程後のプリアッセンブリの縦断面図を示す。
 また、図23に、図22におけるXXIII部拡大図を示す。
 さらに、図24に、前記絶縁性カバー体設置工程後の前記圧電素子30の平面図を示す。
FIG. 22 shows a vertical cross-sectional view of the pre-assembly after the insulating cover body installation step.
FIG. 23 is an enlarged view of a portion XXIII in FIG.
FIG. 24 is a plan view of the piezoelectric element 30 after the insulating cover installation step.

 図22~図24に示すように、前記製造方法においては、前記絶縁性カバー体設置工程は、前記絶縁性カバー体300Aを用いているが、これに代えて、前記絶縁性カバー体300B~Dの何れかを用いることも可能である。 As shown in Figures 22 to 24, in the manufacturing method, the insulating cover body installation process uses the insulating cover body 300A, but it is also possible to use any of the insulating cover bodies 300B to 300D instead.

 前記絶縁性カバー体300Aは、例えば、エポキシ樹脂又はシリコーン樹脂をディスペンサー又はスクリーン印刷等によって所定位置に塗布し、その後、所定温度(例えば、120℃~150℃)で加熱して硬化させることによって効率的に形成することができる。 The insulating cover body 300A can be efficiently formed, for example, by applying epoxy resin or silicone resin to a predetermined position using a dispenser or screen printing, and then heating and curing it at a predetermined temperature (for example, 120°C to 150°C).

 前記製造方法は、さらに、前記絶縁性カバー体300Aに、前記内部電極端子34Tの少なくとも一部を露出させつつ前記内部電極端子対向領域362は露出させない前記内部電極用開口315A(又は315B)を形成する電極露出工程を備えている。 The manufacturing method further includes an electrode exposure process for forming the internal electrode opening 315A (or 315B) in the insulating cover body 300A, which exposes at least a portion of the internal electrode terminal 34T while not exposing the internal electrode terminal facing region 362.

 図25に、前記電極露出工程後のプリアッセンブリの縦断面図を示す。
 また、図26に、図25におけるXXVI部拡大図を示す。
 さらに、図27に、前記電極露出工程後の前記圧電素子30の平面図である。
FIG. 25 shows a vertical cross-sectional view of the pre-assembly after the electrode exposing step.
FIG. 26 shows an enlarged view of the portion XXVI in FIG.
Further, FIG. 27 is a plan view of the piezoelectric element 30 after the electrode exposing step.

 図26等に示すように、本実施の形態においては、前記電極露出工程は、前記絶縁性カバー体300Aのうち前記内部電極用開口315Aを形成すべき領域にレーザー光Lを照射して、前記絶縁性カバー体300Aの当該領域を剥離することによって前記内部電極用開口315Aを形成している。 As shown in FIG. 26 etc., in this embodiment, the electrode exposure process forms the internal electrode opening 315A by irradiating the area of the insulating cover body 300A where the internal electrode opening 315A is to be formed with laser light L and peeling off that area of the insulating cover body 300A.

 これに代えて、前記内部電極用開口315Aをイオンビーム、電子ビーム又はイオンミリングによって形成することも可能である。 Alternatively, the internal electrode opening 315A can be formed by ion beam, electron beam or ion milling.

 なお、前記絶縁性カバー体設置工程が前記絶縁性カバー体300C(図12及び図13)、300D(図14及び図15)を設置するように構成されている場合には、前記電極露出工程は、前記内部電極開口315Aに加えて、前記下面電極端子37Tの少なくとも一部及び前記上面電極36の少なくとも一部を一体的に露出させる前記外部電極用開口310A(又は310B)を形成するように構成される。
 前記外部電極用開口310Aは、前記内部電極用開口315Aと同じ方法で形成される。
In addition, when the insulating cover body installation process is configured to install the insulating cover body 300C (Figures 12 and 13), 300D (Figures 14 and 15), the electrode exposure process is configured to form, in addition to the internal electrode opening 315A, the external electrode opening 310A (or 310B) that integrally exposes at least a portion of the lower electrode terminal 37T and at least a portion of the upper electrode 36.
The external electrode opening 310A is formed in the same manner as the internal electrode opening 315A.

 前記製造方法は、さらに、前記下面電極端子37Tの少なくとも一部及び前記上面電極36のうち前記下面電極側隙間37aを介して前記下面電極端子37Tと対向する下面電極端子対向領域361の少なくとも一部を一体的に覆うように第1導電性接合材190aを設け、且つ、前記内部電極端子34Tのうち前記内部電極用開口315Aを介して露出された部分に第2導電性接合材190bを設ける導電性接合材設置工程を備えている。 The manufacturing method further includes a conductive adhesive installation process in which a first conductive adhesive 190a is provided to integrally cover at least a portion of the lower electrode terminal 37T and at least a portion of the lower electrode terminal facing region 361 of the upper electrode 36 that faces the lower electrode terminal 37T through the lower electrode side gap 37a, and a second conductive adhesive 190b is provided on the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A.

 図28に、前記導電性接合材設置工程後のプリアッセンブリの縦断面図を示す。
 また、図29に、図28におけるXXIX部拡大図を示す。
FIG. 28 shows a vertical cross-sectional view of the pre-assembly after the conductive bonding material providing step.
FIG. 29 shows an enlarged view of the portion XXIX in FIG.

 なお、前記絶縁性カバー体300C、300Dが用いられ、前記絶縁性カバー体300C、300Dに前記外部電極用開口310A、310Bが形成されている構成においては、前記第1導電性接合材190aは前記外部電極用開口310A、310B内に設けられる。 In a configuration in which the insulating cover bodies 300C, 300D are used and the openings 310A, 310B for the external electrodes are formed in the insulating cover bodies 300C, 300D, the first conductive bonding material 190a is provided in the openings 310A, 310B for the external electrodes.

 前記製造方法は、さらに、前記第1配線130aの一部が前記第1導電性接合材190aに接触し且つ前記第2配線130bの一部が前記第2導電性接合材190bに接触するように、前記配線体100を設置する配線体設置工程を備えている。 The manufacturing method further includes a wiring body installation process for installing the wiring body 100 so that a portion of the first wiring 130a contacts the first conductive bonding material 190a and a portion of the second wiring 130b contacts the second conductive bonding material 190b.

 図30に、前記配線体設置工程後のプリアッセンブリの縦断面図を示す。
 また、図31に、図30におけるXXXI部拡大図を示す。
FIG. 30 shows a vertical cross-sectional view of the pre-assembly after the wiring body installation step.
FIG. 31 shows an enlarged view of a portion XXXI in FIG.

 本実施の形態においては、前記配線体設置工程は、前記第1配線130aのうち前記外部電極接続開口155aを跨ぐ部分が前記第1導電性接合材190aに接触し且つ前記第2配線130bのうち前記内部電極接続開口155bを跨ぐ部分が前記第2導電性接合材190bに接触するように、前記配線体100を絶縁性接着材(図示せず)によって前記下側封止板40に固着するように構成されている。 In this embodiment, the wiring body installation process is configured to fix the wiring body 100 to the lower sealing plate 40 with an insulating adhesive (not shown) so that the portion of the first wiring 130a that spans the external electrode connection opening 155a contacts the first conductive bonding material 190a and the portion of the second wiring 130b that spans the internal electrode connection opening 155b contacts the second conductive bonding material 190b.

 前記配線体100を前記下側封止板40に固着させる絶縁性接着材は、例えば、熱硬化型絶縁性接着材とすることができる。 The insulating adhesive that bonds the wiring body 100 to the lower sealing plate 40 can be, for example, a thermosetting insulating adhesive.

 前記第1及び第2導電性接合材190a、190bは、例えば、熱硬化型導電性接着材又はクリームはんだとすることができ、ディスペンサー、スクリーン印刷又は転写等によって所定領域に塗布される。 The first and second conductive bonding materials 190a, 190b may be, for example, a thermosetting conductive adhesive or cream solder, and are applied to a predetermined area by a dispenser, screen printing, transfer, or the like.

 前記配線体設置工程は、前記配線体100を所定位置に位置させた状態で、加熱処理して熱硬化型絶縁性接着材並びに第1及び第2導電性接合材190a、190bを硬化させる処理を含むものとされる。 The wiring body installation process includes a process of performing a heat treatment with the wiring body 100 positioned in a predetermined position to harden the thermosetting insulating adhesive and the first and second conductive bonding materials 190a, 190b.

 加熱温度は、前記第1及び第2導電性接合材190a、190bが熱硬化型導電性接着材である場合には、120℃~150℃程度とされ、クリームはんだの場合には230℃~260℃とされ得る。なお、クリームはんだの場合には、加熱によって溶融し、溶融状態から降温させることによって固化される。 The heating temperature is set to about 120°C to 150°C when the first and second conductive bonding materials 190a, 190b are thermosetting conductive adhesives, and can be set to 230°C to 260°C when they are cream solder. In the case of cream solder, it melts when heated and solidifies when cooled from the molten state.

 なお、前記製造方法においては、前記下側封止板固着工程は、前記可撓性樹脂膜固着工程の後で且つ前記圧電素子固着工程の前に行われているが、前記下側封止板固着工程は、前記可撓性樹脂膜固着工程より後で且つ前記配線体設置工程より前の任意タイミングで行うことができる。 In the above manufacturing method, the lower sealing plate fixing step is performed after the flexible resin film fixing step and before the piezoelectric element fixing step, but the lower sealing plate fixing step can be performed at any timing after the flexible resin film fixing step and before the wiring body installation step.

 また、前記製造方法においては、前記絶縁性樹脂材充填工程は、前記圧電素子固着工程の後で且つ前記絶縁性カバー体設置工程の前に行われているが、前記絶縁性樹脂材充填工程は、前記下側封止板固着工程及び前記圧電素子固着工程より後で且つ前記配線体設置工程より前の任意タイミングで行うことができる。 In addition, in the manufacturing method, the insulating resin filling step is performed after the piezoelectric element fixing step and before the insulating cover body installation step, but the insulating resin filling step can be performed at any timing after the lower sealing plate fixing step and the piezoelectric element fixing step and before the wiring body installation step.

 前記製造方法は、さらに、前記配線体設置工程の後に、前記上側封止板60を設置する上側封止板設置工程を備えている。 The manufacturing method further includes an upper sealing plate installation process for installing the upper sealing plate 60 after the wiring body installation process.

