[go: up one dir, main page]

WO2024195839A1 - Optical adhesive sheet - Google Patents

Optical adhesive sheet Download PDF

Info

Publication number
WO2024195839A1
WO2024195839A1 PCT/JP2024/011106 JP2024011106W WO2024195839A1 WO 2024195839 A1 WO2024195839 A1 WO 2024195839A1 JP 2024011106 W JP2024011106 W JP 2024011106W WO 2024195839 A1 WO2024195839 A1 WO 2024195839A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
adhesive sheet
oligomer
meth
parts
Prior art date
Application number
PCT/JP2024/011106
Other languages
French (fr)
Japanese (ja)
Inventor
蒼一朗 古賀
智史 岩田
普史 形見
拓也 永田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2024042767A external-priority patent/JP2024137836A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024195839A1 publication Critical patent/WO2024195839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to an optical adhesive sheet.
  • a display panel has a laminated structure that includes elements such as a pixel panel, a polarizing film, a touch panel, and a cover film.
  • elements such as a pixel panel, a polarizing film, a touch panel, and a cover film.
  • a transparent adhesive sheet optical adhesive sheet
  • a foldable display panel can be repeatedly deformed between a curved shape and a flat, non-bent shape.
  • each element in the laminated structure is made to be repeatedly foldable, and a thin optical adhesive sheet is used to bond such elements together.
  • Optical adhesive sheets for flexible devices such as foldable display panels are described, for example, in Patent Document 1 below.
  • Optical adhesive sheets for flexible devices are required to be highly flexible so that they can conform to the adherend when the device is deformed and have excellent stress relaxation properties.
  • optical adhesive sheets were prone to peeling off from the elements (adherends) at the bent portions of foldable display panels. This is because when the display panel is folded, a relatively large shear force is applied to the folded portion of the optical adhesive sheet in the direction along the adherend. Peeling is undesirable as it can cause the display to malfunction. There is a high demand for optical adhesive sheets for foldable display panels to resist peeling off from the elements (adherends) when the display is bent.
  • a rollable display panel can be repeatedly deformed, for example, between a rolled shape after being entirely or partially rolled up, and a flat shape after being entirely unrolled.
  • each element in the laminate structure is made to be repeatedly deformable, and a thin optical adhesive sheet is used to bond such elements.
  • the optical adhesive sheet bonded to the rolled element continues to receive a shear force in a direction along the adherend.
  • Such an optical adhesive sheet is required to be highly unlikely to peel off from the element (adherend) when the display is in a rolled shape.
  • the present invention provides an optical adhesive sheet suitable for flexible device applications.
  • the present invention [1] is an optical adhesive sheet comprising a base polymer and an oligomer having a glass transition temperature of 40°C or higher, having a shear storage modulus of 100 kPa or less at -10°C, and wherein the hydrogen bond term ⁇ H1 of the Hansen solubility parameters of the base polymer and the hydrogen bond term ⁇ H2 of the Hansen solubility parameters of the oligomer satisfy 0.1 ⁇ ⁇ H2 - ⁇ H1 ⁇ 1.3.
  • the present invention [2] includes the optical adhesive sheet described in [1] above, which has a haze of 1% or less.
  • the present invention [3] includes the optical adhesive sheet described in [1] or [2] above, which has an adhesive strength of 7.6 N/20 mm or more in a peel test under conditions of 25°C, a peel angle of 180°, and a tensile speed of 300 mm/min.
  • the present invention [4] includes an optical adhesive sheet according to any one of the above [1] to [3], which has an adhesive strength F1 in a peel test under conditions of 25°C, a peel angle of 180°, and a tensile speed of 300 mm/min, and has an adhesive strength F2 in a peel test under conditions of 25°C, a peel angle of 180°, and a tensile speed of 60 mm/min, and the ratio of adhesive strength F2 to adhesive strength F1 is 0.5 or more and 1.1 or less.
  • the present invention [5] includes an optical adhesive sheet according to any one of [1] to [4] above, in which the ratio of the shear storage modulus at 60°C to the shear storage modulus at -10°C is 0.2 or more and 1.0 or less.
  • the present invention [6] includes an optical adhesive sheet according to any one of [1] to [5] above, which has a gel fraction of 60% by mass or more and 87% by mass or less.
  • the optical adhesive sheet of the present invention has a shear storage modulus of 100 kPa or less at -10°C.
  • Such a soft optical adhesive sheet is suitable for relaxing the stress generated in the optical adhesive sheet and the adherend when the adherend to which the adhesive sheet is attached is deformed (stress relaxation function).
  • the stress relaxation in the optical adhesive sheet is suitable for ensuring the conformability of the optical adhesive sheet to the adherend.
  • the stress relaxation in the adherend is suitable for suppressing damage such as cracking of the adherend.
  • the optical adhesive sheet of the present invention includes a base polymer and an oligomer having a glass transition temperature (Tg) of 40°C or higher, and the hydrogen bond term ⁇ H 1 of the Hansen solubility parameter (HSP) of the base polymer and the hydrogen bond term ⁇ H 2 of the HSP of the oligomer satisfy 0.1 ⁇ H 2 - ⁇ H 1 ⁇ 1.3.
  • This configuration is suitable for achieving good adhesive strength of the optical adhesive sheet by unevenly distributing oligomers having a Tg of 40 ° C. or more on the surface (adhesive surface) of the optical adhesive sheet and its vicinity while ensuring the overall softness of the optical adhesive sheet.
  • the high adhesive strength of the optical adhesive sheet is suitable for suppressing peeling of the optical adhesive sheet from an adherend that is repeatedly deformed.
  • the optical adhesive sheet as described above is suitable for flexible device applications.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of an optical adhesive sheet of the present invention.
  • Fig. 2 shows an example of a method for using the optical adhesive sheet of the present invention.
  • Fig. 2A shows a step of attaching the optical adhesive sheet to a first adherend
  • Fig. 2B shows a step of joining the first adherend and the second adherend via the optical adhesive sheet
  • Fig. 2C shows an aging step.
  • the adhesive sheet 10 as one embodiment of the optical adhesive sheet of the present invention has a sheet shape of a predetermined thickness and extends in a direction perpendicular to the thickness direction (plane direction).
  • the adhesive sheet 10 has an adhesive surface 11 and an adhesive surface 12 opposite to the adhesive surface 11.
  • FIG. 1 exemplarily shows a state in which release liners L1 and L2 are attached to the adhesive surfaces 11 and 12 of the adhesive sheet 10.
  • the release liner L1 is disposed on the adhesive surface 11.
  • the release liner L2 is disposed on the adhesive surface 12.
  • the adhesive sheet 10 is an optically transparent adhesive sheet (optical adhesive sheet) disposed at a location where light passes in a flexible device. Examples of flexible devices include flexible display panels. Examples of flexible display panels include foldable display panels and rollable display panels.
  • the flexible display panel has a laminated structure including elements such as a pixel panel, a polarizing film, a touch panel, and a cover film.
  • the adhesive sheet 10 is used, for example, in the manufacturing process of a flexible display panel to bond elements included in a laminated structure.
  • the release liners L1 and L2 are each peeled off at a predetermined timing when the adhesive sheet 10 is used.
  • the pressure-sensitive adhesive sheet 10 is formed from a pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition includes a base polymer and an oligomer having a glass transition temperature (Tg) of 40° C. or higher. That is, the pressure-sensitive adhesive sheet 10 includes a base polymer and an oligomer having a Tg of 40° C. or higher.
  • the pressure-sensitive adhesive sheet 10 has a shear storage modulus of 100 kPa or less at ⁇ 10° C.
  • the hydrogen bond term ⁇ H 1 of the Hansen solubility parameter (HSP) of the base polymer and the hydrogen bond term ⁇ H 2 of the HSP of the oligomer satisfy the following formula (1).
  • the adhesive sheet 10 has a shear storage modulus of 100 kPa or less at -10°C.
  • a soft adhesive sheet 10 is suitable for relieving stresses that occur in the adhesive sheet 10 and the adherend when the adherend to which the adhesive sheet 10 is attached deforms (stress relaxation function).
  • the stress relaxation in the adhesive sheet 10 is suitable for ensuring the conformability of the adhesive sheet 10 to the adherend.
  • the stress relaxation in the adherend is suitable for suppressing damage such as cracking of the adherend. Therefore, the adhesive sheet 10 is suitable for achieving good repeated deformation of a flexible device in which the adhesive sheet 10 is used.
  • the pressure-sensitive adhesive sheet 10 includes a base polymer and an oligomer having a Tg of 40° C. or higher, and the hydrogen bond term ⁇ H 1 of the HSP of the base polymer and the hydrogen bond term ⁇ H 2 of the HSP of the oligomer satisfy 0.1 ⁇ H 2 - ⁇ h1 ⁇ 1.3.
  • Such a difference ⁇ H of 0.1 or more and 1.3 or less is suitable for realizing a moderately low compatibility between the base polymer and the oligomer and for unevenly distributing the oligomer on the surface (adhesive surfaces 11, 12) of the pressure-sensitive adhesive sheet 10 and in its vicinity. Therefore, a difference ⁇ H of 0.1 or more and 1.3 or less is suitable for achieving high adhesive strength in the adhesive sheet 10 by unevenly distributing oligomers having a Tg of 40° C. or more on the surface (adhesive surfaces 11, 12) of the adhesive sheet 10 and its vicinity, while ensuring the above-mentioned overall softness of the adhesive sheet 10. High adhesive strength of the adhesive sheet 10 is suitable for suppressing peeling of the adhesive sheet 10 from an adherend that is repeatedly deformed.
  • the adhesive sheet 10 described above is suitable for flexible device applications.
  • the adhesive sheet 10 is suitable for achieving good repeated deformation of the flexible device in which the adhesive sheet 10 is used.
  • the shear storage modulus G1 of the adhesive sheet 10 at -10°C is preferably 90 kPa or less, more preferably 85 kPa or less, and even more preferably 80 kPa or less, from the viewpoint of stress relaxation at the deformed portion when the adhesive sheet 10 is deformed (bent, curved, etc.).
  • the shear storage modulus G1 (-10°C) is preferably 30 kPa or more, more preferably 40 kPa or more, even more preferably 50 kPa or more, and even more preferably 60 kPa or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10 in the low temperature range.
  • the shear storage modulus G1 is determined by dynamic viscoelasticity measurement described later in the examples (the same applies to the shear storage modulus G2 and G3 described later).
  • Methods for adjusting the shear storage modulus of the adhesive sheet 10 include, for example, selection of the type of base polymer in the adhesive sheet 10, adjustment of the molecular weight, and adjustment of the blending amount, and selection of the type of crosslinking agent and adjustment of the blending amount (the same applies to the shear storage modulus G2 and G3 described later).
  • the shear storage modulus G2 of the adhesive sheet 10 at 60°C is preferably 35 kPa or less, more preferably 32 kPa or less, and even more preferably 27 kPa or less, from the viewpoint of the above-mentioned stress relaxation in the adhesive sheet 10.
  • the shear storage modulus G2 (60°C) is preferably 10 kPa or more, more preferably 15 kPa or more, even more preferably 20 kPa or more, and even more preferably 22 kPa or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10 in the high temperature region.
  • the ratio of the shear storage modulus G2 to the shear storage modulus G1 is preferably 0.2 or more, more preferably 0.25 or more, even more preferably 0.3 or more, from the viewpoint of ensuring a stable stress relaxation function of the adhesive sheet 10 over a wide temperature range, and is preferably 1.0 or less, more preferably 0.5 or less, even more preferably less than 0.4.
  • the shear storage modulus G3 of the adhesive sheet 10 at -20°C is preferably 150 kPa or less, more preferably 130 kPa or less, and even more preferably 120 kPa or less, from the viewpoint of the above-mentioned stress relaxation in the adhesive sheet 10.
  • the shear storage modulus G3 (-20°C) is preferably 40 kPa or more, more preferably 50 kPa or more, more preferably 70 kPa or more, and even more preferably 90 kPa or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10 in the low temperature range.
  • the difference ⁇ H ( ⁇ H 2 - ⁇ H 1 ) between the hydrogen bond term ⁇ H 1 of the HSP of the base polymer and the hydrogen bond term ⁇ H 2 of the HSP of the oligomer is preferably 0.2 or more, more preferably 0.3 or more, from the viewpoint of appropriately lowering the compatibility between the base polymer and the oligomer and sufficiently unevenly distributing the oligomer on and near the adhesive surfaces 11, 12.
  • the difference ⁇ H ( ⁇ H 2 - ⁇ H 1 ) is preferably 1.26 or less, from the viewpoint of preventing the compatibility between the base polymer and the oligomer from becoming too low. Ensuring the compatibility between the base polymer and the oligomer helps to achieve low haze in the adhesive sheet 10.
  • An example of a method for adjusting the ⁇ H 1 of the base polymer is adjustment of the monomer composition of the base polymer.
  • An example of a method for adjusting the ⁇ H 2 of the oligomer is adjustment of the monomer composition of the oligomer.
  • the ratio ( ⁇ H 2 / ⁇ H 1 ) of the hydrogen bond term ⁇ H 2 of the HSP of the oligomer to the hydrogen bond term ⁇ H 1 of the HSP of the base polymer is preferably 1.04 or more, more preferably 1.06 or more, even more preferably 1.08 or more, and even more preferably 1.10 or more, from the viewpoint of appropriately lowering the compatibility between the base polymer and the oligomer and sufficiently unevenly distributing the oligomer on and near the adhesive surfaces 11, 12.
  • the ratio ( ⁇ H 2 / ⁇ H 1 ) is preferably 1.28 or less, more preferably 1.25 or less, and even more preferably 1.22 or less, from the viewpoint of preventing the compatibility between the base polymer and the oligomer from becoming too low.
  • the ratio ( ⁇ H 2 / ⁇ H 1 ) is also an index of the compatibility between the base polymer and the oligomer in the adhesive sheet 10.
  • HSP Hansen solubility parameter
  • the ⁇ H of a polymer is calculated from the molar fraction xi of the monomer mi forming the polymer and the hydrogen bond term ⁇ h of the monomer mi according to the following formula (3).
  • the ⁇ H of an oligomer can be calculated in the same manner.
  • the hydrogen bond term ⁇ h of a monomer can be calculated, for example, by computer software HSPiP (Hansen Solubility Parameters in Practice). The method of calculating ⁇ H is specifically described below in the examples.
  • the Tg of the oligomer is preferably 50°C or higher, more preferably 60°C or higher, even more preferably 70°C or higher, and is preferably 145°C or lower, more preferably 135°C or lower, even more preferably 130°C or lower.
  • the Tg of the oligomer is preferably higher than the Tg of the base polymer.
  • Methods for adjusting the Tg of the oligomer include adjusting the monomer composition of the oligomer and adjusting the molecular weight. The specific method for measuring the Tg of the oligomer is as described below in the examples.
  • the glass transition temperature Tg of an oligomer can be determined by the following Fox formula (theoretical value).
  • the Fox formula is a relational expression between the glass transition temperature Tg of a polymer and the glass transition temperature Tg i of a homopolymer of a monomer constituting the polymer.
  • Tg represents the glass transition temperature (°C) of an oligomer
  • W i represents the weight fraction of a monomer m i constituting the polymer
  • Tg i represents the glass transition temperature (°C) of a homopolymer formed from the monomer m i .
  • the glass transition temperature of a homopolymer can be determined by a literature value.
  • the glass transition temperatures of various homopolymers are listed in “Polymer Handbook” (4th edition, John Wiley & Sons, Inc., 1999).
  • the glass transition temperature of a homopolymer of a monomer can also be determined by a method specifically described in JP-A-2007-51271.
  • the haze of the adhesive sheet 10 is preferably 1% or less, more preferably 0.8% or less, even more preferably 0.7% or less, and even more preferably 0.5% or less.
  • the haze is, for example, 0.01% or more.
  • the haze of the adhesive sheet 10 can be measured using a haze meter in accordance with JIS K7136 (2000). Examples of haze meters include the "NDH2000" manufactured by Nippon Denshoku Industries Co., Ltd. and the "HM-150" manufactured by Murakami Color Research Laboratory Co., Ltd. The specific method of measuring the haze is as described below in the examples.
  • the total light transmittance of the adhesive sheet 10 is preferably 60% or more, more preferably 80% or more, and even more preferably 85% or more.
  • the total light transmittance of the adhesive sheet 10 is, for example, 100% or less.
  • the total light transmittance of the adhesive sheet 10 can be measured in accordance with JIS K 7375 (2008).
  • the gel fraction of the adhesive sheet 10 is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 73% by mass or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10 in the high temperature region.
  • the gel fraction of the adhesive sheet 10 is preferably 87% by mass or less, more preferably 85% by mass or less, and even more preferably 83% by mass or less, from the viewpoint of ensuring the flexibility of the adhesive sheet 10.
  • Methods for adjusting the gel fraction of the adhesive sheet 10 include, for example, selecting the type of base polymer in the adhesive sheet 10, adjusting the molecular weight, and adjusting the blending amount. Methods for adjusting the gel fraction include selecting the type of crosslinking agent and adjusting the blending amount. The method for measuring the gel fraction is as described below in the examples.
  • the adhesive strength F1 of the adhesive sheet 10 in a peel test (first peel test) under conditions of 25°C, a peel angle of 180°, and a tensile speed of 300 mm/min is preferably 7.6 N/20 mm or more, more preferably 7.8 N/20 mm or more, even more preferably 8.0 N/20 mm or more, even more preferably 8.2 N/20 mm or more, even more preferably 8.4 N/20 mm or more, even more preferably 8.6 N/20 mm or more, and particularly preferably 8.8 N/20 mm or more, from the viewpoint of suppressing peeling of the adhesive sheet 10 from the adherend.
  • the adhesive strength F1 is, for example, 15 N/20 mm or less.
  • the method of measuring the adhesive strength F1 is specifically as described later in the examples.
  • Methods of adjusting the adhesive strength F1 include, for example, selecting the type of base polymer in the adhesive sheet 10, adjusting the molecular weight, and adjusting the amount of the base polymer.
  • the selection of the type of base polymer includes adjusting the composition of the monomer that forms the base polymer.
  • Methods for adjusting the adhesive strength F1 include selecting the type of components other than the base polymer in the adhesive sheet 10 and adjusting the amount of the components. Such components include crosslinking agents, silane coupling agents, and oligomers.
  • the above-mentioned adhesive strength adjustment methods are also applicable to the adhesive strength F2 described below.
  • the adhesive strength F2 of the adhesive sheet 10 in a peel test (second peel test) under conditions of 25°C, a peel angle of 180°, and a tensile speed of 60 mm/min is preferably 4.1 N/20 mm or more, more preferably 6.0 N/20 mm or more, even more preferably 6.4 N/20 mm or more, even more preferably 6.8 N/20 mm or more, still more preferably 7.2 N/20 mm or more, particularly preferably 7.6 N/20 mm or more, and particularly preferably 8.0 N/20 mm or more, from the viewpoint of suppressing peeling of the adhesive sheet 10 from the adherend.
  • the adhesive strength F2 is, for example, 12 N/20 mm or less.
  • the ratio of adhesive strength F2 to adhesive strength F1 is preferably 0.5 or more, more preferably 0.6 or more, preferably 0.7 or more, more preferably 0.75 or more, even more preferably 0.8 or more, and is preferably 1.1 or less, more preferably 1.0 or less.
  • the base polymer is an adhesive component that imparts adhesiveness to the adhesive sheet 10.
  • base polymers include acrylic polymers, silicone polymers, polyester polymers, polyurethane polymers, polyamide polymers, polyvinyl ether polymers, vinyl acetate/vinyl chloride copolymers, modified polyolefin polymers, epoxy polymers, fluoropolymers, and rubber polymers.
  • the base polymers may be used alone or in combination of two or more types. From the viewpoint of ensuring good transparency and adhesiveness in the adhesive sheet 10, acrylic polymers are preferred as the base polymer.
  • An acrylic polymer is a polymer of a monomer component (first monomer component) that contains 50% or more by mass of an alkyl (meth)acrylate ester.
  • (Meth)acrylic means acrylic and/or methacrylic.
  • the (meth)acrylic acid alkyl ester preferably, a (meth)acrylic acid alkyl ester in which the alkyl group has 1 to 20 carbon atoms is used.
  • the (meth)acrylic acid alkyl ester include a (meth)acrylic acid alkyl ester having a chain alkyl group (a (meth)acrylic acid chain alkyl ester) and a (meth)acrylic acid alkyl ester having an alicyclic alkyl group (a (meth)acrylic acid alicyclic alkyl ester).
  • Examples of (meth)acrylic acid chain alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, n-hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, and isooctyl (meth)acrylate.
  • acrylates examples include nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, isotridecyl (meth)acrylate, tetradecyl (meth)acrylate, isotetradecyl (meth)acrylate, pentadecyl (meth)acrylate, cetyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate, isooctadecyl (meth)acrylate, and nonadecyl (meth)acrylate.
  • Examples of (meth)acrylic acid alicyclic alkyl esters include (meth)acrylic acid cycloalkyl esters, (meth)acrylic acid esters having a bicyclic aliphatic hydrocarbon ring, and (meth)acrylic acid esters having a tricyclic or higher aliphatic hydrocarbon ring.
  • Examples of (meth)acrylic acid cycloalkyl esters include cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate, cycloheptyl (meth)acrylate, cyclooctyl (meth)acrylate, and cyclododecyl (meth)acrylate.
  • Examples of (meth)acrylic acid esters having a bicyclic aliphatic hydrocarbon ring include isobornyl (meth)acrylate.
  • Examples of (meth)acrylic acid esters having three or more aliphatic hydrocarbon rings include dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, tricyclopentanyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, and 2-ethyl-2-adamantyl (meth)acrylate.
  • the (meth)acrylic acid alkyl ester from the viewpoint of achieving a balance between the softness and adhesive strength required for an adhesive sheet for flexible device applications in the adhesive sheet 10, preferably, at least one selected from (meth)acrylic acid alkyl esters having a first alkyl group having 8 to 12 carbon atoms is used, or at least one selected from (meth)acrylic acid alkyl esters having a first alkyl group having 8 to 12 carbon atoms and at least one selected from a second (meth)acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms is used.
  • the first (meth)acrylic acid alkyl ester is preferably at least one selected from the group consisting of 2-ethylhexyl acrylate (2EHA), n-octyl acrylate (NOAA), isononyl acrylate (INAA), and lauryl acrylate (LA).
  • the second (meth)acrylic acid alkyl ester is preferably n-butyl acrylate (BA).
  • the proportion of the (meth)acrylic acid alkyl ester in the first monomer component is preferably 80% by mass or more, more preferably 85% by mass or more, even more preferably 88% by mass or more, and particularly preferably 90% by mass or more, from the viewpoint of appropriately expressing softness and adhesive strength in the adhesive sheet 10.
  • the proportion is, for example, 99.9% by mass or less, 99.5% by mass or less, or 99% by mass or less.
  • the proportion of the first (meth)acrylic acid alkyl ester in the monomer component is preferably 60% by mass or more, more preferably 65% by mass or more, even more preferably 70% by mass or more, and preferably 85% by mass or less, more preferably 80% by mass or less, even more preferably 75% by mass or less
  • the proportion of the second (meth)acrylic acid alkyl ester in the monomer component is preferably 10% by mass or more, more preferably 15% by mass or more, even more preferably 20% by mass or more, and preferably 35% by mass or less, more preferably 30% by mass or less, even more preferably 25% by mass or less.
  • the first monomer component may contain a copolymerizable monomer that is copolymerizable with the (meth)acrylic acid alkyl ester.
  • the copolymerizable monomer include a monomer having a polar group.
  • the polar group-containing monomer include a hydroxy group-containing monomer, a monomer having a nitrogen atom-containing ring, and a carboxy group-containing monomer.
  • the polar group-containing monomer is useful for modifying the acrylic polymer, such as introducing crosslinking points into the acrylic polymer and ensuring the cohesive force of the acrylic polymer.
  • the copolymerizable monomer may be used alone or in combination of two or more types.
  • hydroxy group-containing monomers examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, and (4-hydroxymethylcyclohexyl)methyl (meth)acrylate.
  • the hydroxy group-containing monomer is preferably at least one selected from the group consisting of 2-hydroxyethyl acrylate (2HEA) and 4-hydroxybutyl acrylate (4HBA).
  • the proportion of the hydroxyl group-containing monomer in the first monomer component is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more, from the viewpoint of introducing a crosslinked structure into the acrylic polymer and ensuring the cohesive strength of the adhesive sheet 10. From the viewpoint of adjusting the polarity of the acrylic polymer (related to the compatibility of the various additive components in the adhesive sheet 10 with the acrylic polymer), the proportion is preferably 12% by mass or less, more preferably 10% by mass or less, and even more preferably 9% by mass or less.
  • Examples of monomers having a nitrogen atom-containing ring include N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, 4-acryloylmorpholine, N-vinyl-2-caprolactam, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, N-vinylpyrazole, N-vinylisoxazole, N-vinylthiazole, and N-vinylisothiazole.
  • the monomer having a nitrogen atom-containing ring is preferably N-vinyl-2-pyrrolidone (NVP).
  • the proportion of the monomer having a nitrogen atom-containing ring in the first monomer component is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 1.5% by mass or more, from the viewpoint of ensuring the cohesive strength of the adhesive sheet 10 and ensuring the adhesive strength of the adhesive sheet 10 to the adherend.
  • the same proportion is preferably 10% by mass or less, more preferably 6% by mass or less, and even more preferably 4% by mass or less, from the viewpoint of adjusting the glass transition temperature of the acrylic polymer and adjusting the polarity of the acrylic polymer (related to the compatibility of the various additive components in the adhesive sheet 10 with the acrylic polymer).
  • Carboxy group-containing monomers include, for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • the proportion of the carboxyl group-containing monomer in the monomer components is preferably 0.1 mass% or more, more preferably 0.5 mass% or more, and even more preferably 0.8 mass% or more, from the viewpoints of introducing a crosslinked structure into the acrylic polymer, ensuring the cohesive strength of the adhesive sheet 10, and ensuring the adhesive strength of the adhesive sheet 10 to the adherend.
  • the proportion is preferably 3 mass% or less, more preferably 1 mass% or less, from the viewpoints of adjusting the glass transition temperature of the acrylic polymer and avoiding the risk of corrosion of the adherend by acid.
  • the first monomer component may contain other copolymerizable monomers.
  • the other copolymerizable monomers include acid anhydride monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, epoxy group-containing monomers, cyano group-containing monomers, alkoxy group-containing monomers, and aromatic vinyl compounds. These other copolymerizable monomers may be used alone or in combination of two or more kinds.
  • the first monomer component preferably includes a first (meth)acrylic acid alkyl ester having an alkyl group with 8 to 12 carbon atoms, a second (meth)acrylic acid alkyl ester having an alkyl group with 1 to 4 carbon atoms, a hydroxyl group-containing monomer, and a monomer having a nitrogen atom-containing ring.
  • the first monomer component more preferably includes NOAA, BA, NVP, and 4HBA.
  • the base polymer preferably has a crosslinked structure.
  • methods for introducing a crosslinked structure into a base polymer include the following first and second methods.
  • a base polymer having a functional group capable of reacting with the crosslinking agent and a crosslinking agent are blended into an adhesive composition, and the base polymer and the crosslinking agent are reacted in an adhesive sheet.
  • a first monomer component forming the base polymer contains a multifunctional compound as a crosslinking agent, and the first monomer component is polymerized to form a base polymer in which a branched structure (crosslinked structure) has been introduced into the polymer chain.
  • the crosslinking agent used in the first method is, for example, a compound that reacts with functional groups (such as hydroxyl groups and carboxyl groups) contained in the base polymer.
  • crosslinking agents include isocyanate crosslinking agents, peroxide crosslinking agents, epoxy crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, and carbodiimide crosslinking agents.
  • the crosslinking agents in the first method may be used alone or in combination of two or more types.
  • an isocyanate crosslinking agent is preferably used because it has high reactivity with the hydroxyl groups and carboxyl groups in the base polymer and is easy to introduce a crosslinked structure.
  • isocyanate crosslinking agents examples include tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, tetramethylxylylene diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, and polymethylene polyphenylisocyanate.
  • isocyanate crosslinking agents examples include derivatives of these isocyanates.
  • isocyanate derivatives include isocyanurate modified products and polyol modified products.
  • Commercially available isocyanate crosslinking agents include, for example, Coronate L (trimethylolpropane adduct of tolylene diisocyanate, manufactured by Tosoh), Coronate HL (trimethylolpropane adduct of hexamethylene diisocyanate, manufactured by Tosoh), Coronate HX (isocyanurate of hexamethylene diisocyanate, manufactured by Tosoh), Takenate D110N (trimethylolpropane adduct of xylylene diisocyanate, manufactured by Mitsui Chemicals), and Takenate 600 (1,3-bis(isocyanatomethyl)cyclohexane, manufactured by Mitsui Chemicals).
  • Peroxide crosslinking agents include dibenzoyl peroxide, di(2-ethylhexyl) peroxydicarbonate, di(4-t-butylcyclohexyl) peroxydicarbonate, di-sec-butyl peroxydicarbonate, t-butyl peroxyneodecanoate, t-hexyl peroxypivalate, and t-butyl peroxypivalate.
  • Epoxy crosslinkers include bisphenol A, epichlorohydrin type epoxy resins, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol glycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, diamine glycidylamine, N,N,N',N'-tetraglycidyl-m-xylylenediamine, and 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane.
  • the amount of crosslinking agent in the first method is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more, and more preferably 0.1 parts by mass or more, per 100 parts by mass of base polymer, from the viewpoint of ensuring the cohesive strength of the adhesive sheet 10. From the viewpoint of ensuring good tackiness in the adhesive sheet 10, the amount of crosslinking agent in the first method is, for example, 5 parts by mass or less, preferably 1 part by mass or less, and more preferably 0.2 parts by mass or less, per 100 parts by mass of base polymer.
  • the first monomer component (including a polyfunctional compound and a monofunctional monomer for introducing a crosslinked structure) may be polymerized in one step or in multiple steps.
  • a monofunctional monomer for forming a base polymer is polymerized (preliminary polymerization), thereby preparing a prepolymer composition containing a partial polymer (a mixture of a polymer with a low degree of polymerization and an unreacted monofunctional monomer).
  • a polyfunctional compound is added as a crosslinking agent to the prepolymer composition, and then a polymerization reaction is allowed to proceed in a reaction system containing the partial polymer and the polyfunctional compound (main polymerization).
  • polyfunctional compounds include polyfunctional monomers and polyfunctional oligomers that contain two or more ethylenically unsaturated double bonds in one molecule.
  • polyfunctional monomers include polyfunctional (meth)acrylates.
  • polyfunctional (meth)acrylates examples include difunctional (meth)acrylates, trifunctional (meth)acrylates, and tetrafunctional or higher polyfunctional (meth)acrylates.
  • bifunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, glycerin di(meth)acrylate, ethoxylated bisphenol A diacrylate (BPAEODE), and neopentyl glycol di(meth)acrylate.
  • BPAEODE ethoxylated bisphenol A diacrylate
  • trifunctional (meth)acrylates examples include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, and tris(acryloyloxyethyl)isocyanurate.
  • tetrafunctional or higher polyfunctional (meth)acrylates examples include ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, alkyl-modified dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate.
  • polyfunctional oligomers examples include urethane (meth)acrylate oligomers, polyester (meth)acrylate oligomers, polyether (meth)acrylate oligomers, polyol (meth)acrylate oligomers, epoxy (meth)acrylate oligomers, polyethylene glycol di(meth)acrylate, and polypropylene glycol di(meth)acrylate.
  • the polyfunctional compound used as the crosslinking agent in the second method may be used alone or in combination of two or more kinds.
  • a polyfunctional monomer is preferably used, and more preferably at least one selected from the group consisting of 1,9-nonanediol diacrylate, dipentaerythritol hexaacrylate, 1,6-hexanediol diacrylate, and trimethylolpropane triacrylate is used.
  • the amount of the polyfunctional compound as a crosslinking agent in the first monomer component is preferably 0.02 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.07 parts by mass or more per 100 parts by mass of the monofunctional monomer, from the viewpoint of ensuring the cohesive strength of the adhesive sheet 10.
  • the amount of the polyfunctional compound is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and even more preferably 1 part by mass or less per 100 parts by mass of the monofunctional monomer, from the viewpoint of ensuring good tackiness in the adhesive sheet 10.
  • the acrylic polymer (base polymer) can be formed by polymerizing the first monomer component described above.
  • the polymerization method include solution polymerization, emulsion polymerization, and solvent-free photopolymerization (e.g., ultraviolet polymerization).
  • ethyl acetate and toluene are used as the solvent for solution polymerization.
  • a chain transfer agent may be used in the polymerization.
  • a thermal polymerization initiator and a photopolymerization initiator are used as the polymerization initiator.
  • the polymerization initiator may be used alone or in combination of two or more types.
  • the amount of the polymerization initiator used is preferably 0.03 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.07 parts by mass or more, and is preferably 1 part by mass or less, more preferably 0.5 parts by mass or less, and even more preferably 0.3 parts by mass or less, per 100 parts by mass of the first monomer component.
  • Thermal polymerization initiators include, for example, azo polymerization initiators and peroxide polymerization initiators.
  • Azo polymerization initiators include, for example, 2,2'-azobisisobutyronitrile, 2,2'-azobis-2-methylbutyronitrile, 2,2'-azobis(2-methylpropionate)dimethyl, 4,4'-azobis-4-cyanovaleric acid, azobisisovaleronitrile, and 2,2'-azobis(2-amidinopropane)dihydrochloride.
  • Peroxide polymerization initiators include, for example, dibenzoyl peroxide, t-butyl permaleate, and lauroyl peroxide.
  • photopolymerization initiators examples include radical photopolymerization initiators, cationic photopolymerization initiators, and anionic photopolymerization initiators.
  • radical photopolymerization initiators examples include acylphosphine oxide photopolymerization initiators, benzoin ether photopolymerization initiators, and acetophenone photopolymerization initiators.
  • acylphosphine oxide photopolymerization initiators include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,4-di-n-butoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide.
  • benzoin ether photopolymerization initiators include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and 2,2-dimethoxy-1,2-diphenylethan-1-one.
  • acetophenone-based photopolymerization initiators include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 4-phenoxydichloroacetophenone, and 4-(t-butyl)dichloroacetophenone.
  • the weight average molecular weight of the base polymer is preferably 100,000 or more, more preferably 300,000 or more, and even more preferably 500,000 or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10.
  • the weight average molecular weight of the base polymer is measured by gel permeation chromatography (GPC) and calculated in terms of polystyrene.
  • the glass transition temperature (Tg) of the base polymer is preferably 0°C or lower, more preferably -10°C or lower, and even more preferably -20°C or lower.
  • the glass transition temperature is, for example, -80°C or higher.
  • the glass transition temperature (Tg) of the base polymer can be the glass transition temperature (theoretical value) calculated based on the above Fox formula.
  • the oligomer is preferably an acrylic oligomer.
  • the acrylic oligomer is a copolymer of a monomer component (second monomer component) containing 50% or more by mass of an alkyl (meth)acrylate ester, and has a weight average molecular weight of, for example, 1,000 or more and 30,000 or less.
  • the oligomer may be used alone or in combination of two or more types.
