WO2024185593A1 - 高圧水素容器用高強度継目無鋼管およびその製造方法 - Google Patents
高圧水素容器用高強度継目無鋼管およびその製造方法 Download PDFInfo
- Publication number
- WO2024185593A1 WO2024185593A1 PCT/JP2024/007115 JP2024007115W WO2024185593A1 WO 2024185593 A1 WO2024185593 A1 WO 2024185593A1 JP 2024007115 W JP2024007115 W JP 2024007115W WO 2024185593 A1 WO2024185593 A1 WO 2024185593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel pipe
- precipitates
- content
- seamless steel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Definitions
- the present invention relates to a high-strength seamless steel pipe for high-pressure hydrogen containers and a manufacturing method thereof.
- Fuel cell vehicles that use hydrogen as fuel do not emit carbon dioxide ( CO2 ) and have excellent energy efficiency, and are therefore expected to be vehicles that can solve the CO2 emission and energy problems.
- containers with excellent strength and durability that can safely store high-pressure hydrogen of 35 MPa or more, particularly 70 MPa or more, are needed for hydrogen stations that supply hydrogen to fuel cell vehicles and for on-board use to load hydrogen onto fuel cell vehicles, and development of such containers is underway.
- Patent Document 1 describes a liner made of an Al-Mg-Si alloy with excellent fatigue properties.
- low alloy steels such as Cr-Mo steel are known to be embrittled by hydrogen.
- materials for high-pressure hydrogen storage tanks of 35 MPa or more are limited to aluminum alloys and SUS316, which are less susceptible to material degradation by hydrogen.
- Patent Document 4 proposes a steel for high-pressure hydrogen environments that uses fine V-Mo precipitates as trap sites for hydrogen in the steel to make the hydrogen non-diffusible, thereby suppressing embrittlement caused by diffusible hydrogen.
- Patent Document 5 proposes a low-alloy, high-strength steel with excellent resistance to embrittlement in a high-pressure hydrogen environment, in which the tensile strength is controlled within an extremely narrow range of 900 to 950 MPa by performing a tempering process at a relatively high temperature during the thermal refining process of Cr-Mo steel.
- a high-pressure hydrogen gas environment here refers to an environment with a total pressure of 1 MPa or more and a hydrogen partial pressure of 1 MPa or more.
- the present invention was made in consideration of the above circumstances, and aims to provide a high-strength seamless steel pipe for high-pressure hydrogen containers that has excellent resistance to hydrogen embrittlement, and a manufacturing method thereof.
- the inventors of the present invention have conducted extensive research into various factors that affect strength and hydrogen embrittlement resistance, since it is necessary to achieve both the desired high strength and hydrogen embrittlement resistance in order to produce a high-strength seamless steel pipe for high-pressure hydrogen containers (hereinafter simply referred to as high-strength seamless steel pipe) that achieves the above-mentioned objectives.
- high-strength seamless steel pipe for high-pressure hydrogen containers (hereinafter simply referred to as high-strength seamless steel pipe) that achieves the above-mentioned objectives.
- high-strength seamless steel pipe for high-pressure hydrogen containers
- the inventors have come to the realization that in order to further improve the hydrogen embrittlement resistance of high-strength seamless steel pipes, it is necessary to increase the amount of Mo contained in the precipitates, and in particular to adjust the amount of Mo contained in precipitates of 50 nm or less to an appropriate amount or more.
- the steel is subjected to a quenching treatment at least once, in which the steel is rapidly cooled to a surface temperature of 200°C or less.
- a tempering treatment is performed by heating to a tempering temperature of 600 to 740 ° C.
- a method for producing a high-strength seamless steel pipe for high-pressure hydrogen containers wherein the average heating rate until the tempering temperature is reached is 0.5°C/min or more, and the holding time at the tempering temperature is 10 minutes or more and less than 60 minutes.
- the present invention it is possible to easily and inexpensively manufacture high-strength seamless steel pipes for high-pressure hydrogen containers that have a high strength of tensile strength TS of 850 MPa or more and excellent resistance to hydrogen embrittlement, which is of great industrial benefit.
- a manufacturing method that contains appropriate amounts of alloying elements and promotes the formation of Mo precipitates it is possible to stably manufacture high-strength seamless steel pipes that have the desired high strength for pressure containers as well as excellent resistance to hydrogen embrittlement.
- C 0.20-0.50% C contributes to increasing the strength of steel by dissolving in solid solution, improves the hardenability of steel, and contributes to the formation of a structure in which the martensite phase is the main phase during quenching.
- the C content must be 0.20% or more.
- the C content is preferably 0.22% or more, more preferably 0.25% or more, and further preferably 0.28% or more.
- the C content is set to 0.50% or less.
- the C content is preferably 0.45% or less, more preferably 0.40% or less, and further preferably 0.35% or less.
- Si 0.05-2.00% Silicon is added for deoxidation, but if the content is less than 0.05%, the deoxidation effect is insufficient. Therefore, the silicon content is set to 0.05% or more.
- the silicon content is 0.10%. It is preferable that the Si content is 0.20% or more, more preferable that the Si content is 0.30% or more. On the other hand, when the Si content exceeds 2.00%, the effect is saturated. Therefore, the Si content is set to 2.00% or less.