 前記上側封止板設置工程は、前記配線体100の上面にシリコーン樹脂等の熱硬化型の柔軟性樹脂材を塗布する処理と、前記柔軟性樹脂材の上に前記上側封止板60を配置する処理と、例えば、100℃~150℃程度で数十分間、加熱により前記柔軟性樹脂材を硬化させる処理とを含む。
 図32に、前記上側封止板設置工程後のプリアッセンブリの縦断面図を示す。
The upper sealing plate installation process includes a process of applying a thermosetting flexible resin material such as silicone resin to the upper surface of the wiring body 100, a process of placing the upper sealing plate 60 on the flexible resin material, and a process of curing the flexible resin material by heating, for example, at approximately 100°C to 150°C for several tens of minutes.
FIG. 32 shows a vertical cross-sectional view of the pre-assembly after the upper sealing plate installation step.

 前記製造方法は、さらに、前記上側封止板設置工程の後に、吸音材設置工程及び補強板設置工程を備えている(図2参照)。 The manufacturing method further includes a sound-absorbing material installation process and a reinforcing plate installation process after the upper sealing plate installation process (see Figure 2).

 前記吸音材設置工程は、前記上側封止板60の上面に熱硬化型絶縁性接着材を塗布する処理と、前記熱硬化型絶縁性接着材の上にシリコーン樹脂又は他の発泡性樹脂等の前記吸音材70を配置する処理と、例えば、120℃~150℃程度で数十分間、加熱により前記熱硬化型絶縁性接着材を硬化させる処理とを含む。 The sound-absorbing material installation process includes a process of applying a thermosetting insulating adhesive to the upper surface of the upper sealing plate 60, a process of placing the sound-absorbing material 70 such as silicone resin or other foamable resin on the thermosetting insulating adhesive, and a process of curing the thermosetting insulating adhesive by heating, for example, at about 120°C to 150°C for several tens of minutes.

 前記補強板設置工程は、前記吸音材70の上面に熱硬化型絶縁性接着材を塗布する処理と、前記熱硬化型絶縁性接着材の上に前記補強板75を配置する処理と、例えば、120℃~150℃程度で数十分間、加熱により前記熱硬化型絶縁性接着材を硬化させる処理とを含む。 The reinforcing plate installation process includes a process of applying a thermosetting insulating adhesive to the upper surface of the sound absorbing material 70, a process of placing the reinforcing plate 75 on the thermosetting insulating adhesive, and a process of curing the thermosetting insulating adhesive by heating, for example, at about 120°C to 150°C for several tens of minutes.

実施の形態2
 以下、本発明に係る超音波トランスデューサーの他の実施の形態について、添付図面を参照しつつ説明する。
 図33に、本実施の形態に係る超音波トランスデューサー2の部分縦断面図を示す。
 また、図34に、図33におけるXXXIV部拡大図を示す。
 なお、図中、前記実施の形態1におけると同一部材には同一符号を付して、その詳細な説明を適宜省略する。
Embodiment 2
Hereinafter, another embodiment of the ultrasonic transducer according to the present invention will be described with reference to the accompanying drawings.
FIG. 33 shows a partial vertical cross-sectional view of the ultrasonic transducer 2 according to the present embodiment.
FIG. 34 shows an enlarged view of a portion XXXIV in FIG.
In the drawings, the same members as those in the first embodiment are given the same reference numerals, and detailed explanations thereof will be omitted as appropriate.

 図33及び図34に示すように、前記超音波トランスデューサー2は、前記剛性基板10と、前記可撓性樹脂膜20と、前記下側封止板40と、前記複数の圧電素子30と、絶縁性樹脂材350と、前記配線体100とを有している。 As shown in Figures 33 and 34, the ultrasonic transducer 2 has the rigid substrate 10, the flexible resin film 20, the lower sealing plate 40, the multiple piezoelectric elements 30, an insulating resin material 350, and the wiring body 100.

 前記複数の圧電素子30は、平面視において前記複数の開口部15とそれぞれ重合するように前記中央開口42内において前記可撓性樹脂膜20の上面に配置されている。 The plurality of piezoelectric elements 30 are arranged on the upper surface of the flexible resin film 20 within the central opening 42 so as to overlap with each of the plurality of openings 15 in a plan view.

 前記絶縁性樹脂材350は、前記複数の圧電素子30の下端面及び前記可撓性樹脂膜20の間に介挿されると共に、前記複数の圧電素子30の外側面及び上端面を覆うように設けられている。 The insulating resin material 350 is interposed between the lower end surfaces of the piezoelectric elements 30 and the flexible resin film 20, and is arranged to cover the outer surfaces and upper end surfaces of the piezoelectric elements 30.

 図34に示すように、本実施の形態においては、前記絶縁性樹脂材350は、前記圧電素子30の下端面を前記可撓性樹脂膜20に固着する第1絶縁性樹脂材360と、前記圧電素子30の外側面及び上端面を覆う第2絶縁性樹脂材370とを含んでいる。
 前記第2絶縁性樹脂材370は、例えば、シリコーン等の柔軟性樹脂材とされる。
As shown in Figure 34, in this embodiment, the insulating resin material 350 includes a first insulating resin material 360 that fixes the lower end surface of the piezoelectric element 30 to the flexible resin film 20, and a second insulating resin material 370 that covers the outer surface and upper end surface of the piezoelectric element 30.
The second insulating resin material 370 is, for example, a flexible resin material such as silicone.

 図34(及び下記図43等)に示すように、前記絶縁性樹脂材350(本実施の形態においては前記第2絶縁性樹脂材370)のうち前記圧電素子30の上端面を覆う部分には、前記下面電極端子37Tの少なくとも一部及び前記上面電極36の少なくとも一部を一体的に露出させる前記外部電極用開口310A(又は310B)と、前記内部電極端子34Tの少なくとも一部を露出させつつ前記内部電極端子対向領域362は露出させない前記内部電極用開口315A(又は315B)とが設けられている。 As shown in FIG. 34 (and FIG. 43 below, etc.), the portion of the insulating resin material 350 (the second insulating resin material 370 in this embodiment) covering the upper end surface of the piezoelectric element 30 is provided with the external electrode opening 310A (or 310B) that integrally exposes at least a portion of the lower electrode terminal 37T and at least a portion of the upper electrode 36, and the internal electrode opening 315A (or 315B) that exposes at least a portion of the internal electrode terminal 34T but does not expose the internal electrode terminal facing region 362.

 前記配線体100は、前記実施の形態1の超音波トランスデューサー1におけると同様に、前記第1配線130aが前記第1導電性接合材190aを介して前記外部電極用開口310Aによって露出された前記下面電極端子37T及び前記上面電極361に電気的に接続され、且つ、前記第2配線130bが前記第2導線性接合材190bを介して前記内部電極用開口315Aによって露出された前記内部電極端子34Tに電気的に接続された状態で、前記下側封止板40に固着されている。 The wiring body 100 is fixed to the lower sealing plate 40 in a state in which the first wiring 130a is electrically connected to the lower electrode terminal 37T and the upper electrode 361 exposed by the external electrode opening 310A via the first conductive bonding material 190a, and the second wiring 130b is electrically connected to the internal electrode terminal 34T exposed by the internal electrode opening 315A via the second conductive bonding material 190b, as in the ultrasonic transducer 1 of the first embodiment.

 なお、本実施の形態においては、前記絶縁性樹脂材350は、前述の通り、前記第1絶縁性樹脂材360及び前記第2絶縁性樹脂材370を有しているが、前記絶縁性樹脂材350に代えて、単一材料とされた絶縁性樹脂材350Bを備えることも可能である。
 図35に、単一材料の前記絶縁性樹脂材350Bを備えた変形例の部分拡大縦断面図を示す。
In this embodiment, as described above, the insulating resin material 350 has the first insulating resin material 360 and the second insulating resin material 370, but it is also possible to provide an insulating resin material 350B made of a single material instead of the insulating resin material 350.
FIG. 35 is a partially enlarged vertical cross-sectional view of a modified example in which the insulating resin material 350B is made of a single material.

 以下、前記超音波トランスデューサー2の製造方法について説明する。
 前記製造方法は、
 前記剛性基板10と同一厚さを剛性板材を用意し、前記剛性板材にエッチング等によって前記複数の開口部15を形成して前記剛性基板10を得る剛性基板形成工程と、
 前記複数の開口部15を覆うように前記可撓性樹脂膜20を接着材又は熱圧着によって前記剛性基板10の上面に固着する可撓性樹脂膜固着工程と
を備えている。
 図36に、前記可撓性樹脂膜固着工程後のプリアッセンブリの縦断面図を示す。
A method for manufacturing the ultrasonic transducer 2 will now be described.
The manufacturing method includes:
a rigid substrate forming step of preparing a rigid plate having the same thickness as the rigid substrate 10, and forming the plurality of openings 15 in the rigid plate by etching or the like to obtain the rigid substrate 10;
and a flexible resin film fixing step of fixing the flexible resin film 20 to the upper surface of the rigid substrate 10 by adhesive or thermocompression bonding so as to cover the plurality of openings 15.
FIG. 36 shows a vertical cross-sectional view of the pre-assembly after the flexible resin film fixing step.

 本実施の形態においては、前記製造方法は、前記圧電素子30と略同一厚さを有し且つ前記剛性基板10における前記複数の開口部15を一体的に囲む大きさの前記中央開口42を有する前記下側封止板40を用意し、平面視において前記中央開口42が前記複数の開口部15を一体的に囲むように前記可撓性樹脂膜20の上面に前記下側封止板40を接着材によって固着する下側封止板固着工程を備えている。
 図37に、前記下側封止板固着工程後のプリアッセンブリの縦断面図を示す。
In this embodiment, the manufacturing method includes a lower sealing plate fixing process in which a lower sealing plate 40 is prepared which has approximately the same thickness as the piezoelectric element 30 and which has a central opening 42 of a size which integrally surrounds the multiple openings 15 in the rigid substrate 10, and which fixes the lower sealing plate 40 to the upper surface of the flexible resin film 20 with an adhesive so that the central opening 42 integrally surrounds the multiple openings 15 in a planar view.
FIG. 37 is a vertical cross-sectional view of the pre-assembly after the lower sealing plate fixing step.

 前記製造方法は、さらに、平面視において前記複数の開口部15とそれぞれ重合するように前記複数の圧電素子30を前記可撓性樹脂膜20の上面に第1絶縁性樹脂材360によって固着する圧電素子固着工程を備えている。
 図38に、前記圧電素子固着工程後のプリアッセンブリの縦断面図を示す。
The manufacturing method further includes a piezoelectric element fixing step of fixing the plurality of piezoelectric elements 30 to the upper surface of the flexible resin film 20 with a first insulating resin material 360 so as to overlap the plurality of openings 15 respectively in a plan view.
FIG. 38 is a vertical cross-sectional view of the pre-assembly after the piezoelectric element fixing step.