  • oligomers that do not satisfy the specified parameters may also be included within a range that does not impair the effects of the present invention.
  • all oligomers used in combination satisfy the specified parameters.
  • Examples of the (meth)acrylic acid alkyl ester in the second monomer component include (meth)acrylic acid alicyclic alkyl ester and (meth)acrylic acid chain alkyl ester.
  • the (meth)acrylic acid alicyclic alkyl ester in the second monomer component may be, for example, the (meth)acrylic acid alicyclic alkyl ester described above with respect to the first monomer component.
  • the (meth)acrylic acid alicyclic alkyl ester in the second monomer component is preferably at least one selected from the group consisting of cyclohexyl methacrylate (CHMA), methylcyclohexyl methacrylate, tert-butylcyclohexyl methacrylate, cyclododecyl methacrylate, isobornyl methacrylate (IBXMA), dicyclopentanyl methacrylate (DCPMA), dicyclopentenyl methacrylate, and 1-adamantyl methacrylate (ADMA), and more preferably at least one selected from the group consisting of DCPMA, CHMA, IBXMA, and ADMA.
  • CHMA cyclohexyl meth
  • the proportion of the (meth)acrylic acid alicyclic alkyl ester in the second monomer component is preferably 30% by mass or more, more preferably 35% by mass or more, and even more preferably 40% by mass or more, from the viewpoint of increasing the Tg of the oligomer.
  • the proportion of the (meth)acrylic acid alicyclic alkyl ester in the second monomer component is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 65% by mass or less, from the viewpoint of the polymerizability of the second monomer component.
  • the (meth)acrylic acid chain alkyl ester in the second monomer component may be, for example, the (meth)acrylic acid chain alkyl ester described above in relation to the first monomer component.
  • the (meth)acrylic acid chain alkyl ester in the second monomer component is preferably a (meth)acrylic acid alkyl ester having an alkyl group with 1 to 6 carbon atoms, and more preferably methyl methacrylate (MMA).
  • MMA is preferred because it has a high glass transition temperature of the homopolymer and is relatively compatible with the base polymer.
  • the proportion of the (meth)acrylic acid chain alkyl ester in the second monomer component is preferably 15% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 30% by mass or more, from the viewpoint of ensuring a high Tg of the oligomer and adjusting the compatibility of the oligomer with the base polymer, and is preferably 60% by mass or less, more preferably 55% by mass or less, even more preferably 50% by mass or less.
  • the mass ratio of the (meth)acrylic acid alicyclic alkyl ester to the (meth)acrylic acid linear alkyl ester in the second monomer component is preferably 0.6 or more, more preferably 0.8 or more, from the viewpoint of increasing the Tg of the oligomer and adjusting the compatibility of the oligomer with the base polymer, and is also preferably 9.0 or less, more preferably 5.0 or less, and even more preferably 2.0 or less.
  • the second monomer component may contain a copolymerizable monomer that is copolymerizable with the (meth)acrylic acid alkyl ester.
  • the copolymerizable monomer include hydrophilic monomers.
  • the hydrophilic monomer include hydroxyl group-containing monomers, monomers having a nitrogen atom-containing ring, carboxyl group-containing monomers, and ether group-containing monomers, and preferably at least one selected from the group consisting of hydroxyl group-containing monomers, monomers having a nitrogen atom-containing ring, carboxyl group-containing monomers, and ether group-containing monomers.
  • the hydrophilic monomers may be used alone or in combination of two or more kinds.
  • the hydroxyl group-containing monomer in the second monomer component may be, for example, the hydroxyl group-containing monomer described above with respect to the first monomer component.
  • the hydroxyl group-containing monomer in the second monomer component is preferably at least one selected from the group consisting of 2-hydroxyethyl methacrylate (HEMA), 2-hydroxypropyl methacrylate (HPMA), and 4-hydroxybutyl acrylate (4HBA).
  • the proportion of the hydroxyl group-containing monomer in the second monomer component is preferably 1% by mass or more, more preferably 3% by mass or more, even more preferably 5% by mass or more, from the viewpoint of adjusting the compatibility of the oligomer with the base polymer, and is preferably 18% by mass or less, more preferably 15% by mass or less, even more preferably 12% by mass or less.
  • the monomer having a nitrogen atom-containing ring in the second monomer component may be, for example, the monomer having a nitrogen atom-containing ring described above with respect to the first monomer component.
  • the monomer having a nitrogen atom-containing ring in the second monomer component is preferably 4-acryloylmorpholine (ACMO).
  • the proportion of the monomer having a nitrogen atom-containing ring in the second monomer component is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more, from the viewpoint of adjusting the compatibility of the oligomer with the base polymer.
  • the proportion of the monomer having a nitrogen atom-containing ring in the second monomer component is preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 22% by mass or less, from the viewpoint of controlling the molecular weight of the oligomer.
  • the carboxyl group-containing monomer in the second monomer component may be, for example, the carboxyl group-containing monomer described above with respect to the first monomer component.
  • the carboxyl group-containing monomer in the second monomer component is preferably acrylic acid (AA).
  • the proportion of the carboxyl group-containing monomer in the second monomer component is preferably 1% by mass or more, more preferably 3% by mass or more, even more preferably 5% by mass or more, from the viewpoint of adjusting the compatibility of the oligomer with the base polymer, and is preferably 18% by mass or less, more preferably 15% by mass or less, even more preferably 12% by mass or less.
  • ether group-containing monomers examples include ethyl carbitol (meth)acrylate, 2-methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, phenoxyethyl (meth)acrylate, and vinyloxyethoxyethyl (meth)acrylate.
  • the ether group-containing monomer is preferably ethyl carbitol acrylate (CBA).
  • the proportion of the ether group-containing monomer in the second monomer component is preferably 3% by mass or more, more preferably 5% by mass or more, even more preferably 7% by mass or more, from the viewpoint of adjusting the compatibility of the oligomer with the base polymer, and is preferably 40% by mass or less, more preferably 35% by mass or less, even more preferably 32% by mass or less.
  • the second monomer component preferably contains a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer.
  • the acrylic oligomer is preferably a copolymer of the second monomer component containing a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer.
  • the proportion of hydrophilic monomer in the second monomer component is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more, from the viewpoint of increasing the Tg of the oligomer and adjusting the compatibility of the oligomer with the base polymer, and is preferably 40% by mass or less, more preferably 35% by mass or less, and even more preferably 32% by mass or less.
  • the acrylic oligomer may be used alone or in combination of two or more kinds.
  • at least one of the oligomers is a copolymer of a second monomer component containing a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer.
  • examples of the copolymer include a copolymer of a second monomer component containing a (meth)acrylic acid alicyclic alkyl ester and a (meth)acrylic acid chain alkyl ester, and a copolymer of a second monomer component containing a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer.
  • the content ratio of each copolymer (each acrylic oligomer) in the total amount of acrylic oligomer is not particularly limited, and is appropriately adjusted within a range in which the two or more types of acrylic oligomers used in combination satisfy the specified parameters.
  • the content ratio of the copolymer (one acrylic oligomer) of the second monomer component containing a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer in the total amount of acrylic oligomer is preferably 50 mass% or more, more preferably 55 mass% or more, and even more preferably 58 mass% or more.
  • the acrylic oligomer is obtained by polymerizing the second monomer component of the acrylic oligomer.
  • the polymerization method include solution polymerization, emulsion polymerization, and solvent-free photopolymerization (e.g., ultraviolet polymerization).
  • ethyl acetate and toluene are used as the solvent for solution polymerization.
  • a chain transfer agent may be used to adjust the molecular weight.
  • a thermal polymerization initiator and a photopolymerization initiator are used as the polymerization initiator.
  • the polymerization initiator may be used alone or in combination of two or more kinds.
  • the amount of the polymerization initiator used is preferably 0.03 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.07 parts by mass or more, and is preferably 1 part by mass or less, more preferably 0.5 parts by mass or less, and even more preferably 0.3 parts by mass or less, per 100 parts by mass of the second monomer component.
  • the weight average molecular weight Mw of the oligomer is preferably 4300 or more, more preferably 4500 or more, and even more preferably 4700 or more, from the viewpoint of increasing adhesion on the surface (adhesive surfaces 11, 12) of the adhesive sheet 10.
  • the weight average molecular weight Mw of the oligomer is preferably 10,000 or less, more preferably 8,000 or less, and even more preferably 6,000 or less, from the viewpoint of uneven distribution of the oligomer on the surface of the adhesive sheet 10 and its vicinity (mobility to the surface).
  • the method for measuring the weight average molecular weight Mw of the oligomer is specifically as described below in the examples.
  • the content of the acrylic oligomer in the adhesive sheet 10 is preferably 0.2 parts by mass or more, more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the base polymer, in order to sufficiently increase the adhesive strength of the adhesive sheet 10.
  • the content of the acrylic oligomer in the adhesive sheet 10 is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less, relative to 100 parts by mass of the base polymer. If the content of the acrylic oligomer in the adhesive sheet 10 is too large, the haze tends to increase and the transparency tends to decrease due to a decrease in the compatibility of the acrylic oligomer.
  • the adhesive composition may contain a silane coupling agent.
  • the content of the silane coupling agent in the adhesive composition is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, per 100 parts by mass of the base polymer.
  • the content is preferably 5 parts by mass or less, more preferably 3 parts by mass or less.
  • the adhesive composition may contain other components as required.
  • the other components include solvents, tackifiers, plasticizers, softeners, antioxidants, fillers, colorants, UV absorbers, antioxidants, surfactants, and antistatic agents.
  • the solvent include polymerization solvents used as required during polymerization of the acrylic polymer, and solvents added to the polymerization reaction solution after polymerization. Examples of the solvents that are used include ethyl acetate and toluene.
  • the adhesive sheet 10 can be produced, for example, by applying the above-mentioned adhesive composition onto a release liner L1 (first release liner) to form a coating film, and then irradiating the coating film with ultraviolet light or drying the coating film.
  • the adhesive sheet 10 can also be produced by applying the above-mentioned adhesive composition onto a release liner L1 (first release liner) to form a coating film, laminating a release liner L2 (second release liner) onto the coating film, and then irradiating the coating film between the release liners with ultraviolet light or drying the coating film.
  • the release liner L1 may be, for example, a flexible plastic film.
  • the plastic film include polyester films such as polyethylene terephthalate films, polyethylene films, and polypropylene films.
  • the thickness of the release liner L1 is, for example, 3 ⁇ m or more and, for example, 200 ⁇ m or less.
  • the surface of the release liner L1 is preferably subjected to a release treatment.
  • Examples of methods for applying the adhesive composition include roll coating, kiss roll coating, gravure coating, reverse coating, roll brushing, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, lip coating, and die coating.
  • the drying temperature for the coating film is, for example, 50°C to 200°C.
  • the drying time is, for example, 5 seconds to 20 minutes.
  • the release liner L2 is preferably a flexible plastic film with a release-treated surface.
  • the plastic films described above for the release liner L1 can be used as the release liner L2.
  • an adhesive sheet 10 can be manufactured in which the adhesive surfaces 11, 12 are covered and protected by the release liners L1, L2.
  • Figures 2A to 2C show an example of how to use the adhesive sheet 10.
  • the adhesive sheet 10 is attached to one side of the first member 21 (adherend) in the thickness direction H.
  • the first member 21 is, for example, one element in a laminated structure of a flexible display panel. Examples of such elements include a pixel panel, a polarizing film, a touch panel, and a cover film (the same applies to the second member 22 described below).
  • the adhesive sheet 10 for bonding to other members is provided on the first member 21.
  • one side of the first member 21 in the thickness direction H is bonded to the other side of the second member 22 in the thickness direction H via the adhesive sheet 10 on the first member 21.
  • the second member 22 is, for example, another element in the laminated structure of the flexible display panel.
  • the adhesive sheet 10 between the first member 21 and the second member 22 is aged. Aging increases the bonding strength between the adhesive sheet 10 and the members 21 and 22.
  • the aging temperature is, for example, 20°C to 160°C.
  • the aging time is, for example, 1 minute to 21 days.
  • the temperature is, for example, 30°C to 80°C
  • the pressure is, for example, 0.1 to 0.8 MPa
  • the treatment time is, for example, 15 minutes or more.
  • the obtained first prepolymer composition was a partial polymer containing acrylic polymer P1 and a monomer component (residual monomer) that had not undergone a polymerization reaction.
  • the weight-average molecular weight of the acrylic polymer P1 in the first prepolymer composition was about 4.3 million.
  • Second Prepolymer Composition In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, 0.05 parts by mass of a first photopolymerization initiator (Omnirad 184) and 0.05 parts by mass of a second photopolymerization initiator (Omnirad 651) were added to a monomer mixture of 48 parts by mass of lauryl acrylate (LA), 51 parts by mass of 2-ethylhexyl acrylate (2EHA), and 1 part by mass of 4-hydroxybutyl acrylate (4HBA), and then the mixture was irradiated with ultraviolet light under a nitrogen atmosphere to polymerize a part of the monomer components in the mixture to obtain a second prepolymer composition.
  • LA lauryl acrylate
  • EHA 2-ethylhexyl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • the obtained second prepolymer composition was a partial polymer containing the acrylic polymer P2 and a monomer component (residual monomer) that had not undergone a polymerization reaction.
  • the weight average molecular weight of the acrylic polymer P2 in the second prepolymer composition was about 4.8 million.
  • the obtained third prepolymer composition was a partial polymer containing the acrylic polymer P3 and a monomer component (residual monomer) that had not undergone a polymerization reaction.
  • the weight average molecular weight of the acrylic polymer P3 in the third prepolymer composition was about 5 million.
  • the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers.
  • a solid acrylic oligomer M1 was obtained.
  • the weight average molecular weight (Mw) of the acrylic oligomer M1 was 4880.
  • the glass transition temperature (Tg) of the acrylic oligomer M1 was 98.5°C.
  • the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers.
  • a solid acrylic oligomer M3 was obtained.
  • the Mw of the acrylic oligomer M3 was 5230.
  • the Tg of the acrylic oligomer M3 was 97.7°C.
  • Acrylic Oligomer M4 A solid acrylic oligomer M4 was obtained in the same manner as for the acrylic oligomer M1, except that the blending amount of IBXMA was 40 parts by mass, the blending amount of MMA was 40 parts by mass, and 20 parts by mass of 4-acryloylmorpholine (ACMO) was used instead of 10 parts by mass of CBA.
  • the Mw of the acrylic oligomer M4 was 4940.
  • the Tg of the acrylic oligomer M4 was 129.2°C.
  • a solid acrylic oligomer M5 was obtained in the same manner as in the acrylic oligomer M3, except that the blending amount of DCPMA was 40 parts by mass, the blending amount of MMA was 40 parts by mass, and 20 parts by mass of ACMO was used instead of 10 parts by mass of CBA.
  • the Mw of the acrylic oligomer M5 was 5110.
  • the Tg of the acrylic oligomer M5 was 128.3°C.
  • Acrylic Oligomer M6 A solid acrylic oligomer M6 was obtained in the same manner as in the preparation of the acrylic oligomer M1, except that 10 parts by mass of acrylic acid (AA) was used instead of 10 parts by mass of CBA.
  • the Mw of the acrylic oligomer M6 was 5670.
  • the Tg of the acrylic oligomer M6 was 121.9°C.
  • Acrylic Oligomer M8 A solid acrylic oligomer M8 was obtained in the same manner as for the acrylic oligomer M3, except that the amount of DCPMA was 60 parts by mass, the amount of MMA was 30 parts by mass, and 10 parts by mass of HEMA was used instead of 10 parts by mass of CBA.
  • the Mw of the acrylic oligomer M8 was 5570.
  • the Tg of the acrylic oligomer M8 was 123.9°C.
  • the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers.
  • a solid acrylic oligomer M9 was obtained.
  • the Mw of the acrylic oligomer M9 was 5920.
  • the Tg of the acrylic oligomer M9 was 85.4°C.
  • Acrylic Oligomer M11 A solid acrylic oligomer M11 was obtained in the same manner as in the preparation of the acrylic oligomer M9, except that 10 parts by mass of 2-hydroxypropyl methacrylate (HPMA) was used instead of 10 parts by mass of HEMA.
  • the Mw of the acrylic oligomer M11 was 5840.
  • the Tg of the acrylic oligomer M11 was 82.4°C.
  • Acrylic oligomer M12 was obtained in the same manner as in the preparation of acrylic oligomer M1, except that 10 parts by mass of 4HBA was used instead of 10 parts by mass of CBA.
  • the Mw of the acrylic oligomer M12 was 5320.
  • the Tg of the acrylic oligomer M12 was 99.2°C.
  • the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers.
  • a solid acrylic oligomer M13 was obtained.
  • the Mw of the acrylic oligomer M13 was 10200.
  • the Tg of the acrylic oligomer M13 was 193°C.
  • the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers.
  • a solid acrylic oligomer M14 was obtained.
  • the Mw of the acrylic oligomer M14 was 5220.
  • the Tg of the acrylic oligomer M14 was 20.6°C.
  • Acrylic Oligomer M15 A solid acrylic oligomer M15 was obtained in the same manner as in the preparation of the acrylic oligomer M1, except that the amount of IBXMA was 90 parts by mass and no MMA was added.
  • the Mw of the acrylic oligomer M15 was 4230.
  • the Tg of the acrylic oligomer M15 was 123.4°C.
  • Acrylic Oligomer M16 A solid acrylic oligomer M16 was obtained in the same manner as in the preparation of the acrylic oligomer M3, except that the amount of DCPMA was 40 parts by mass, the amount of MMA was 40 parts by mass, and 20 parts by mass of 4HBA was used instead of 10 parts by mass of CBA.
  • the Mw of the acrylic oligomer M16 was 5350.
  • the Tg of the acrylic oligomer M16 was 76.8°C.
  • Acrylic Oligomer M17 was obtained in the same manner as Acrylic Oligomer M1, except that 10 parts by mass of lauryl methacrylate (LMA) was used instead of 10 parts by mass of CBA.
  • the Mw of Acrylic Oligomer M17 was 5780.
  • the Tg of Acrylic Oligomer M17 was 125.5°C.
  • Acrylic Oligomer M18 A solid acrylic oligomer M18 was obtained in the same manner as for the acrylic oligomer M1, except that the blending amount of IBXMA was 75 parts by mass, the blending amount of MMA was 20 parts by mass, and 5 parts by mass of HEMA was used instead of 10 parts by mass of CBA.
  • the Mw of the acrylic oligomer M18 was 4610.
  • the Tg of the acrylic oligomer M18 was 141.0°C.
  • Acrylic Oligomer M20 A solid acrylic oligomer M20 was obtained in the same manner as in the preparation of the acrylic oligomer M1, except that the amount of IBXMA was 80 parts by mass, the amount of CMA was 20 parts by mass, and no MMA was added. The Mw of the acrylic oligomer M20 was 3820. The Tg of the acrylic oligomer M20 was 80.8°C.
  • a solid acrylic oligomer M21 was obtained in the same manner as for the acrylic oligomer M1, except that the blending amount of IBXMA was 70 parts by mass, the blending amount of MMA was 20 parts by mass, and the blending amount of CBA was 10 parts by mass.
  • the Mw of the acrylic oligomer M21 was 4060.
  • the Tg of the acrylic oligomer M21 was 109.3°C.
  • Acrylic Oligomer M24 A solid acrylic oligomer M24 was obtained in the same manner as for the acrylic oligomer M23, except that 70 parts by mass of 1-adamantyl methacrylate (ADMA) was used instead of 70 parts by mass of DCPMA.
  • the Mw of the acrylic oligomer M24 was 5150.
  • the Tg of the acrylic oligomer M24 was 160.7°C.
  • Example 1 Preparation of Pressure-Sensitive Adhesive Composition
  • acrylic oligomer M1 and 0.07 parts by mass of a crosslinker (trade name "Viscoat #260", 1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) were added per 100 parts by mass of monomer components in the composition (monomer components forming the base polymer in the adhesive layer described below in this example), and mixed to prepare a first adhesive composition.
  • the relative number of parts of the acrylic oligomer per 100 parts by mass of the base polymer in the adhesive layer described below in this example is shown in Tables 1 and 2 as "parts".
  • the first pressure-sensitive adhesive composition was applied onto the release-treated surface of the first release liner, one side of which had been treated with silicone release, to form a coating film.
  • the first release liner was a polyethylene terephthalate (PET) film (product name: "Diafoil MRE#75", thickness 75 ⁇ m, manufactured by Mitsubishi Chemical Corporation) with one side treated with silicone release.
  • PET polyethylene terephthalate
  • the release-treated surface of the second release liner, one side of which had been treated with silicone release was attached to the coating film on the first release liner.
  • the second release liner was a PET film (product name: "Diafoil MRF#75", thickness 75 ⁇ m, manufactured by Mitsubishi Chemical Corporation) with one side treated with silicone release.
  • the coating film between the release liners was irradiated with ultraviolet light, and the coating film was photocured to form an adhesive layer (thickness 50 ⁇ m).
  • a black light was used as the irradiation light source, the irradiation intensity was about 2.5 mW/cm 2 , and the irradiation time was 16 minutes.
  • a pressure-sensitive adhesive sheet (thickness: 50 ⁇ m) with a release liner of Example 1 was prepared.
  • Example 2 to 12 In preparing the pressure-sensitive adhesive composition, the pressure-sensitive adhesive sheets with release liner of Examples 2 to 12 were produced in the same manner as the pressure-sensitive adhesive sheet with release liner of Example 1, except that the type and amount of the acrylic oligomer added was changed as shown in Tables 1 and 2.
  • Comparative Example 1 A pressure-sensitive adhesive sheet with a release liner of Comparative Example 1 was produced in the same manner as the pressure-sensitive adhesive sheet with a release liner of Example 1, except that no acrylic oligomer was added in the preparation of the pressure-sensitive adhesive composition.
  • Example 13 Preparation of Pressure-Sensitive Adhesive Composition
  • 1.0 part by mass of acrylic oligomer M18 and 0.07 part by mass of a crosslinker (trade name "Viscoat #260", 1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) were added per 100 parts by mass of monomer components in the composition (monomer components forming the base polymer in the adhesive layer described below in this example), and mixed to prepare a second adhesive composition.
  • the relative number of parts of the acrylic oligomer per 100 parts by mass of the base polymer in the adhesive layer described below in this example is shown in Table 3 as "parts".
  • Comparative Example 7 A pressure-sensitive adhesive sheet with a release liner of Comparative Example 7 was produced in the same manner as the pressure-sensitive adhesive sheet with a release liner of Example 13, except that no acrylic oligomer was added in preparing the pressure-sensitive adhesive composition.
  • Example 14 Preparation of Pressure-Sensitive Adhesive Composition
  • 1.0 part by mass of acrylic oligomer M8 and 0.07 part by mass of a crosslinker (trade name "Viscoat #260", 1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) were added per 100 parts by mass of monomer components in the composition (monomer components forming the base polymer in the adhesive layer described below in this example), and mixed to prepare a third adhesive composition.
  • the relative number of parts of the acrylic oligomer per 100 parts by mass of the base polymer in the adhesive layer described below in this example is shown in Table 4 as "parts".
  • Example 15 In preparing the pressure-sensitive adhesive composition, the type of acrylic oligomer used was changed as shown in Table 4, and the pressure-sensitive adhesive sheet with release liner of Example 15 was produced in the same manner as the pressure-sensitive adhesive sheet with release liner of Example 15.
  • Comparative Example 10 A pressure-sensitive adhesive sheet with a release liner of Comparative Example 10 was produced in the same manner as the pressure-sensitive adhesive sheet with a release liner of Example 14, except that no acrylic oligomer was added in preparing the pressure-sensitive adhesive composition.
  • Comparative Examples 11 and 12 In preparing the adhesive composition, the adhesive sheets with release liners of Comparative Examples 11 and 12 were prepared in the same manner as the adhesive sheet with release liner of Example 14, except that the type of acrylic oligomer used was changed as shown in Table 4.
  • Example 16 Preparation of Pressure-Sensitive Adhesive Composition
  • acrylic oligomer M22 0.11 parts by mass of dipentaerythritol hexaacrylate (DPHA), 0.02 parts by mass of additional photopolymerization initiator (trade name "Omnirad 819", bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, manufactured by IGM Resins), and 0.5 parts by mass of silane coupling agent (trade name "KBM-403", 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) were added and mixed per 100 parts by mass of monomer components in the composition (monomer components forming the base polymer in the adhesive layer described later in this example), to prepare a fourth adhesive composition.
  • the relative number of parts of the acrylic oligomer per 100 parts by mass of the base polymer in the adhesive layer described later in this example is shown in Table 5
  • a 50 ⁇ m thick adhesive layer was formed between release liners in the same manner as in the formation of the adhesive layer described above for Example 1. In this manner, a PSA sheet (thickness 50 ⁇ m) with a release liner of Example 16 was produced.
  • Example 17 to 19 In preparing the pressure-sensitive adhesive composition, the pressure-sensitive adhesive sheets with release liners of Examples 17 to 19 were produced in the same manner as the pressure-sensitive adhesive sheet with release liner of Example 16, except that the type of acrylic oligomer blended was changed as shown in Table 5. Note that in Example 19, two types of acrylic oligomers were blended (0.5 parts by mass of Acrylic Oligomer M25 and 1.0 part by mass of Acrylic Oligomer M22 were added to the first prepolymer composition per 100 parts by mass of the monomer component in the composition).
  • a tetrahydrofuran (THF) solution (containing 10 mM phosphoric acid) with a sample concentration of 0.20% by mass was prepared using the above-mentioned acrylic polymer or acrylic oligomer not containing a nitrogen-containing monomer as a sample, and the THF solution was left to stand for 20 hours.
  • the THF solution was filtered through a membrane filter with an average pore size of 0.45 ⁇ m, and the filtrate was obtained as a sample solution for molecular weight measurement.
  • a dimethylformamide (DMF) solution (salt added) with a sample concentration of 0.20 mass % was prepared using the above-mentioned acrylic polymer or acrylic oligomer not containing a nitrogen-containing monomer as a sample, and the DMF solution was left to stand for 20 hours.
  • the DMF solution was filtered through a membrane filter with an average pore size of 0.45 ⁇ m, and the filtrate was obtained as a sample solution for molecular weight measurement.
  • Tg of oligomer> The glass transition temperatures (Tg) of the acrylic oligomers M1 to M25 were calculated based on the above Fox formula, and the values are shown in Tables 1 to 5.
  • HSP Hansen solubility parameter
  • the hydrogen bond term ( ⁇ h i ) of HSP was calculated for each monomer m i forming the acrylic oligomer by computer software HSPiP (Hansen Solubility Parameters in Practice).
  • HSPiP Hasen Solubility Parameters in Practice
  • the hydrogen bond term ( ⁇ H) of the acrylic oligomer was calculated by the following formula from the molar fraction x i of the monomer m i in the acrylic oligomer and the hydrogen bond term ⁇ h i of the monomer m i .
  • the hydrogen bond term of the acrylic oligomer M1 was calculated as 5.39 MPa 1/2 by the following formula from the molar fraction of IBXMA (molecular weight 220.0) of 0.289 and the hydrogen bond term of 2.4 MPa 1/2 , the molar fraction of MMA (molecular weight 100.1) of 0.636 and the hydrogen bond term of 6.6 MPa 1/2 , and the molar fraction of CBA (molecular weight 188.2) of 0.075 and the hydrogen bond term of 6.5 MPa 1/2 .
  • the hydrogen bond terms of the acrylic oligomers M1 to M25 are shown in Tables 1 to 5 as ⁇ H2 .
  • the hydrogen bond term ( ⁇ H 1 ) of the HSP of the above-mentioned acrylic polymer was determined.
  • the value was 5.07 MPa 1/2 .
  • samples for measurement were prepared. Specifically, the first release liner was peeled off from the adhesive sheet, and the sheet was then attached to an alkaline glass (thickness 1.0 mm, total light transmittance 92%, haze 0.4%, manufactured by Matsunami Glass Co., Ltd.). Next, the first release liner was peeled off from the adhesive sheet on the glass. This produced samples for measurement. Next, the haze of each of the adhesive sheets in the samples was measured using a haze meter (model name "HM-150", manufactured by Murakami Color Research Laboratory). The measurement was in accordance with JIS K7136 (2000). In this measurement, the sample was placed in the device so that light was hitting the alkaline glass side of the sample. The measured haze of the adhesive sheet is shown in Tables 1 to 5.
  • the required number of measurement samples were prepared for each adhesive sheet. Specifically, first, multiple pieces of adhesive sheet cut from the adhesive sheet were glued together to prepare a sample sheet approximately 1.0 mm thick. Next, this sheet was punched out to obtain cylindrical pellets (diameter 7.9 mm) that served as measurement samples.
  • the measurement samples were fixed to a 7.9 mm diameter parallel plate fixture and subjected to dynamic viscoelasticity measurement using a dynamic viscoelasticity measuring device (name: Advanced Rheometric Expansion System (ARES), manufactured by Rheometric Scientific).
  • the measurement mode was shear mode
  • the measurement temperature range was -65°C to 200°C
  • the heating rate was 5°C/min
  • the frequency was 1 Hz.
  • the shear storage modulus at the specified temperatures was read.
  • the shear storage modulus G1 (kPa) at -10°C, the shear storage modulus G2 (kPa) at 60°C, the shear storage modulus G3 (kPa) at -20°C, and the ratio of the shear storage modulus G2 to the shear storage modulus G1 (G2/G1) are shown in Tables 1 to 5.
  • the required number of measurement samples were prepared for each adhesive sheet.
  • the first release liner was peeled off from the adhesive sheet, and the exposed surface was attached to a polyethylene terephthalate (PET) film (product name "Lumirror S10", thickness 25 ⁇ m, manufactured by Toray) whose surface had been plasma-treated to obtain a laminate.
  • PET polyethylene terephthalate
  • a plasma irradiation device product name "AP-TO5", manufactured by Sekisui Kogyo Co., Ltd.
  • the voltage was set to 160 V, the frequency to 10 kHz, and the treatment speed to 5000 mm/min (the same applies to the plasma treatment described below).
  • test piece width 20 mm x length 100 mm
  • laminate PET film/adhesive sheet/second release liner
  • the second release liner was peeled off from the adhesive sheet of this test piece, and the exposed surface was attached to a glass plate (acrylic glass manufactured by Matsunami Glass Co., Ltd.).
  • the glass plate with the adhesive sheet (test piece) was heated and pressurized at a temperature of 50°C and a pressure of 0.5 MPa for 15 minutes. This caused the test piece to be pressed against the glass plate. In this way, the measurement sample was prepared.
  • peel strength was measured (first peel test).
  • a tensile tester product name "Autograph AG-50NXplus", manufactured by Shimadzu Corporation
  • the measurement temperature was 25°C
  • the relative humidity was 55%
  • the peel angle of the test piece from the glass plate was 180°
  • the pulling speed of the test piece was 300 mm/min
  • the peel length was 50 mm.
  • the average measured peel strength is shown in Tables 1 to 5 as adhesive strength F1 (N/20 mm).
  • the adhesive sheet of Comparative Example 1 is a soft adhesive sheet having a shear storage modulus G1 of 100 kPa or less at -10°C, but does not contain oligomers with a Tg of 40°C or higher, and has small adhesive strengths F1 and F2.
  • the acrylic oligomer M13 is not unevenly distributed on the pressure-sensitive adhesive surface or in its vicinity.
  • the adhesive sheet of Comparative Example 3 does not contain oligomers with a Tg of 40°C or higher, and has low adhesive strengths F1 and F2.
  • the acrylic oligomer M15 is not unevenly distributed on the pressure-sensitive adhesive surface or in its vicinity.
  • the acrylic oligomer M16 has low compatibility with the base polymer, forming domains that cause light scattering.
  • the acrylic oligomer M17 is not sufficiently distributed on the adhesive surface and its vicinity.
  • each of the pressure-sensitive adhesive sheets of Examples 1 to 12 was soft, with a shear storage modulus G1 at -10°C of 100 kPa or less, contained an oligomer with a Tg of 40°C or more, and the ⁇ H1 of the HSP of the base polymer and the ⁇ H2 of the HSP of the oligomer satisfied 0.1 ⁇ ⁇ H2 - ⁇ H1 ⁇ 1.3.
  • the pressure-sensitive adhesive sheets of Examples 1 to 12 had a large adhesive strength F1 of 8.0 N/20 mm or more.
  • the oligomer with a Tg of 40°C or more is sufficiently unevenly distributed on the adhesive surface and in its vicinity.
  • the adhesive sheet of Comparative Example 7 is a soft adhesive sheet with a shear storage modulus G1 of 100 kPa or less at -10°C, but does not contain an oligomer with a Tg of 40°C or more, and has small adhesive forces F1 and F2.
  • the acrylic oligomer M20 is not unevenly distributed on the adhesive surface and its vicinity.
  • the pressure-sensitive adhesive sheet of Example 13 is soft with a shear storage modulus G1 of 100 kPa or less at -10°C, contains an oligomer with a Tg of 40°C or more, and the ⁇ H1 of the HSP of the base polymer and the ⁇ H2 of the HSP of the oligomer satisfy 0.1 ⁇ ⁇ H2 - ⁇ H1 ⁇ 1.3.
  • the adhesive strength F1 of such a pressure-sensitive adhesive sheet of Example 13 is 7.7 N/20 mm, which is greater than the adhesive strength F1 of the pressure-sensitive adhesive sheets of Comparative Examples 7 to 9 (the base polymer is the same as that of Example 13).
  • each pressure-sensitive adhesive sheet of Example 13 the oligomer with a Tg of 40°C or more is sufficiently unevenly distributed on the adhesive surface and in the vicinity thereof.
  • the pressure-sensitive adhesive sheet of Example 13 is very soft with a shear storage modulus G1 of 40 kPa or less at -10°C, and both flexibility and adhesive strength are achieved.
  • the adhesive sheet of Comparative Example 10 is a soft adhesive sheet having a shear storage modulus G1 of 100 kPa or less at -10°C, but does not contain an oligomer having a Tg of 40°C or more, and has small adhesive forces F1 and F2.
  • the acrylic oligomer M21 is not unevenly distributed on the adhesive surface and its vicinity.
  • the pressure-sensitive adhesive sheets of Examples 14 and 15 were soft, with a shear storage modulus G1 at -10°C of 100 kPa or less, contained oligomers with Tg of 40°C or more, and the ⁇ H1 of the HSP of the base polymer and the ⁇ H2 of the HSP of the oligomer satisfied 0.1 ⁇ ⁇ H2 - ⁇ H1 ⁇ 1.3.
  • the adhesive strength F1 of the pressure-sensitive adhesive sheets of Examples 14 and 15 was 7.6 N/20 mm or more, which was greater than the adhesive strength F1 of the pressure-sensitive adhesive sheets of Comparative Examples 10 to 12 (the base polymer was the same as in Examples 14 and 15).
  • the oligomers with Tg of 40°C or more were sufficiently unevenly distributed on the adhesive surface and in the vicinity thereof.
  • each of the pressure-sensitive adhesive sheets of Examples 16 to 19 was soft, with a shear storage modulus G1 at -10°C of 100 kPa or less, contained an oligomer with a Tg of 40°C or more, and the ⁇ H1 of the HSP of the base polymer and the ⁇ H2 of the HSP of the oligomer satisfied 0.1 ⁇ ⁇ H2 - ⁇ H1 ⁇ 1.3.
  • Such pressure-sensitive adhesive sheets of Examples 16 to 19 had a large adhesive force F1 of 7.9 N/20 mm or more.
  • the oligomer with a Tg of 40°C or more was sufficiently unevenly distributed on the adhesive surface and in the vicinity thereof.
  • the pressure-sensitive adhesive sheet of Example 19 contained two types of oligomers, each of which had a Tg of 40°C or more, and the ⁇ H1 of the HSP of the base polymer and the ⁇ H2 of the HSP of each oligomer satisfied 0.1 ⁇ ⁇ H2 - ⁇ H1 ⁇ 1.3.
  • optical adhesive sheet of the present invention is suitable for use in light passing areas in flexible devices (e.g., flexible display panels such as foldable display panels and rollable display panels).
  • flexible devices e.g., flexible display panels such as foldable display panels and rollable display panels.
  • Adhesive sheet (optical adhesive sheet) 11 First surface 12 Second surface L1, L2 Release liner 21 First member 22 Second member H Thickness direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Polarising Elements (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