 なお、前記下側封止板固着工程及び前記圧電素子固着工程の順序を逆にすることも可能である。
 即ち、先に前記圧電素子固着工程を行ない、その後に、前記下側封止板固着工程を行うことも可能である。
The order of the lower sealing plate fixing step and the piezoelectric element fixing step may be reversed.
That is, it is also possible to carry out the piezoelectric element fixing step first, and then carry out the lower sealing plate fixing step.

 前記製造方法は、さらに、前記中央開口42内において前記複数の圧電素子30の外側面を覆うと共に、前記複数の圧電素子30の上端面を覆って絶縁性カバー体300Eを形成するように、第2絶縁性樹脂材370を設ける絶縁性樹脂材設置工程を備えている。 The manufacturing method further includes an insulating resin material installation step of providing a second insulating resin material 370 so as to cover the outer side surfaces of the plurality of piezoelectric elements 30 within the central opening 42 and to cover the upper end surfaces of the plurality of piezoelectric elements 30 to form an insulating cover body 300E.

 図39に、前記絶縁性樹脂材設置工程後の縦断面図を示す。
 また、図40に、図39におけるXXXX部拡大図を示す。
 さらに、図41に、前記絶縁性樹脂材設置工程後の前記圧電素子30の平面図を示す。
FIG. 39 shows a vertical cross-sectional view after the insulating resin material providing step.
FIG. 40 shows an enlarged view of the XXXX portion in FIG.
Furthermore, FIG. 41 shows a plan view of the piezoelectric element 30 after the insulating resin material application step.

 前記第2絶縁性樹脂材370は、好ましくは、シリコーン樹脂等の柔軟性樹脂材とされる。
 前記絶縁性樹脂材設置工程は、前記複数の圧電素子30の上端面及び外側面が覆われるようにシリコーン樹脂等の熱硬化型絶縁性樹脂材を塗布し、例えば、100℃~150℃程度で数十分間、加熱処理して硬化させるように構成される。
The second insulating resin material 370 is preferably a flexible resin material such as a silicone resin.
The insulating resin application process is configured to apply a thermosetting insulating resin material such as silicone resin so as to cover the upper end surfaces and outer surfaces of the plurality of piezoelectric elements 30, and then heat-treat the resin at, for example, about 100°C to 150°C for several tens of minutes to harden the resin.

 前記製造方法は、さらに、 前記絶縁性カバー体300Eに、前記下面電極端子37Tの少なくとも一部及び前記上面電極36の少なくとも一部を一体的に露出させる前記外部電極用開口310Aと、前記内部電極端子34Tの少なくとも一部を露出させつつ前記内部電極端子対向領域362は露出させない前記内部電極用開口315Aとを形成する電極露出工程を備えている。 The manufacturing method further includes an electrode exposure process for forming the external electrode opening 310A, which integrally exposes at least a portion of the lower electrode terminal 37T and at least a portion of the upper electrode 36, in the insulating cover body 300E, and the internal electrode opening 315A, which exposes at least a portion of the internal electrode terminal 34T but does not expose the internal electrode terminal facing region 362.

 図42に、前記電極露出工程後のプリアッセンブリの部分拡大縦断面図を示す。
 また、図43に、前記電極露出工程後の前記圧電素子30の平面図を示す。
FIG. 42 is an enlarged partial vertical cross-sectional view of the pre-assembly after the electrode exposing step.
FIG. 43 is a plan view of the piezoelectric element 30 after the electrode exposing step.

 図42に示すように、本実施の形態においては、前記電極露出工程は、前記絶縁性カバー体300Eのうち前記外部電極用開口310Aを形成すべき領域及び前記内部電極用開口315Aを形成すべき領域にそれぞれレーザー光Lを照射して、前記絶縁性カバー体300Eの当該領域を剥離することによって前記外部電極用開口310A及び前記内部電極用開口315Aを形成している。 As shown in FIG. 42, in the present embodiment, the electrode exposure process irradiates laser light L onto the area of the insulating cover body 300E where the external electrode opening 310A is to be formed and the area of the insulating cover body 300E where the internal electrode opening 315A is to be formed, and forms the external electrode opening 310A and the internal electrode opening 315A by peeling off the areas of the insulating cover body 300E.

 これに代えて、前記外部電極用開口310A及び前記内部電極用開口315Aをイオンビーム、電子ビーム又はイオンミリングによって形成することも可能である。 Alternatively, the external electrode opening 310A and the internal electrode opening 315A can be formed by an ion beam, an electron beam, or ion milling.

 前記製造方法は、さらに、前記下面電極端子37T及び前記上面電極36のうち前記外部電極用開口310Aを介して露出された部分を一体的に覆うように第1導電性接合材190aを設け、且つ、前記内部電極端子34Tのうち前記内部電極用開口315Aを介して露出された部分に第2導電性接合材190bを設ける導電性接合材設置工程を備えている。 The manufacturing method further includes a conductive adhesive installation step of providing a first conductive adhesive 190a to integrally cover the lower electrode terminal 37T and the upper electrode 36 portions exposed through the external electrode opening 310A, and providing a second conductive adhesive 190b on the portion of the internal electrode terminal 34T exposed through the internal electrode opening 315A.

 図44に、前記導電性接合材設置工程後のプリアッセンブリの縦断面図を示す。
 また、図45に、図44におけるXXXXV部拡大図を示す。
FIG. 44 shows a vertical cross-sectional view of the pre-assembly after the conductive bonding material providing step.
FIG. 45 shows an enlarged view of the XXXXV portion in FIG.

 前記製造方法は、さらに、前記第1配線130aの一部が前記第1導電性接合材190aに接触し且つ前記第2配線130bの一部が前記第2導電性接合材190bに接触するように、前記配線体100を設置する配線体設置工程を備えている。 The manufacturing method further includes a wiring body installation process for installing the wiring body 100 so that a portion of the first wiring 130a contacts the first conductive bonding material 190a and a portion of the second wiring 130b contacts the second conductive bonding material 190b.

 図46に、前記配線体設置工程後のプリアッセンブリの縦断面図を示す。
 また、図47に、図46におけるXXXXVII部拡大図を示す。
FIG. 46 shows a vertical cross-sectional view of the pre-assembly after the wiring body installation step.
FIG. 47 shows an enlarged view of the XXXXVII portion in FIG.

 本実施の形態においては、前記配線体設置工程は、前記第1配線130aのうち前記外部電極接続開口155aを跨ぐ部分が前記第1導電性接合材190aに接触し且つ前記第2配線130bのうち前記内部電極接続開口155bを跨ぐ部分が前記第2導電性接合材190bに接触するように、前記配線体100を絶縁性接着材によって前記下側封止板40に固着するように構成されている。 In this embodiment, the wiring body installation process is configured to fix the wiring body 100 to the lower sealing plate 40 with an insulating adhesive so that the portion of the first wiring 130a that spans the external electrode connection opening 155a contacts the first conductive bonding material 190a and the portion of the second wiring 130b that spans the internal electrode connection opening 155b contacts the second conductive bonding material 190b.

 前記配線体100を前記下側封止板40に固着させる絶縁性接着材は、例えば、熱硬化型絶縁性接着材とすることができる。 The insulating adhesive that bonds the wiring body 100 to the lower sealing plate 40 can be, for example, a thermosetting insulating adhesive.

 前記第1及び第2導電性接合材190a、190bは、例えば、熱硬化型導電性接着材又はクリームはんだとすることができ、ディスペンサー、スクリーン印刷又は転写等によって所定領域に塗布される。 The first and second conductive bonding materials 190a, 190b may be, for example, a thermosetting conductive adhesive or cream solder, and are applied to a predetermined area by a dispenser, screen printing, transfer, or the like.

 前記配線体設置工程は、前記配線体を所定位置に位置させた状態で、加熱処理して熱硬化型絶縁性接着材並びに第1及び第2導電性接合材190a、190bを硬化させる処理とを含むものとされる。 The wiring body installation process includes a process of heating the wiring body in a predetermined position to harden the thermosetting insulating adhesive and the first and second conductive bonding materials 190a, 190b.

 加熱温度は、前記第1及び第2導電性接合材190a、190bが熱硬化型導電性接着材である場合には、120℃~150℃程度とされ、クリームはんだの場合には230℃~260℃とされ得る。なお、クリームはんだの場合には、加熱によって溶融し、溶融状態から降温させることによって固化される。 The heating temperature is set to about 120°C to 150°C when the first and second conductive bonding materials 190a, 190b are thermosetting conductive adhesives, and can be set to 230°C to 260°C when they are cream solder. In the case of cream solder, it melts when heated and solidifies when cooled from the molten state.

 前記製造方法は、さらに、前記配線体設置工程の後に、前記上側封止板60を設置する上側封止板設置工程を備えている。 The manufacturing method further includes an upper sealing plate installation process for installing the upper sealing plate 60 after the wiring body installation process.

 前記上側封止板設置工程は、前記配線体100の上面にシリコーン樹脂等の熱硬化型の柔軟性樹脂材を塗布する処理と、前記柔軟性樹脂材の上に前記上側封止板60を配置する処理と、例えば、100℃~150℃程度で数十分間、加熱により前記柔軟性樹脂材を硬化させる処理とを含む。
 図48に、前記上側封止板設置工程後のプリアッセンブリの縦断面図を示す。
The upper sealing plate installation process includes a process of applying a thermosetting flexible resin material such as silicone resin to the upper surface of the wiring body 100, a process of placing the upper sealing plate 60 on the flexible resin material, and a process of curing the flexible resin material by heating, for example, at approximately 100°C to 150°C for several tens of minutes.
FIG. 48 shows a vertical cross-sectional view of the pre-assembly after the upper sealing plate installation step.

 前記製造方法は、さらに、前記上側封止板設置工程の後に、吸音材設置工程及び補強板設置工程を備えている(図2参照)。 The manufacturing method further includes a sound-absorbing material installation process and a reinforcing plate installation process after the upper sealing plate installation process (see Figure 2).

 前記吸音材設置工程は、前記上側封止板60の上面に熱硬化型絶縁性接着材を塗布する処理と、前記熱硬化型絶縁性接着材の上にシリコーン樹脂又は他の発泡性樹脂等の前記吸音材70を配置する処理と、例えば、120℃~150℃程度で数十分間、加熱により前記熱硬化型絶縁性接着材を硬化させる処理とを含む。 The sound-absorbing material installation process includes a process of applying a thermosetting insulating adhesive to the upper surface of the upper sealing plate 60, a process of placing the sound-absorbing material 70 such as silicone resin or other foamable resin on the thermosetting insulating adhesive, and a process of curing the thermosetting insulating adhesive by heating, for example, at about 120°C to 150°C for several tens of minutes.

 前記補強板設置工程は、前記吸音材70の上面に熱硬化型絶縁性接着材を塗布する処理と、前記熱硬化型絶縁性接着材の上に前記補強板75を配置する処理と、例えば、120℃~150℃程度で数十分間、加熱により前記熱硬化型絶縁性接着材を硬化させる処理とを含む。 The reinforcing plate installation process includes a process of applying a thermosetting insulating adhesive to the upper surface of the sound absorbing material 70, a process of placing the reinforcing plate 75 on the thermosetting insulating adhesive, and a process of curing the thermosetting insulating adhesive by heating, for example, at about 120°C to 150°C for several tens of minutes.

 なお、前記製造方法においては、前記圧電素子30を前記可撓性樹脂膜20に固着する絶縁性樹脂材(前記第1絶縁性樹脂材360)と前記圧電素子30の上端面を覆って前記絶縁性カバー体300Eを形成する絶縁性樹脂材(前記第2絶縁性樹脂材370)とが異なっているが、これらを単一材料によって形成することも可能である。 In addition, in the manufacturing method, the insulating resin material (the first insulating resin material 360) that adheres the piezoelectric element 30 to the flexible resin film 20 and the insulating resin material (the second insulating resin material 370) that covers the upper end surface of the piezoelectric element 30 and forms the insulating cover body 300E are different, but it is also possible to form them from a single material.

 この変形例に係る製造方法は、前記可撓性樹脂膜固着工程後に、下側封止板設置工程、絶縁性樹脂材充填工程及び圧電素子固着工程をこの順序で行うように構成される。 The manufacturing method according to this modified example is configured to carry out the lower sealing plate installation process, the insulating resin filling process, and the piezoelectric element fixing process in this order after the flexible resin film fixing process.

 前記下側封止板設置工程は、前記圧電素子30より厚みが大とされた下側封止板40Bであって、平面視において前記複数の開口部15の全てを囲む大きさの中央開口42を有する下側封止板40Bを用意し、前記中央開口42が前記複数の開口部15の全てを囲むように前記可撓性樹脂膜20の上面に前記下側封止板40Bを固着するように構成される。 The lower sealing plate installation process is configured to prepare a lower sealing plate 40B that is thicker than the piezoelectric element 30 and has a central opening 42 large enough to surround all of the multiple openings 15 in a plan view, and to adhere the lower sealing plate 40B to the upper surface of the flexible resin film 20 so that the central opening 42 surrounds all of the multiple openings 15.

 前記絶縁性樹脂材充填工程は、前記中央開口42内に絶縁性樹脂材380を充填するように構成されている。
 前記絶縁性樹脂材380は、例えば熱硬化型とされる。
 図49に、前記絶縁性樹脂材充填工程後のプリアッセンブリの縦断面図を示す。
The insulating resin filling step is configured to fill the central opening 42 with an insulating resin material 380 .
The insulating resin material 380 is, for example, a thermosetting type.
FIG. 49 shows a vertical cross-sectional view of the pre-assembly after the insulating resin filling step.

 図50に、前記圧電素子固着工程後のプリアッセンブリの縦断面図を示す。
 また、図51に、図50におけるXXXXXI部拡大図を示す。
FIG. 50 is a vertical cross-sectional view of the pre-assembly after the piezoelectric element fixing step.
FIG. 51 shows an enlarged view of part XXXXXI in FIG.

 図50及び図51に示すように、前記圧電素子固着工程は、前記絶縁性樹脂材380の一部が前記圧電素子30の上端面を覆った状態で平面視において前記複数の開口部15とそれぞれ重合するように前記複数の圧電素子30を硬化前の状態の前記絶縁性樹脂材380中において前記可撓性樹脂膜20の上面に設置し、その後に前記絶縁性樹脂材380を硬化させることによって前記複数の圧電素子30を前記可撓性樹脂膜20に固着し、且つ、前記圧電素子30の上端面上に絶縁性カバー体300Eを形成するように構成されている。 As shown in Figures 50 and 51, the piezoelectric element fixing process is configured to place the multiple piezoelectric elements 30 on the upper surface of the flexible resin film 20 in the insulating resin material 380 in an uncured state so that a portion of the insulating resin material 380 covers the upper end surface of the piezoelectric elements 30 and overlaps with each of the multiple openings 15 in a planar view, and then to fix the multiple piezoelectric elements 30 to the flexible resin film 20 by curing the insulating resin material 380, and to form an insulating cover body 300E on the upper end surface of the piezoelectric elements 30.

 好ましくは、前記圧電素子固着工程における前記絶縁性樹脂材380の充填量は、図51に示すように、前記圧電素子300を前記可撓性樹脂膜20の上面に載置させた際に、前記圧電素子30の上端面のうち、前記内部電極端子34Tの少なくとも一部、前記上面電極36のうち前記内部電極側隙間34aを介して前記内部電極端子34Tと対向する内部電極端子対向領域362、及び、前記内部電極側隙間34aのうち前記内部電極端子34Tと前記内部電極端子対向領域362とによって挟まれた領域を含む周縁領域を覆いつつ、前記圧電素子の上端面の中央領域を覆わないように、調整される。 Preferably, the amount of the insulating resin material 380 filled in the piezoelectric element fixing process is adjusted so that, when the piezoelectric element 300 is placed on the upper surface of the flexible resin film 20 as shown in FIG. 51, the amount of the insulating resin material 380 filled in the piezoelectric element 30 covers the peripheral areas of the upper end surface of the piezoelectric element 30, including at least a part of the internal electrode terminal 34T, the internal electrode terminal facing area 362 of the upper surface electrode 36 that faces the internal electrode terminal 34T through the internal electrode side gap 34a, and the area of the internal electrode side gap 34a sandwiched between the internal electrode terminal 34T and the internal electrode terminal facing area 362, but does not cover the central area of the upper end surface of the piezoelectric element.

 かかる好ましい構成によれば、前記圧電素子30を実装させる際のピックノズルに前記絶縁性樹脂材380が付着することを有効に防止乃至は低減でき、前記圧電素子30の実装作業を正確かつ効率的に行うことができる。 This preferred configuration effectively prevents or reduces the adhesion of the insulating resin material 380 to the pick nozzle when mounting the piezoelectric element 30, and allows the mounting work of the piezoelectric element 30 to be performed accurately and efficiently.

 変形例に係る製造方法は、前記圧電素子固着工程後においては、本実施の形態に係る製造方法と同じ工程を行う。 In the manufacturing method according to the modified example, after the piezoelectric element fixing process, the same process as in the manufacturing method according to the present embodiment is carried out.

 なお、前記実施の形態1及び2においては、図8(a)等に示すように、前記圧電素子30は、平面視における外形を形成する一辺及び他辺の中途部にそれぞれ前記下面電極端子37T及び前記内部電極端子34Tが配置されているが、当然ながら、本発明は斯かる形態に限定されるものではない。 In the first and second embodiments, as shown in FIG. 8(a) and the like, the piezoelectric element 30 has the bottom electrode terminal 37T and the internal electrode terminal 34T disposed midway along one side and the other side that form the outer shape in a plan view, respectively, but the present invention is not, of course, limited to such a configuration.

 図52に、前記絶縁性カバー体300Aが設けられた本発明の他の実施の形態に係る圧電素子30Bの平面図を示す。
 前記圧電素子30Bは、平面視矩形状の角部に、前記下面電極端子37T及び前記内部電極端子34Tが配置されている。
FIG. 52 shows a plan view of a piezoelectric element 30B provided with the insulating cover body 300A according to another embodiment of the present invention.
The piezoelectric element 30B has the lower electrode terminal 37T and the internal electrode terminal 34T disposed at corners of a rectangular shape in a plan view.

 また、前記実施の形態1及び2においては、前記下側封止板40が用いられているが、本発明は前記下側封止板40に代えて下側封止板40Bを用いることも可能である。 In addition, in the first and second embodiments, the lower sealing plate 40 is used, but in the present invention, it is also possible to use the lower sealing plate 40B instead of the lower sealing plate 40.

 図53に、前記下側封止板40Bの平面図を示す。
 また、図54に、前記下側封止板40に代えて前記下側封止板40Bが適用された前記実施の形態1の変形例に係る超音波トランスデューサー1Bの部分縦断面図を示す。
FIG. 53 shows a plan view of the lower sealing plate 40B.
FIG. 54 shows a partial vertical cross-sectional view of an ultrasonic transducer 1B according to a modification of the first embodiment in which the lower sealing plate 40B is used instead of the lower sealing plate 40. As shown in FIG.

 図53及び図54に示すように、前記下側封止板40Bは、前記中央開口42を、前記複数の圧電素子30をそれぞれ囲む大きさの複数の開口43に区画する隔壁45を有している。 As shown in Figures 53 and 54, the lower sealing plate 40B has partition walls 45 that divide the central opening 42 into multiple openings 43 large enough to surround each of the multiple piezoelectric elements 30.

1、1B、2     超音波トランスデューサー
10    剛性基板
15    開口部
20    可撓性樹脂膜
30、30B    圧電素子
32    圧電素子本体
34    内部電極
34a   内部電極側隙間
34T   内部電極端子
35    内部電極用接続体
36    上面電極(外部電極)
37    下面電極(外部電極)
37a   下面電極側隙間
37T   下面電極端子
38    下面電極用接続体
40、40B     下側封止板
42    中央開口
45    隔壁
100   配線体
110   絶縁性ベース層
111   ベース側圧電素子重合部位
112a  外部電極タブ領域
112b  内部電極タブ領域
115a  第1アクセス開口
115b  第2アクセス開口
116   ベース側先端部位
130a、130b   第1配線、第2配線
150   絶縁性カバー層
151   カバー側圧電素子重合部位
152a  外部電極タブ領域
152b  内部電極タブ領域
155a  外部電極接続開口
155b  内部電極接続開口
156   カバー側先端部位
190a  第1導電性接合材
190b  第2導電性接合材
300A~300D   絶縁性カバー体
310A、310B   外部電極用開口
315A、315B   内部電極用開口
350、350B    絶縁性樹脂材
360   第1絶縁性樹脂材
361   下面電極端子対向領域
362   内部電極端子対向領域
370   第2絶縁性樹脂材
1, 1B, 2 Ultrasonic transducer 10 Rigid substrate 15 Opening 20 Flexible resin film 30, 30B Piezoelectric element 32 Piezoelectric element body 34 Internal electrode 34a Internal electrode side gap 34T Internal electrode terminal 35 Internal electrode connector 36 Top electrode (external electrode)
37 Bottom electrode (external electrode)
37a Lower electrode side gap 37T Lower electrode terminal 38 Lower electrode connector 40, 40B Lower sealing plate 42 Central opening 45 Partition wall 100 Wiring body 110 Insulating base layer 111 Base side piezoelectric element overlapping portion 112a External electrode tab region 112b Internal electrode tab region 115a First access opening 115b Second access opening 116 Base side tip portion 130a, 130b First wiring, second wiring 150 Insulating cover layer 151 Cover side piezoelectric element overlapping portion 152a External electrode tab region 152b Internal electrode tab region 155a External electrode connection opening 155b Internal electrode connection opening 156 Cover side tip portion 190a First conductive bonding material 190b Second conductive bonding material 300A to 300D Insulating cover body 310A, 310B External electrode openings 315A, 315B Internal electrode openings 350, 350B Insulating resin material 360 First insulating resin material 361 Lower electrode terminal facing area 362 Internal electrode terminal facing area 370 Second insulating resin material