An adhesive sheet (10) (optical adhesive sheet) comprises a base polymer and an oligomer having a glass transition temperature of 40°C or higher, and has a shear storage elastic modulus of 100 kPa or less at -10°C. In the adhesive sheet (10), the hydrogen bond term δH1 of the Hansen solubility parameter of the base polymer and the hydrogen bond term δH2 of the Hansen solubility parameter of the oligomer satisfy the formula: 0.1 ≤ δH2 - δH1 ≤ 1.3.

Description

光学粘着シートOptical Adhesive Sheet

 本発明は、光学粘着シートに関する。 The present invention relates to an optical adhesive sheet.

 ディスプレイパネルは、例えば、画素パネル、偏光フィルム、タッチパネルおよびカバーフィルムなどの要素を含む積層構造を有する。そのようなディスプレイパネルの製造過程では、積層構造に含まれる要素どうしの接合のために、例えば、透明な粘着シート(光学粘着シート)が用いられる。 A display panel has a laminated structure that includes elements such as a pixel panel, a polarizing film, a touch panel, and a cover film. In the manufacturing process of such a display panel, for example, a transparent adhesive sheet (optical adhesive sheet) is used to bond the elements included in the laminated structure.

 一方、例えばスマートフォン用およびタブレット端末用に、繰り返し折り曲げ可能(フォルダブル)なディスプレイパネルの開発が進んでいる。フォルダブルディスプレイパネルは、具体的には、屈曲形状とフラットな非屈曲形状との間で、繰り返し変形可能である。このようなフォルダブルディスプレイパネルでは、積層構造中の各要素が、繰り返し折り曲げ可能に作製されており、そのような要素間の接合に薄い光学粘着シートが用いられている。フォルダブルディスプレイパネルなどのフレキシブルデバイス用の光学粘着シートについては、例えば下記の特許文献1に記載されている。 On the other hand, the development of display panels that can be repeatedly folded (foldable) for use in, for example, smartphones and tablet terminals is progressing. Specifically, a foldable display panel can be repeatedly deformed between a curved shape and a flat, non-bent shape. In such a foldable display panel, each element in the laminated structure is made to be repeatedly foldable, and a thin optical adhesive sheet is used to bond such elements together. Optical adhesive sheets for flexible devices such as foldable display panels are described, for example, in Patent Document 1 below.

特開2018-111754号公報JP 2018-111754 A

 フレキシブルデバイス用の光学粘着シートには、デバイス変形時の被着体への充分な追従性と、優れた応力緩和性とを有するように、高度に軟質であることが求められる。しかしながら、従来の光学粘着シートは、軟質なほど、粘着力が低下する。 Optical adhesive sheets for flexible devices are required to be highly flexible so that they can conform to the adherend when the device is deformed and have excellent stress relaxation properties. However, with conventional optical adhesive sheets, the softer they are, the weaker their adhesive strength becomes.

 フォルダブルディスプレイパネルの折り曲げ箇所では、従来、被着体としての要素から光学粘着シートが剥がれやすい。ディスプレイパネルが折り曲げられたとき、光学粘着シートの折り曲げ部分には、被着体に沿った方向に比較的大きなせん断力が加わるからである。剥がれの発生は、ディスプレイの機能不良の原因となり、好ましくない。フォルダブルディスプレイパネル用の光学粘着シートには、ディスプレイ屈曲時に要素(被着体)から剥がれにくいことが、高いレベルで求められている。  In the past, optical adhesive sheets were prone to peeling off from the elements (adherends) at the bent portions of foldable display panels. This is because when the display panel is folded, a relatively large shear force is applied to the folded portion of the optical adhesive sheet in the direction along the adherend. Peeling is undesirable as it can cause the display to malfunction. There is a high demand for optical adhesive sheets for foldable display panels to resist peeling off from the elements (adherends) when the display is bent.

 フレキシブルデバイスとしては、巻き取り可能(ローラブル)なディスプレイパネルの開発も進んでいる。ローラブルディスプレイパネルは、例えば、全体または一部が巻き取られた後の巻回し形状と、全体が繰り出された後のフラット形状との間で、繰り返し変形可能である。このようなローラブルディスプレイパネルでは、積層構造中の各要素が、繰り返し変形可能に作製されており、そのような要素間の接合に薄い光学粘着シートが用いられている。ローラブルディスプレイパネルの巻回し形状時には、巻回し形状の要素に接合している光学粘着シートは、被着体に沿った方向のせん断力を受け続ける。このような光学粘着シートには、ディスプレイの巻回し形状時に要素(被着体)から剥がれにくいことが、非常に高いレベルで求められる。 As a flexible device, development of rollable display panels is also progressing. A rollable display panel can be repeatedly deformed, for example, between a rolled shape after being entirely or partially rolled up, and a flat shape after being entirely unrolled. In such a rollable display panel, each element in the laminate structure is made to be repeatedly deformable, and a thin optical adhesive sheet is used to bond such elements. When the rollable display panel is in a rolled shape, the optical adhesive sheet bonded to the rolled element continues to receive a shear force in a direction along the adherend. Such an optical adhesive sheet is required to be highly unlikely to peel off from the element (adherend) when the display is in a rolled shape.

 本発明は、フレキシブルデバイス用途に適した光学粘着シートを提供する。 The present invention provides an optical adhesive sheet suitable for flexible device applications.

 本発明[1]は、光学粘着シートであって、ベースポリマーと、ガラス転移温度40℃以上のオリゴマーとを含み、-10℃において100kPa以下のせん断貯蔵弾性率を有し、前記ベースポリマーのハンセン溶解度パラメーターの水素結合項δHと、前記オリゴマーのハンセン溶解度パラメーターの水素結合項δHとが、0.1≦δH-δH≦1.3を満たす、光学粘着シートを含む。 The present invention [1] is an optical adhesive sheet comprising a base polymer and an oligomer having a glass transition temperature of 40°C or higher, having a shear storage modulus of 100 kPa or less at -10°C, and wherein the hydrogen bond term δH1 of the Hansen solubility parameters of the base polymer and the hydrogen bond term δH2 of the Hansen solubility parameters of the oligomer satisfy 0.1≦ δH2 - δH1 ≦1.3.

 本発明[2]は、1%以下のヘイズを有する、上記[1]に記載の光学粘着シートを含む。 The present invention [2] includes the optical adhesive sheet described in [1] above, which has a haze of 1% or less.

 本発明[3]は、25℃、剥離角度180°および引張速度300mm/分の条件での剥離試験における粘着力が7.6N/20mm以上である、上記[1]または[2]に記載の光学粘着シートを含む。 The present invention [3] includes the optical adhesive sheet described in [1] or [2] above, which has an adhesive strength of 7.6 N/20 mm or more in a peel test under conditions of 25°C, a peel angle of 180°, and a tensile speed of 300 mm/min.

 本発明[4]は、25℃、剥離角度180°および引張速度300mm/分の条件での剥離試験において粘着力F1を有し、25℃、剥離角度180°および引張速度60mm/分の条件での剥離試験において粘着力F2を有し、粘着力F1に対する粘着力F2の比率が0.5以上1.1以下である、上記[1]から[3]のいずれか一つに記載の光学粘着シートを含む。 The present invention [4] includes an optical adhesive sheet according to any one of the above [1] to [3], which has an adhesive strength F1 in a peel test under conditions of 25°C, a peel angle of 180°, and a tensile speed of 300 mm/min, and has an adhesive strength F2 in a peel test under conditions of 25°C, a peel angle of 180°, and a tensile speed of 60 mm/min, and the ratio of adhesive strength F2 to adhesive strength F1 is 0.5 or more and 1.1 or less.

 本発明[5]は、-10℃でのせん断貯蔵弾性率に対する、60℃でのせん断貯蔵弾性率の比率が、0.2以上1.0以下である、上記[1]から[4]のいずれか一つに記載の光学粘着シートを含む。 The present invention [5] includes an optical adhesive sheet according to any one of [1] to [4] above, in which the ratio of the shear storage modulus at 60°C to the shear storage modulus at -10°C is 0.2 or more and 1.0 or less.

 本発明[6]は、60質量%以上87質量%以下のゲル分率を有する、上記[1]から[5]のいずれか一つに記載の光学粘着シートを含む。 The present invention [6] includes an optical adhesive sheet according to any one of [1] to [5] above, which has a gel fraction of 60% by mass or more and 87% by mass or less.

 本発明の光学粘着シートは、上記のように、-10℃において100kPa以下のせん断貯蔵弾性率を有する。このように軟質の光学粘着シートは、同粘着シートが貼り合わされた被着体の変形時に、光学粘着シートおよび被着体に生ずる応力を緩和するのに適する(応力緩和機能)。光学粘着シートにおける応力緩和は、被着体への光学粘着シートの追従性を確保するのに適する。被着体における応力緩和は、被着体の割れなどの破損を抑制するのに適する。加えて、本発明の光学粘着シートは、上記のように、ベースポリマーと、ガラス転移温度(Tg)40℃以上のオリゴマーとを含み、ベースポリマーのハンセン溶解度パラメーター(HSP)の水素結合項δHと、オリゴマーのHSPの水素結合項δHとが、0.1≦δH-δH≦1.3を満たす。このような構成は、光学粘着シートの総体的な柔らかさを確保しつつ、光学粘着シートの表面(粘着面)およびその近傍にTg40℃以上のオリゴマーを偏在化させて、当該粘着シートの良好な粘着力を実現するのに適する。光学粘着シートの粘着力が高いことは、繰り返し変形される被着体からの光学粘着シートの剥がれを抑制するのに適する。以上のような光学粘着シートは、フレキシブルデバイス用途に適する。 As described above, the optical adhesive sheet of the present invention has a shear storage modulus of 100 kPa or less at -10°C. Such a soft optical adhesive sheet is suitable for relaxing the stress generated in the optical adhesive sheet and the adherend when the adherend to which the adhesive sheet is attached is deformed (stress relaxation function). The stress relaxation in the optical adhesive sheet is suitable for ensuring the conformability of the optical adhesive sheet to the adherend. The stress relaxation in the adherend is suitable for suppressing damage such as cracking of the adherend. In addition, as described above, the optical adhesive sheet of the present invention includes a base polymer and an oligomer having a glass transition temperature (Tg) of 40°C or higher, and the hydrogen bond term δH 1 of the Hansen solubility parameter (HSP) of the base polymer and the hydrogen bond term δH 2 of the HSP of the oligomer satisfy 0.1≦δH 2 -δH 1 ≦1.3. This configuration is suitable for achieving good adhesive strength of the optical adhesive sheet by unevenly distributing oligomers having a Tg of 40 ° C. or more on the surface (adhesive surface) of the optical adhesive sheet and its vicinity while ensuring the overall softness of the optical adhesive sheet. The high adhesive strength of the optical adhesive sheet is suitable for suppressing peeling of the optical adhesive sheet from an adherend that is repeatedly deformed. The optical adhesive sheet as described above is suitable for flexible device applications.

本発明の光学粘着シートの一実施形態の断面模式図である。1 is a schematic cross-sectional view of one embodiment of an optical adhesive sheet of the present invention. 本発明の光学粘着シートの使用方法の一例を表す。図2Aは、光学粘着シートを第1被着体に貼り合わせる工程を表し、図2Bは、光学粘着シートを介して第1被着体と第2被着体とを接合する工程を表し、図2Cは、エージング工程を表す。Fig. 2 shows an example of a method for using the optical adhesive sheet of the present invention. Fig. 2A shows a step of attaching the optical adhesive sheet to a first adherend, Fig. 2B shows a step of joining the first adherend and the second adherend via the optical adhesive sheet, and Fig. 2C shows an aging step.

 本発明の光学粘着シートの一実施形態としての粘着シート10は、図1に示すように、所定の厚さのシート形状を有し、厚さ方向と直交する方向(面方向)に広がる。粘着シート10は、粘着面11と、当該粘着面11とは反対側の粘着面12とを有する。図1は、粘着シート10の粘着面11,12にはく離ライナーL1,L2が貼り合わされている状態を、例示的に示す。はく離ライナーL1は、粘着面11上に配置されている。はく離ライナーL2は、粘着面12上に配置されている。また、粘着シート10は、フレキシブルデバイスにおける光通過箇所に配置される光学的に透明な粘着シート(光学粘着シート)である。フレキシブルデバイスとしては、例えば、フレキシブルディスプレイパネルが挙げられる。フレキシブルディスプレイパネルとしては、例えば、フォルダブルディスプレイパネルおよびローラブルディスプレイパネルが挙げられる。フレキシブルディスプレイパネルは、例えば、画素パネル、偏光フィルム、タッチパネルおよびカバーフィルムなどの要素を含む積層構造を有する。粘着シート10は、例えば、フレキシブルディスプレイパネルの製造過程において、積層構造に含まれる要素どうしの接合に、用いられる。はく離ライナーL1,L2は、それぞれ、粘着シート10の使用時に所定のタイミングで剥離される。 As shown in FIG. 1, the adhesive sheet 10 as one embodiment of the optical adhesive sheet of the present invention has a sheet shape of a predetermined thickness and extends in a direction perpendicular to the thickness direction (plane direction). The adhesive sheet 10 has an adhesive surface 11 and an adhesive surface 12 opposite to the adhesive surface 11. FIG. 1 exemplarily shows a state in which release liners L1 and L2 are attached to the adhesive surfaces 11 and 12 of the adhesive sheet 10. The release liner L1 is disposed on the adhesive surface 11. The release liner L2 is disposed on the adhesive surface 12. The adhesive sheet 10 is an optically transparent adhesive sheet (optical adhesive sheet) disposed at a location where light passes in a flexible device. Examples of flexible devices include flexible display panels. Examples of flexible display panels include foldable display panels and rollable display panels. The flexible display panel has a laminated structure including elements such as a pixel panel, a polarizing film, a touch panel, and a cover film. The adhesive sheet 10 is used, for example, in the manufacturing process of a flexible display panel to bond elements included in a laminated structure. The release liners L1 and L2 are each peeled off at a predetermined timing when the adhesive sheet 10 is used.

 粘着シート10は、粘着剤組成物から形成されている。粘着剤組成物は、ベースポリマーと、ガラス転移温度(Tg)40℃以上のオリゴマーとを含む。すなわち、粘着シート10は、ベースポリマーと、Tg40℃以上のオリゴマーとを含む。粘着シート10は、-10℃において100kPa以下のせん断貯蔵弾性率を有する。また、粘着シート10は、ベースポリマーのハンセン溶解度パラメーター(HSP)の水素結合項δHと、オリゴマーのHSPの水素結合項δHとが、下記式(1)を満たす。 The pressure-sensitive adhesive sheet 10 is formed from a pressure-sensitive adhesive composition. The pressure-sensitive adhesive composition includes a base polymer and an oligomer having a glass transition temperature (Tg) of 40° C. or higher. That is, the pressure-sensitive adhesive sheet 10 includes a base polymer and an oligomer having a Tg of 40° C. or higher. The pressure-sensitive adhesive sheet 10 has a shear storage modulus of 100 kPa or less at −10° C. Furthermore, in the pressure-sensitive adhesive sheet 10, the hydrogen bond term δH 1 of the Hansen solubility parameter (HSP) of the base polymer and the hydrogen bond term δH 2 of the HSP of the oligomer satisfy the following formula (1).

 0.1≦δH-δH≦1.3   (1) 0.1≦δH 2 −δH 1 ≦1.3 (1)

 粘着シート10は、上述のように、-10℃において100kPa以下のせん断貯蔵弾性率を有する。このように軟質の粘着シート10は、粘着シート10が貼り合わされた被着体の変形時に、粘着シート10および被着体に生ずる応力を緩和するのに適する(応力緩和機能)。粘着シート10における応力緩和は、被着体への粘着シート10の追従性を確保するのに適する。被着体における応力緩和は、被着体の割れなどの破損を抑制するのに適する。したがって、粘着シート10は、粘着シート10が用いられるフレキシブルデバイスの良好な繰り返し変形を実現するのに適する。 As described above, the adhesive sheet 10 has a shear storage modulus of 100 kPa or less at -10°C. Such a soft adhesive sheet 10 is suitable for relieving stresses that occur in the adhesive sheet 10 and the adherend when the adherend to which the adhesive sheet 10 is attached deforms (stress relaxation function). The stress relaxation in the adhesive sheet 10 is suitable for ensuring the conformability of the adhesive sheet 10 to the adherend. The stress relaxation in the adherend is suitable for suppressing damage such as cracking of the adherend. Therefore, the adhesive sheet 10 is suitable for achieving good repeated deformation of a flexible device in which the adhesive sheet 10 is used.

 加えて、粘着シート10は、上述のように、ベースポリマーと、Tg40℃以上のオリゴマーとを含み、ベースポリマーのHSPの水素結合項δHと、オリゴマーのHSPの水素結合項δHとが、0.1≦δH-δh1≦1.3を満たす。ベースポリマーのHSPの水素結合項δHと、オリゴマーのHSPの水素結合項δHとの差ΔH(=δH-δH)は、粘着シート10におけるベースポリマーとオリゴマーとの相溶性の指標となる。そのような差ΔHが0.1以上1.3以下であることは、ベースポリマーおよびオリゴマーについて適度に低い相溶性を実現して、粘着シート10の表面(粘着面11,12)およびその近傍にオリゴマーを偏在化させるのに適する。したがって、差ΔHが0.1以上1.3以下であることは、粘着シート10の上述の総体的な柔らかさを確保しつつ、粘着シート10の表面(粘着面11,12)およびその近傍にTg40℃以上のオリゴマーを偏在化させて、粘着シート10において高粘着力を実現するのに適する。粘着シート10の粘着力が高いことは、繰り返し変形される被着体からの粘着シート10の剥がれを抑制するのに適する。 In addition, as described above, the pressure-sensitive adhesive sheet 10 includes a base polymer and an oligomer having a Tg of 40° C. or higher, and the hydrogen bond term δH 1 of the HSP of the base polymer and the hydrogen bond term δH 2 of the HSP of the oligomer satisfy 0.1≦δH 2h1 ≦1.3. The difference ΔH (=δH 2 -δH 1 ) between the hydrogen bond term δH 1 of the HSP of the base polymer and the hydrogen bond term δH 2 of the HSP of the oligomer is an index of the compatibility between the base polymer and the oligomer in the pressure-sensitive adhesive sheet 10. Such a difference ΔH of 0.1 or more and 1.3 or less is suitable for realizing a moderately low compatibility between the base polymer and the oligomer and for unevenly distributing the oligomer on the surface (adhesive surfaces 11, 12) of the pressure-sensitive adhesive sheet 10 and in its vicinity. Therefore, a difference ΔH of 0.1 or more and 1.3 or less is suitable for achieving high adhesive strength in the adhesive sheet 10 by unevenly distributing oligomers having a Tg of 40° C. or more on the surface (adhesive surfaces 11, 12) of the adhesive sheet 10 and its vicinity, while ensuring the above-mentioned overall softness of the adhesive sheet 10. High adhesive strength of the adhesive sheet 10 is suitable for suppressing peeling of the adhesive sheet 10 from an adherend that is repeatedly deformed.

 以上のような粘着シート10は、フレキシブルデバイス用途に適する。すなわち、粘着シート10は、粘着シート10が用いられるフレキシブルデバイスの良好な繰り返し変形を実現するのに適する。 The adhesive sheet 10 described above is suitable for flexible device applications. In other words, the adhesive sheet 10 is suitable for achieving good repeated deformation of the flexible device in which the adhesive sheet 10 is used.

 粘着シート10の-10℃でのせん断貯蔵弾性率G1は、粘着シート10が変形(屈曲および湾曲など)した場合の当該変形箇所での応力緩和の観点から、好ましくは90kPa以下、より好ましくは85kPa以下、更に好ましくは80kPa以下である。せん断貯蔵弾性率G1(-10℃)は、粘着シート10の低温領域での凝集力を確保する観点から、好ましくは30kPa以上、より好ましくは40kPa以上、更に好ましくは50kPa以上、一層好ましくは60kPa以上である。せん断貯蔵弾性率G1は、実施例に関して後述する動的粘弾性測定によって求められる(後記のせん断貯蔵弾性率G2,G3についても同様である)。粘着シート10のせん断貯蔵弾性率の調整方法としては、例えば、粘着シート10におけるベースポリマーの種類の選択、分子量の調整、および配合量の調整、並びに、架橋剤の種類の選択および配合量の調整が挙げられる(後記のせん断貯蔵弾性率G2,G3についても同様である)。 The shear storage modulus G1 of the adhesive sheet 10 at -10°C is preferably 90 kPa or less, more preferably 85 kPa or less, and even more preferably 80 kPa or less, from the viewpoint of stress relaxation at the deformed portion when the adhesive sheet 10 is deformed (bent, curved, etc.). The shear storage modulus G1 (-10°C) is preferably 30 kPa or more, more preferably 40 kPa or more, even more preferably 50 kPa or more, and even more preferably 60 kPa or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10 in the low temperature range. The shear storage modulus G1 is determined by dynamic viscoelasticity measurement described later in the examples (the same applies to the shear storage modulus G2 and G3 described later). Methods for adjusting the shear storage modulus of the adhesive sheet 10 include, for example, selection of the type of base polymer in the adhesive sheet 10, adjustment of the molecular weight, and adjustment of the blending amount, and selection of the type of crosslinking agent and adjustment of the blending amount (the same applies to the shear storage modulus G2 and G3 described later).

 粘着シート10の60℃でのせん断貯蔵弾性率G2は、粘着シート10における上述の応力緩和の観点から、好ましくは35kPa以下、より好ましくは32kPa以下、更に好ましくは27kPa以下である。せん断貯蔵弾性率G2(60℃)は、粘着シート10の高温領域での凝集力を確保する観点から、好ましくは10kPa以上、より好ましくは15kPa以上、更に好ましくは20kPa以上、一層好ましくは22kPa以上である。 The shear storage modulus G2 of the adhesive sheet 10 at 60°C is preferably 35 kPa or less, more preferably 32 kPa or less, and even more preferably 27 kPa or less, from the viewpoint of the above-mentioned stress relaxation in the adhesive sheet 10. The shear storage modulus G2 (60°C) is preferably 10 kPa or more, more preferably 15 kPa or more, even more preferably 20 kPa or more, and even more preferably 22 kPa or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10 in the high temperature region.

 せん断貯蔵弾性率G1に対するせん断貯蔵弾性率G2の比率(G2/G1)は、広い温度範囲において粘着シート10の安定した応力緩和機能を確保する観点から、好ましくは0.2以上、より好ましくは0.25以上、更に好ましくは0.3以上であり、また、好ましくは1.0以下、より好ましくは0.5以下、更に好ましくは0.4未満である。 The ratio of the shear storage modulus G2 to the shear storage modulus G1 (G2/G1) is preferably 0.2 or more, more preferably 0.25 or more, even more preferably 0.3 or more, from the viewpoint of ensuring a stable stress relaxation function of the adhesive sheet 10 over a wide temperature range, and is preferably 1.0 or less, more preferably 0.5 or less, even more preferably less than 0.4.

 粘着シート10の-20℃でのせん断貯蔵弾性率G3は、粘着シート10における上述の応力緩和の観点から、好ましくは150kPa以下、より好ましくは130kPa以下、更に好ましくは120kPa以下である。せん断貯蔵弾性率G3(-20℃)は、粘着シート10の低温領域での凝集力を確保する観点から、好ましくは40kPa以上、より好ましくは50kPa以上、より好ましくは70kPa以上、更に好ましくは90kPa以上である。 The shear storage modulus G3 of the adhesive sheet 10 at -20°C is preferably 150 kPa or less, more preferably 130 kPa or less, and even more preferably 120 kPa or less, from the viewpoint of the above-mentioned stress relaxation in the adhesive sheet 10. The shear storage modulus G3 (-20°C) is preferably 40 kPa or more, more preferably 50 kPa or more, more preferably 70 kPa or more, and even more preferably 90 kPa or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10 in the low temperature range.