Claims (24)

 圧電材によって形成された圧電素子本体と、
 前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、外部電極を形成する上面電極及び下面電極と、
 前記圧電素子本体を厚み方向に関し上下に区画する内部電極と、
 基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、
 基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体と、
 前記内部電極端子の少なくとも一部、前記上面電極のうち前記内部電極側隙間を介して前記内部電極端子と対向する内部電極端子対向領域、及び、前記内部電極側隙間のうち前記内部電極端子と前記内部電極端子対向領域とによって挟まれた領域を一体的に覆う絶縁性カバー体とを備え、
 前記絶縁性カバー体には、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口が設けられていることを特徴とする積層型圧電素子。
A piezoelectric element body formed of a piezoelectric material;
an upper surface electrode and a lower surface electrode which are provided on the upper end surface and the lower end surface of the piezoelectric element body, respectively, and which form external electrodes;
an internal electrode that divides the piezoelectric element body into upper and lower parts in the thickness direction;
a lower electrode connector, the lower electrode terminal being formed on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower electrode and a tip end side being provided between the lower electrode and the upper electrode with a lower electrode side gap;
an internal electrode connector, the internal electrode terminal being provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side being provided on the upper end surface of the piezoelectric element body with an internal electrode side gap being present between the tip end side and the upper surface electrode;
an insulating cover body that integrally covers at least a portion of the internal electrode terminal, an internal electrode terminal facing region of the upper surface electrode that faces the internal electrode terminal across the internal electrode side gap, and a region of the internal electrode side gap that is sandwiched between the internal electrode terminal and the internal electrode terminal facing region,
a first insulating cover provided with an internal electrode opening that exposes at least a portion of the internal electrode terminal while not exposing an area facing the internal electrode terminal;
 前記内部電極用開口は、前記内部電極側隙間のうち前記内部電極端子の露出領域に隣接する領域を露出させるように構成されていることを特徴とする請求項1に記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 1, characterized in that the internal electrode opening is configured to expose a region of the internal electrode side gap adjacent to the exposed region of the internal electrode terminal.  前記内部電極用開口は、前記内部電極側隙間を露出させないように構成されていることを特徴とする請求項1に記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 1, characterized in that the internal electrode opening is configured so as not to expose the internal electrode side gap.  前記絶縁性カバー体は、前記下面電極端子の少なくとも一部、前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子と対向する下面電極端子対向領域、及び、前記下面電極側隙間のうち前記下面電極端子と前記下面電極端子対向領域とによって挟まれた領域を一体的に覆うように構成されており、
 前記絶縁性カバー体には、前記内部電極用開口に加えて、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口が設けられていることを特徴とする請求項1から3の何れかに記載の積層型圧電素子。
the insulating cover body is configured to integrally cover at least a portion of the lower electrode terminal, a lower electrode terminal facing region of the upper electrode that faces the lower electrode terminal across the lower electrode side gap, and a region of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal facing region,
4. The multilayer piezoelectric element according to claim 1, wherein the insulating cover body is provided with, in addition to the internal electrode opening, an external electrode opening that integrally exposes at least a portion of the lower electrode terminal and at least a portion of the upper electrode.
 前記絶縁性カバー体は、平面視において前記圧電素子本体の上端面の全てを覆うように構成されていることを特徴とする請求項4に記載の積層型圧電素子。 The laminated piezoelectric element according to claim 4, characterized in that the insulating cover body is configured to cover the entire upper end surface of the piezoelectric element body in a plan view.  前記絶縁性カバー体は、平面視において前記圧電素子本体の上端面の一部を覆うように構成されていることを特徴とする請求項4に記載の積層型圧電素子。 The laminated piezoelectric element according to claim 4, characterized in that the insulating cover body is configured to cover a portion of the upper end surface of the piezoelectric element body in a plan view.  上面及び下面の間を貫通する複数の開口部が設けられた剛性基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において中央領域が対応する開口部と重合し且つ周縁領域が前記基板の上面と重合するように前記可撓性樹脂膜に固着された前記複数の開口部と同数の圧電素子と、前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面下面にそれぞれ設けられ、前記外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する前記内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有している超音波トランスデューサーの製造方法であって、
 前記剛性基板と同一厚さの剛性板材を用意し、前記剛性板材に前記複数の開口部を形成して前記剛性基板を形成する剛性基板形成工程と、
 前記複数の開口部を覆うように前記可撓性樹脂膜を前記剛性基板の上面に固着する可撓性樹脂膜固着工程と、
 平面視において前記複数の開口部とそれぞれ重合するように前記複数の圧電素子を前記可撓性樹脂膜の上面に絶縁性接着材によって固着する圧電素子固着工程と、
 前記内部電極端子の少なくとも一部、前記上面電極のうち前記内部電極側隙間を介して前記内部電極端子と対向する内部電極端子対向領域、及び、前記内部電極側隙間のうち前記内部電極端子と前記内部電極端子対向領域とによって挟まれた領域を一体的に覆うように、前記圧電素子の上端面に絶縁性カバー体を設ける絶縁性カバー体設置工程と、
 前記絶縁性カバー体に、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口を形成する電極露出工程と、
 前記下面電極端子の少なくとも一部及び前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子と対向する下面電極端子対向領域の少なくとも一部を一体的に覆うように第1導電性接合材を設け、且つ、前記内部電極端子のうち前記内部電極用開口を介して露出された部分に第2導電性接合材を設ける導電性接合材設置工程と、
 前記第1配線の一部が前記第1導電性接合材に接触し且つ前記第2配線の一部が前記第2導電性接合材に接触するように、前記配線体を設置する配線体設置工程を備えていることを特徴とする超音波トランスデューサーの製造方法。
The present invention is provided with a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface, a flexible resin film fixed to the upper surface of the substrate so as to cover the plurality of openings, piezoelectric elements of the same number as the plurality of openings, each of which is fixed to the flexible resin film so that a central region overlaps with a corresponding opening and a peripheral region overlaps with the upper surface of the substrate in a plan view, and a wiring body having first and second wirings electrically connected to external and internal electrodes of the piezoelectric elements, respectively. The piezoelectric elements are a piezoelectric element body formed of a piezoelectric material, and a wiring body having first and second wirings respectively provided on the upper end surface and the lower surface below the lower end surface of the piezoelectric element body, the wiring body having first and second wirings electrically connected to the external electrodes and the internal electrodes of the piezoelectric elements. a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a lower electrode side gap between its base end side and the upper electrode side to form a lower electrode terminal; and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a lower electrode side gap between its tip end side and the upper electrode side to form an internal electrode terminal,
a rigid substrate forming step of preparing a rigid plate having the same thickness as the rigid substrate and forming the plurality of openings in the rigid plate to form the rigid substrate;
a flexible resin film fixing step of fixing the flexible resin film to an upper surface of the rigid substrate so as to cover the plurality of openings;
a piezoelectric element fixing step of fixing the plurality of piezoelectric elements to the upper surface of the flexible resin film with an insulating adhesive so as to overlap the plurality of openings in a plan view;
an insulating cover installation step of providing an insulating cover on the upper end surface of the piezoelectric element so as to integrally cover at least a portion of the internal electrode terminal, an internal electrode terminal facing region of the upper surface electrode that faces the internal electrode terminal across the internal electrode side gap, and a region of the internal electrode side gap that is sandwiched between the internal electrode terminal and the internal electrode terminal facing region;
an electrode exposing step of forming an internal electrode opening in the insulating cover body, the internal electrode opening exposing at least a part of the internal electrode terminal while not exposing a region facing the internal electrode terminal;
a conductive bonding material providing step of providing a first conductive bonding material so as to integrally cover at least a portion of the lower electrode terminal and at least a portion of a lower electrode terminal facing region of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and providing a second conductive bonding material on a portion of the internal electrode terminal that is exposed through the internal electrode opening;
A method for manufacturing an ultrasonic transducer, comprising: a wiring body installation process for installing the wiring body so that a portion of the first wiring contacts the first conductive bonding material and a portion of the second wiring contacts the second conductive bonding material.
 前記電極露出工程は、前記絶縁性カバー体のうち前記内部電極開口を形成すべき領域にレーザー光を照射することで前記内部電極開口を形成するように構成されていることを特徴とする請求項7に記載の超音波トランスデューサーの製造方法。 The method for manufacturing an ultrasonic transducer according to claim 7, characterized in that the electrode exposure process is configured to form the internal electrode opening by irradiating a laser beam onto an area of the insulating cover where the internal electrode opening is to be formed.  前記絶縁性カバー体は、前記下面電極端子の少なくとも一部、前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子と対向する下面電極端子対向領域、及び、前記下面電極側隙間のうち前記下面電極端子と前記下面電極端子対向領域とによって挟まれた領域を覆わないように構成されていることを特徴とする請求項7に記載の超音波トランスデューサーの製造方法。 The method for manufacturing an ultrasonic transducer according to claim 7, characterized in that the insulating cover body is configured not to cover at least a portion of the lower electrode terminal, a lower electrode terminal facing area of the upper electrode that faces the lower electrode terminal through the lower electrode side gap, and an area of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal facing area.  前記絶縁性カバー体は、前記下面電極端子の少なくとも一部、前記上面電極のうち前記下面電極側隙間を介して前記下面電極端子と対向する下面電極端子対向領域、及び、前記下面電極側隙間のうち前記下面電極端子と前記下面電極端子対向領域とによって挟まれた領域を一体的に覆うように構成されており、
 前記電極露出工程は、前記内部電極開口に加えて、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口を形成するように構成され、
 前記導電性接合材設置工程は、前記第1導電性接合材を前記外部電極用開口内に設けるように構成されていることを特徴とする請求項7に記載の超音波トランスデューサーの製造方法。
the insulating cover body is configured to integrally cover at least a portion of the lower electrode terminal, a lower electrode terminal facing region of the upper electrode that faces the lower electrode terminal across the lower electrode side gap, and a region of the lower electrode side gap that is sandwiched between the lower electrode terminal and the lower electrode terminal facing region,
the electrode exposing step is configured to form an external electrode opening that integrally exposes at least a portion of the lower surface electrode terminal and at least a portion of the upper surface electrode in addition to the internal electrode opening;
The method for manufacturing an ultrasonic transducer according to claim 7 , wherein the conductive bonding material providing step is configured to provide the first conductive bonding material in the external electrode opening.
 前記圧電素子と略同一厚さを有し且つ前記剛性基板における前記複数の開口部を一体的に囲む大きさの中央開口を有する下側封止板を用意し、平面視において前記中央開口が前記複数の開口部を一体的に囲むように前記可撓性樹脂膜の上面に前記下側封止板を固着する下側封止板固着工程を備え、
 前記下側封止板固着工程は、前記可撓性樹脂膜固着工程より後で且つ前記配線体設置工程より前の任意タイミングで実行され、
 前記配線体設置工程は、前記配線体を前記下側封止板に載置するように構成されていることを特徴とする請求項7から10の何れかに記載の超音波トランスデューサーの製造方法。
a lower sealing plate fixing step of preparing a lower sealing plate having substantially the same thickness as the piezoelectric element and a central opening of a size sufficient to integrally surround the plurality of openings in the rigid substrate, and fixing the lower sealing plate to the upper surface of the flexible resin film such that the central opening integrally surrounds the plurality of openings in a plan view;
the lower sealing plate fixing step is performed at an arbitrary timing after the flexible resin film fixing step and before the wiring body installation step;
11. The method for manufacturing an ultrasonic transducer according to claim 7, wherein the wiring body installation step is configured to place the wiring body on the lower sealing plate.
 前記下側封止板固着工程及び前記圧電素子固着工程より後で且つ前記配線体設置工程より前に、前記下側封止板の中央開口によって囲まれる空間のうち、前記複数の圧電素子のそれぞれの側方部分に絶縁性樹脂材を充填する絶縁性樹脂材充填工程を備えていることを特徴とする請求項11に記載の超音波トランスデューサーの製造方法。 The method for manufacturing an ultrasonic transducer according to claim 11, further comprising a step of filling an insulating resin material into the space surrounded by the central opening of the lower sealing plate, the side portions of each of the plurality of piezoelectric elements, with an insulating resin material, after the lower sealing plate fixing step and the piezoelectric element fixing step and before the wiring body installation step.  前記下側封止板は、前記中央開口を、前記複数の圧電素子をそれぞれ囲む大きさの複数の開口に区画する隔壁を有していることを特徴とする請求項11に記載の超音波トランスデューサーの製造方法。 The method for manufacturing an ultrasonic transducer according to claim 11, characterized in that the lower sealing plate has a partition wall that divides the central opening into multiple openings each large enough to surround one of the piezoelectric elements.  上面及び下面の間を貫通する複数の開口部が設けられた剛性の基板と、
 前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、
 平面視において前記複数の開口部の全てを囲む大きさの中央開口を有し、前記中央開口が前記複数の開口部の全てを囲むように前記可撓性樹脂膜の上面に固着された下側封止板と、
 平面視において前記複数の開口部とそれぞれ重合するように前記中央開口内において前記可撓性樹脂膜の上面に配置された複数の圧電素子と、
 前記複数の圧電素子をそれぞれの配置位置において固定する絶縁性樹脂材と、
 第1及び第2配線を有し、前記下側封止板の上面に固着された配線体とを備え、
 前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有し、
 前記絶縁性樹脂材は、前記複数の圧電素子の下端面及び前記可撓性樹脂膜の間に介挿されると共に、前記複数の圧電素子の外側面及び上端面を覆うように設けられており、
 前記絶縁性樹脂材のうち前記圧電素子の上端面を覆って絶縁性カバー体を形成する部分には、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口と、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口とが設けられ、
 前記第1配線は、前記外部電極用開口によって露出された前記下面電極端子及び前記上面電極に第1導電性接合部材を介して電気的に接続され、
 前記第2配線は、前記内部電極用開口によって露出された前記内部電極端子に第2導電性接合部材を介して電気的に接続されていることを特徴とする超音波トランスデューサー。
a rigid substrate having a plurality of openings extending therethrough between an upper surface and a lower surface;
a flexible resin film fixed to an upper surface of the substrate so as to cover the plurality of openings;
a lower sealing plate having a central opening of a size sufficient to surround all of the plurality of openings in a plan view, the lower sealing plate being fixed to the upper surface of the flexible resin film such that the central opening surrounds all of the plurality of openings;
a plurality of piezoelectric elements arranged on an upper surface of the flexible resin film within the central opening so as to overlap with the plurality of openings in a plan view;
an insulating resin material that fixes the plurality of piezoelectric elements at their respective positions;
a wiring body having first and second wirings and fixed to an upper surface of the lower sealing plate;
the piezoelectric element comprises a piezoelectric element body formed of a piezoelectric material, an upper surface electrode and a lower surface electrode respectively provided on an upper end surface and a lower end surface of the piezoelectric element body and forming external electrodes, an internal electrode dividing the piezoelectric element body into upper and lower portions in the thickness direction, a lower surface electrode connector provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the lower surface electrode and a tip end side with a lower surface electrode side gap existing between the upper surface electrode and forming a lower surface electrode terminal, and an internal electrode connector provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a tip end side with an internal electrode side gap existing between the upper surface electrode and forming an internal electrode terminal,
the insulating resin material is interposed between lower end surfaces of the plurality of piezoelectric elements and the flexible resin film, and is provided so as to cover outer surfaces and upper end surfaces of the plurality of piezoelectric elements;
an external electrode opening that integrally exposes at least a part of the lower electrode terminal and at least a part of the upper electrode, and an internal electrode opening that exposes at least a part of the internal electrode terminal but does not expose a region facing the internal electrode terminal, are provided in a portion of the insulating resin material that covers an upper end surface of the piezoelectric element to form an insulating cover body;
the first wiring is electrically connected to the lower surface electrode terminal and the upper surface electrode exposed by the external electrode opening via a first conductive bonding member;
The ultrasonic transducer according to claim 1, wherein the second wiring is electrically connected to the internal electrode terminal exposed by the internal electrode opening via a second conductive bonding member.
 前記絶縁性樹脂材は、前記複数の圧電素子の下端面を前記可撓性樹脂膜に固着する第1絶縁性樹脂材と、前記複数の圧電素子の外側面及び上端面を覆う第2絶縁性樹脂材とを含むことを特徴とする請求項14に記載の圧電素子アッセンブリ。 The piezoelectric element assembly according to claim 14, characterized in that the insulating resin material includes a first insulating resin material that adheres the lower end surfaces of the plurality of piezoelectric elements to the flexible resin film, and a second insulating resin material that covers the outer surfaces and upper end surfaces of the plurality of piezoelectric elements.  前記絶縁性樹脂材は単一材料とされていることを特徴とする請求項14に記載の圧電素子アッセンブリ。 The piezoelectric element assembly according to claim 14, characterized in that the insulating resin material is a single material.  前記下側封止板は、前記中央開口を、前記複数の圧電素子をそれぞれ囲む大きさの複数の開口に区画する隔壁を有していることを特徴とする請求項14に記載の超音波トランスデューサー。 The ultrasonic transducer of claim 14, characterized in that the lower sealing plate has a partition wall that divides the central opening into multiple openings each large enough to surround one of the piezoelectric elements.  前記配線体は、前記第1及び第2配線を支持する絶縁性ベース層と、前記第1及び第2配線の少なくとも一部を前記ベース層とは反対側から覆う絶縁性カバー層とを有し、
 前記ベース層及び前記カバー層は、前記複数の圧電素子のそれぞれに平面視において部分的に重合する複数の圧電素子重合部位と、前記複数の圧電素子重合部位を一体的に保持する先端部位とを有し、
 前記ベース層及び前記カバー層のうち前記圧電素子と対向する側に位置する圧電素子側絶縁層の圧電素子重合部位は、前記下面電極端子の少なくとも一部及び前記下面電極端子対向領域の少なくとも一部を一体的に囲む領域と平面視において重合する外部電極タブ領域であって、外部電極接続開口が設けられた外部電極タブ領域と、前記内部電極端子の少なくとも一部と平面視において重合する内部電極タブ領域であって、内部電極接続開口が設けられた内部電極タブ領域とを有し、
 前記第1配線は一部が前記外部電極接続開口を跨ぎ、前記第2配線は一部が前記内部電極接続開口を跨いでおり、
 前記配線体は、前記外部電極接続開口が前記下面電極端子の少なくとも一部及び前記下面電極対向領域の少なくとも一部を一体的に含む領域と平面視において重合し且つ前記内部電極接続開口が前記内部電極端子の少なくとも一部と平面視において重合した状態で、前記下側封止板の上面に固着され、
 前記第1配線のうち前記外部電極接続開口を跨ぐ部分が前記第1導電性接合材に接合され、
 前記第2配線のうち前記内部電極接続開口を跨ぐ部分が前記第2導電性接合材に接合されていることを特徴とする請求項14から17の何れかに記載の圧電素子アッセンブリ。
the wiring body includes an insulating base layer that supports the first and second wirings, and an insulating cover layer that covers at least a portion of the first and second wirings from the side opposite to the base layer,
the base layer and the cover layer each have a plurality of piezoelectric element overlapping portions that are partially overlapped with each of the plurality of piezoelectric elements in a plan view, and a tip portion that integrally holds the plurality of piezoelectric element overlapping portions;
a piezoelectric element overlapping portion of a piezoelectric element-side insulating layer located on a side of the base layer and the cover layer facing the piezoelectric element includes an external electrode tab region overlapping in a planar view with a region integrally surrounding at least a portion of the lower electrode terminal and at least a portion of the lower electrode terminal facing region, the external electrode tab region having an external electrode connection opening, and an internal electrode tab region overlapping in a planar view with at least a portion of the internal electrode terminal, the internal electrode tab region having an internal electrode connection opening;
a portion of the first wiring straddles the external electrode connection opening, and a portion of the second wiring straddles the internal electrode connection opening,
the wiring body is fixed to the upper surface of the lower sealing plate in a state in which the external electrode connection opening overlaps, in a plan view, a region integrally including at least a portion of the lower electrode terminal and at least a portion of the lower electrode facing region, and the internal electrode connection opening overlaps, in a plan view, at least a portion of the internal electrode terminal;
a portion of the first wiring that spans the external electrode connection opening is bonded to the first conductive bonding material;
18. The piezoelectric element assembly according to claim 14, wherein a portion of the second wiring that straddles the internal electrode connection opening is bonded to the second conductive bonding material.
 前記ベース層及び前記カバー層のうち前記圧電素子から離間された側に位置する絶縁層の圧電素子重合部位は、前記下面電極端子の少なくとも一部及び前記下面電極端子対向領域の少なくとも一部を一体的に囲む領域と平面視において重合する外部電極タブ領域であって、第1アクセス開口が設けられた外部電極タブ領域と、前記内部電極端子の少なくとも一部と平面視において重合する内部電極タブ領域であって、第2アクセス開口が設けられた第2タブ領域とを有していることを特徴とする請求項18に記載の圧電素子アッセンブリ。 The piezoelectric element assembly of claim 18, characterized in that the piezoelectric element overlapping portion of the insulating layer located on the side of the base layer and the cover layer that is spaced from the piezoelectric element includes an external electrode tab region that overlaps in a plan view with a region that integrally surrounds at least a portion of the lower electrode terminal and at least a portion of the lower electrode terminal facing region, the external electrode tab region having a first access opening, and an internal electrode tab region that overlaps in a plan view with at least a portion of the internal electrode terminal, the second tab region having a second access opening.  上面及び下面の間を貫通する複数の開口部が設けられた剛性基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において中央領域が対応する開口部と重合し且つ周縁領域が前記基板の上面と重合するように前記可撓性樹脂膜に固着された前記複数の開口部と同数の圧電素子と、前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、前記外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する前記内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有している超音波トランスデューサーの製造方法であって、
 前記剛性基板と同一厚さの剛性板材を用意し、前記剛性板材に前記複数の開口部を形成して前記剛性基板を形成する剛性基板形成工程と、
 前記複数の開口部を覆うように前記可撓性樹脂膜を前記剛性基板の上面に固着する可撓性樹脂膜固着工程と、
 平面視において前記複数の開口部の全てを囲む大きさの中央開口を有する下側封止板を用意し、前記中央開口が前記複数の開口部の全てを囲むように前記可撓性樹脂膜の上面に前記下側封止板を固着する下側封止板設置工程と、
 平面視において前記複数の開口部とそれぞれ重合するように前記複数の圧電素子を第1絶縁性樹脂材によって前記可撓性樹脂膜の上面に固着する圧電素子固着工程と、
 前記中央開口内において前記複数の圧電素子の外側面を覆うと共に、前記複数の圧電素子の上端面を覆って絶縁性カバー体を形成するように、第2絶縁性樹脂材を設ける絶縁性樹脂材設置工程と、
 前記絶縁性カバー体に、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口と、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口とを形成する電極露出工程と、
 前記下面電極端子及び前記上面電極のうち前記外部電極用開口を介して露出された部分を一体的に覆うように第1導電性接合材を設け、且つ、前記内部電極端子のうち前記内部電極用開口を介して露出された部分に第2導電性接合材を設ける導電性接合材設置工程と、
 前記第1配線の一部が前記第1導電性接合材に接触し且つ前記第2配線の一部が前記第2導電性接合材に接触するように、前記配線体を設置する配線体設置工程を備えていることを特徴とする超音波トランスデューサーの製造方法。
The present invention relates to a method for manufacturing a piezoelectric element, the method comprising: providing a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface; a flexible resin film fixed to the upper surface of the substrate so as to cover the plurality of openings; piezoelectric elements, the number of which is equal to the number of the plurality of openings, fixed to the flexible resin film so that a central region overlaps with a corresponding opening and a peripheral region overlaps with the upper surface of the substrate in a plan view; and a wiring body having first and second wirings electrically connected to external and internal electrodes of the piezoelectric elements, respectively. The piezoelectric elements each include a piezoelectric element body formed of a piezoelectric material, and a wiring body having first and second wirings provided on the upper and lower end surfaces of the piezoelectric element body, the wiring body having first and second wirings electrically connected to the external electrodes and internal electrodes of the piezoelectric elements. a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a lower electrode side gap between its base end side and the upper electrode side to form a lower electrode terminal; and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a lower electrode side gap between its tip end side and the upper electrode side to form an internal electrode terminal, the method comprising the steps of:
a rigid substrate forming step of preparing a rigid plate having the same thickness as the rigid substrate and forming the plurality of openings in the rigid plate to form the rigid substrate;
a flexible resin film fixing step of fixing the flexible resin film to an upper surface of the rigid substrate so as to cover the plurality of openings;
a lower sealing plate installation step of preparing a lower sealing plate having a central opening large enough to surround all of the plurality of openings in a plan view, and adhering the lower sealing plate to an upper surface of the flexible resin film so that the central opening surrounds all of the plurality of openings;
a piezoelectric element fixing step of fixing the plurality of piezoelectric elements to the upper surface of the flexible resin film by a first insulating resin material so as to overlap the plurality of openings in a plan view;
an insulating resin material providing step of providing a second insulating resin material in the central opening so as to cover outer side surfaces of the plurality of piezoelectric elements and to cover upper end surfaces of the plurality of piezoelectric elements to form an insulating cover body;
an electrode exposing step of forming, in the insulating cover body, an external electrode opening that integrally exposes at least a part of the lower surface electrode terminal and at least a part of the upper surface electrode, and an internal electrode opening that exposes at least a part of the internal electrode terminal but does not expose a region facing the internal electrode terminal;