 ベースポリマーのHSPの水素結合項δHと、オリゴマーのHSPの水素結合項δHとの差ΔH(δH-δH)は、ベースポリマーとオリゴマーとの相溶性を適度に低くして、粘着面11,12およびその近傍にオリゴマーを十分に偏在化させる観点から、好ましくは0.2以上、より好ましくは0.3以上である。差ΔH(δH-δH)は、ベースポリマーとオリゴマーとの相溶性が低くなりすぎないようにする観点から、好ましくは1.26以下である。ベースポリマーとオリゴマーとの相溶性の確保は、粘着シート10において低いヘイズを実現するのに役立つ。ベースポリマーのδHの調整方法としては、例えば、当該ベースポリマーのモノマー組成の調整が挙げられる。オリゴマーのδHの調整方法としては、例えば、当該オリゴマーのモノマー組成の調整が挙げられる。 The difference ΔH (δH 2 -δH 1 ) between the hydrogen bond term δH 1 of the HSP of the base polymer and the hydrogen bond term δH 2 of the HSP of the oligomer is preferably 0.2 or more, more preferably 0.3 or more, from the viewpoint of appropriately lowering the compatibility between the base polymer and the oligomer and sufficiently unevenly distributing the oligomer on and near the adhesive surfaces 11, 12. The difference ΔH (δH 2 -δH 1 ) is preferably 1.26 or less, from the viewpoint of preventing the compatibility between the base polymer and the oligomer from becoming too low. Ensuring the compatibility between the base polymer and the oligomer helps to achieve low haze in the adhesive sheet 10. An example of a method for adjusting the δH 1 of the base polymer is adjustment of the monomer composition of the base polymer. An example of a method for adjusting the δH 2 of the oligomer is adjustment of the monomer composition of the oligomer.

 ベースポリマーのHSPの水素結合項δHに対する、オリゴマーのHSPの水素結合項δHの比率(δH/δH)は、ベースポリマーとオリゴマーとの相溶性を適度に低くして、粘着面11,12およびその近傍にオリゴマーを十分に偏在化させる観点から、好ましくは1.04以上、より好ましくは1.06以上、更に好ましくは1.08以上、一層好ましくは1.10以上である。比率(δH/δH)は、ベースポリマーとオリゴマーとの相溶性が低くなりすぎないようにする観点から、好ましくは1.28以下、より好ましくは1.25以下、更に好ましくは1.22以下である。比率(δH/δH)も、粘着シート10におけるベースポリマーとオリゴマーとの相溶性の指標となる。 The ratio (δH 2 /δH 1 ) of the hydrogen bond term δH 2 of the HSP of the oligomer to the hydrogen bond term δH 1 of the HSP of the base polymer is preferably 1.04 or more, more preferably 1.06 or more, even more preferably 1.08 or more, and even more preferably 1.10 or more, from the viewpoint of appropriately lowering the compatibility between the base polymer and the oligomer and sufficiently unevenly distributing the oligomer on and near the adhesive surfaces 11, 12. The ratio (δH 2 /δH 1 ) is preferably 1.28 or less, more preferably 1.25 or less, and even more preferably 1.22 or less, from the viewpoint of preventing the compatibility between the base polymer and the oligomer from becoming too low. The ratio (δH 2 /δH 1 ) is also an index of the compatibility between the base polymer and the oligomer in the adhesive sheet 10.

 ハンセン溶解度パラメーター(HSP)は下記式(2)で表され、そのδHは、分子間の水素結合力に由来するエネルギーを表す水素結合項である。また、δDは、分子間の分散力に由来するエネルギーを表す分散項である。δPは、分子間の極性力に由来するエネルギーを表す分極項である。 The Hansen solubility parameter (HSP) is expressed by the following formula (2), where δH is the hydrogen bond term that represents the energy derived from the hydrogen bonding forces between molecules. δD is the dispersion term that represents the energy derived from the dispersion forces between molecules. δP is the polarization term that represents the energy derived from the polar forces between molecules.

 HSP=(δD+δP+δH1/2  (2) HSP=(δD 2 +δP 2 +δH 2 ) 1/2 (2)

 ポリマーのδHは、当該ポリマーを形成するモノマーmのモル分率xと、当該モノマーmの水素結合項δhとから、下記式(3)によって求められる。オリゴマーのδHも同様に求められる。モノマーの水素結合項δhは、例えば、コンピュータソフトウエアHSPiP(Hansen Solubility Parameters in Practice)によって計算できる。δHの求め方は、具体的には、実施例に関して後述するとおりである。 The δH of a polymer is calculated from the molar fraction xi of the monomer mi forming the polymer and the hydrogen bond term δh of the monomer mi according to the following formula (3). The δH of an oligomer can be calculated in the same manner. The hydrogen bond term δh of a monomer can be calculated, for example, by computer software HSPiP (Hansen Solubility Parameters in Practice). The method of calculating δH is specifically described below in the examples.

 δH=Σ x×δh  (3) δH=Σ x i ×δh i (3)

 オリゴマーのTgは、上述のように軟質な粘着シート10の表面高粘着化の観点から、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは70℃以上であり、また、好ましくは145℃以下、より好ましくは135℃以下、更に好ましくは130℃以下である。オリゴマーのTgは、ベースポリマーのTgより高いのが好ましい。オリゴマーのTgの調整方法としては、オリゴマーのモノマー組成の調整および分子量の調整が挙げられる。オリゴマーのTgの測定方法は、具体的には、実施例に関して後述するとおりである。 From the viewpoint of increasing the surface adhesion of the soft adhesive sheet 10 as described above, the Tg of the oligomer is preferably 50°C or higher, more preferably 60°C or higher, even more preferably 70°C or higher, and is preferably 145°C or lower, more preferably 135°C or lower, even more preferably 130°C or lower. The Tg of the oligomer is preferably higher than the Tg of the base polymer. Methods for adjusting the Tg of the oligomer include adjusting the monomer composition of the oligomer and adjusting the molecular weight. The specific method for measuring the Tg of the oligomer is as described below in the examples.

 オリゴマーのガラス転移温度Tgについては、下記のFoxの式に基づき求められるガラス転移温度(理論値)を用いることができる。Foxの式は、ポリマーのガラス転移温度Tgと、当該ポリマーを構成するモノマーのホモポリマーのガラス転移温度Tgとの関係式である。下記のFoxの式において、Tgはオリゴマーのガラス転移温度(℃)を表し、Wは当該ポリマーを構成するモノマーmの重量分率を表し、Tgは、モノマーmから形成されるホモポリマーのガラス転移温度(℃)を表す。ホモポリマーのガラス転移温度については文献値を用いることができる。例えば、「Polymer Handbook」(第4版,John Wiley & Sons, Inc., 1999年)には、各種のホモポリマーのガラス転移温度が挙げられている。一方、モノマーのホモポリマーのガラス転移温度については、特開2007-51271号公報に具体的に記載されている方法によって求めることも可能である。 The glass transition temperature Tg of an oligomer can be determined by the following Fox formula (theoretical value). The Fox formula is a relational expression between the glass transition temperature Tg of a polymer and the glass transition temperature Tg i of a homopolymer of a monomer constituting the polymer. In the following Fox formula, Tg represents the glass transition temperature (°C) of an oligomer, W i represents the weight fraction of a monomer m i constituting the polymer, and Tg i represents the glass transition temperature (°C) of a homopolymer formed from the monomer m i . The glass transition temperature of a homopolymer can be determined by a literature value. For example, the glass transition temperatures of various homopolymers are listed in "Polymer Handbook" (4th edition, John Wiley & Sons, Inc., 1999). On the other hand, the glass transition temperature of a homopolymer of a monomer can also be determined by a method specifically described in JP-A-2007-51271.

Foxの式  1/(273+Tg)=Σ[W/(273+Tg)] Fox's formula 1/(273+Tg)=Σ[W i /(273+Tg i )]

 粘着シート10のヘイズは、好ましくは1%以下、より好ましくは0.8%以下、更に好ましくは0.7%以下、一層好ましくは0.5%以下である。ヘイズは、例えば0.01%以上である。粘着シート10のヘイズは、JIS K7136(2000年)に準拠して、ヘイズメーターを使用して測定できる。ヘイズメーターとしては、例えば、日本電色工業社製の「NDH2000」、および、村上色彩技術研究所社製の「HM-150」が挙げられる。ヘイズの測定方法は、具体的には、実施例に関して後述するとおりである。 The haze of the adhesive sheet 10 is preferably 1% or less, more preferably 0.8% or less, even more preferably 0.7% or less, and even more preferably 0.5% or less. The haze is, for example, 0.01% or more. The haze of the adhesive sheet 10 can be measured using a haze meter in accordance with JIS K7136 (2000). Examples of haze meters include the "NDH2000" manufactured by Nippon Denshoku Industries Co., Ltd. and the "HM-150" manufactured by Murakami Color Research Laboratory Co., Ltd. The specific method of measuring the haze is as described below in the examples.

 粘着シート10の全光線透過率は、好ましくは60%以上、より好ましくは80%以上、更に好ましくは85%以上である。粘着シート10の全光線透過率は、例えば100%以下である。粘着シート10の全光線透過率は、JIS K 7375(2008年)に準拠して、測定できる。 The total light transmittance of the adhesive sheet 10 is preferably 60% or more, more preferably 80% or more, and even more preferably 85% or more. The total light transmittance of the adhesive sheet 10 is, for example, 100% or less. The total light transmittance of the adhesive sheet 10 can be measured in accordance with JIS K 7375 (2008).

 粘着シート10のゲル分率は、粘着シート10の高温領域での凝集力確保の観点から、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは73質量%以上である。粘着シート10のゲル分率は、粘着シート10の柔軟性を確保する観点から、好ましくは87質量%以下、より好ましくは85質量%以下、更に好ましくは83質量%以下である。粘着シート10のゲル分率の調整方法としては、例えば、粘着シート10におけるベースポリマーの種類の選択、分子量の調整、および配合量の調整が挙げられる。ゲル分率の調整方法としては、架橋剤の種類の選択および配合量の調整も挙げられる。また、ゲル分率の測定方法は、実施例に関して後述するとおりである。 The gel fraction of the adhesive sheet 10 is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 73% by mass or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10 in the high temperature region. The gel fraction of the adhesive sheet 10 is preferably 87% by mass or less, more preferably 85% by mass or less, and even more preferably 83% by mass or less, from the viewpoint of ensuring the flexibility of the adhesive sheet 10. Methods for adjusting the gel fraction of the adhesive sheet 10 include, for example, selecting the type of base polymer in the adhesive sheet 10, adjusting the molecular weight, and adjusting the blending amount. Methods for adjusting the gel fraction include selecting the type of crosslinking agent and adjusting the blending amount. The method for measuring the gel fraction is as described below in the examples.

 粘着シート10の、25℃、剥離角度180°および引張速度300mm/分の条件での剥離試験(第1剥離試験)における粘着力F1は、被着体からの粘着シート10の剥離を抑制する観点から、好ましくは7.6N/20mm以上、より好ましくは7.8N/20mm以上、更に好ましくは8.0N/20mm以上、一層好ましくは8.2N/20mm以上、より一層好ましくは8.4N/20mm以上、こと更に好ましくは8.6N/20mm以上、特に好ましくは8.8N/20mm以上である。粘着力F1は、例えば15N/20mm以下である。粘着力F1の測定方法は、具体的には、実施例に関して後述するとおりである。粘着力F1の調整方法としては、例えば、粘着シート10におけるベースポリマーの種類の選択、分子量の調整、および配合量の調整が挙げられる。ベースポリマーの種類の選択には、ベースポリマーを形成するモノマーの組成の調整が含まれる。粘着力F1の調整方法としては、粘着シート10におけるベースポリマー以外の成分の種類の選択、および、当該成分の配合量の調整も挙げられる。当該成分としては、架橋剤、シランカップリング剤、およびオリゴマーが挙げられる。以上のような粘着力調整方法は、後記の粘着力F2についても同様である。 The adhesive strength F1 of the adhesive sheet 10 in a peel test (first peel test) under conditions of 25°C, a peel angle of 180°, and a tensile speed of 300 mm/min is preferably 7.6 N/20 mm or more, more preferably 7.8 N/20 mm or more, even more preferably 8.0 N/20 mm or more, even more preferably 8.2 N/20 mm or more, even more preferably 8.4 N/20 mm or more, even more preferably 8.6 N/20 mm or more, and particularly preferably 8.8 N/20 mm or more, from the viewpoint of suppressing peeling of the adhesive sheet 10 from the adherend. The adhesive strength F1 is, for example, 15 N/20 mm or less. The method of measuring the adhesive strength F1 is specifically as described later in the examples. Methods of adjusting the adhesive strength F1 include, for example, selecting the type of base polymer in the adhesive sheet 10, adjusting the molecular weight, and adjusting the amount of the base polymer. The selection of the type of base polymer includes adjusting the composition of the monomer that forms the base polymer. Methods for adjusting the adhesive strength F1 include selecting the type of components other than the base polymer in the adhesive sheet 10 and adjusting the amount of the components. Such components include crosslinking agents, silane coupling agents, and oligomers. The above-mentioned adhesive strength adjustment methods are also applicable to the adhesive strength F2 described below.

 粘着シート10の、25℃、剥離角度180°および引張速度60mm/分の条件での剥離試験(第2剥離試験)における粘着力F2は、被着体からの粘着シート10の剥離を抑制する観点から、好ましくは4.1N/20mm以上、より好ましくは6.0N/20mm以上、更に好ましくは6.4N/20mm以上、一層好ましくは6.8N/20mm以上、より一層好ましくは7.2N/20mm以上、こと更に好ましくは7.6N/20mm以上、特に好ましくは8.0N/20mm以上である。粘着力F2は、例えば12N/20mm以下である。 The adhesive strength F2 of the adhesive sheet 10 in a peel test (second peel test) under conditions of 25°C, a peel angle of 180°, and a tensile speed of 60 mm/min is preferably 4.1 N/20 mm or more, more preferably 6.0 N/20 mm or more, even more preferably 6.4 N/20 mm or more, even more preferably 6.8 N/20 mm or more, still more preferably 7.2 N/20 mm or more, particularly preferably 7.6 N/20 mm or more, and particularly preferably 8.0 N/20 mm or more, from the viewpoint of suppressing peeling of the adhesive sheet 10 from the adherend. The adhesive strength F2 is, for example, 12 N/20 mm or less.

 粘着力F1に対する粘着力F2の比率(F2/F1)は、粘着シート10において安定した粘着力を確保する観点から、好ましくは0.5以上、より好ましくは0.6以上、好ましくは0.7以上、より好ましくは0.75以上、更に好ましくは0.8以上であり、また、好ましくは1.1以下、より好ましくは1.0以下である。 From the viewpoint of ensuring stable adhesive strength in the adhesive sheet 10, the ratio of adhesive strength F2 to adhesive strength F1 (F2/F1) is preferably 0.5 or more, more preferably 0.6 or more, preferably 0.7 or more, more preferably 0.75 or more, even more preferably 0.8 or more, and is preferably 1.1 or less, more preferably 1.0 or less.

 ベースポリマーは、粘着シート10において粘着性を発現させる粘着成分である。ベースポリマーとしては、例えば、アクリルポリマー、シリコーンポリマー、ポリエステルポリマー、ポリウレタンポリマー、ポリアミドポリマー、ポリビニルエーテルポリマー、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィンポリマー、エポキシポリマー、フッ素ポリマー、およびゴムポリマーが挙げられる。ベースポリマーは、単独で用いられてもよいし、二種類以上が併用されてもよい。粘着シート10における良好な透明性および粘着性を確保する観点から、ベースポリマーとしては、アクリルポリマーが好ましい。 The base polymer is an adhesive component that imparts adhesiveness to the adhesive sheet 10. Examples of base polymers include acrylic polymers, silicone polymers, polyester polymers, polyurethane polymers, polyamide polymers, polyvinyl ether polymers, vinyl acetate/vinyl chloride copolymers, modified polyolefin polymers, epoxy polymers, fluoropolymers, and rubber polymers. The base polymers may be used alone or in combination of two or more types. From the viewpoint of ensuring good transparency and adhesiveness in the adhesive sheet 10, acrylic polymers are preferred as the base polymer.

 アクリルポリマーは、(メタ)アクリル酸アルキルエステルを50質量%以上の割合で含むモノマー成分(第1モノマー成分)の重合体である。「(メタ)アクリル」は、アクリルおよび/またはメタクリルを意味する。 An acrylic polymer is a polymer of a monomer component (first monomer component) that contains 50% or more by mass of an alkyl (meth)acrylate ester. "(Meth)acrylic" means acrylic and/or methacrylic.

 (メタ)アクリル酸アルキルエステルとしては、好ましくは、アルキル基の炭素数が1~20である(メタ)アクリル酸アルキルエステルが用いられる。(メタ)アクリル酸アルキルエステルとしては、例えば、鎖状アルキル基を有する(メタ)アクリル酸アルキルエステル((メタ)アクリル酸鎖状アルキルエステル)、および、脂環式アルキル基を有する(メタ)アクリル酸アルキルエステル((メタ)アクリル酸脂環式アルキルエステル)が挙げられる。 As the (meth)acrylic acid alkyl ester, preferably, a (meth)acrylic acid alkyl ester in which the alkyl group has 1 to 20 carbon atoms is used. Examples of the (meth)acrylic acid alkyl ester include a (meth)acrylic acid alkyl ester having a chain alkyl group (a (meth)acrylic acid chain alkyl ester) and a (meth)acrylic acid alkyl ester having an alicyclic alkyl group (a (meth)acrylic acid alicyclic alkyl ester).

 (メタ)アクリル酸鎖状アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸イソトリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸イソテトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸セチル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イソオクタデシル、および(メタ)アクリル酸ノナデシルが挙げられる。 Examples of (meth)acrylic acid chain alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, neopentyl (meth)acrylate, n-hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, and isooctyl (meth)acrylate. Examples of the acrylates include nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, isotridecyl (meth)acrylate, tetradecyl (meth)acrylate, isotetradecyl (meth)acrylate, pentadecyl (meth)acrylate, cetyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate, isooctadecyl (meth)acrylate, and nonadecyl (meth)acrylate.

 (メタ)アクリル酸脂環式アルキルエステルとしては、例えば、(メタ)アクリル酸シクロアルキルエステル、二環式の脂肪族炭化水素環を有する(メタ)アクリル酸エステル、および、三環以上の脂肪族炭化水素環を有する(メタ)アクリル酸エステルが挙げられる。(メタ)アクリル酸シクロアルキルエステルとしては、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸tert-ブチルシクロヘキシル、(メタ)アクリル酸シクロヘプチル、(メタ)アクリル酸シクロオクチル、および(メタ)アクリル酸シクロドデシルが挙げられる。二環式の脂肪族炭化水素環を有する(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸イソボルニルが挙げられる。三環以上の脂肪族炭化水素環を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸トリシクロペンタニル、(メタ)アクリル酸1-アダマンチル、(メタ)アクリル酸2-メチル-2-アダマンチル、および、(メタ)アクリル2-エチル-2-アダマンチルが挙げられる。 Examples of (meth)acrylic acid alicyclic alkyl esters include (meth)acrylic acid cycloalkyl esters, (meth)acrylic acid esters having a bicyclic aliphatic hydrocarbon ring, and (meth)acrylic acid esters having a tricyclic or higher aliphatic hydrocarbon ring. Examples of (meth)acrylic acid cycloalkyl esters include cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate, cycloheptyl (meth)acrylate, cyclooctyl (meth)acrylate, and cyclododecyl (meth)acrylate. Examples of (meth)acrylic acid esters having a bicyclic aliphatic hydrocarbon ring include isobornyl (meth)acrylate. Examples of (meth)acrylic acid esters having three or more aliphatic hydrocarbon rings include dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, tricyclopentanyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, and 2-ethyl-2-adamantyl (meth)acrylate.

 (メタ)アクリル酸アルキルエステルとしては、粘着シート10において、フレキシブルデバイス用途の粘着シートに求められる軟質性と粘着力とのバランスをとる観点から、好ましくは、炭素数8~12の第1のアルキル基を有する(メタ)アクリル酸アルキルエステルから選択される少なくとも一つが用いられるか、或いは、炭素数8~12の第1のアルキル基を有する(メタ)アクリル酸アルキルエステルから選択される少なくとも一つと、炭素数1~4のアルキル基を有する第2の(メタ)アクリル酸アルキルエステルから選択される少なくとも一つが用いられる。第1の(メタ)アクリル酸アルキルエステルは、好ましくは、アクリル酸2-エチルヘキシル(2EHA)、アクリル酸n-オクチル(NOAA)、アクリル酸イソノニル(INAA)、およびアクリル酸ラウリル(LA)かなる群より選択される少なくとも一つである。第2の(メタ)アクリル酸アルキルエステルは、好ましくは、アクリル酸n-ブチル(BA)である。 As the (meth)acrylic acid alkyl ester, from the viewpoint of achieving a balance between the softness and adhesive strength required for an adhesive sheet for flexible device applications in the adhesive sheet 10, preferably, at least one selected from (meth)acrylic acid alkyl esters having a first alkyl group having 8 to 12 carbon atoms is used, or at least one selected from (meth)acrylic acid alkyl esters having a first alkyl group having 8 to 12 carbon atoms and at least one selected from a second (meth)acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms is used. The first (meth)acrylic acid alkyl ester is preferably at least one selected from the group consisting of 2-ethylhexyl acrylate (2EHA), n-octyl acrylate (NOAA), isononyl acrylate (INAA), and lauryl acrylate (LA). The second (meth)acrylic acid alkyl ester is preferably n-butyl acrylate (BA).

 第1モノマー成分における(メタ)アクリル酸アルキルエステルの割合は、粘着シート10において軟質性と粘着力とを適切に発現させる観点から、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは88質量%以上、特に好ましくは90質量%以上である。同割合は、例えば99.9質量%以下、99.5質量%以下または99質量%以下である。炭素数8~12のアルキル基を有する(メタ)アクリル酸アルキルエステルから選択される第1の(メタ)アクリル酸アルキルエステルと、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステルから選択される別の第2の(メタ)アクリル酸アルキルエステルとを併用する場合、モノマー成分における第1の(メタ)アクリル酸アルキルエステルの割合は、好ましくは60質量%以上、より好ましくは65質量%以上、更に好ましくは70質量%以上であり、また、好ましくは85質量%以下、より好ましくは80質量%以下、更に好ましくは75質量%以下であり、モノマー成分における第2の(メタ)アクリル酸アルキルエステルの割合は、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上であり、また、好ましくは35質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下である。 The proportion of the (meth)acrylic acid alkyl ester in the first monomer component is preferably 80% by mass or more, more preferably 85% by mass or more, even more preferably 88% by mass or more, and particularly preferably 90% by mass or more, from the viewpoint of appropriately expressing softness and adhesive strength in the adhesive sheet 10. The proportion is, for example, 99.9% by mass or less, 99.5% by mass or less, or 99% by mass or less. When a first (meth)acrylic acid alkyl ester selected from (meth)acrylic acid alkyl esters having an alkyl group with 8 to 12 carbon atoms is used in combination with another second (meth)acrylic acid alkyl ester selected from (meth)acrylic acid alkyl esters having an alkyl group with 1 to 4 carbon atoms, the proportion of the first (meth)acrylic acid alkyl ester in the monomer component is preferably 60% by mass or more, more preferably 65% by mass or more, even more preferably 70% by mass or more, and preferably 85% by mass or less, more preferably 80% by mass or less, even more preferably 75% by mass or less, and the proportion of the second (meth)acrylic acid alkyl ester in the monomer component is preferably 10% by mass or more, more preferably 15% by mass or more, even more preferably 20% by mass or more, and preferably 35% by mass or less, more preferably 30% by mass or less, even more preferably 25% by mass or less.

 第1モノマー成分は、(メタ)アクリル酸アルキルエステルと共重合可能な共重合性モノマーを含んでもよい。共重合性モノマーとしては、例えば、極性基を有するモノマーが挙げられる。極性基含有モノマーとしては、例えば、ヒドロキシ基含有モノマー、窒素原子含有環を有するモノマー、およびカルボキシ基含有モノマーが挙げられる。極性基含有モノマーは、アクリルポリマーへの架橋点の導入、アクリルポリマーの凝集力の確保など、アクリルポリマーの改質に役立つ。共重合性モノマーは、単独で用いられてもよいし、二種類以上が併用されてもよい。 The first monomer component may contain a copolymerizable monomer that is copolymerizable with the (meth)acrylic acid alkyl ester. Examples of the copolymerizable monomer include a monomer having a polar group. Examples of the polar group-containing monomer include a hydroxy group-containing monomer, a monomer having a nitrogen atom-containing ring, and a carboxy group-containing monomer. The polar group-containing monomer is useful for modifying the acrylic polymer, such as introducing crosslinking points into the acrylic polymer and ensuring the cohesive force of the acrylic polymer. The copolymerizable monomer may be used alone or in combination of two or more types.

 ヒドロキシ基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、および(4-ヒドロキシメチルシクロへキシル)メチル(メタ)アクリレートが挙げられる。ヒドロキシ基含有モノマーは、好ましくは、アクリル酸2-ヒドロキシエチル(2HEA)、およびアクリル酸4-ヒドロキシブチル(4HBA)からなる群から選択される少なくとも一つである。 Examples of hydroxy group-containing monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, and (4-hydroxymethylcyclohexyl)methyl (meth)acrylate. The hydroxy group-containing monomer is preferably at least one selected from the group consisting of 2-hydroxyethyl acrylate (2HEA) and 4-hydroxybutyl acrylate (4HBA).

 第1モノマー成分におけるヒドロキシ基含有モノマーの割合は、アクリルポリマーへの架橋構造の導入、および、粘着シート10における凝集力の確保の観点から、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。同割合は、アクリルポリマーの極性(粘着シート10における各種添加剤成分とアクリルポリマーとの相溶性に関わる)の調整の観点から、好ましくは12質量%以下、より好ましくは10質量%以下、更に好ましくは9質量%以下である。 The proportion of the hydroxyl group-containing monomer in the first monomer component is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more, from the viewpoint of introducing a crosslinked structure into the acrylic polymer and ensuring the cohesive strength of the adhesive sheet 10. From the viewpoint of adjusting the polarity of the acrylic polymer (related to the compatibility of the various additive components in the adhesive sheet 10 with the acrylic polymer), the proportion is preferably 12% by mass or less, more preferably 10% by mass or less, and even more preferably 9% by mass or less.

 窒素原子含有環を有するモノマーとしては、例えば、N-ビニル-2-ピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、4-アクリロイルモルホリン、N-ビニル-2-カプロラクタム、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン、N-ビニルピラゾール、N-ビニルイソオキサゾール、N-ビニルチアゾール、およびN-ビニルイソチアゾールが挙げられる。窒素原子含有環を有するモノマーは、好ましくは、N-ビニル-2-ピロリドン(NVP)である。  Examples of monomers having a nitrogen atom-containing ring include N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, 4-acryloylmorpholine, N-vinyl-2-caprolactam, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, N-vinylpyrazole, N-vinylisoxazole, N-vinylthiazole, and N-vinylisothiazole. The monomer having a nitrogen atom-containing ring is preferably N-vinyl-2-pyrrolidone (NVP).

 窒素原子含有環を有するモノマーを用いる場合、第1モノマー成分における、窒素原子含有環を有するモノマーの割合は、粘着シート10における凝集力の確保、および、粘着シート10における対被着体密着力の確保の観点から、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは1.5質量%以上である。同割合は、アクリルポリマーのガラス転移温度の調整、および、アクリルポリマーの極性(粘着シート10における各種添加剤成分とアクリルポリマーとの相溶性に関わる)の調整の観点から、好ましくは10質量%以下、より好ましくは6質量%以下、更に好ましくは4質量%以下である。 When a monomer having a nitrogen atom-containing ring is used, the proportion of the monomer having a nitrogen atom-containing ring in the first monomer component is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 1.5% by mass or more, from the viewpoint of ensuring the cohesive strength of the adhesive sheet 10 and ensuring the adhesive strength of the adhesive sheet 10 to the adherend. The same proportion is preferably 10% by mass or less, more preferably 6% by mass or less, and even more preferably 4% by mass or less, from the viewpoint of adjusting the glass transition temperature of the acrylic polymer and adjusting the polarity of the acrylic polymer (related to the compatibility of the various additive components in the adhesive sheet 10 with the acrylic polymer).

 カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、およびイソクロトン酸が挙げられる。 Carboxy group-containing monomers include, for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.

 カルボキシ基含有モノマーを用いる場合、モノマー成分におけるカルボキシ基含有モノマーの割合は、アクリルポリマーへの架橋構造の導入、粘着シート10における凝集力の確保、および、粘着シート10における対被着体密着力の確保の観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは0.8質量%以上である。同割合は、アクリルポリマーのガラス転移温度の調整、および、酸による被着体の腐食リスクの回避の観点から、好ましくは3質量%以下、より好ましくは1質量%以下である。 When a carboxyl group-containing monomer is used, the proportion of the carboxyl group-containing monomer in the monomer components is preferably 0.1 mass% or more, more preferably 0.5 mass% or more, and even more preferably 0.8 mass% or more, from the viewpoints of introducing a crosslinked structure into the acrylic polymer, ensuring the cohesive strength of the adhesive sheet 10, and ensuring the adhesive strength of the adhesive sheet 10 to the adherend. The proportion is preferably 3 mass% or less, more preferably 1 mass% or less, from the viewpoints of adjusting the glass transition temperature of the acrylic polymer and avoiding the risk of corrosion of the adherend by acid.

 第1モノマー成分は、他の共重合性モノマーを含んでいてもよい。他の共重合性モノマーとしては、例えば、酸無水物モノマー、スルホン酸基含有モノマー、リン酸基含有モノマー、エポキシ基含有モノマー、シアノ基含有モノマー、アルコキシ基含有モノマー、および芳香族ビニル化合物が挙げられる。これら他の共重合性モノマーは、単独で用いられてもよいし、二種類以上が併用されてもよい。 The first monomer component may contain other copolymerizable monomers. Examples of the other copolymerizable monomers include acid anhydride monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, epoxy group-containing monomers, cyano group-containing monomers, alkoxy group-containing monomers, and aromatic vinyl compounds. These other copolymerizable monomers may be used alone or in combination of two or more kinds.

 第1モノマー成分は、好ましくは、炭素数8~12のアルキル基を有する第1の(メタ)アクリル酸アルキルエステルと、炭素数1~4のアルキル基を有する第2の(メタ)アクリル酸アルキルエステルと、ヒドロキシ基含有モノマーと、窒素原子含有環を有するモノマーとを含む。第1モノマー成分は、より好ましくは、NOAAと、BAと、NVPと、4HBAとを含む。 The first monomer component preferably includes a first (meth)acrylic acid alkyl ester having an alkyl group with 8 to 12 carbon atoms, a second (meth)acrylic acid alkyl ester having an alkyl group with 1 to 4 carbon atoms, a hydroxyl group-containing monomer, and a monomer having a nitrogen atom-containing ring. The first monomer component more preferably includes NOAA, BA, NVP, and 4HBA.

 ベースポリマーは、好ましくは、架橋構造を有する。ベースポリマーへの架橋構造の導入方法としては、例えば、次の第1の方法および第2の方法が挙げられる。第1の方法では、架橋剤と反応可能な官能基を有するベースポリマーと架橋剤とを粘着剤組成物に配合し、ベースポリマーと架橋剤とを粘着シート中で反応させる。第2の方法では、ベースポリマーを形成する第1モノマー成分に、架橋剤としての多官能化合物を含め、当該第1モノマー成分の重合により、ポリマー鎖に分枝構造(架橋構造)が導入されたベースポリマーを形成する。これらの方法は、併用されてもよい。 The base polymer preferably has a crosslinked structure. Examples of methods for introducing a crosslinked structure into a base polymer include the following first and second methods. In the first method, a base polymer having a functional group capable of reacting with the crosslinking agent and a crosslinking agent are blended into an adhesive composition, and the base polymer and the crosslinking agent are reacted in an adhesive sheet. In the second method, a first monomer component forming the base polymer contains a multifunctional compound as a crosslinking agent, and the first monomer component is polymerized to form a base polymer in which a branched structure (crosslinked structure) has been introduced into the polymer chain. These methods may be used in combination.

 上記第1の方法で用いられる架橋剤としては、例えば、ベースポリマーに含まれる官能基(水酸基およびカルボキシ基など)と反応する化合物が挙げられる。そのような架橋剤としては、例えば、イソシアネート架橋剤、過酸化物架橋剤、エポキシ架橋剤、オキサゾリン架橋剤、アジリジン架橋剤、およびカルボジイミド架橋剤が挙げられる。第1の方法における架橋剤は、単独で用いられてもよいし、二種類以上が併用されてもよい。第1の方法における架橋剤としては、ベースポリマーにおける水酸基およびカルボキシ基との反応性が高くて架橋構造の導入が容易であることから、好ましくは、イソシアネート架橋剤が用いられる。 The crosslinking agent used in the first method is, for example, a compound that reacts with functional groups (such as hydroxyl groups and carboxyl groups) contained in the base polymer. Examples of such crosslinking agents include isocyanate crosslinking agents, peroxide crosslinking agents, epoxy crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, and carbodiimide crosslinking agents. The crosslinking agents in the first method may be used alone or in combination of two or more types. As the crosslinking agent in the first method, an isocyanate crosslinking agent is preferably used because it has high reactivity with the hydroxyl groups and carboxyl groups in the base polymer and is easy to introduce a crosslinked structure.

 イソシアネート架橋剤としては、例えば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、テトラメチルキシリレンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート、およびポリメチレンポリフェニルイソシアネートが挙げられる。また、イソシアネート架橋剤としては、これらイソシアネートの誘導体も挙げられる。当該イソシアネート誘導体としては、例えば、イソシアヌレート変性体およびポリオール変性体が挙げられる。イソシアネート架橋剤の市販品としては、例えば、コロネートL(トリレンジイソシアネートのトリメチロールプロパンアダクト体,東ソー製)、コロネートHL(へキサメチレンジイソシアネートのトリメチロールプロパンアダクト体,東ソー製)、コロネートHX(ヘキサメチレンジイソシアネートのイソシアヌレート体,東ソー製)、タケネートD110N(キシリレンジイソシアネートのトリメチロールプロパンアダクト体,三井化学製)、および、タケネート600(1,3-ビス(イソシアナトメチル)シクロヘキサン,三井化学製)が挙げられる。 Examples of isocyanate crosslinking agents include tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, tetramethylxylylene diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, and polymethylene polyphenylisocyanate. In addition, examples of isocyanate crosslinking agents include derivatives of these isocyanates. Examples of the isocyanate derivatives include isocyanurate modified products and polyol modified products. Commercially available isocyanate crosslinking agents include, for example, Coronate L (trimethylolpropane adduct of tolylene diisocyanate, manufactured by Tosoh), Coronate HL (trimethylolpropane adduct of hexamethylene diisocyanate, manufactured by Tosoh), Coronate HX (isocyanurate of hexamethylene diisocyanate, manufactured by Tosoh), Takenate D110N (trimethylolpropane adduct of xylylene diisocyanate, manufactured by Mitsui Chemicals), and Takenate 600 (1,3-bis(isocyanatomethyl)cyclohexane, manufactured by Mitsui Chemicals).

 過酸化物架橋剤としては、ジベンゾイルペルオキサイド、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、およびt-ブチルパーオキシピバレートが挙げられる。 Peroxide crosslinking agents include dibenzoyl peroxide, di(2-ethylhexyl) peroxydicarbonate, di(4-t-butylcyclohexyl) peroxydicarbonate, di-sec-butyl peroxydicarbonate, t-butyl peroxyneodecanoate, t-hexyl peroxypivalate, and t-butyl peroxypivalate.

 エポキシ架橋剤としては、ビスフェノールA、エピクロルヒドリン型のエポキシ樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジアミングリシジルアミン、N,N,N',N'-テトラグリシジル-m-キシリレンジアミン、および1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンが挙げられる。 Epoxy crosslinkers include bisphenol A, epichlorohydrin type epoxy resins, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol glycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, diamine glycidylamine, N,N,N',N'-tetraglycidyl-m-xylylenediamine, and 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane.

 第1の方法における架橋剤の配合量は、粘着シート10の凝集力を確保する観点から、ベースポリマー100質量部あたり、例えば0.01質量部以上であり、好ましくは0.05質量部以上、より好ましくは0.1質量部以上である。粘着シート10において良好なタック性を確保する観点から、ベースポリマー100質量部に対する架橋剤の配合量は、例えば5質量部以下であり、好ましくは1質量部以下、より好ましくは0.2質量部以下である。 The amount of crosslinking agent in the first method is, for example, 0.01 parts by mass or more, preferably 0.05 parts by mass or more, and more preferably 0.1 parts by mass or more, per 100 parts by mass of base polymer, from the viewpoint of ensuring the cohesive strength of the adhesive sheet 10. From the viewpoint of ensuring good tackiness in the adhesive sheet 10, the amount of crosslinking agent in the first method is, for example, 5 parts by mass or less, preferably 1 part by mass or less, and more preferably 0.2 parts by mass or less, per 100 parts by mass of base polymer.

 上記第2の方法では、第1モノマー成分(架橋構造を導入するための多官能化合物と単官能モノマーとを含む)は、一度で重合させてもよいし、多段階で重合させてもよい。多段階重合の方法では、まず、ベースポリマーを形成するための単官能モノマーを重合させ(予備重合)、これによって部分重合物(低重合度の重合物と未反応の単官能モノマーとの混合物)を含有するプレポリマー組成物を調製する。次に、プレポリマー組成物に、架橋剤としての多官能化合物を添加した後、部分重合物と多官能化合物とを含む反応系にて重合反応を進行させる(本重合)。 In the second method, the first monomer component (including a polyfunctional compound and a monofunctional monomer for introducing a crosslinked structure) may be polymerized in one step or in multiple steps. In the multistep polymerization method, first, a monofunctional monomer for forming a base polymer is polymerized (preliminary polymerization), thereby preparing a prepolymer composition containing a partial polymer (a mixture of a polymer with a low degree of polymerization and an unreacted monofunctional monomer). Next, a polyfunctional compound is added as a crosslinking agent to the prepolymer composition, and then a polymerization reaction is allowed to proceed in a reaction system containing the partial polymer and the polyfunctional compound (main polymerization).

 多官能化合物としては、例えば、エチレン性不飽和二重結合を1分子中に2個以上含有する、多官能モノマーおよび多官能オリゴマーが、挙げられる。多官能モノマーとしては、多官能(メタ)アクリレートが挙げられる。 Examples of polyfunctional compounds include polyfunctional monomers and polyfunctional oligomers that contain two or more ethylenically unsaturated double bonds in one molecule. Examples of polyfunctional monomers include polyfunctional (meth)acrylates.

 多官能(メタ)アクリレートとしては、二官能(メタ)アクリレート、三官能(メタ)アクリレート、および、四官能以上の多官能(メタ)アクリレートが挙げられる。 Examples of polyfunctional (meth)acrylates include difunctional (meth)acrylates, trifunctional (meth)acrylates, and tetrafunctional or higher polyfunctional (meth)acrylates.

 二官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレート(BPAEODE)、およびネオペンチルグリコールジ(メタ)アクリレートが挙げられる。 Examples of bifunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, glycerin di(meth)acrylate, ethoxylated bisphenol A diacrylate (BPAEODE), and neopentyl glycol di(meth)acrylate.

 三官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、およびトリス(アクリロイルオキシエチル)イソシアヌレートが挙げられる。 Examples of trifunctional (meth)acrylates include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, and tris(acryloyloxyethyl)isocyanurate.

 四官能以上の多官能(メタ)アクリレートとしては、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、およびジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。 Examples of tetrafunctional or higher polyfunctional (meth)acrylates include ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol monohydroxypenta(meth)acrylate, alkyl-modified dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate.

 多官能オリゴマーとしては、例えば、ウレタン(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、ポリエーテル(メタ)アクリレートオリゴマー、ポリオール(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、ポリエチレングリコールジ(メタ)アクリレート、および、ポリプロピレングリコールジ(メタ)アクリレートが挙げられる。 Examples of polyfunctional oligomers include urethane (meth)acrylate oligomers, polyester (meth)acrylate oligomers, polyether (meth)acrylate oligomers, polyol (meth)acrylate oligomers, epoxy (meth)acrylate oligomers, polyethylene glycol di(meth)acrylate, and polypropylene glycol di(meth)acrylate.

 第2の方法における架橋剤としての多官能化合物は、単独で用いられてもよいし、二種類以上が併用されてもよい。多官能化合物としては、好ましくは、多官能モノマーが用いられ、より好ましくは、1,9-ノナンジオールジアクリレート、ジペンタエリスリトールヘキサアクリレート、1,6-ヘキサンジオールジアクリレート、およびトリメチロールプロパントリアクリレートからなる群から選択される少なくとも一つが用いられる。 The polyfunctional compound used as the crosslinking agent in the second method may be used alone or in combination of two or more kinds. As the polyfunctional compound, a polyfunctional monomer is preferably used, and more preferably at least one selected from the group consisting of 1,9-nonanediol diacrylate, dipentaerythritol hexaacrylate, 1,6-hexanediol diacrylate, and trimethylolpropane triacrylate is used.

 第1モノマー成分における架橋剤としての多官能化合物の配合量は、粘着シート10の凝集力を確保する観点から、単官能モノマー100質量部あたり、好ましくは0.02質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.07質量部以上である。多官能化合物の配合量は、粘着シート10において良好なタック性を確保する観点から、単官能モノマー100質量部あたり、好ましくは3質量部以下、より好ましくは2質量部以下、更に好ましくは1質量部以下である。 The amount of the polyfunctional compound as a crosslinking agent in the first monomer component is preferably 0.02 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.07 parts by mass or more per 100 parts by mass of the monofunctional monomer, from the viewpoint of ensuring the cohesive strength of the adhesive sheet 10. The amount of the polyfunctional compound is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, and even more preferably 1 part by mass or less per 100 parts by mass of the monofunctional monomer, from the viewpoint of ensuring good tackiness in the adhesive sheet 10.

 アクリルポリマー(ベースポリマー)は、上述の第1モノマー成分を重合させることによって形成できる。重合方法としては、例えば、溶液重合、乳化重合、および無溶剤での光重合(例えば紫外線重合)が挙げられる。溶液重合の溶媒としては、例えば、酢酸エチルおよびトルエンが用いられる。重合においては、連鎖移動剤を用いてもよい。また、重合の開始剤としては、例えば、熱重合開始剤および光重合開始剤が用いられる。重合開始剤は、単独で用いられてもよいし、二種類以上が併用されてもよい。重合開始剤の使用量は、第1モノマー成分100質量部あたり、好ましくは0.03質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.07質量部以上であり、また、好ましくは1質量部以下、より好ましくは0.5質量部以下、更に好ましくは0.3質量部以下である。 The acrylic polymer (base polymer) can be formed by polymerizing the first monomer component described above. Examples of the polymerization method include solution polymerization, emulsion polymerization, and solvent-free photopolymerization (e.g., ultraviolet polymerization). For example, ethyl acetate and toluene are used as the solvent for solution polymerization. A chain transfer agent may be used in the polymerization. For example, a thermal polymerization initiator and a photopolymerization initiator are used as the polymerization initiator. The polymerization initiator may be used alone or in combination of two or more types. The amount of the polymerization initiator used is preferably 0.03 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.07 parts by mass or more, and is preferably 1 part by mass or less, more preferably 0.5 parts by mass or less, and even more preferably 0.3 parts by mass or less, per 100 parts by mass of the first monomer component.

 熱重合開始剤としては、例えば、アゾ重合開始剤および過酸化物重合開始剤が挙げられる。アゾ重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス-2-メチルブチロニトリル、2,2'-アゾビス(2-メチルプロピオン酸)ジメチル、4,4'-アゾビス-4-シアノバレリアン酸、アゾビスイソバレロニトリル、および2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロライドが挙げられる。過酸化物重合開始剤としては、例えば、ジベンゾイルペルオキシド、t-ブチルペルマレエ-ト、および過酸化ラウロイルが挙げられる。 Thermal polymerization initiators include, for example, azo polymerization initiators and peroxide polymerization initiators. Azo polymerization initiators include, for example, 2,2'-azobisisobutyronitrile, 2,2'-azobis-2-methylbutyronitrile, 2,2'-azobis(2-methylpropionate)dimethyl, 4,4'-azobis-4-cyanovaleric acid, azobisisovaleronitrile, and 2,2'-azobis(2-amidinopropane)dihydrochloride. Peroxide polymerization initiators include, for example, dibenzoyl peroxide, t-butyl permaleate, and lauroyl peroxide.

 光重合開始剤としては、例えば、ラジカル系光重合開始剤、カチオン系光重合開始剤、およびアニオン系光重合開始剤が挙げられる。 Examples of photopolymerization initiators include radical photopolymerization initiators, cationic photopolymerization initiators, and anionic photopolymerization initiators.

 ラジカル系光重合開始剤としては、例えば、アシルホスフィンオキサイド系光重合開始剤、ベンゾインエーテル系光重合開始剤、およびアセトフェノン系光重合開始剤が挙げられる。 Examples of radical photopolymerization initiators include acylphosphine oxide photopolymerization initiators, benzoin ether photopolymerization initiators, and acetophenone photopolymerization initiators.

 アシルホスフィンオキサイド系光重合開始剤としては、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジ-n-ブトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、および、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドが含まれる。ベンゾインエーテル系光重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、および2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンが挙げられる。アセトフェノン系光重合開始剤としては、例えば、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、4-フェノキシジクロロアセトフェノン、および4-(t-ブチル)ジクロロアセトフェノンが挙げられる。 Examples of acylphosphine oxide photopolymerization initiators include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,4-di-n-butoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide. Examples of benzoin ether photopolymerization initiators include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and 2,2-dimethoxy-1,2-diphenylethan-1-one. Examples of acetophenone-based photopolymerization initiators include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 4-phenoxydichloroacetophenone, and 4-(t-butyl)dichloroacetophenone.

 ベースポリマーの重量平均分子量は、粘着シート10における凝集力の確保の観点から、好ましくは10万以上、より好ましくは30万以上、更に好ましくは50万以上である。ベースポリマーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定してポリスチレン換算により算出される。 The weight average molecular weight of the base polymer is preferably 100,000 or more, more preferably 300,000 or more, and even more preferably 500,000 or more, from the viewpoint of ensuring the cohesive force of the adhesive sheet 10. The weight average molecular weight of the base polymer is measured by gel permeation chromatography (GPC) and calculated in terms of polystyrene.

 ベースポリマーのガラス転移温度(Tg)は、好ましくは0℃以下、より好ましくは-10℃以下、更に好ましくは-20℃以下である。同ガラス転移温度は、例えば-80℃以上である。ベースポリマーのガラス転移温度(Tg)については、上記のFoxの式に基づき求められるガラス転移温度(理論値)を用いることができる。 The glass transition temperature (Tg) of the base polymer is preferably 0°C or lower, more preferably -10°C or lower, and even more preferably -20°C or lower. The glass transition temperature is, for example, -80°C or higher. The glass transition temperature (Tg) of the base polymer can be the glass transition temperature (theoretical value) calculated based on the above Fox formula.

 ベースポリマーとしてアクリルポリマーが用いられる場合、オリゴマーとしてはアクリルオリゴマーが好ましい。アクリルオリゴマーは、(メタ)アクリル酸アルキルエステルを50質量%以上の割合で含むモノマー成分(第2モノマー成分)の共重合体であり、重量平均分子量が例えば1000以上30000以下である。オリゴマーは、単独で用いられてもよいし、二種類以上が併用されてもよい。 When an acrylic polymer is used as the base polymer, the oligomer is preferably an acrylic oligomer. The acrylic oligomer is a copolymer of a monomer component (second monomer component) containing 50% or more by mass of an alkyl (meth)acrylate ester, and has a weight average molecular weight of, for example, 1,000 or more and 30,000 or less. The oligomer may be used alone or in combination of two or more types.

 オリゴマーが二種類以上併用される場合、少なくとも一種類のオリゴマーが、規定のパラメータ(例えば、ガラス転移温度、ベースポリマーのHSPの水素結合項δHと、オリゴマーのHSPの水素結合項δHとの差ΔH(=δH-δH))を満たせばよい。つまり、オリゴマーが二種類以上併用される場合、規定のパラメータ(例えば、ガラス転移温度、ベースポリマーのHSPの水素結合項δHと、オリゴマーのHSPの水素結合項δHとの差ΔH(=δH-δH))を満たさないオリゴマーも、本発明の効果を損なわない範囲で含んでいてもよい。好ましくは、併用される全てのオリゴマーが、規定のパラメータを満たす。 When two or more oligomers are used in combination, at least one of the oligomers only needs to satisfy the specified parameters (e.g., glass transition temperature, difference ΔH between hydrogen bond term δH 1 of HSP of base polymer and hydrogen bond term δH 2 of HSP of oligomer (= δH 2 - δH 1 )). In other words, when two or more oligomers are used in combination, oligomers that do not satisfy the specified parameters (e.g., glass transition temperature, difference ΔH between hydrogen bond term δH 1 of HSP of base polymer and hydrogen bond term δH 2 of HSP of oligomer (= δH 2 - δH 1 )) may also be included within a range that does not impair the effects of the present invention. Preferably, all oligomers used in combination satisfy the specified parameters.

 第2モノマー成分における(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸脂環式アルキルエステル、および、(メタ)アクリル酸鎖状アルキルエステルが挙げられる。 Examples of the (meth)acrylic acid alkyl ester in the second monomer component include (meth)acrylic acid alicyclic alkyl ester and (meth)acrylic acid chain alkyl ester.

 第2モノマー成分における(メタ)アクリル酸脂環式アルキルエステルとしては、例えば、第1モノマー成分に関して上述した(メタ)アクリル酸脂環式アルキルエステルが挙げられる。第2モノマー成分における(メタ)アクリル酸脂環式アルキルエステルは、好ましくは、メタクリル酸シクロヘキシル(CHMA)、メタクリル酸メチルシクロヘキシル、メタクリル酸tert-ブチルシクロヘキシル、メタクリル酸シクロドデシル、メタクリル酸イソボルニル(IBXMA)、メタクリル酸ジシクロペンタニル(DCPMA)、メタクリル酸ジシクロペンテニル、およびメタクリル酸1-アダマンチル(ADMA)からなる群より選択される少なくとも一つであり、より好ましくは、DCPMA、CHMA、IBXMA、およびADMAからなる群より選択される少なくとも一つである。 The (meth)acrylic acid alicyclic alkyl ester in the second monomer component may be, for example, the (meth)acrylic acid alicyclic alkyl ester described above with respect to the first monomer component. The (meth)acrylic acid alicyclic alkyl ester in the second monomer component is preferably at least one selected from the group consisting of cyclohexyl methacrylate (CHMA), methylcyclohexyl methacrylate, tert-butylcyclohexyl methacrylate, cyclododecyl methacrylate, isobornyl methacrylate (IBXMA), dicyclopentanyl methacrylate (DCPMA), dicyclopentenyl methacrylate, and 1-adamantyl methacrylate (ADMA), and more preferably at least one selected from the group consisting of DCPMA, CHMA, IBXMA, and ADMA.

 第2モノマー成分における(メタ)アクリル酸脂環式アルキルエステルの割合は、オリゴマーの高Tg化の観点から、好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは40質量%以上である。第2モノマー成分における(メタ)アクリル酸脂環式アルキルエステルの割合は、第2モノマー成分の重合性の観点から、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは65質量%以下である。 The proportion of the (meth)acrylic acid alicyclic alkyl ester in the second monomer component is preferably 30% by mass or more, more preferably 35% by mass or more, and even more preferably 40% by mass or more, from the viewpoint of increasing the Tg of the oligomer. The proportion of the (meth)acrylic acid alicyclic alkyl ester in the second monomer component is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 65% by mass or less, from the viewpoint of the polymerizability of the second monomer component.

 第2モノマー成分における(メタ)アクリル酸鎖状アルキルエステルとしては、例えば、第1モノマー成分に関して上述した(メタ)アクリル酸鎖状アルキルエステルが挙げられる。第2モノマー成分における(メタ)アクリル酸鎖状アルキルエステルは、好ましくは、炭素数1~6のアルキル基を有する(メタ)アクリル酸アルキルエステルであり、より好ましくはメタクリル酸メチル(MMA)である。MMAは、ホモポリマーのガラス転移温度が高く、ベースポリマーとの相溶性が比較的高いので、好ましい。 The (meth)acrylic acid chain alkyl ester in the second monomer component may be, for example, the (meth)acrylic acid chain alkyl ester described above in relation to the first monomer component. The (meth)acrylic acid chain alkyl ester in the second monomer component is preferably a (meth)acrylic acid alkyl ester having an alkyl group with 1 to 6 carbon atoms, and more preferably methyl methacrylate (MMA). MMA is preferred because it has a high glass transition temperature of the homopolymer and is relatively compatible with the base polymer.

 第2モノマー成分における(メタ)アクリル酸鎖状アルキルエステルの割合は、オリゴマーの高Tgの確保と、ベースポリマーに対するオリゴマーの相溶性の調整との観点から、好ましくは15質量%以上、より好ましくは20質量%以上、更に好ましくは25質量%以上、一層好ましくは30質量%以上であり、また、好ましくは60質量%以下、より好ましくは55質量%以下、更に好ましくは50質量%以下である。 The proportion of the (meth)acrylic acid chain alkyl ester in the second monomer component is preferably 15% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 30% by mass or more, from the viewpoint of ensuring a high Tg of the oligomer and adjusting the compatibility of the oligomer with the base polymer, and is preferably 60% by mass or less, more preferably 55% by mass or less, even more preferably 50% by mass or less.

 第2モノマー成分における(メタ)アクリル酸鎖状アルキルエステルに対する(メタ)アクリル酸脂環式アルキルエステルの質量比率は、オリゴマーの高Tg化と、ベースポリマーに対するオリゴマーの相溶性の調整との観点から、好ましくは0.6以上、より好ましくは0.8以上であり、また、好ましくは9.0以下、より好ましくは5.0以下、更に好ましくは2.0以下である。 The mass ratio of the (meth)acrylic acid alicyclic alkyl ester to the (meth)acrylic acid linear alkyl ester in the second monomer component is preferably 0.6 or more, more preferably 0.8 or more, from the viewpoint of increasing the Tg of the oligomer and adjusting the compatibility of the oligomer with the base polymer, and is also preferably 9.0 or less, more preferably 5.0 or less, and even more preferably 2.0 or less.

 第2モノマー成分は、(メタ)アクリル酸アルキルエステルと共重合可能な共重合性モノマーを含んでもよい。共重合性モノマーとしては、例えば、親水性モノマーが挙げられる。親水性モノマーとしては、例えば、ヒドロキシ基含有モノマー、窒素原子含有環を有するモノマー、カルボキシ基含有モノマー、および、エーテル基含有モノマーが挙げられ、好ましくは、ヒドロキシ基含有モノマー、窒素原子含有環を有するモノマー、カルボキシ基含有モノマー、および、エーテル基含有モノマーからなる群より選択される少なくとも一つである。親水性モノマーは、単独で用いられてもよいし、二種類以上が併用されてもよい。 The second monomer component may contain a copolymerizable monomer that is copolymerizable with the (meth)acrylic acid alkyl ester. Examples of the copolymerizable monomer include hydrophilic monomers. Examples of the hydrophilic monomer include hydroxyl group-containing monomers, monomers having a nitrogen atom-containing ring, carboxyl group-containing monomers, and ether group-containing monomers, and preferably at least one selected from the group consisting of hydroxyl group-containing monomers, monomers having a nitrogen atom-containing ring, carboxyl group-containing monomers, and ether group-containing monomers. The hydrophilic monomers may be used alone or in combination of two or more kinds.

 第2モノマー成分におけるヒドロキシ基含有モノマーとしては、例えば、第1モノマー成分に関して上述したヒドロキシ基含有モノマーが挙げられる。第2モノマー成分におけるヒドロキシ基含有モノマーは、好ましくは、メタクリル酸2-ヒドロキシエチル(HEMA)、メタクリル酸2-ヒドロキシプロピル(HPMA)、およびアクリル酸4-ヒドロキシブチル(4HBA)からなる群から選択される少なくとも一つである。 The hydroxyl group-containing monomer in the second monomer component may be, for example, the hydroxyl group-containing monomer described above with respect to the first monomer component. The hydroxyl group-containing monomer in the second monomer component is preferably at least one selected from the group consisting of 2-hydroxyethyl methacrylate (HEMA), 2-hydroxypropyl methacrylate (HPMA), and 4-hydroxybutyl acrylate (4HBA).

 第2モノマー成分におけるヒドロキシ基含有モノマーの割合は、ベースポリマーに対するオリゴマーの相溶性の調整の観点から、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、また、好ましくは18質量%以下、より好ましくは15質量%以下、更に好ましくは12質量%以下である。 The proportion of the hydroxyl group-containing monomer in the second monomer component is preferably 1% by mass or more, more preferably 3% by mass or more, even more preferably 5% by mass or more, from the viewpoint of adjusting the compatibility of the oligomer with the base polymer, and is preferably 18% by mass or less, more preferably 15% by mass or less, even more preferably 12% by mass or less.

 第2モノマー成分における窒素原子含有環を有するモノマーとしては、例えば、第1モノマー成分に関して上述した窒素原子含有環を有するモノマーが挙げられる。第2モノマー成分における窒素原子含有環を有するモノマーは、好ましくは、4-アクリロイルモルホリン(ACMO)である。 The monomer having a nitrogen atom-containing ring in the second monomer component may be, for example, the monomer having a nitrogen atom-containing ring described above with respect to the first monomer component. The monomer having a nitrogen atom-containing ring in the second monomer component is preferably 4-acryloylmorpholine (ACMO).

 第2モノマー成分における窒素原子含有環を有するモノマーの割合は、ベースポリマーに対するオリゴマーの相溶性の調整の観点から、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。第2モノマー成分における窒素原子含有環を有するモノマーの割合は、オリゴマーの分子量制御の観点から、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは22質量%以下である。 The proportion of the monomer having a nitrogen atom-containing ring in the second monomer component is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more, from the viewpoint of adjusting the compatibility of the oligomer with the base polymer. The proportion of the monomer having a nitrogen atom-containing ring in the second monomer component is preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 22% by mass or less, from the viewpoint of controlling the molecular weight of the oligomer.

 第2モノマー成分におけるカルボキシ基含有モノマーとしては、例えば、第1モノマー成分に関して上述したカルボキシ基含有モノマーが挙げられる。第2モノマー成分におけるカルボキシ基含有モノマーは、好ましくは、アクリル酸(AA)である。 The carboxyl group-containing monomer in the second monomer component may be, for example, the carboxyl group-containing monomer described above with respect to the first monomer component. The carboxyl group-containing monomer in the second monomer component is preferably acrylic acid (AA).

 第2モノマー成分におけるカルボキシ基含有モノマーの割合は、ベースポリマーに対するオリゴマーの相溶性の調整の観点から、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、また、好ましくは18質量%以下、より好ましくは15質量%以下、更に好ましくは12質量%以下である。 The proportion of the carboxyl group-containing monomer in the second monomer component is preferably 1% by mass or more, more preferably 3% by mass or more, even more preferably 5% by mass or more, from the viewpoint of adjusting the compatibility of the oligomer with the base polymer, and is preferably 18% by mass or less, more preferably 15% by mass or less, even more preferably 12% by mass or less.

 エーテル基含有モノマーとしては、例えば、(メタ)アクリル酸エチルカルビトール、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸2-フェノキシエチル、(メタ)アクリル酸フェノキシエチル、および(メタ)アクリル酸ビニロキシエトキシエチルが挙げられる。エーテル基含有モノマーは、好ましくはアクリル酸エチルカルビトール(CBA)である。 Examples of ether group-containing monomers include ethyl carbitol (meth)acrylate, 2-methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, phenoxyethyl (meth)acrylate, and vinyloxyethoxyethyl (meth)acrylate. The ether group-containing monomer is preferably ethyl carbitol acrylate (CBA).

 第2モノマー成分におけるエーテル基含有モノマーの割合は、ベースポリマーに対するオリゴマーの相溶性の調整の観点から、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上であり、また、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは32質量%以下である。 The proportion of the ether group-containing monomer in the second monomer component is preferably 3% by mass or more, more preferably 5% by mass or more, even more preferably 7% by mass or more, from the viewpoint of adjusting the compatibility of the oligomer with the base polymer, and is preferably 40% by mass or less, more preferably 35% by mass or less, even more preferably 32% by mass or less.

 第2モノマー成分は、好ましくは、(メタ)アクリル酸脂環式アルキルエステルと、(メタ)アクリル酸鎖状アルキルエステルと、親水性モノマーとを含む。すなわち、アクリルオリゴマーは、好ましくは、(メタ)アクリル酸脂環式アルキルエステルと、(メタ)アクリル酸鎖状アルキルエステルと、親水性モノマーとを含む第2モノマー成分の共重合体である。 The second monomer component preferably contains a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer. In other words, the acrylic oligomer is preferably a copolymer of the second monomer component containing a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer.

 第2モノマー成分における親水性モノマーの割合は、オリゴマーの高Tg化と、ベースポリマーに対するオリゴマーの相溶性の調整との観点から、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、また、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは32質量%以下である。 The proportion of hydrophilic monomer in the second monomer component is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more, from the viewpoint of increasing the Tg of the oligomer and adjusting the compatibility of the oligomer with the base polymer, and is preferably 40% by mass or less, more preferably 35% by mass or less, and even more preferably 32% by mass or less.

 アクリルオリゴマーは、上記のように、単独で用いられてもよいし、二種類以上が併用されてもよい。アクリルオリゴマーが二種類以上併用される場合、好ましくは、少なくとも一種類以上のオリゴマーが、(メタ)アクリル酸脂環式アルキルエステルと、(メタ)アクリル酸鎖状アルキルエステルと、親水性モノマーとを含む第2モノマー成分の共重合体である。具体的には、(メタ)アクリル酸脂環式アルキルエステルと、(メタ)アクリル酸鎖状アルキルエステルとを含む第2モノマー成分の共重合体、および、(メタ)アクリル酸脂環式アルキルエステルと、(メタ)アクリル酸鎖状アルキルエステルと、親水性モノマーとを含む第2モノマー成分の共重合体の併用が挙げられる。 As described above, the acrylic oligomer may be used alone or in combination of two or more kinds. When two or more kinds of acrylic oligomers are used in combination, preferably, at least one of the oligomers is a copolymer of a second monomer component containing a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer. Specifically, examples of the copolymer include a copolymer of a second monomer component containing a (meth)acrylic acid alicyclic alkyl ester and a (meth)acrylic acid chain alkyl ester, and a copolymer of a second monomer component containing a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer.