a conductive bonding material providing step of providing a first conductive bonding material so as to integrally cover the lower surface electrode terminal and the upper surface electrode, the portions of which are exposed through the external electrode opening, and providing a second conductive bonding material on the portion of the internal electrode terminal, the portions of which are exposed through the internal electrode opening;
A method for manufacturing an ultrasonic transducer, comprising: a wiring body installation process for installing the wiring body so that a portion of the first wiring contacts the first conductive bonding material and a portion of the second wiring contacts the second conductive bonding material.
 上面及び下面の間を貫通する複数の開口部が設けられた剛性基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において中央領域が対応する開口部と重合し且つ周縁領域が前記基板の上面と重合するように前記可撓性樹脂膜に固着された前記複数の開口部と同数の圧電素子と、前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、前記外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する前記内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有している超音波トランスデューサーの製造方法であって、
 前記剛性基板と同一厚さの剛性板材を用意し、前記剛性板材に前記複数の開口部を形成して前記剛性基板を形成する剛性基板形成工程と、
 前記複数の開口部を覆うように前記可撓性樹脂膜を前記剛性基板の上面に固着する可撓性樹脂膜固着工程と、
 平面視において前記複数の開口部とそれぞれ重合するように前記複数の圧電素子を第1絶縁性樹脂材によって前記可撓性樹脂膜の上面に固着する圧電素子固着工程と、
 平面視において前記複数の開口部の全てを囲む大きさの中央開口を有する下側封止板を用意し、前記中央開口が前記複数の開口部の全てを囲むように前記可撓性樹脂膜の上面に前記下側封止板を固着する下側封止板設置工程と、
 前記中央開口内において前記複数の圧電素子の外側面を覆うと共に、前記複数の圧電素子の上端面を覆って絶縁性カバー体を形成するように、第2絶縁性樹脂材を設ける絶縁性樹脂材設置工程と、
 前記絶縁性カバー体に、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口と、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口とを形成する電極露出工程と、
 前記下面電極端子及び前記上面電極のうち前記外部電極用開口を介して露出された部分を一体的に覆うように第1導電性接合材を設け、且つ、前記内部電極端子のうち前記内部電極用開口を介して露出された部分に第2導電性接合材を設ける導電性接合材設置工程と、
 前記第1配線の一部が前記第1導電性接合材に接触し且つ前記第2配線の一部が前記第2導電性接合材に接触するように、前記配線体を設置する配線体設置工程を備えていることを特徴とする超音波トランスデューサーの製造方法。
The present invention relates to a method for manufacturing a piezoelectric element, the method comprising: providing a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface; a flexible resin film fixed to the upper surface of the substrate so as to cover the plurality of openings; piezoelectric elements, the number of which is equal to the number of the plurality of openings, fixed to the flexible resin film so that a central region overlaps with a corresponding opening and a peripheral region overlaps with the upper surface of the substrate in a plan view; and a wiring body having first and second wirings electrically connected to external and internal electrodes of the piezoelectric elements, respectively. The piezoelectric elements each include a piezoelectric element body formed of a piezoelectric material, and a wiring body having first and second wirings provided on the upper and lower end surfaces of the piezoelectric element body, the wiring body having first and second wirings electrically connected to the external electrodes and internal electrodes of the piezoelectric elements. a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a lower electrode side gap between its base end side and the upper electrode side to form a lower electrode terminal; and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a lower electrode side gap between its tip end side and the upper electrode side to form an internal electrode terminal, the method comprising the steps of:
a rigid substrate forming step of preparing a rigid plate having the same thickness as the rigid substrate and forming the plurality of openings in the rigid plate to form the rigid substrate;
a flexible resin film fixing step of fixing the flexible resin film to an upper surface of the rigid substrate so as to cover the plurality of openings;
a piezoelectric element fixing step of fixing the plurality of piezoelectric elements to the upper surface of the flexible resin film by a first insulating resin material so as to overlap the plurality of openings in a plan view;
a lower sealing plate installation step of preparing a lower sealing plate having a central opening large enough to surround all of the plurality of openings in a plan view, and adhering the lower sealing plate to an upper surface of the flexible resin film so that the central opening surrounds all of the plurality of openings;
an insulating resin material providing step of providing a second insulating resin material in the central opening so as to cover outer side surfaces of the plurality of piezoelectric elements and to cover upper end surfaces of the plurality of piezoelectric elements to form an insulating cover body;
an electrode exposing step of forming, in the insulating cover body, an external electrode opening that integrally exposes at least a part of the lower surface electrode terminal and at least a part of the upper surface electrode, and an internal electrode opening that exposes at least a part of the internal electrode terminal but does not expose a region facing the internal electrode terminal;
a conductive bonding material providing step of providing a first conductive bonding material so as to integrally cover the lower surface electrode terminal and the upper surface electrode, the portions of which are exposed through the external electrode opening, and providing a second conductive bonding material on the portion of the internal electrode terminal, the portions of which are exposed through the internal electrode opening;
A method for manufacturing an ultrasonic transducer, comprising: a wiring body installation process for installing the wiring body so that a portion of the first wiring contacts the first conductive bonding material and a portion of the second wiring contacts the second conductive bonding material.
 上面及び下面の間を貫通する複数の開口部が設けられた剛性基板と、前記複数の開口部を覆うように前記基板の上面に固着された可撓性樹脂膜と、平面視において中央領域が対応する開口部と重合し且つ周縁領域が前記基板の上面と重合するように前記可撓性樹脂膜に固着された前記複数の開口部と同数の圧電素子と、前記圧電素子の外部電極及び内部電極にそれぞれ電気的に接続される第1及び第2配線を有する配線体とを備え、前記圧電素子は、圧電材によって形成された圧電素子本体と、前記圧電素子本体の上端面及び下端面にそれぞれ設けられ、前記外部電極を形成する上面電極及び下面電極と、前記圧電素子本体を厚み方向に関し上下に区画する前記内部電極と、基端側が前記下面電極に電気的に接続され且つ先端側が前記上面電極との間に下面電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて下面電極端子を形成する下面電極用接続体と、基端側が前記内部電極に電気的に接続され且つ先端側が前記上面電極との間に内部電極側隙間が存する状態で前記圧電素子本体の上端面に設けられて内部電極端子を形成する内部電極用接続体とを有している超音波トランスデューサーの製造方法であって、
 前記剛性基板と同一厚さの剛性板材を用意し、前記剛性板材に前記複数の開口部を形成して前記剛性基板を形成する剛性基板形成工程と、
 前記複数の開口部を覆うように前記可撓性樹脂膜を前記剛性基板の上面に固着する可撓性樹脂膜固着工程と、
 前記圧電素子より厚みが大とされた下側封止板であって、平面視において前記複数の開口部の全てを囲む大きさの中央開口を有する下側封止板を用意し、前記中央開口が前記複数の開口部の全てを囲むように前記可撓性樹脂膜の上面に前記下側封止板を固着する下側封止板設置工程と、
 前記中央開口内に絶縁性樹脂材を充填する絶縁性樹脂材充填工程と、
 前記絶縁性樹脂材の一部が前記圧電素子の上端面を覆った状態で平面視において前記複数の開口部とそれぞれ重合するように前記複数の圧電素子を前記絶縁性樹脂材中において前記可撓性樹脂膜の上面に設置して、前記絶縁性樹脂材によって前記複数の圧電素子を前記可撓性樹脂膜に固着する圧電素子固着工程と、
 前記絶縁性樹脂材のうち前記圧電素子の上端面を覆って絶縁性カバー体を形成する部分に、前記下面電極端子の少なくとも一部及び前記上面電極の少なくとも一部を一体的に露出させる外部電極用開口と、前記内部電極端子の少なくとも一部を露出させつつ前記内部電極端子対向領域は露出させない内部電極用開口とを形成する電極露出工程と、
 前記下面電極端子及び前記上面電極のうち前記外部電極用開口を介して露出された部分を一体的に覆うように第1導電性接合材を設け、且つ、前記内部電極端子のうち前記内部電極用開口を介して露出された部分に第2導電性接合材を設ける導電性接合材設置工程と、
 前記第1配線の一部が前記第1導電性接合材に接触し且つ前記第2配線の一部が前記第2導電性接合材に接触するように、前記配線体を設置する配線体設置工程を備えていることを特徴とする超音波トランスデューサーの製造方法。
The present invention relates to a method for manufacturing a piezoelectric element, the method comprising: providing a rigid substrate having a plurality of openings penetrating between an upper surface and a lower surface; a flexible resin film fixed to the upper surface of the substrate so as to cover the plurality of openings; piezoelectric elements, the number of which is equal to the number of the plurality of openings, fixed to the flexible resin film so that a central region overlaps with a corresponding opening and a peripheral region overlaps with the upper surface of the substrate in a plan view; and a wiring body having first and second wirings electrically connected to external and internal electrodes of the piezoelectric elements, respectively. The piezoelectric elements each include a piezoelectric element body formed of a piezoelectric material, and a wiring body having first and second wirings provided on the upper and lower end surfaces of the piezoelectric element body, the wiring body having first and second wirings electrically connected to the external electrodes and internal electrodes of the piezoelectric elements. a lower electrode connector that is provided on the upper end surface of the piezoelectric element body with a lower electrode side gap between its base end side and the upper electrode side to form a lower electrode terminal; and an internal electrode connector that is provided on the upper end surface of the piezoelectric element body with a base end side electrically connected to the internal electrode and a lower electrode side gap between its tip end side and the upper electrode side to form an internal electrode terminal, the method comprising the steps of:
a rigid substrate forming step of preparing a rigid plate having the same thickness as the rigid substrate and forming the plurality of openings in the rigid plate to form the rigid substrate;
a flexible resin film fixing step of fixing the flexible resin film to an upper surface of the rigid substrate so as to cover the plurality of openings;
a lower sealing plate installation process for preparing a lower sealing plate having a thickness greater than that of the piezoelectric element and a central opening large enough to surround all of the plurality of openings in a plan view, and adhering the lower sealing plate to an upper surface of the flexible resin film such that the central opening surrounds all of the plurality of openings;
an insulating resin filling step of filling the central opening with an insulating resin material;
a piezoelectric element fixing process for placing the plurality of piezoelectric elements on the upper surface of the flexible resin film in the insulating resin material so that the plurality of piezoelectric elements overlap with the plurality of openings in a plan view with a portion of the insulating resin material covering the upper end surfaces of the piezoelectric elements, and fixing the plurality of piezoelectric elements to the flexible resin film by the insulating resin material;
an electrode exposing step of forming an external electrode opening that integrally exposes at least a part of the lower electrode terminal and at least a part of the upper electrode in a portion of the insulating resin material that covers the upper end surface of the piezoelectric element and forms an insulating cover body, and an internal electrode opening that exposes at least a part of the internal electrode terminal but does not expose a region facing the internal electrode terminal;
a conductive bonding material providing step of providing a first conductive bonding material so as to integrally cover the lower surface electrode terminal and the upper surface electrode, the portions of which are exposed through the external electrode opening, and providing a second conductive bonding material on the portion of the internal electrode terminal, the portions of which are exposed through the internal electrode opening;
A method for manufacturing an ultrasonic transducer, comprising: a wiring body installation process for installing the wiring body so that a portion of the first wiring contacts the first conductive bonding material and a portion of the second wiring contacts the second conductive bonding material.
 前記電極露出工程は、前記絶縁性カバー体のうち前記外部電極用開口を形成すべき領域及び前記内部電極開口を形成すべき領域にレーザー光を照射することで前記外部電極用開口及び前記内部電極開口を形成するように構成されていることを特徴とする請求項20から22の何れかに記載の超音波トランスデューサーの製造方法。 The method for manufacturing an ultrasonic transducer according to any one of claims 20 to 22, characterized in that the electrode exposure process is configured to form the external electrode opening and the internal electrode opening by irradiating a laser beam onto an area of the insulating cover where the external electrode opening is to be formed and an area where the internal electrode opening is to be formed.  前記下側封止板は、前記中央開口を、前記複数の圧電素子をそれぞれ囲む大きさの複数の開口に区画する隔壁を有していることを特徴とする請求項20から22の何れかに記載の超音波トランスデューサーの製造方法。 The method for manufacturing an ultrasonic transducer according to any one of claims 20 to 22, characterized in that the lower sealing plate has a partition wall that divides the central opening into multiple openings each large enough to surround one of the piezoelectric elements.
PCT/JP2023/012118 2023-03-27 2023-03-27 Piezoelectric element, ultrasonic transducer, and method of manufacturing same WO2024201639A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2025507766A JP7671420B2 (en) 2023-03-27 2023-03-27 Piezoelectric element, ultrasonic transducer and manufacturing method thereof
PCT/JP2023/012118 WO2024201639A1 (en) 2023-03-27 2023-03-27 Piezoelectric element, ultrasonic transducer, and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/012118 WO2024201639A1 (en) 2023-03-27 2023-03-27 Piezoelectric element, ultrasonic transducer, and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2024201639A1 true WO2024201639A1 (en) 2024-10-03

Family

ID=92904017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012118 WO2024201639A1 (en) 2023-03-27 2023-03-27 Piezoelectric element, ultrasonic transducer, and method of manufacturing same

Country Status (2)

Country Link
JP (1) JP7671420B2 (en)
WO (1) WO2024201639A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776481B1 (en) * 2020-01-30 2020-10-28 サンコール株式会社 Ultrasonic transducer and its manufacturing method
JP7023436B1 (en) * 2021-02-03 2022-02-21 サンコール株式会社 Ultrasonic transducers and their manufacturing methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016699A (en) 2007-07-09 2009-01-22 Nitto Denko Corp Wiring circuit board and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776481B1 (en) * 2020-01-30 2020-10-28 サンコール株式会社 Ultrasonic transducer and its manufacturing method
JP7023436B1 (en) * 2021-02-03 2022-02-21 サンコール株式会社 Ultrasonic transducers and their manufacturing methods

Also Published As

Publication number Publication date
JPWO2024201639A1 (en) 2024-10-03
JP7671420B2 (en) 2025-05-01

Similar Documents

Publication Publication Date Title
US6859984B2 (en) Method for providing a matrix array ultrasonic transducer with an integrated interconnection means
US20030102777A1 (en) Ultrasonic transducer and method of manufacturing the same
US20240082877A1 (en) Ultrasonic transducer and method for manufacturing the same
JP6776481B1 (en) Ultrasonic transducer and its manufacturing method
JPH10270975A (en) Electronic components and their manufacturing method
US6583364B1 (en) Ultrasonic manufacturing apparatuses, multilayer flexible wiring boards and processes for manufacturing multilayer flexible wiring boards
US7309948B2 (en) Ultrasonic transducer and method of manufacturing the same
JP2000504274A (en) Multi-element acoustic probe with common ground electrode
JPH11251866A (en) Chip element and manufacture of the same
WO2017179300A1 (en) Elastic wave device and method for manufacturing same
JP6598417B1 (en) Ultrasonic transducer and manufacturing method thereof
JP2013501405A (en) Ultrasonic imaging transducer acoustic stack with integrated electrical connections
JP4710456B2 (en) Boundary acoustic wave device and manufacturing method thereof
JP7671420B2 (en) Piezoelectric element, ultrasonic transducer and manufacturing method thereof
JPH07131895A (en) Two-dimensional array type ultrasonic probe and its production
JP6385883B2 (en) Module and module manufacturing method
JP7486670B2 (en) Piezoelectric element assembly and manufacturing method thereof
US5069745A (en) Process for preparing a combined wiring substrate
JP2001326997A (en) Piezoelectric sound generating device
WO2020170286A1 (en) Ultrasonic transducer and manufacturing method for same
JPWO2023053160A5 (en)
US20250041900A1 (en) Ultrasonic transducer and method for manufacturing the same
JP7316924B2 (en) Ultrasonic emitting instruments and ultrasonic devices
JPWO2024201639A5 (en)
JP2000125393A (en) Ultrasonic wave transducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23930279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025507766

Country of ref document: JP