 アクリルオリゴマーが二種類以上併用される場合、アクリルオリゴマーの総量中のそれぞれの共重合体(それぞれのアクリルオリゴマー)の含有割合は、特に限定されず、二種類以上併用されたアクリルオリゴマーが規定のパラメータを満たす範囲で適宜調整される。具体的には、アクリルオリゴマーの総量中の、(メタ)アクリル酸脂環式アルキルエステルと、(メタ)アクリル酸鎖状アルキルエステルと、親水性モノマーとを含む第2モノマー成分の共重合体(1つのアクリルオリゴマー)の含有割合は、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは58質量%以上である。 When two or more types of acrylic oligomers are used in combination, the content ratio of each copolymer (each acrylic oligomer) in the total amount of acrylic oligomer is not particularly limited, and is appropriately adjusted within a range in which the two or more types of acrylic oligomers used in combination satisfy the specified parameters. Specifically, the content ratio of the copolymer (one acrylic oligomer) of the second monomer component containing a (meth)acrylic acid alicyclic alkyl ester, a (meth)acrylic acid chain alkyl ester, and a hydrophilic monomer in the total amount of acrylic oligomer is preferably 50 mass% or more, more preferably 55 mass% or more, and even more preferably 58 mass% or more.

 アクリルオリゴマーは、当該アクリルオリゴマーの第2モノマー成分を重合することによって得られる。重合方法としては、例えば、溶液重合、乳化重合、および無溶剤での光重合(例えば紫外線重合)が挙げられる。溶液重合の溶媒としては、例えば、酢酸エチルおよびトルエンが用いられる。重合においては、分子量の調整のために連鎖移動剤を用いてもよい。また、重合の開始剤としては、例えば、熱重合開始剤および光重合開始剤が用いられる。重合開始剤は、単独で用いられてもよいし、二種類以上が併用されてもよい。重合開始剤の使用量は、第2モノマー成分100質量部あたり、好ましくは0.03質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.07質量部以上であり、また、好ましくは1質量部以下、より好ましくは0.5質量部以下、更に好ましくは0.3質量部以下である。 The acrylic oligomer is obtained by polymerizing the second monomer component of the acrylic oligomer. Examples of the polymerization method include solution polymerization, emulsion polymerization, and solvent-free photopolymerization (e.g., ultraviolet polymerization). For example, ethyl acetate and toluene are used as the solvent for solution polymerization. In the polymerization, a chain transfer agent may be used to adjust the molecular weight. For example, a thermal polymerization initiator and a photopolymerization initiator are used as the polymerization initiator. The polymerization initiator may be used alone or in combination of two or more kinds. The amount of the polymerization initiator used is preferably 0.03 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.07 parts by mass or more, and is preferably 1 part by mass or less, more preferably 0.5 parts by mass or less, and even more preferably 0.3 parts by mass or less, per 100 parts by mass of the second monomer component.

 オリゴマーの重量平均分子量Mwは、粘着シート10の表面(粘着面11,12)の高粘着化の観点から、好ましくは4300以上、より好ましくは4500以上、更に好ましくは4700以上である。オリゴマーの重量平均分子量Mwは、粘着シート10の表面およびその近傍へのオリゴマーの偏在化(表面への移動性)の観点から、好ましくは10000以下、より好ましくは8000以下、更に好ましくは6000以下である。オリゴマーの重量平均分子量Mwの測定方法は、具体的には、実施例に関して後述するとおりである。 The weight average molecular weight Mw of the oligomer is preferably 4300 or more, more preferably 4500 or more, and even more preferably 4700 or more, from the viewpoint of increasing adhesion on the surface (adhesive surfaces 11, 12) of the adhesive sheet 10. The weight average molecular weight Mw of the oligomer is preferably 10,000 or less, more preferably 8,000 or less, and even more preferably 6,000 or less, from the viewpoint of uneven distribution of the oligomer on the surface of the adhesive sheet 10 and its vicinity (mobility to the surface). The method for measuring the weight average molecular weight Mw of the oligomer is specifically as described below in the examples.

 粘着シート10におけるアクリルオリゴマーの含有量は、粘着シート10の粘着力を充分に高めるためには、ベースポリマー100質量部に対して、好ましくは0.2質量部以上、より好ましくは0.3質量部以上、更に好ましくは0.5質量部以上である。粘着シート10の透明性の確保の観点からは、粘着シート10におけるアクリルオリゴマーの含有量は、ベースポリマー100質量部に対して、好ましくは5質量部以下、より好ましくは4質量部以下、更に好ましくは3質量部以下である。粘着シート10においては、アクリルオリゴマーの含有量が大きすぎる場合、当該アクリルオリゴマーの相溶性の低下に起因して、ヘイズが上昇して透明性が低下する傾向がある。 The content of the acrylic oligomer in the adhesive sheet 10 is preferably 0.2 parts by mass or more, more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the base polymer, in order to sufficiently increase the adhesive strength of the adhesive sheet 10. From the viewpoint of ensuring the transparency of the adhesive sheet 10, the content of the acrylic oligomer in the adhesive sheet 10 is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less, relative to 100 parts by mass of the base polymer. If the content of the acrylic oligomer in the adhesive sheet 10 is too large, the haze tends to increase and the transparency tends to decrease due to a decrease in the compatibility of the acrylic oligomer.

 粘着剤組成物は、シランカップリング剤を含有してもよい。粘着剤組成物におけるシランカップリング剤の含有量は、ベースポリマー100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.2質量部以上である。同含有量は、好ましくは5質量部以下、より好ましくは3質量部以下である。 The adhesive composition may contain a silane coupling agent. The content of the silane coupling agent in the adhesive composition is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, per 100 parts by mass of the base polymer. The content is preferably 5 parts by mass or less, more preferably 3 parts by mass or less.

 粘着剤組成物は、必要に応じて他の成分を含有してもよい。他の成分としては、例えば、溶剤、粘着付与剤、可塑剤、軟化剤、酸化防止剤、充填剤、着色剤、紫外線吸収剤、酸化防止剤、界面活性剤、および帯電防止剤が挙げられる。溶媒としては、例えば、アクリルポリマーの重合時に必要に応じて用いられる重合溶媒、および、重合後に重合反応溶液に添加される溶媒が、挙げられる。当該溶媒としては、例えば、酢酸エチルおよびトルエンが用いられる。 The adhesive composition may contain other components as required. Examples of the other components include solvents, tackifiers, plasticizers, softeners, antioxidants, fillers, colorants, UV absorbers, antioxidants, surfactants, and antistatic agents. Examples of the solvent include polymerization solvents used as required during polymerization of the acrylic polymer, and solvents added to the polymerization reaction solution after polymerization. Examples of the solvents that are used include ethyl acetate and toluene.

 粘着シート10は、例えば、上述の粘着剤組成物をはく離ライナーL1(第1はく離ライナー)上に塗布して塗膜を形成した後、当該塗膜に紫外線を照射することにより、或いは当該塗膜を乾燥させることにより、製造できる。粘着シート10は、上述の粘着剤組成物をはく離ライナーL1(第1はく離ライナー)上に塗布して塗膜を形成し、当該塗膜上にはく離ライナーL2(第2はく離ライナー)を積層した後、はく離ライナー間の塗膜に紫外線を照射することにより、或いは当該塗膜を乾燥させることにより、製造してもよい。 The adhesive sheet 10 can be produced, for example, by applying the above-mentioned adhesive composition onto a release liner L1 (first release liner) to form a coating film, and then irradiating the coating film with ultraviolet light or drying the coating film. The adhesive sheet 10 can also be produced by applying the above-mentioned adhesive composition onto a release liner L1 (first release liner) to form a coating film, laminating a release liner L2 (second release liner) onto the coating film, and then irradiating the coating film between the release liners with ultraviolet light or drying the coating film.

 はく離ライナーL1としては、例えば、可撓性を有するプラスチックフィルムが挙げられる。当該プラスチックフィルムとしては、例えば、ポリエチレンテレフタレートフィルムなどのポリエステルフィルム、ポリエチレンフィルム、およびポリプロピレンフィルムが挙げられる。はく離ライナーL1の厚さは、例えば3μm以上であり、また、例えば200μm以下である。はく離ライナーL1の表面は、好ましくは剥離処理されている。 The release liner L1 may be, for example, a flexible plastic film. Examples of the plastic film include polyester films such as polyethylene terephthalate films, polyethylene films, and polypropylene films. The thickness of the release liner L1 is, for example, 3 μm or more and, for example, 200 μm or less. The surface of the release liner L1 is preferably subjected to a release treatment.

 粘着剤組成物の塗布方法としては、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、およびダイコートが挙げられる。塗膜の乾燥温度は、例えば50℃~200℃である。乾燥時間は、例えば5秒~20分である。  Examples of methods for applying the adhesive composition include roll coating, kiss roll coating, gravure coating, reverse coating, roll brushing, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, lip coating, and die coating. The drying temperature for the coating film is, for example, 50°C to 200°C. The drying time is, for example, 5 seconds to 20 minutes.

 はく離ライナーL2は、好ましくは、表面が剥離処理された可撓性のプラスチックフィルムである。はく離ライナーL2としては、はく離ライナーL1に関して上述したプラスチックフィルムを用いることができる。 The release liner L2 is preferably a flexible plastic film with a release-treated surface. The plastic films described above for the release liner L1 can be used as the release liner L2.

 以上のようにして、はく離ライナーL1,L2によって粘着面11,12が被覆保護された粘着シート10を製造できる。 In this manner, an adhesive sheet 10 can be manufactured in which the adhesive surfaces 11, 12 are covered and protected by the release liners L1, L2.

 図2Aから図2Cは、粘着シート10の使用方法の一例を表す。 Figures 2A to 2C show an example of how to use the adhesive sheet 10.

 本方法では、まず、図2Aに示すように、粘着シート10を、第1部材21(被着体)の厚さ方向Hの一方面に貼り合わせる。第1部材21は、例えば、フレキシブルディスプレイパネルが有する積層構造中の一要素である。当該要素としては、例えば、画素パネル、偏光フィルム、タッチパネルおよびカバーフィルムが挙げられる(後記の第2部材22についても同様である)。本工程により、第1部材21上に、他の部材との接合用の粘着シート10が設けられる。 In this method, first, as shown in FIG. 2A, the adhesive sheet 10 is attached to one side of the first member 21 (adherend) in the thickness direction H. The first member 21 is, for example, one element in a laminated structure of a flexible display panel. Examples of such elements include a pixel panel, a polarizing film, a touch panel, and a cover film (the same applies to the second member 22 described below). Through this process, the adhesive sheet 10 for bonding to other members is provided on the first member 21.

 次に、図2Bに示すように、第1部材21上の粘着シート10を介して、第1部材21の厚さ方向Hの一方面側と、第2部材22の厚さ方向Hの他方面側とを接合する。第2部材22は、例えば、フレキシブルディスプレイパネルが有する積層構造中の他の要素である。 Next, as shown in FIG. 2B, one side of the first member 21 in the thickness direction H is bonded to the other side of the second member 22 in the thickness direction H via the adhesive sheet 10 on the first member 21. The second member 22 is, for example, another element in the laminated structure of the flexible display panel.

 次に、図2Cに示すように、第1部材21と第2部材22との間の粘着シート10をエージングする。エージングにより、粘着シート10と部材21,22との間の接合力が高まる。エージング温度は、例えば20℃~160℃である。エージング時間は、例えば1分から21日である。エージングとしてオートクレーブ処理(加熱加圧処理)する場合、温度は例えば30℃~80℃であり、圧力は例えば0.1~0.8MPaであり、処理時間は例えば15分以上である。 Next, as shown in FIG. 2C, the adhesive sheet 10 between the first member 21 and the second member 22 is aged. Aging increases the bonding strength between the adhesive sheet 10 and the members 21 and 22. The aging temperature is, for example, 20°C to 160°C. The aging time is, for example, 1 minute to 21 days. When aging is performed using autoclave treatment (heat and pressure treatment), the temperature is, for example, 30°C to 80°C, the pressure is, for example, 0.1 to 0.8 MPa, and the treatment time is, for example, 15 minutes or more.

 本発明について、以下に実施例を示して具体的に説明する。ただし、本発明は、実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなどの上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples. Furthermore, the specific numerical values of the compounding amounts (contents), physical properties, parameters, etc. described below can be replaced with the upper limits (numerical values defined as "equal to or less than") or lower limits (numerical values defined as "equal to or more than") of the corresponding compounding amounts (contents), physical properties, parameters, etc. described in the above-mentioned "Form for carrying out the invention."

〈第1プレポリマー組成物の調製〉
 撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、アクリル酸n-オクチル(NOAA)70質量部と、アクリル酸n-ブチル(BA)20質量部と、アクリル酸4-ヒドロキシブチル(4HBA)8質量部と、N-ビニル-2-ピロリドン(NVP)2質量部とのモノマー混合物に、第1の光重合開始剤(品名「Omnirad184」,1-ヒドロキシシクロヘキシルフェニルケトン,IGM Resins社製)0.05質量部と、第2の光重合開始剤(品名「Omnirad651」,2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン,IGM Resins社製)0.05質量部とを加えた後、当該混合物に対して窒素雰囲気下で紫外線を照射することにより、混合物中のモノマー成分の一部を重合させて第1プレポリマー組成物を得た。紫外線照射にはブラックライトを使用した。紫外線照射は、組成物の粘度が10~20Pa・sになるまで続けた。この粘度は、B型粘度計(品名「TVB-10M」,東機産業社製)により、ローターNo.22、ローター回転数6rpm、および温度30℃の条件で測定した値である(後記の粘度についても同様である)。得られた第1プレポリマー組成物は、アクリルポリマーP1と、重合反応を経ていないモノマー成分(残存モノマー)とを含有する部分重合物である。第1プレポリマー組成物中のアクリルポリマーP1の重量平均分子量は、約430万であった。
Preparation of First Prepolymer Composition
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, 70 parts by mass of n-octyl acrylate (NOAA), 20 parts by mass of n-butyl acrylate (BA), 8 parts by mass of 4-hydroxybutyl acrylate (4HBA), and 2 parts by mass of N-vinyl-2-pyrrolidone (NVP) were added with 0.05 parts by mass of a first photopolymerization initiator (product name "Omnirad 184", 1-hydroxycyclohexyl phenyl ketone, manufactured by IGM Resins) and 0.05 parts by mass of a second photopolymerization initiator (product name "Omnirad 651", 2,2-dimethoxy-1,2-diphenylethan-1-one, manufactured by IGM Resins), and then the mixture was irradiated with ultraviolet light under a nitrogen atmosphere to polymerize a portion of the monomer components in the mixture to obtain a first prepolymer composition. A black light was used for the ultraviolet irradiation. The ultraviolet irradiation was continued until the viscosity of the composition reached 10 to 20 Pa·s. This viscosity was measured using a Brookfield viscometer (TVB-10M, manufactured by Toki Sangyo Co., Ltd.) with rotor No. 22, rotor rotation speed of 6 rpm, and temperature of 30° C. (The same applies to the viscosity described below). The obtained first prepolymer composition was a partial polymer containing acrylic polymer P1 and a monomer component (residual monomer) that had not undergone a polymerization reaction. The weight-average molecular weight of the acrylic polymer P1 in the first prepolymer composition was about 4.3 million.

〈第2プレポリマー組成物の調製〉
 撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、アクリル酸ラウリル(LA)48質量部と、アクリル酸2-エチルヘキシル(2EHA)51質量部と、アクリル酸4-ヒドロキシブチル(4HBA)1質量部とのモノマー混合物に、第1の光重合開始剤(Omnirad184)0.05質量部と、第2の光重合開始剤(Omnirad651)0.05質量部とを加えた後、当該混合物に対して窒素雰囲気下で紫外線を照射することにより、混合物中のモノマー成分の一部を重合させて第2プレポリマー組成物を得た。紫外線照射にはブラックライトを使用した。紫外線照射は、組成物の粘度が10~20Pa・sになるまで続けた。得られた第2プレポリマー組成物は、アクリルポリマーP2と、重合反応を経ていないモノマー成分(残存モノマー)とを含有する部分重合物である。第2プレポリマー組成物中のアクリルポリマーP2の重量平均分子量は、約480万であった。
Preparation of Second Prepolymer Composition
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, 0.05 parts by mass of a first photopolymerization initiator (Omnirad 184) and 0.05 parts by mass of a second photopolymerization initiator (Omnirad 651) were added to a monomer mixture of 48 parts by mass of lauryl acrylate (LA), 51 parts by mass of 2-ethylhexyl acrylate (2EHA), and 1 part by mass of 4-hydroxybutyl acrylate (4HBA), and then the mixture was irradiated with ultraviolet light under a nitrogen atmosphere to polymerize a part of the monomer components in the mixture to obtain a second prepolymer composition. A black light was used for the ultraviolet irradiation. The ultraviolet irradiation was continued until the viscosity of the composition reached 10 to 20 Pa·s. The obtained second prepolymer composition was a partial polymer containing the acrylic polymer P2 and a monomer component (residual monomer) that had not undergone a polymerization reaction. The weight average molecular weight of the acrylic polymer P2 in the second prepolymer composition was about 4.8 million.

〈第3プレポリマー組成物の調製〉
 撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、アクリル酸n-オクチル(NOAA)70質量部と、アクリル酸n-ブチル(BA)20質量部と、アクリル酸ラウリル(LA)30質量部と、アクリル酸4-ヒドロキシブチル(4HBA)8質量部と、N-ビニル-2-ピロリドン(NVP)2質量部とのモノマー混合物に、第1の光重合開始剤(Omnirad184)0.05質量部と、第2の光重合開始剤(Omnirad651)0.05質量部とを加えた後、当該混合物に対して窒素雰囲気下で紫外線を照射することにより、混合物中のモノマー成分の一部を重合させて第3プレポリマー組成物を得た。紫外線照射にはブラックライトを使用した。紫外線照射は、組成物の粘度が10~20Pa・sになるまで続けた。得られた第3プレポリマー組成物は、アクリルポリマーP3と、重合反応を経ていないモノマー成分(残存モノマー)とを含有する部分重合物である。第3プレポリマー組成物中のアクリルポリマーP3の重量平均分子量は、約500万であった。
Preparation of Third Prepolymer Composition
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, 70 parts by mass of n-octyl acrylate (NOAA), 20 parts by mass of n-butyl acrylate (BA), 30 parts by mass of lauryl acrylate (LA), 8 parts by mass of 4-hydroxybutyl acrylate (4HBA), and 2 parts by mass of N-vinyl-2-pyrrolidone (NVP) were added with 0.05 parts by mass of a first photopolymerization initiator (Omnirad 184) and 0.05 parts by mass of a second photopolymerization initiator (Omnirad 651), and then the mixture was irradiated with ultraviolet light under a nitrogen atmosphere to polymerize a portion of the monomer components in the mixture to obtain a third prepolymer composition. A black light was used for the ultraviolet irradiation. The ultraviolet irradiation was continued until the viscosity of the composition reached 10 to 20 Pa·s. The obtained third prepolymer composition was a partial polymer containing the acrylic polymer P3 and a monomer component (residual monomer) that had not undergone a polymerization reaction. The weight average molecular weight of the acrylic polymer P3 in the third prepolymer composition was about 5 million.

〈アクリルオリゴマーM1の調製〉
 まず、撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、メタクリル酸イソボルニル(IBXMA)45質量部と、メタクリル酸メチル(MMA)45質量部と、アクリル酸カルビトール(CBA)10質量部と、連鎖移動剤としてのα-チオグリセロール3質量部と、熱重合開始剤としての2,2'-アゾビスイソブチロニトリル(AIBN)0.3質量部と、溶媒としての酢酸エチルとを含む混合物(固形分濃度26質量%)を、窒素雰囲気下において、72℃~74℃で6時間、反応させた(重合反応)。次に、反応溶液を90℃で12時間加熱することにより、酢酸エチル、連鎖移動剤および未反応モノマーを揮発させて除去した。これにより、固形状のアクリルオリゴマーM1を得た。アクリルオリゴマーM1の重量平均分子量(Mw)は4880であった。アクリルオリゴマーM1のガラス転移温度(Tg)は98.5℃であった。
Preparation of Acrylic Oligomer M1
First, in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, a mixture containing 45 parts by mass of isobornyl methacrylate (IBXMA), 45 parts by mass of methyl methacrylate (MMA), 10 parts by mass of carbitol acrylate (CBA), 3 parts by mass of α-thioglycerol as a chain transfer agent, 0.3 parts by mass of 2,2'-azobisisobutyronitrile (AIBN) as a thermal polymerization initiator, and ethyl acetate as a solvent (solid content concentration 26% by mass) was reacted at 72°C to 74°C for 6 hours under a nitrogen atmosphere (polymerization reaction). Next, the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers. As a result, a solid acrylic oligomer M1 was obtained. The weight average molecular weight (Mw) of the acrylic oligomer M1 was 4880. The glass transition temperature (Tg) of the acrylic oligomer M1 was 98.5°C.

〈アクリルオリゴマーM2の調製〉
 IBXMAの配合量を35質量部とし、MMAの配合量を35質量部とし、CBAの配合量を30質量部としたこと以外はアクリルオリゴマーM1と同様にして、固形状のアクリルオリゴマーM2を得た。アクリルオリゴマーM2のMwは5400であった。アクリルオリゴマーM2のTgは50.9℃であった。
Preparation of Acrylic Oligomer M2
A solid acrylic oligomer M2 was obtained in the same manner as in the preparation of the acrylic oligomer M1, except that the amount of IBXMA was 35 parts by mass, the amount of MMA was 35 parts by mass, and the amount of CBA was 30 parts by mass. The Mw of the acrylic oligomer M2 was 5400. The Tg of the acrylic oligomer M2 was 50.9°C.

〈アクリルオリゴマーM3の調製〉
 まず、撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、メタクリル酸ジシクロペンタニル(DCPMA)45質量部と、MMA 45質量部と、CBA 10質量部と、連鎖移動剤としてのα-チオグリセロール 3質量部と、熱重合開始剤としてのAIBN 0.3質量部と、溶媒としての酢酸エチルとを含む混合物(固形分濃度26質量%)を、窒素雰囲気下において、72℃~74℃で6時間、反応させた(重合反応)。次に、反応溶液を90℃で12時間加熱することにより、酢酸エチル、連鎖移動剤および未反応モノマーを揮発させて除去した。これにより、固形状のアクリルオリゴマーM3を得た。アクリルオリゴマーM3のMwは5230であった。アクリルオリゴマーM3のTgは97.7℃であった。
Preparation of Acrylic Oligomer M3
First, in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, a mixture containing 45 parts by mass of dicyclopentanyl methacrylate (DCPMA), 45 parts by mass of MMA, 10 parts by mass of CBA, 3 parts by mass of α-thioglycerol as a chain transfer agent, 0.3 parts by mass of AIBN as a thermal polymerization initiator, and ethyl acetate as a solvent (solid content concentration 26% by mass) was reacted at 72°C to 74°C for 6 hours under a nitrogen atmosphere (polymerization reaction). Next, the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers. As a result, a solid acrylic oligomer M3 was obtained. The Mw of the acrylic oligomer M3 was 5230. The Tg of the acrylic oligomer M3 was 97.7°C.

〈アクリルオリゴマーM4の調製〉
 IBXMAの配合量を40質量部、MMAの配合量を40質量部とし、CBA 10質量部の代わりに4-アクリロイルモルホリン(ACMO)20質量部を用いたこと以外はアクリルオリゴマーM1と同様にして、固形状のアクリルオリゴマーM4を得た。アクリルオリゴマーM4のMwは4940であった。アクリルオリゴマーM4のTgは129.2℃であった。
Preparation of Acrylic Oligomer M4
A solid acrylic oligomer M4 was obtained in the same manner as for the acrylic oligomer M1, except that the blending amount of IBXMA was 40 parts by mass, the blending amount of MMA was 40 parts by mass, and 20 parts by mass of 4-acryloylmorpholine (ACMO) was used instead of 10 parts by mass of CBA. The Mw of the acrylic oligomer M4 was 4940. The Tg of the acrylic oligomer M4 was 129.2°C.

〈アクリルオリゴマーM5の調製〉
 DCPMAの配合量を40質量部、MMAの配合量を40質量部とし、CBA 10質量部の代わりにACMO 20質量部を用いたこと以外はアクリルオリゴマーM3と同様にして、固形状のアクリルオリゴマーM5を得た。アクリルオリゴマーM5のMwは5110であった。アクリルオリゴマーM5のTgは128.3℃であった。
Preparation of Acrylic Oligomer M5
A solid acrylic oligomer M5 was obtained in the same manner as in the acrylic oligomer M3, except that the blending amount of DCPMA was 40 parts by mass, the blending amount of MMA was 40 parts by mass, and 20 parts by mass of ACMO was used instead of 10 parts by mass of CBA. The Mw of the acrylic oligomer M5 was 5110. The Tg of the acrylic oligomer M5 was 128.3°C.

〈アクリルオリゴマーM6の調製〉
 CBA 10質量部の代わりにアクリル酸(AA)10質量部を用いたこと以外はアクリルオリゴマーM1と同様にして、固形状のアクリルオリゴマーM6を得た。アクリルオリゴマーM6のMwは5670であった。アクリルオリゴマーM6のTgは121.9℃であった。
Preparation of Acrylic Oligomer M6
A solid acrylic oligomer M6 was obtained in the same manner as in the preparation of the acrylic oligomer M1, except that 10 parts by mass of acrylic acid (AA) was used instead of 10 parts by mass of CBA. The Mw of the acrylic oligomer M6 was 5670. The Tg of the acrylic oligomer M6 was 121.9°C.

〈アクリルオリゴマーM7の調製〉
 CBA 10質量部の代わりにメタクリル酸2-ヒドロキシエチル(HEMA)10質量部を用いたこと以外はアクリルオリゴマーM3と同様にして、固形状のアクリルオリゴマーM7を得た。アクリルオリゴマーM7のMwは5600であった。アクリルオリゴマーM7のTgは115.8℃であった。
Preparation of Acrylic Oligomer M7
A solid acrylic oligomer M7 was obtained in the same manner as for the acrylic oligomer M3, except that 10 parts by mass of 2-hydroxyethyl methacrylate (HEMA) was used instead of 10 parts by mass of CBA. The Mw of the acrylic oligomer M7 was 5600. The Tg of the acrylic oligomer M7 was 115.8°C.

〈アクリルオリゴマーM8の調製〉
 DCPMAの配合量を60質量部とし、MMAの配合量を30質量部としたこと、CBA 10質量部の代わりにHEMA 10質量部を用いたこと以外は、アクリルオリゴマーM3と同様にして、固形状のアクリルオリゴマーM8を得た。アクリルオリゴマーM8のMwは5570であった。アクリルオリゴマーM8のTgは123.9℃であった。
Preparation of Acrylic Oligomer M8
A solid acrylic oligomer M8 was obtained in the same manner as for the acrylic oligomer M3, except that the amount of DCPMA was 60 parts by mass, the amount of MMA was 30 parts by mass, and 10 parts by mass of HEMA was used instead of 10 parts by mass of CBA. The Mw of the acrylic oligomer M8 was 5570. The Tg of the acrylic oligomer M8 was 123.9°C.

〈アクリルオリゴマーM9の調製〉
 まず、撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、メタクリル酸シクロヘキシル(CHMA)45質量部と、MMA 45質量部と、HEMA10質量部と、連鎖移動剤としてのα-チオグリセロール 3質量部と、熱重合開始剤としてのAIBN 0.3質量部と、溶媒としての酢酸エチルとを含む混合物(固形分濃度26質量%)を、窒素雰囲気下において、72℃~74℃で6時間、反応させた(重合反応)。次に、反応溶液を90℃で12時間加熱することにより、酢酸エチル、連鎖移動剤および未反応モノマーを揮発させて除去した。これにより、固形状のアクリルオリゴマーM9を得た。アクリルオリゴマーM9のMwは5920であった。アクリルオリゴマーM9のTgは85.4℃であった。
Preparation of Acrylic Oligomer M9
First, in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, a mixture containing 45 parts by mass of cyclohexyl methacrylate (CHMA), 45 parts by mass of MMA, 10 parts by mass of HEMA, 3 parts by mass of α-thioglycerol as a chain transfer agent, 0.3 parts by mass of AIBN as a thermal polymerization initiator, and ethyl acetate as a solvent (solid content concentration 26% by mass) was reacted at 72°C to 74°C for 6 hours under a nitrogen atmosphere (polymerization reaction). Next, the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers. As a result, a solid acrylic oligomer M9 was obtained. The Mw of the acrylic oligomer M9 was 5920. The Tg of the acrylic oligomer M9 was 85.4°C.

〈アクリルオリゴマーM10の調製〉
 HEMA 10質量部の代わりに4HBA 10質量部を用いたこと以外はアクリルオリゴマーM9と同様にして、固形状のアクリルオリゴマーM10を得た。アクリルオリゴマーM10のMwは5740であった。アクリルオリゴマーM10のTgは72.2℃であった。
Preparation of Acrylic Oligomer M10
A solid acrylic oligomer M10 was obtained in the same manner as for the acrylic oligomer M9, except that 10 parts by mass of 4HBA was used instead of 10 parts by mass of HEMA. The Mw of the acrylic oligomer M10 was 5740. The Tg of the acrylic oligomer M10 was 72.2°C.

〈アクリルオリゴマーM11の調製〉
 HEMA 10質量部の代わりにメタクリル酸2-ヒドロキシプロピル(HPMA)10質量部を用いたこと以外はアクリルオリゴマーM9と同様にして、固形状のアクリルオリゴマーM11を得た。アクリルオリゴマーM11のMwは5840であった。アクリルオリゴマーM11のTgは82.4℃であった。
Preparation of Acrylic Oligomer M11
A solid acrylic oligomer M11 was obtained in the same manner as in the preparation of the acrylic oligomer M9, except that 10 parts by mass of 2-hydroxypropyl methacrylate (HPMA) was used instead of 10 parts by mass of HEMA. The Mw of the acrylic oligomer M11 was 5840. The Tg of the acrylic oligomer M11 was 82.4°C.

〈アクリルオリゴマーM12の調製〉
 CBA 10質量部の代わりに4HBA 10質量部を用いたこと以外はアクリルオリゴマーM1と同様にして、アクリルオリゴマーM12を得た。アクリルオリゴマーM12のMwは5320であった。アクリルオリゴマーM12のTgは99.2℃であった。
Preparation of Acrylic Oligomer M12
Acrylic oligomer M12 was obtained in the same manner as in the preparation of acrylic oligomer M1, except that 10 parts by mass of 4HBA was used instead of 10 parts by mass of CBA. The Mw of the acrylic oligomer M12 was 5320. The Tg of the acrylic oligomer M12 was 99.2°C.

〈アクリルオリゴマーM13の調製〉
 まず、撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、IBXMA 50質量部と、NVP 50質量部と、連鎖移動剤としてのα-チオグリセロール 3質量部と、熱重合開始剤としてのAIBN 0.3質量部と、溶媒としての酢酸エチルとを含む混合物(固形分濃度26質量%)を、窒素雰囲気下において、72℃~74℃で6時間、反応させた(重合反応)。次に、反応溶液を90℃で12時間加熱することにより、酢酸エチル、連鎖移動剤および未反応モノマーを揮発させて除去した。これにより、固形状のアクリルオリゴマーM13を得た。アクリルオリゴマーM13のMwは10200であった。アクリルオリゴマーM13のTgは193℃であった。
Preparation of Acrylic Oligomer M13
First, in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, a mixture containing 50 parts by mass of IBXMA, 50 parts by mass of NVP, 3 parts by mass of α-thioglycerol as a chain transfer agent, 0.3 parts by mass of AIBN as a thermal polymerization initiator, and ethyl acetate as a solvent (solid content concentration 26% by mass) was reacted at 72°C to 74°C for 6 hours under a nitrogen atmosphere (polymerization reaction). Next, the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers. As a result, a solid acrylic oligomer M13 was obtained. The Mw of the acrylic oligomer M13 was 10200. The Tg of the acrylic oligomer M13 was 193°C.

〈アクリルオリゴマーM14の調製〉
 まず、撹拌機、温度計、還流冷却器、および窒素ガス導入管を備える反応容器内で、n-ペンチルアクリレート(NPA)(品名「LIMA」,大阪有機化学工業製)50質量部と、MMA50質量部と、連鎖移動剤としてのα-チオグリセロール 3質量部と、熱重合開始剤としてのAIBN 0.3質量部と、溶媒としての酢酸エチルとを含む混合物(固形分濃度26質量%)を、窒素雰囲気下において、72℃~74℃で6時間、反応させた(重合反応)。次に、反応溶液を90℃で12時間加熱することにより、酢酸エチル、連鎖移動剤および未反応モノマーを揮発させて除去した。これにより、固形状のアクリルオリゴマーM14を得た。アクリルオリゴマーM14のMwは5220であった。アクリルオリゴマーM14のTgは20.6℃であった。
Preparation of Acrylic Oligomer M14
First, in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, a mixture containing 50 parts by mass of n-pentyl acrylate (NPA) (trade name "LIMA", manufactured by Osaka Organic Chemical Industry Co., Ltd.), 50 parts by mass of MMA, 3 parts by mass of α-thioglycerol as a chain transfer agent, 0.3 parts by mass of AIBN as a thermal polymerization initiator, and ethyl acetate as a solvent (solid content concentration 26% by mass) was reacted at 72°C to 74°C for 6 hours under a nitrogen atmosphere (polymerization reaction). Next, the reaction solution was heated at 90°C for 12 hours to volatilize and remove ethyl acetate, the chain transfer agent, and unreacted monomers. As a result, a solid acrylic oligomer M14 was obtained. The Mw of the acrylic oligomer M14 was 5220. The Tg of the acrylic oligomer M14 was 20.6°C.

〈アクリルオリゴマーM15の調製〉
 IBXMAの配合量を90質量部とし、MMAを配合しなかったこと以外はアクリルオリゴマーM1と同様にして、固形状のアクリルオリゴマーM15を得た。アクリルオリゴマーM15のMwは4230であった。アクリルオリゴマーM15のTgは123.4℃であった。
Preparation of Acrylic Oligomer M15
A solid acrylic oligomer M15 was obtained in the same manner as in the preparation of the acrylic oligomer M1, except that the amount of IBXMA was 90 parts by mass and no MMA was added. The Mw of the acrylic oligomer M15 was 4230. The Tg of the acrylic oligomer M15 was 123.4°C.

〈アクリルオリゴマーM16の調製〉
 DCPMAの配合量を40質量部、MMAの配合量を40質量部とし、CBA 10質量部の代わりに4HBA 20質量部を用いたこと以外はアクリルオリゴマーM3と同様にして、固形状のアクリルオリゴマーM16を得た。アクリルオリゴマーM16のMwは5350であった。アクリルオリゴマーM16のTgは76.8℃であった。
Preparation of Acrylic Oligomer M16
A solid acrylic oligomer M16 was obtained in the same manner as in the preparation of the acrylic oligomer M3, except that the amount of DCPMA was 40 parts by mass, the amount of MMA was 40 parts by mass, and 20 parts by mass of 4HBA was used instead of 10 parts by mass of CBA. The Mw of the acrylic oligomer M16 was 5350. The Tg of the acrylic oligomer M16 was 76.8°C.

〈アクリルオリゴマーM17の調製〉
 CBA 10質量部の代わりにメタクリル酸ラウリル(LMA)10質量部を用いたこと以外はアクリルオリゴマーM1と同様にして、アクリルオリゴマーM17を得た。アクリルオリゴマーM17のMwは5780であった。アクリルオリゴマーM17のTgは125.5℃であった。
Preparation of Acrylic Oligomer M17
Acrylic oligomer M17 was obtained in the same manner as Acrylic Oligomer M1, except that 10 parts by mass of lauryl methacrylate (LMA) was used instead of 10 parts by mass of CBA. The Mw of Acrylic Oligomer M17 was 5780. The Tg of Acrylic Oligomer M17 was 125.5°C.

〈アクリルオリゴマーM18の調製〉
 IBXMAの配合量を75質量部、MMAの配合量を20質量部とし、CBA 10質量部の代わりにHEMA5質量部を用いたこと以外はアクリルオリゴマーM1と同様にして、固形状のアクリルオリゴマーM18を得た。アクリルオリゴマーM18のMwは4610であった。アクリルオリゴマーM18のTgは141.0℃であった。
Preparation of Acrylic Oligomer M18
A solid acrylic oligomer M18 was obtained in the same manner as for the acrylic oligomer M1, except that the blending amount of IBXMA was 75 parts by mass, the blending amount of MMA was 20 parts by mass, and 5 parts by mass of HEMA was used instead of 10 parts by mass of CBA. The Mw of the acrylic oligomer M18 was 4610. The Tg of the acrylic oligomer M18 was 141.0°C.

〈アクリルオリゴマーM19の調製〉
 HEMA 10質量部の代わりに4HBA 10質量部を用いたこと以外はアクリルオリゴマーM7と同様にして、固形状のアクリルオリゴマーM19を得た。アクリルオリゴマーM19のMwは5430であった。アクリルオリゴマーM19のTgは99.2℃であった。
Preparation of Acrylic Oligomer M19
A solid acrylic oligomer M19 was obtained in the same manner as in the preparation of the acrylic oligomer M7, except that 10 parts by mass of 4HBA was used instead of 10 parts by mass of HEMA. The Mw of the acrylic oligomer M19 was 5430. The Tg of the acrylic oligomer M19 was 99.2°C.

〈アクリルオリゴマーM20の調製〉
 IBXMAの配合量を80質量部とし、CMAの配合量を20質量部とし、MMAを配合しなかったこと以外はアクリルオリゴマーM1と同様にして、固形状のアクリルオリゴマーM20を得た。アクリルオリゴマーM20のMwは3820であった。アクリルオリゴマーM20のTgは80.8℃であった。
Preparation of Acrylic Oligomer M20
A solid acrylic oligomer M20 was obtained in the same manner as in the preparation of the acrylic oligomer M1, except that the amount of IBXMA was 80 parts by mass, the amount of CMA was 20 parts by mass, and no MMA was added. The Mw of the acrylic oligomer M20 was 3820. The Tg of the acrylic oligomer M20 was 80.8°C.

〈アクリルオリゴマーM21の調製〉
 IBXMAの配合量を70質量部とし、MMAの配合量を20質量部とし、CBAの配合量を10質量部としたこと以外はアクリルオリゴマーM1と同様にして、固形状のアクリルオリゴマーM21を得た。アクリルオリゴマーM21のMwは4060であった。アクリルオリゴマーM21のTgは109.3℃であった。
Preparation of Acrylic Oligomer M21
A solid acrylic oligomer M21 was obtained in the same manner as for the acrylic oligomer M1, except that the blending amount of IBXMA was 70 parts by mass, the blending amount of MMA was 20 parts by mass, and the blending amount of CBA was 10 parts by mass. The Mw of the acrylic oligomer M21 was 4060. The Tg of the acrylic oligomer M21 was 109.3°C.

〈アクリルオリゴマーM22の調製〉
 DCPMAの配合量を47.5質量部、MMAの配合量を47.5質量部、HEMAの配合量を5質量部としたこと以外はアクリルオリゴマーM8と同様にして、固形状のアクリルオリゴマーM22を得た。アクリルオリゴマーM22のMwは5150であった。アクリルオリゴマーM22のTgは120.0℃であった。
Preparation of Acrylic Oligomer M22
A solid acrylic oligomer M22 was obtained in the same manner as for the acrylic oligomer M8, except that the blending amount of DCPMA was 47.5 parts by mass, the blending amount of MMA was 47.5 parts by mass, and the blending amount of HEMA was 5 parts by mass. The Mw of the acrylic oligomer M22 was 5150. The Tg of the acrylic oligomer M22 was 120.0°C.

〈アクリルオリゴマーM23の調製〉
 DCPMAの配合量を70質量部、MMAの配合量を20質量部、HEMAの配合量を10質量部としたこと以外はアクリルオリゴマーM8と同様にして、固形状のアクリルオリゴマーM23を得た。アクリルオリゴマーM23のMwは5840であった。アクリルオリゴマーM23のTgは130.8℃であった。
Preparation of Acrylic Oligomer M23
A solid acrylic oligomer M23 was obtained in the same manner as for the acrylic oligomer M8, except that the blending amount of DCPMA was 70 parts by mass, the blending amount of MMA was 20 parts by mass, and the blending amount of HEMA was 10 parts by mass. The Mw of the acrylic oligomer M23 was 5840. The Tg of the acrylic oligomer M23 was 130.8°C.

〈アクリルオリゴマーM24の調製〉
 DCPMA70質量部の代わりにメタクリル酸1-アダマンチル(ADMA)70質量部を用いたこと以外はアクリルオリゴマーM23と同様にして、固形状のアクリルオリゴマーM24を得た。アクリルオリゴマーM24のMwは5150であった。アクリルオリゴマーM24のTgは160.7℃であった。
Preparation of Acrylic Oligomer M24
A solid acrylic oligomer M24 was obtained in the same manner as for the acrylic oligomer M23, except that 70 parts by mass of 1-adamantyl methacrylate (ADMA) was used instead of 70 parts by mass of DCPMA. The Mw of the acrylic oligomer M24 was 5150. The Tg of the acrylic oligomer M24 was 160.7°C.

〈アクリルオリゴマーM25の調製〉
 DCPMAの配合量を60質量部、MMAの配合量を40質量部とし、HEMAを用いなかったこと以外はアクリルオリゴマーM8と同様にして、固形状のアクリルオリゴマーM25を得た。アクリルオリゴマーM25のMwは4940であった。アクリルオリゴマーM25のTgは130.6℃であった。
Preparation of Acrylic Oligomer M25
A solid acrylic oligomer M25 was obtained in the same manner as in the preparation of the acrylic oligomer M8, except that the amount of DCPMA was 60 parts by mass, the amount of MMA was 40 parts by mass, and HEMA was not used. The Mw of the acrylic oligomer M25 was 4940. The Tg of the acrylic oligomer M25 was 130.6°C.

〔実施例1〕
〈粘着剤組成物の調製〉
 第1プレポリマー組成物に、当該組成物中のモノマー成分(本実施例での後記の粘着剤層中でベースポリマーを形成するモノマー成分)100質量部あたり、アクリルオリゴマーM1 3.0質量部と、架橋剤(品名「ビスコート#260」,1,9-ノナンジオールジアクリレート,大阪有機化学工業製)0.07質量部とを加えて混合し、第1粘着剤組成物を調製した。本実施例での後記の粘着剤層中のベースポリマー100質量部あたりのアクリルオリゴマーの相対部数を“部数”として表1,2に示す。
Example 1
Preparation of Pressure-Sensitive Adhesive Composition
To the first prepolymer composition, 3.0 parts by mass of acrylic oligomer M1 and 0.07 parts by mass of a crosslinker (trade name "Viscoat #260", 1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) were added per 100 parts by mass of monomer components in the composition (monomer components forming the base polymer in the adhesive layer described below in this example), and mixed to prepare a first adhesive composition. The relative number of parts of the acrylic oligomer per 100 parts by mass of the base polymer in the adhesive layer described below in this example is shown in Tables 1 and 2 as "parts".

〈粘着剤層の形成〉
 次に、片面がシリコーン剥離処理された第1はく離ライナーの剥離処理面上に、第1粘着剤組成物を塗布して塗膜を形成した。第1はく離ライナーは、片面がシリコーン剥離処理されたポリエチレンテレフタレート(PET)フィルム(品名「ダイアホイル MRE#75」,厚さ75μm,三菱ケミカル社製)である。次に、第1はく離ライナー上の塗膜に、片面がシリコーン剥離処理された第2はく離ライナーの剥離処理面を貼り合わせた。第2はく離ライナーは、片面がシリコーン剥離処理されたPETフィルム(品名「ダイアホイル MRF#75」,厚さ75μm,三菱ケミカル社製)である。次に、はく離ライナー間の塗膜に紫外線を照射し、当該塗膜を光硬化させて粘着剤層(厚さ50μm)を形成した。紫外線照射においては、照射光源としてブラックライトを使用し、照射強度を約2.5mW/cmとし、照射時間を16分間とした。以上のようにして、はく離ライナー付きの実施例1の粘着シート(厚さ50μm)を作製した。
<Formation of Pressure-Sensitive Adhesive Layer>
Next, the first pressure-sensitive adhesive composition was applied onto the release-treated surface of the first release liner, one side of which had been treated with silicone release, to form a coating film. The first release liner was a polyethylene terephthalate (PET) film (product name: "Diafoil MRE#75", thickness 75 μm, manufactured by Mitsubishi Chemical Corporation) with one side treated with silicone release. Next, the release-treated surface of the second release liner, one side of which had been treated with silicone release, was attached to the coating film on the first release liner. The second release liner was a PET film (product name: "Diafoil MRF#75", thickness 75 μm, manufactured by Mitsubishi Chemical Corporation) with one side treated with silicone release. Next, the coating film between the release liners was irradiated with ultraviolet light, and the coating film was photocured to form an adhesive layer (thickness 50 μm). In the ultraviolet light irradiation, a black light was used as the irradiation light source, the irradiation intensity was about 2.5 mW/cm 2 , and the irradiation time was 16 minutes. In this manner, a pressure-sensitive adhesive sheet (thickness: 50 μm) with a release liner of Example 1 was prepared.

〔実施例2~12〕
 粘着剤組成物の調製において、配合するアクリルオリゴマーの種類および量を表1,2に示すように変えたこと以外は、実施例1のはく離ライナー付き粘着シートと同様にして、実施例2~12の各はく離ライナー付き粘着シートを作製した。
[Examples 2 to 12]
In preparing the pressure-sensitive adhesive composition, the pressure-sensitive adhesive sheets with release liner of Examples 2 to 12 were produced in the same manner as the pressure-sensitive adhesive sheet with release liner of Example 1, except that the type and amount of the acrylic oligomer added was changed as shown in Tables 1 and 2.

〔比較例1〕
 粘着剤組成物の調製において、アクリルオリゴマーを配合しなかったこと以外は、実施例1のはく離ライナー付き粘着シートと同様にして、比較例1のはく離ライナー付き粘着シートを作製した。
Comparative Example 1
A pressure-sensitive adhesive sheet with a release liner of Comparative Example 1 was produced in the same manner as the pressure-sensitive adhesive sheet with a release liner of Example 1, except that no acrylic oligomer was added in the preparation of the pressure-sensitive adhesive composition.

〔比較例2~6〕
 粘着剤組成物の調製において、配合するアクリルオリゴマーの種類および量を表2に示すように変えたこと以外は、実施例1のはく離ライナー付き粘着シートと同様にして、比較例2~6の各はく離ライナー付き粘着シートを作製した。
[Comparative Examples 2 to 6]
In preparing the pressure-sensitive adhesive composition, the pressure-sensitive adhesive sheets with release liners of Comparative Examples 2 to 6 were produced in the same manner as the pressure-sensitive adhesive sheet of Example 1, except that the type and amount of acrylic oligomer added was changed as shown in Table 2.

〔実施例13〕
〈粘着剤組成物の調製〉
 第2プレポリマー組成物に、当該組成物中のモノマー成分(本実施例での後記の粘着剤層中でベースポリマーを形成するモノマー成分)100質量部あたり、アクリルオリゴマーM18 1.0質量部と、架橋剤(品名「ビスコート#260」,1,9-ノナンジオールジアクリレート,大阪有機化学工業製)0.07質量部とを加えて混合し、第2粘着剤組成物を調製した。本実施例での後記の粘着剤層中のベースポリマー100質量部あたりのアクリルオリゴマーの相対部数を“部数”として表3に示す。
Example 13
Preparation of Pressure-Sensitive Adhesive Composition
To the second prepolymer composition, 1.0 part by mass of acrylic oligomer M18 and 0.07 part by mass of a crosslinker (trade name "Viscoat #260", 1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) were added per 100 parts by mass of monomer components in the composition (monomer components forming the base polymer in the adhesive layer described below in this example), and mixed to prepare a second adhesive composition. The relative number of parts of the acrylic oligomer per 100 parts by mass of the base polymer in the adhesive layer described below in this example is shown in Table 3 as "parts".

〈粘着剤層の形成〉
 第1粘着剤組成物の代わりに第2粘着剤組成物を用いたこと以外は、実施例1に関して上述した粘着剤層の形成と同様にして、はく離ライナー間に厚さ50μmの粘着剤層を形成した。以上のようにして、はく離ライナー付きの実施例13の粘着シート(厚さ50μm)を作製した。
<Formation of Pressure-Sensitive Adhesive Layer>
Except for using the second adhesive composition instead of the first adhesive composition, an adhesive layer having a thickness of 50 μm was formed between release liners in the same manner as in the formation of the adhesive layer described above for Example 1. In this manner, an adhesive sheet (thickness 50 μm) with a release liner of Example 13 was produced.

〔比較例7〕
 粘着剤組成物の調製において、アクリルオリゴマーを配合しなかったこと以外は、実施例13のはく離ライナー付き粘着シートと同様にして、比較例7のはく離ライナー付き粘着シートを作製した。
Comparative Example 7
A pressure-sensitive adhesive sheet with a release liner of Comparative Example 7 was produced in the same manner as the pressure-sensitive adhesive sheet with a release liner of Example 13, except that no acrylic oligomer was added in preparing the pressure-sensitive adhesive composition.

〔比較例8,9〕
 粘着剤組成物の調製において、配合するアクリルオリゴマーの種類を表3に示すように変えたこと以外は、実施例13のはく離ライナー付き粘着シートと同様にして、比較例8,9の各はく離ライナー付き粘着シートを作製した。
[Comparative Examples 8 and 9]
In preparing the adhesive composition, the adhesive sheets with release liner of Comparative Examples 8 and 9 were prepared in the same manner as the adhesive sheet with release liner of Example 13, except that the type of acrylic oligomer used was changed as shown in Table 3.

〔実施例14〕
〈粘着剤組成物の調製〉
 第3プレポリマー組成物に、当該組成物中のモノマー成分(本実施例での後記の粘着剤層中でベースポリマーを形成するモノマー成分)100質量部あたり、アクリルオリゴマーM8 1.0質量部と、架橋剤(品名「ビスコート#260」,1,9-ノナンジオールジアクリレート,大阪有機化学工業製)0.07質量部とを加えて混合し、第3粘着剤組成物を調製した。本実施例での後記の粘着剤層中のベースポリマー100質量部あたりのアクリルオリゴマーの相対部数を“部数”として表4に示す。
Example 14
Preparation of Pressure-Sensitive Adhesive Composition
To the third prepolymer composition, 1.0 part by mass of acrylic oligomer M8 and 0.07 part by mass of a crosslinker (trade name "Viscoat #260", 1,9-nonanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.) were added per 100 parts by mass of monomer components in the composition (monomer components forming the base polymer in the adhesive layer described below in this example), and mixed to prepare a third adhesive composition. The relative number of parts of the acrylic oligomer per 100 parts by mass of the base polymer in the adhesive layer described below in this example is shown in Table 4 as "parts".

〈粘着剤層の形成〉
 第1粘着剤組成物の代わりに第3粘着剤組成物を用いたこと以外は、実施例1に関して上述した粘着剤層の形成と同様にして、はく離ライナー間に厚さ50μmの粘着剤層を形成した。以上のようにして、はく離ライナー付きの実施例14の粘着シート(厚さ50μm)を作製した。
<Formation of Pressure-Sensitive Adhesive Layer>
Except for using the third adhesive composition instead of the first adhesive composition, an adhesive layer having a thickness of 50 μm was formed between release liners in the same manner as in the formation of the adhesive layer described above for Example 1. In this manner, an adhesive sheet (thickness 50 μm) with a release liner of Example 14 was produced.

〔実施例15〕
 粘着剤組成物の調製において、配合するアクリルオリゴマーの種類を表4に示すように変えたこと以外は、実施例15のはく離ライナー付き粘着シートと同様にして、実施例15のはく離ライナー付き粘着シートを作製した。
Example 15
In preparing the pressure-sensitive adhesive composition, the type of acrylic oligomer used was changed as shown in Table 4, and the pressure-sensitive adhesive sheet with release liner of Example 15 was produced in the same manner as the pressure-sensitive adhesive sheet with release liner of Example 15.

〔比較例10〕
 粘着剤組成物の調製において、アクリルオリゴマーを配合しなかったこと以外は、実施例14のはく離ライナー付き粘着シートと同様にして、比較例10のはく離ライナー付き粘着シートを作製した。
Comparative Example 10
A pressure-sensitive adhesive sheet with a release liner of Comparative Example 10 was produced in the same manner as the pressure-sensitive adhesive sheet with a release liner of Example 14, except that no acrylic oligomer was added in preparing the pressure-sensitive adhesive composition.

〔比較例11,12〕
 粘着剤組成物の調製において、配合するアクリルオリゴマーの種類を表4に示すように変えたこと以外は、実施例14のはく離ライナー付き粘着シートと同様にして、比較例11,12の各はく離ライナー付き粘着シートを作製した。
[Comparative Examples 11 and 12]
In preparing the adhesive composition, the adhesive sheets with release liners of Comparative Examples 11 and 12 were prepared in the same manner as the adhesive sheet with release liner of Example 14, except that the type of acrylic oligomer used was changed as shown in Table 4.

〔実施例16〕
〈粘着剤組成物の調製〉
 第1プレポリマー組成物に、当該組成物中のモノマー成分(本実施例での後記の粘着剤層中でベースポリマーを形成するモノマー成分)100質量部あたり、アクリルオリゴマーM22 1.5質量部と、ジペンタエリスリトールヘキサアクリレート(DPHA)0.11質量部と、追加の光重合開始剤(品名「Omnirad 819」,ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド,IGM Resins社製)0.02質量部と、シランカップリング剤(品名「KBM-403」,3-グリシドキシプロピルトリメトキシシラン,信越化学工業社製)0.5質量部とを加えて混合し、第4粘着剤組成物を調製した。本実施例での後記の粘着剤層中のベースポリマー100質量部あたりのアクリルオリゴマーの相対部数を“部数”として表5に示す。
Example 16
Preparation of Pressure-Sensitive Adhesive Composition
To the first prepolymer composition, 1.5 parts by mass of acrylic oligomer M22, 0.11 parts by mass of dipentaerythritol hexaacrylate (DPHA), 0.02 parts by mass of additional photopolymerization initiator (trade name "Omnirad 819", bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, manufactured by IGM Resins), and 0.5 parts by mass of silane coupling agent (trade name "KBM-403", 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) were added and mixed per 100 parts by mass of monomer components in the composition (monomer components forming the base polymer in the adhesive layer described later in this example), to prepare a fourth adhesive composition. The relative number of parts of the acrylic oligomer per 100 parts by mass of the base polymer in the adhesive layer described later in this example is shown in Table 5 as "parts".

〈粘着剤層の形成〉
 第1粘着剤組成物の代わりに第4粘着剤組成物を用いたこと以外は、実施例1に関して上述した粘着剤層の形成と同様にして、はく離ライナー間に厚さ50μmの粘着剤層を形成した。以上のようにして、はく離ライナー付きの実施例16の粘着シート(厚さ50μm)を作製した。
<Formation of Pressure-Sensitive Adhesive Layer>
Except for using the fourth adhesive composition instead of the first adhesive composition, a 50 μm thick adhesive layer was formed between release liners in the same manner as in the formation of the adhesive layer described above for Example 1. In this manner, a PSA sheet (thickness 50 μm) with a release liner of Example 16 was produced.

〔実施例17~19〕
 粘着剤組成物の調製において、配合するアクリルオリゴマーの種類を表5に示すように変えたこと以外は、実施例16のはく離ライナー付き粘着シートと同様にして、実施例17~19の各はく離ライナー付き粘着シートを作製した。なお、実施例19において、アクリルオリゴマーを二種類配合した(第1プレポリマー組成物に、当該組成物中のモノマー成分100質量部あたり、アクリルオリゴマーM25 0.5質量部およびアクリルオリゴマーM22 1.0質量部を加えた。)。
[Examples 17 to 19]
In preparing the pressure-sensitive adhesive composition, the pressure-sensitive adhesive sheets with release liners of Examples 17 to 19 were produced in the same manner as the pressure-sensitive adhesive sheet with release liner of Example 16, except that the type of acrylic oligomer blended was changed as shown in Table 5. Note that in Example 19, two types of acrylic oligomers were blended (0.5 parts by mass of Acrylic Oligomer M25 and 1.0 part by mass of Acrylic Oligomer M22 were added to the first prepolymer composition per 100 parts by mass of the monomer component in the composition).

〈重量平均分子量の第1の測定方法〉
 含窒素モノマーを含まない上述のアクリルポリマーおよびアクリルオリゴマーの各重量平均分子量(Mw)を、下記の第1測定条件において、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定してポリスチレン換算値で求めた。測定においては、GPC測定装置(品名「HLC-8120GPC」,東ソー製)を使用した。試料溶液は、次のようにして用意した。まず、含窒素モノマーを含まない上述のアクリルポリマーまたはアクリルオリゴマーを試料として、試料濃度0.20質量%のテトラヒドロフラン(THF)溶液(10mMのリン酸を含有する)を調製した後、そのTHF溶液を20時間放置した。次に、当該THF溶液を、平均孔径0.45μmのメンブレンフィルターで濾過し、ろ液を、分子量測定用の試料溶液として得た。
<First Measurement Method of Weight Average Molecular Weight>
The weight average molecular weight (Mw) of each of the above-mentioned acrylic polymer and acrylic oligomer not containing a nitrogen-containing monomer was measured by gel permeation chromatography (GPC) under the following first measurement condition, and was calculated in terms of polystyrene. In the measurement, a GPC measuring device (product name "HLC-8120GPC", manufactured by Tosoh Corporation) was used. The sample solution was prepared as follows. First, a tetrahydrofuran (THF) solution (containing 10 mM phosphoric acid) with a sample concentration of 0.20% by mass was prepared using the above-mentioned acrylic polymer or acrylic oligomer not containing a nitrogen-containing monomer as a sample, and the THF solution was left to stand for 20 hours. Next, the THF solution was filtered through a membrane filter with an average pore size of 0.45 μm, and the filtrate was obtained as a sample solution for molecular weight measurement.

 〔GPCの第1測定条件〕
  カラム:G7000HXL+ GMHXL+ GMHXL,各TSKgel(東ソー製)
  カラム温度:40℃
  溶離液:THF溶液(リン酸濃度10mM)
  流速:0.8mL/分
  試料注入量:100μL
  標準試料:ポリスチレン(Agilent製)
  検出器:示差屈折率計(RI)
[First measurement condition of GPC]
Column: G7000H XL + GMH XL + GMH XL , each TSKgel (manufactured by Tosoh)
Column temperature: 40°C
Eluent: THF solution (phosphoric acid concentration 10 mM)
Flow rate: 0.8 mL/min Sample injection volume: 100 μL
Standard sample: Polystyrene (Agilent)
Detector: Differential refractometer (RI)

〈重量平均分子量の第2の測定方法〉
 含窒素モノマーを含む上述のアクリルポリマーおよびアクリルオリゴマーの各重量平均分子量(Mw)を、下記の第2測定条件において、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定してポリスチレン換算値で求めた。測定においては、GPC測定装置(品名「HLC-8120GPC」,東ソー製)を使用した。試料溶液は、次のようにして用意した。まず、含窒素モノマーを含まない上述のアクリルポリマーまたはアクリルオリゴマーを試料として、試料濃度0.20質量%のジメチルホルムアミド(DMF)溶液(塩添加)を調製した後、そのDMF溶液を20時間放置した。次に、当該DMF溶液を、平均孔径0.45μmのメンブレンフィルターで濾過し、ろ液を、分子量測定用の試料溶液として得た。
<Second Measurement Method of Weight Average Molecular Weight>
The weight average molecular weight (Mw) of each of the above-mentioned acrylic polymer and acrylic oligomer containing a nitrogen-containing monomer was measured by gel permeation chromatography (GPC) under the following second measurement condition, and was calculated in terms of polystyrene. In the measurement, a GPC measuring device (product name "HLC-8120GPC", manufactured by Tosoh Corporation) was used. The sample solution was prepared as follows. First, a dimethylformamide (DMF) solution (salt added) with a sample concentration of 0.20 mass % was prepared using the above-mentioned acrylic polymer or acrylic oligomer not containing a nitrogen-containing monomer as a sample, and the DMF solution was left to stand for 20 hours. Next, the DMF solution was filtered through a membrane filter with an average pore size of 0.45 μm, and the filtrate was obtained as a sample solution for molecular weight measurement.

 〔GPCの第2測定条件〕
 カラム:SuperAWM-H + SuperAW4000 + SuperAW2500,各TSKgel(東ソー製)
  カラム温度:40℃
  溶離液:DMF溶液(塩添加)
  流速:0.4mL/分
  試料注入量:40μL
  標準試料:ポリスチレン(Agilent製)
  検出器:示差屈折率計(RI)
[Second measurement condition of GPC]
Columns: SuperAWM-H + SuperAW4000 + SuperAW2500, TSKgel (Tosoh)
Column temperature: 40°C
Eluent: DMF solution (salt added)
Flow rate: 0.4 mL/min Sample injection volume: 40 μL
Standard sample: Polystyrene (Agilent)
Detector: Differential refractometer (RI)

〈オリゴマーのTg〉
 アクリルオリゴマーM1~M25のガラス転移温度(Tg)を、上記のFoxの式に基づき求めた。その値を表1~5に示す。
<Tg of oligomer>
The glass transition temperatures (Tg) of the acrylic oligomers M1 to M25 were calculated based on the above Fox formula, and the values are shown in Tables 1 to 5.

〈HSPの水素結合項〉
 アクリルオリゴマーM1~M25のそれぞれについて、ハンセン溶解度パラメーター(HSP)の水素結合項を求めた。具体的には、次のとおりである。
<Hydrogen bond term of HSP>
The hydrogen bond term of the Hansen solubility parameter (HSP) was determined for each of the acrylic oligomers M1 to M25. Specifically, it is as follows.

 まず、コンピュータソフトウエアHSPiP(Hansen Solubility Parameters in Practice)により、アクリルオリゴマーを形成する各モノマーmについて、HSPの水素結合項(δh)を計算した。次に、アクリルオリゴマーにおけるモノマーmのモル分率xと、当該モノマーmの水素結合項δhとから、下記式により、アクリルオリゴマーの水素結合項(δH)を求めた。例えば、アクリルオリゴマーM1の水素結合項は、IBXMA(分子量220.0)のモル分率0.289と水素結合項2.4MPa1/2、MMA(分子量100.1)のモル分率0.636と水素結合項6.6MPa1/2、CBA(分子量188.2)のモル分率0.075と水素結合項6.5MPa1/2から、下記式によって5.39MPa1/2と求められた。アクリルオリゴマーM1~M25の水素結合項を、δHとして表1~5に示す。 First, the hydrogen bond term (δh i ) of HSP was calculated for each monomer m i forming the acrylic oligomer by computer software HSPiP (Hansen Solubility Parameters in Practice). Next, the hydrogen bond term (δH) of the acrylic oligomer was calculated by the following formula from the molar fraction x i of the monomer m i in the acrylic oligomer and the hydrogen bond term δh i of the monomer m i . For example, the hydrogen bond term of the acrylic oligomer M1 was calculated as 5.39 MPa 1/2 by the following formula from the molar fraction of IBXMA (molecular weight 220.0) of 0.289 and the hydrogen bond term of 2.4 MPa 1/2 , the molar fraction of MMA (molecular weight 100.1) of 0.636 and the hydrogen bond term of 6.6 MPa 1/2 , and the molar fraction of CBA (molecular weight 188.2) of 0.075 and the hydrogen bond term of 6.5 MPa 1/2 . The hydrogen bond terms of the acrylic oligomers M1 to M25 are shown in Tables 1 to 5 as δH2 .

 δH=Σ x×δh δH=Σ x i ×δh i

 同様に、上述のアクリルポリマーのHSPの水素結合項(δH)を求めた。例えば、第1プレポリマー組成物からなるアクリルポリマーにおいて、その値は、5.07MPa1/2であった。粘着シート中のアクリルポリマーのδHに対するアクリルオリゴマーのδHの比率(δH/δH)、および、δHとδHの差ΔH(=δH-δH)も、表1~5に示す。 Similarly, the hydrogen bond term (δH 1 ) of the HSP of the above-mentioned acrylic polymer was determined. For example, in the acrylic polymer consisting of the first prepolymer composition, the value was 5.07 MPa 1/2 . The ratio of δH 2 of the acrylic oligomer to δH 1 of the acrylic polymer in the pressure-sensitive adhesive sheet (δH 2 /δH 1 ) and the difference ΔH between δH 2 and δH 1 (= δH 2 - δH 1 ) are also shown in Tables 1 to 5.

〈ゲル分率〉
 実施例1~19および比較例1~12の各粘着シートについて、次のようにしてゲル分率を測定した。
<Gel Fraction>
For each of the pressure-sensitive adhesive sheets of Examples 1 to 19 and Comparative Examples 1 to 12, the gel fraction was measured as follows.

 まず、はく離ライナー間の粘着シートから約500mgの粘着剤サンプルを採取した。次に、粘着剤サンプルの質量(W)を測定した。次に、粘着剤サンプルを、容器内の酢酸エチル約40gに7日間浸漬した。次に、酢酸エチルに不溶解な成分(不溶解部分)を全て回収した。次に、不溶解部分を130℃で2時間、乾燥した(酢酸エチルの除去)。次に、不溶解部分の質量(W)を測定した。そして、下記式に基づき、光硬化後の粘着シートのゲル分率(質量%)を算出した。その値を表1~5に示す。 First, about 500 mg of an adhesive sample was taken from the adhesive sheet between the release liners. Next, the mass (W 1 ) of the adhesive sample was measured. Next, the adhesive sample was immersed in about 40 g of ethyl acetate in a container for 7 days. Next, all components insoluble in ethyl acetate (insoluble parts) were collected. Next, the insoluble parts were dried at 130° C. for 2 hours (removal of ethyl acetate). Next, the mass (W 2 ) of the insoluble parts was measured. Then, the gel fraction (mass %) of the adhesive sheet after photocuring was calculated based on the following formula. The values are shown in Tables 1 to 5.

 ゲル分率(質量%)=(W/W)×100 Gel fraction (mass%)=( W2 / W1 )×100

〈ヘイズ〉
 実施例1~19および比較例1~12の各粘着シートについて、次のようにしてヘイズを測定した。
Haze
For each of the pressure-sensitive adhesive sheets of Examples 1 to 19 and Comparative Examples 1 to 12, the haze was measured as follows.

 まず、測定用のサンプルを作製した。具体的には、粘着シートから第1はく離ライナーを剥離した後、同シートをアルカリガラス(厚さ1.0mm,全光線透過率92%,ヘイズ0.4%,松浪硝子社製)に貼り合わせた。次に、ガラス上の粘着シートから第1はく離ライナーを剥離した。これにより、測定用のサンプルを作製した。次に、ヘイズメーター(品名「HM-150」,村上色彩技術研究所製)を使用して、サンプルにおける粘着シートのヘイズのそれぞれを測定した。測定は、JIS K7136(2000年)に準拠した。本測定では、サンプルに対してそのアルカリガラス側から光が当たるようにサンプルを装置内に設置した。測定された粘着シートのヘイズを、表1~5に示す。 First, samples for measurement were prepared. Specifically, the first release liner was peeled off from the adhesive sheet, and the sheet was then attached to an alkaline glass (thickness 1.0 mm, total light transmittance 92%, haze 0.4%, manufactured by Matsunami Glass Co., Ltd.). Next, the first release liner was peeled off from the adhesive sheet on the glass. This produced samples for measurement. Next, the haze of each of the adhesive sheets in the samples was measured using a haze meter (model name "HM-150", manufactured by Murakami Color Research Laboratory). The measurement was in accordance with JIS K7136 (2000). In this measurement, the sample was placed in the device so that light was hitting the alkaline glass side of the sample. The measured haze of the adhesive sheet is shown in Tables 1 to 5.

〈せん断貯蔵弾性率〉
 実施例1~19および比較例1~12の各粘着シートについて、動的粘弾性を測定した(第1の測定)。
<Shear storage modulus>
For each of the pressure-sensitive adhesive sheets of Examples 1 to 19 and Comparative Examples 1 to 12, the dynamic viscoelasticity was measured (first measurement).

 粘着シートごとに、必要数の測定用のサンプルを作製した。具体的には、まず、粘着シートから切り出した複数の粘着シート片を貼り合わせて、約1.0mmの厚さのサンプルシートを作製した。次に、このシートを打抜いて、測定用サンプルである円柱状のペレット(直径7.9mm)を得た。 The required number of measurement samples were prepared for each adhesive sheet. Specifically, first, multiple pieces of adhesive sheet cut from the adhesive sheet were glued together to prepare a sample sheet approximately 1.0 mm thick. Next, this sheet was punched out to obtain cylindrical pellets (diameter 7.9 mm) that served as measurement samples.

 そして、測定用サンプルについて、動的粘弾性測定装置(品名「Advanced Rheometric Expansion System (ARES)」,Rheometric Scientific社製)を使用して、直径7.9mmのパラレルプレートの治具に固定した後に動的粘弾性測定を行った。本測定において、測定モードをせん断モードとし、測定温度範囲を-65℃~200℃とし、昇温速度を5℃/分とし、周波数を1Hzとした。測定結果から所定温度(-20℃,-10℃,60℃)におけるせん断貯蔵弾性率を読み取った。-10℃でのせん断貯蔵弾性率G1(kPa)と、60℃でのせん断貯蔵弾性率G2(kPa)と、-20℃でのせん断貯蔵弾性率G3(kPa)と、せん断貯蔵弾性率G1に対するせん断貯蔵弾性率G2の比率(G2/G1)とを、表1~5に示す。 Then, the measurement samples were fixed to a 7.9 mm diameter parallel plate fixture and subjected to dynamic viscoelasticity measurement using a dynamic viscoelasticity measuring device (name: Advanced Rheometric Expansion System (ARES), manufactured by Rheometric Scientific). In this measurement, the measurement mode was shear mode, the measurement temperature range was -65°C to 200°C, the heating rate was 5°C/min, and the frequency was 1 Hz. From the measurement results, the shear storage modulus at the specified temperatures (-20°C, -10°C, 60°C) was read. The shear storage modulus G1 (kPa) at -10°C, the shear storage modulus G2 (kPa) at 60°C, the shear storage modulus G3 (kPa) at -20°C, and the ratio of the shear storage modulus G2 to the shear storage modulus G1 (G2/G1) are shown in Tables 1 to 5.

〈剥離試験〉
 実施例1~19および比較例1~12の各粘着シートについて、剥離試験により、被着体に対する粘着力を調べた。
Peel test
For each of the pressure-sensitive adhesive sheets of Examples 1 to 19 and Comparative Examples 1 to 12, the adhesive strength to the adherend was examined by a peel test.

 具体的には、まず、粘着シートごとに必要数の測定用試料を作製した。測定用試料の作製においては、まず、粘着シートから第1はく離ライナーを剥離し、これによって露出した露出面を、表面がプラズマ処理されたポリエチレンテレフタレート(PET)フィルム(品名「ルミラーS10」,厚さ25μm,東レ製)に貼り合わせて、積層体を得た。プラズマ処理では、プラズマ照射装置(品名「AP-TO5」,積水工業社製)を使用し、電圧を160Vとし、周波数を10kHzとし、処理速度を5000mm/分とした(後記のプラズマ処理においても同様である)。次に、積層体(PETフィルム/粘着シート/第2はく離ライナー)から試験片(幅20mm×長さ100mm)を切り出した。次に、この試験片における粘着シートから第2はく離ライナーを剥離し、これによって露出した露出面を、ガラスプレート(松波硝子社製のアクリルガラス)に貼り合わせた。次に、粘着シート(試験片)付きガラスプレートを、温度50℃、圧力0.5MPaおよび15分間の条件で加温加圧処理した。これにより、ガラスプレートに対して試験片を圧着させた。以上のようにして、測定用試料を作製した。 Specifically, first, the required number of measurement samples were prepared for each adhesive sheet. In preparing the measurement samples, first, the first release liner was peeled off from the adhesive sheet, and the exposed surface was attached to a polyethylene terephthalate (PET) film (product name "Lumirror S10", thickness 25 μm, manufactured by Toray) whose surface had been plasma-treated to obtain a laminate. In the plasma treatment, a plasma irradiation device (product name "AP-TO5", manufactured by Sekisui Kogyo Co., Ltd.) was used, and the voltage was set to 160 V, the frequency to 10 kHz, and the treatment speed to 5000 mm/min (the same applies to the plasma treatment described below). Next, a test piece (width 20 mm x length 100 mm) was cut out from the laminate (PET film/adhesive sheet/second release liner). Next, the second release liner was peeled off from the adhesive sheet of this test piece, and the exposed surface was attached to a glass plate (acrylic glass manufactured by Matsunami Glass Co., Ltd.). Next, the glass plate with the adhesive sheet (test piece) was heated and pressurized at a temperature of 50°C and a pressure of 0.5 MPa for 15 minutes. This caused the test piece to be pressed against the glass plate. In this way, the measurement sample was prepared.

 次に、測定用試料を室温で30分間静置した後、測定用試料におけるガラスプレートから試験片を剥離する180°剥離試験を実施し、剥離に要する力(剥離強度)を測定した(第1の剥離試験)。本測定には、引張り試験機(品名「オートグラフAG-50NXplus)」,島津製作所製)を使用した。本測定では、測定温度を25℃とし、相対湿度を55%とし、ガラスプレートからの試験片の剥離角度を180°とし、試験片の引張速度を300mm/分とし、剥離長さを50mmとした。測定された剥離強度の平均値を、粘着力F1(N/20mm)として表1~5に示す。 Next, the measurement sample was left to stand at room temperature for 30 minutes, and then a 180° peel test was conducted to peel the test piece from the glass plate of the measurement sample, and the force required for peeling (peel strength) was measured (first peel test). A tensile tester (product name "Autograph AG-50NXplus", manufactured by Shimadzu Corporation) was used for this measurement. In this measurement, the measurement temperature was 25°C, the relative humidity was 55%, the peel angle of the test piece from the glass plate was 180°, the pulling speed of the test piece was 300 mm/min, and the peel length was 50 mm. The average measured peel strength is shown in Tables 1 to 5 as adhesive strength F1 (N/20 mm).

 一方、引張速度を60mm/分に変えたこと以外は第1の剥離試験と同一の条件で剥離試験を実施した(第2の剥離試験)。その測定結果を、粘着力F2(N/20mm)として表1~5に示す。また、上述の粘着力F1に対する粘着力F2の比率(F2/F1)も表1~5に示す。 On the other hand, a peel test was conducted under the same conditions as the first peel test, except that the pulling speed was changed to 60 mm/min (second peel test). The measurement results are shown in Tables 1 to 5 as adhesive strength F2 (N/20 mm). The ratio of adhesive strength F2 to the above-mentioned adhesive strength F1 (F2/F1) is also shown in Tables 1 to 5.

〔評価〕
 比較例1の粘着シートは、-10℃でのせん断貯蔵弾性率G1が100kPa以下の軟質の粘着シートであるが、Tg40℃以上のオリゴマーを含まず、粘着力F1,F2が小さい。
〔evaluation〕
The adhesive sheet of Comparative Example 1 is a soft adhesive sheet having a shear storage modulus G1 of 100 kPa or less at -10°C, but does not contain oligomers with a Tg of 40°C or higher, and has small adhesive strengths F1 and F2.

 比較例2の粘着シートは、Tg40℃以上のオリゴマー(アクリルオリゴマーM13)を含むが、差ΔH(=δH-δH)が0.1未満であり、粘着力F1,F2が小さい。
比較例2の粘着シートでは、アクリルオリゴマーM13が粘着面とその近傍に偏在化していない。
The pressure-sensitive adhesive sheet of Comparative Example 2 contains an oligomer (acrylic oligomer M13) with a Tg of 40° C. or higher, but the difference ΔH (= δH 2 - δH 1 ) is less than 0.1, and the adhesive strengths F1 and F2 are small.
In the pressure-sensitive adhesive sheet of Comparative Example 2, the acrylic oligomer M13 is not unevenly distributed on the pressure-sensitive adhesive surface or in its vicinity.

 比較例3の粘着シートは、Tg40℃以上のオリゴマーを含まず、粘着力F1,F2が小さい。 The adhesive sheet of Comparative Example 3 does not contain oligomers with a Tg of 40°C or higher, and has low adhesive strengths F1 and F2.

 比較例4の粘着シートは、Tg40℃以上のオリゴマー(アクリルオリゴマーM15)を含むが、差ΔH(=δH-δH)が0.1未満であり、粘着力F1,F2が小さい。
比較例4の粘着シートでは、アクリルオリゴマーM15が粘着面とその近傍に偏在化していない。
The pressure-sensitive adhesive sheet of Comparative Example 4 contains an oligomer (acrylic oligomer M15) with a Tg of 40° C. or higher, but the difference ΔH (= δH 2 - δH 1 ) is less than 0.1, and the adhesive strengths F1 and F2 are small.
In the pressure-sensitive adhesive sheet of Comparative Example 4, the acrylic oligomer M15 is not unevenly distributed on the pressure-sensitive adhesive surface or in its vicinity.

 比較例5の粘着シートは、Tg40℃以上のオリゴマー(アクリルオリゴマーM16)を含むが、差ΔH(=δH-δH)が1.3を超え、ヘイズが大きすぎる。比較例5の粘着シートでは、アクリルオリゴマーM16が、ベースポリマーとの相溶性が低く、ドメインを形成して光散乱を生じている。 The pressure-sensitive adhesive sheet of Comparative Example 5 contains an oligomer (acrylic oligomer M16) with a Tg of 40° C. or higher, but the difference ΔH (= δH 2 - δH 1 ) exceeds 1.3, and the haze is too large. In the pressure-sensitive adhesive sheet of Comparative Example 5, the acrylic oligomer M16 has low compatibility with the base polymer, forming domains that cause light scattering.

 比較例6の粘着シートは、Tg40℃以上のオリゴマー(アクリルオリゴマーM17)を含むが、差ΔH(=δH-δH)が0.1未満であり、粘着力F1,F2が小さい。比較例6の粘着シートでは、アクリルオリゴマーM17が粘着面とその近傍に十分には偏在化していない。 The pressure-sensitive adhesive sheet of Comparative Example 6 contains an oligomer (acrylic oligomer M17) with a Tg of 40° C. or higher, but the difference ΔH (= δH 2 - δH 1 ) is less than 0.1, and the adhesive strengths F1 and F2 are small. In the pressure-sensitive adhesive sheet of Comparative Example 6, the acrylic oligomer M17 is not sufficiently distributed on the adhesive surface and its vicinity.

 これに対し、実施例1~12の各粘着シートは、-10℃でのせん断貯蔵弾性率G1が100kPa以下であって柔らかく、Tg40℃以上のオリゴマーを含み、ベースポリマーのHSPのδHと、オリゴマーのHSPのδHとが、0.1≦δH-δH≦1.3を満たした。このような実施例1~12の粘着シートは、粘着力F1が8.0N/20mm以上であって大きかった。実施例1~12の各粘着シートでは、Tg40℃以上のオリゴマーが粘着面とその近傍に十分には偏在化している。 In contrast, each of the pressure-sensitive adhesive sheets of Examples 1 to 12 was soft, with a shear storage modulus G1 at -10°C of 100 kPa or less, contained an oligomer with a Tg of 40°C or more, and the δH1 of the HSP of the base polymer and the δH2 of the HSP of the oligomer satisfied 0.1≦ δH2 - δH1 ≦1.3. The pressure-sensitive adhesive sheets of Examples 1 to 12 had a large adhesive strength F1 of 8.0 N/20 mm or more. In each of the pressure-sensitive adhesive sheets of Examples 1 to 12, the oligomer with a Tg of 40°C or more is sufficiently unevenly distributed on the adhesive surface and in its vicinity.

 比較例7の粘着シートは、-10℃でのせん断貯蔵弾性率G1が100kPa以下の軟質の粘着シートであるが、Tg40℃以上のオリゴマーを含まず、粘着力F1,F2が小さい。比較例8の粘着シートは、Tg40℃以上のオリゴマー(アクリルオリゴマーM19)を含むが、差ΔH(=δH-δH)が1.3を超え、ヘイズが大きすぎ、また、粘着力F1,F2も小さい。比較例9の粘着シートは、Tg40℃以上のオリゴマー(アクリルオリゴマーM20)を含むが、差ΔH(=δH-δH)が0.1未満であり、粘着力F1,F2が小さい。比較例9の粘着シートでは、アクリルオリゴマーM20が粘着面とその近傍に偏在化していない。比較例7~9の粘着シートに対し、実施例13の粘着シートは、-10℃でのせん断貯蔵弾性率G1が100kPa以下であって柔らかく、Tg40℃以上のオリゴマーを含み、ベースポリマーのHSPのδHと、オリゴマーのHSPのδHとが、0.1≦δH-δH≦1.3を満たした。このような実施例13の粘着シートの粘着力F1は、7.7N/20mmであり、比較例7~9の粘着シート(ベースポリマーが実施例13と同じ)の粘着力F1より大きかった。実施例13の各粘着シートでは、Tg40℃以上のオリゴマーが粘着面とその近傍に十分には偏在化している。実施例13の粘着シートは、-10℃でのせん断貯蔵弾性率G1が40kPa以下であって非常に柔らかく、柔軟性と粘着力とが両立されている。 The adhesive sheet of Comparative Example 7 is a soft adhesive sheet with a shear storage modulus G1 of 100 kPa or less at -10°C, but does not contain an oligomer with a Tg of 40°C or more, and has small adhesive forces F1 and F2. The adhesive sheet of Comparative Example 8 contains an oligomer with a Tg of 40°C or more (acrylic oligomer M19), but the difference ΔH (= δH2 - δH1 ) exceeds 1.3, the haze is too large, and the adhesive forces F1 and F2 are also small. The adhesive sheet of Comparative Example 9 contains an oligomer with a Tg of 40°C or more (acrylic oligomer M20), but the difference ΔH (= δH2 - δH1 ) is less than 0.1, and the adhesive forces F1 and F2 are small. In the adhesive sheet of Comparative Example 9, the acrylic oligomer M20 is not unevenly distributed on the adhesive surface and its vicinity. In comparison with the pressure-sensitive adhesive sheets of Comparative Examples 7 to 9, the pressure-sensitive adhesive sheet of Example 13 is soft with a shear storage modulus G1 of 100 kPa or less at -10°C, contains an oligomer with a Tg of 40°C or more, and the δH1 of the HSP of the base polymer and the δH2 of the HSP of the oligomer satisfy 0.1≦ δH2 - δH1 ≦1.3. The adhesive strength F1 of such a pressure-sensitive adhesive sheet of Example 13 is 7.7 N/20 mm, which is greater than the adhesive strength F1 of the pressure-sensitive adhesive sheets of Comparative Examples 7 to 9 (the base polymer is the same as that of Example 13). In each pressure-sensitive adhesive sheet of Example 13, the oligomer with a Tg of 40°C or more is sufficiently unevenly distributed on the adhesive surface and in the vicinity thereof. The pressure-sensitive adhesive sheet of Example 13 is very soft with a shear storage modulus G1 of 40 kPa or less at -10°C, and both flexibility and adhesive strength are achieved.

 比較例10の粘着シートは、-10℃でのせん断貯蔵弾性率G1が100kPa以下の軟質の粘着シートであるが、Tg40℃以上のオリゴマーを含まず、粘着力F1,F2が小さい。比較例11の粘着シートは、Tg40℃以上のオリゴマー(アクリルオリゴマーM19)を含むが、差ΔH(=δH-δH)が1.3を超え、粘着力F1,F2が小さい。比較例12の粘着シートは、Tg40℃以上のオリゴマー(アクリルオリゴマーM21)を含むが、差ΔH(=δH-δH)が0.1未満であり、粘着力F1,F2が小さい。比較例12の粘着シートでは、アクリルオリゴマーM21が粘着面とその近傍に偏在化していない。比較例10~12の粘着シートに対し、実施例14,15の粘着シートは、-10℃でのせん断貯蔵弾性率G1が100kPa以下であって柔らかく、Tg40℃以上のオリゴマーを含み、ベースポリマーのHSPのδHと、オリゴマーのHSPのδHとが、0.1≦δH-δH≦1.3を満たした。このような実施例14,15の粘着シートの粘着力F1は、7.6N/20mm以上であり、比較例10~12の粘着シート(ベースポリマーが実施例14,15と同じ)の粘着力F1より大きかった。実施例14,15の各粘着シートでは、Tg40℃以上のオリゴマーが粘着面とその近傍に十分には偏在化している。 The adhesive sheet of Comparative Example 10 is a soft adhesive sheet having a shear storage modulus G1 of 100 kPa or less at -10°C, but does not contain an oligomer having a Tg of 40°C or more, and has small adhesive forces F1 and F2. The adhesive sheet of Comparative Example 11 contains an oligomer having a Tg of 40°C or more (acrylic oligomer M19), but the difference ΔH (= δH2 - δH1 ) exceeds 1.3, and the adhesive forces F1 and F2 are small. The adhesive sheet of Comparative Example 12 contains an oligomer having a Tg of 40°C or more (acrylic oligomer M21), but the difference ΔH (= δH2 - δH1 ) is less than 0.1, and the adhesive forces F1 and F2 are small. In the adhesive sheet of Comparative Example 12, the acrylic oligomer M21 is not unevenly distributed on the adhesive surface and its vicinity. In comparison with the pressure-sensitive adhesive sheets of Comparative Examples 10 to 12, the pressure-sensitive adhesive sheets of Examples 14 and 15 were soft, with a shear storage modulus G1 at -10°C of 100 kPa or less, contained oligomers with Tg of 40°C or more, and the δH1 of the HSP of the base polymer and the δH2 of the HSP of the oligomer satisfied 0.1≦ δH2 - δH1 ≦1.3. The adhesive strength F1 of the pressure-sensitive adhesive sheets of Examples 14 and 15 was 7.6 N/20 mm or more, which was greater than the adhesive strength F1 of the pressure-sensitive adhesive sheets of Comparative Examples 10 to 12 (the base polymer was the same as in Examples 14 and 15). In each of the pressure-sensitive adhesive sheets of Examples 14 and 15, the oligomers with Tg of 40°C or more were sufficiently unevenly distributed on the adhesive surface and in the vicinity thereof.

 また、実施例16~19の各粘着シートは、-10℃でのせん断貯蔵弾性率G1が100kPa以下であって柔らかく、Tg40℃以上のオリゴマーを含み、ベースポリマーのHSPのδH1と、オリゴマーのHSPのδH2とが、0.1≦δH-δH≦1.3を満たした。このような実施例16~19の粘着シートは、粘着力F1が7.9N/20mm以上であって大きかった。実施例16~19の各粘着シートでは、Tg40℃以上のオリゴマーが粘着面とその近傍に十分には偏在化している。なお、実施例19の粘着シートは、二種類のオリゴマーを含み、各オリゴマーがTg40℃以上であり、ベースポリマーのHSPのδH1と、各オリゴマーのHSPのδH2とが、0.1≦δH-δH≦1.3を満たした。 Moreover, each of the pressure-sensitive adhesive sheets of Examples 16 to 19 was soft, with a shear storage modulus G1 at -10°C of 100 kPa or less, contained an oligomer with a Tg of 40°C or more, and the δH1 of the HSP of the base polymer and the δH2 of the HSP of the oligomer satisfied 0.1≦ δH2 - δH1 ≦1.3. Such pressure-sensitive adhesive sheets of Examples 16 to 19 had a large adhesive force F1 of 7.9 N/20 mm or more. In each of the pressure-sensitive adhesive sheets of Examples 16 to 19, the oligomer with a Tg of 40°C or more was sufficiently unevenly distributed on the adhesive surface and in the vicinity thereof. The pressure-sensitive adhesive sheet of Example 19 contained two types of oligomers, each of which had a Tg of 40°C or more, and the δH1 of the HSP of the base polymer and the δH2 of the HSP of each oligomer satisfied 0.1≦ δH2 - δH1 ≦1.3.

 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。 The above invention is provided as an exemplary embodiment of the present invention, but this is merely an example and should not be interpreted as limiting. Modifications of the present invention that are obvious to those skilled in the art are intended to be included in the scope of the claims below.

 本発明の光学粘着シートは、フレキシブルデバイス(例えば、フォルダブルディスプレイパネルおよびローラブルディスプレイパネルなどのフレキシブルディスプレイパネル)における光通過箇所に好適に用いられる。 The optical adhesive sheet of the present invention is suitable for use in light passing areas in flexible devices (e.g., flexible display panels such as foldable display panels and rollable display panels).

10    粘着シート(光学粘着シート)
11    第1面
12    第2面
L1,L2 はく離ライナー
21    第1部材
22    第2部材
H     厚さ方向
10. Adhesive sheet (optical adhesive sheet)
11 First surface 12 Second surface L1, L2 Release liner 21 First member 22 Second member H Thickness direction

Claims (6)

 光学粘着シートであって、
 ベースポリマーと、ガラス転移温度40℃以上のオリゴマーとを含み、
 -10℃において100kPa以下のせん断貯蔵弾性率を有し、
 前記ベースポリマーのハンセン溶解度パラメータの水素結合項δHと、前記オリゴマーのハンセン溶解度パラメータの水素結合項δHとが、
0.1≦δH-δH≦1.3を満たす、光学粘着シート。
An optical adhesive sheet,
Contains a base polymer and an oligomer having a glass transition temperature of 40° C. or higher,
having a shear storage modulus of 100 kPa or less at -10°C;
The hydrogen bond term δH 1 of the Hansen solubility parameter of the base polymer and the hydrogen bond term δH 2 of the Hansen solubility parameter of the oligomer are
An optically adhesive sheet that satisfies 0.1≦δH 2 - δH 1 ≦1.3.
 1%以下のヘイズを有する、請求項1に記載の光学粘着シート。 The optical adhesive sheet according to claim 1, having a haze of 1% or less.  25℃、剥離角度180°および引張速度300mm/分の条件での剥離試験における粘着力が7.6N/20mm以上である、請求項1に記載の光学粘着シート。 The optical adhesive sheet according to claim 1, which has an adhesive strength of 7.6 N/20 mm or more in a peel test under conditions of 25°C, a peel angle of 180°, and a tensile speed of 300 mm/min.  25℃、剥離角度180°および引張速度300mm/分の条件での剥離試験において粘着力F1を有し、
 25℃、剥離角度180°および引張速度60mm/分の条件での剥離試験において粘着力F2を有し、
 粘着力F1に対する粘着力F2の比率が0.5以上1.1以下である、請求項1に記載の光学粘着シート。
In a peel test under conditions of 25°C, a peel angle of 180° and a tensile speed of 300 mm/min, the adhesive strength is F1.
In a peel test under conditions of 25°C, a peel angle of 180° and a tensile speed of 60 mm/min, the adhesive strength is F2.
The optical adhesive sheet according to claim 1 , wherein the ratio of adhesive strength F2 to adhesive strength F1 is 0.5 or more and 1.1 or less.
 -10℃でのせん断貯蔵弾性率に対する、60℃でのせん断貯蔵弾性率の比率が、0.2以上1.0以下である、請求項1に記載の光学粘着シート。 The optical adhesive sheet according to claim 1, in which the ratio of the shear storage modulus at 60°C to the shear storage modulus at -10°C is 0.2 or more and 1.0 or less.  60質量%以上87質量%以下のゲル分率を有する、請求項1から5のいずれか一つに記載の光学粘着シート。 The optical adhesive sheet according to any one of claims 1 to 5, having a gel fraction of 60% by mass or more and 87% by mass or less.
PCT/JP2024/011106 2023-03-23 2024-03-21 Optical adhesive sheet WO2024195839A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-046691 2023-03-23
JP2023046691 2023-03-23
JP2024042767A JP2024137836A (en) 2023-03-23 2024-03-18 Optical Adhesive Sheet
JP2024-042767 2024-03-18

Publications (1)

Publication Number Publication Date
WO2024195839A1 true WO2024195839A1 (en) 2024-09-26

Family

ID=92842174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011106 WO2024195839A1 (en) 2023-03-23 2024-03-21 Optical adhesive sheet

Country Status (2)

Country Link
TW (1) TW202444854A (en)
WO (1) WO2024195839A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131678A (en) * 2018-01-30 2019-08-08 日東電工株式会社 Adhesive sheet and production method of the same, and image display device
JP2020083996A (en) * 2018-11-21 2020-06-04 日東電工株式会社 Pressure-sensitive adhesive sheet and production method of the same, and production method of image display device
WO2020158484A1 (en) * 2019-01-30 2020-08-06 日東電工株式会社 Adhesive sheet, optical film with adhesive layer, multilayer body and image display device
WO2021100636A1 (en) * 2019-11-21 2021-05-27 三菱ケミカル株式会社 Adhesive sheet, flexible image display device member, optical member, and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131678A (en) * 2018-01-30 2019-08-08 日東電工株式会社 Adhesive sheet and production method of the same, and image display device
JP2020083996A (en) * 2018-11-21 2020-06-04 日東電工株式会社 Pressure-sensitive adhesive sheet and production method of the same, and production method of image display device
WO2020158484A1 (en) * 2019-01-30 2020-08-06 日東電工株式会社 Adhesive sheet, optical film with adhesive layer, multilayer body and image display device
WO2021100636A1 (en) * 2019-11-21 2021-05-27 三菱ケミカル株式会社 Adhesive sheet, flexible image display device member, optical member, and image display device

Also Published As

Publication number Publication date
TW202444854A (en) 2024-11-16

Similar Documents

Publication Publication Date Title
WO2022163637A1 (en) Optical adhesive sheet for foldable device
WO2022163638A1 (en) Optical adhesive sheet for foldable device
JP2023006450A (en) Optical adhesive layer
WO2023276654A1 (en) Optical film with cover film
TW202344650A (en) Optical adhesive sheet
WO2022163639A1 (en) Optical adhesive sheet
WO2024195839A1 (en) Optical adhesive sheet
WO2024195838A1 (en) Optical pressure-sensitive adhesive sheet
JP2024137836A (en) Optical Adhesive Sheet
JP2024137835A (en) Optical Adhesive Sheet
WO2024195835A1 (en) Optical pressure-sensitive adhesive sheet
WO2024242086A1 (en) Optical pressure-sensitive adhesive sheet
WO2024242084A1 (en) Optical adhesive sheet
WO2024242083A1 (en) Optical adhesive sheet
WO2024195837A1 (en) Optical adhesive sheet
JP2023137399A (en) optical adhesive sheet
WO2024242085A1 (en) Optical adhesive sheet
WO2024195836A1 (en) Optical adhesive sheet
JP2023137398A (en) optical adhesive sheet
TW202506927A (en) Optical adhesive sheet
TW202506928A (en) Optical adhesive sheet
WO2023047917A1 (en) Optical pressure-sensitive adhesive sheet
JP2023095069A (en) Optical pressure sensitive adhesive sheet
JP2023095066A (en) optical adhesive sheet
JP2023095067A (en) optical adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24774973

Country of ref document: EP

Kind code of ref document: A1