- the Si content is preferably set to 1.00% or less, and more preferably set to 0.80% or less. Furthermore, if the Si content exceeds 0.50%, Since Si deteriorates toughness and weldability, the Si content is more preferably 0.50% or less.
- Mn 0.30-1.50%
- Mn is an element that improves the hardenability of steel and contributes to increasing the strength of steel, similar to C. In order to obtain such effects, the Mn content is set to 0.30% or more.
- the Mn content is preferably 0.40% or more, more preferably 0.45% or more, and even more preferably 0.50% or more.
- Mn is an element that segregates in steel and locally hardens the steel. When a large amount of Mn is contained, localized hardened regions are formed, which adversely affects the hydrogen embrittlement resistance. Therefore, in the present invention, the Mn content is set to 1.50% or less.
- the Mn content is preferably 1.20% or less, more preferably 1.00% or less, and further preferably 0.80% or less.
- P 0.015% or less
- P is an element that not only segregates to grain boundaries in the steel structure to cause grain boundary embrittlement, but also segregates to locally harden the steel.
- P is an unavoidable impurity and is preferably reduced as much as possible, but up to 0.015% is acceptable.
- the P content is set to 0.015% or less.
- the P content is preferably 0.008% or less.
- the P content is more preferably 0.005% or less, and even more preferably 0.003% or less.
- the P content is preferably 0.0001% or more, and more preferably 0.001% or more.
- S 0.005% or less
- S is an inevitable impurity, and most of it exists as sulfide-based inclusions in steel, which reduces ductility, toughness, and even SSC resistance. Therefore, it is preferable to reduce the content as much as possible, but up to 0.005% is acceptable. For this reason, the S content is set to 0.005% or less.
- the S content is preferably 0.003% or less. More preferably, it is 0.002% or less. The lower the content, the better, but from the viewpoint of refining costs, the S content is preferably 0.0002% or more.
- the S content is more preferably 0.001% or more.
- Al 0.005-0.150%
- Al is added as a deoxidizer, but if the content is less than 0.005%, the addition effect is ineffective. Therefore, the Al content is set to 0.005% or more.
- the Al content is set to 0.010% or more.
- the content of Al exceeds 0.150%, the cleanliness of the steel decreases and the toughness deteriorates.
- the Al content is preferably 0.130% or less, more preferably 0.100% or less, and most preferably 0.080% or less.
- N 0.006% or less N exists in steel as an inevitable impurity, but it combines with Al to form AlN, and when Ti is contained, it forms TiN, which has the effect of refining crystal grains and improving toughness.
- the N content is preferably 0.0005% or more. More preferably, it is 0.001% or more.
- the N content is set to 0.006% or less.
- the N content is preferably set to 0.005% or less, more preferably set to 0.004% or less, and even more preferably set to 0.003% or less.
- Cr more than 0.2% and not more than 1.7% Cr is an element that increases the strength of steel through improving hardenability and improves corrosion resistance.
- Cr is an element that combines with C during tempering to form precipitates such as M3C , M7C3 , and M23C6 (M is a metal element) and improves temper softening resistance, and is a necessary element especially for increasing the strength of steel pipes.
- M3C type precipitates have a strong effect of improving temper softening resistance.
- the Cr content is made to be more than 0.2%.
- the Cr content is preferably 0.3% or more, and more preferably 0.5% or more.
- the Cr content is made to be more than 1.7%, a large amount of M7C3 and M23C6 are formed, which act as hydrogen trap sites and reduce hydrogen erosion resistance.
- the Mo precipitates become coarse. Since fine Mo precipitates become coarse due to aggregation and coalescence, the number density of the fine Mo precipitates decreases, and the hydrogen embrittlement resistance decreases.
- the Cr content is set to 1.7% or less.
- the Cr content is preferably 1.5% or less, more preferably 1.0% or less, and even more preferably 0.8% or less.
- Mo more than 1.0% and not more than 3.0%
- Mo is an element that forms precipitates and contributes to strengthening steel by precipitation strengthening, and effectively contributes to ensuring the desired high strength after reducing dislocation density by tempering.
- Mo dissolves in steel and segregates at the prior austenite grain boundaries, contributing to improving hydrogen embrittlement resistance.
- Mo has the effect of densifying corrosion products and suppressing the generation and growth of pits that are the starting points of cracks.
- the Mo content is made to be more than 1.0%.
- the Mo content is preferably more than 1.1%, more preferably more than 1.2%, even more preferably 1.3% or more, and most preferably 1.4% or more.
- the Mo content exceeds 3.0%, it promotes the formation of needle-shaped M 2 C precipitates and, in some cases, Laves phase (Fe 2 Mo), thereby reducing hydrogen embrittlement resistance.
- the Mo content is made to be 3.0% or less.
- the Mo content is preferably 2.8% or less, more preferably 2.5% or less, further preferably 1.8% or less, and most preferably 1.5% or less.
- Nb 0.001-0.020%
- Nb forms precipitates or carbonitrides, and contributes to increasing the strength of steel through precipitation strengthening, and also contributes to refining austenite grains.
- the Nb content is 0.001% or more.
- the Nb content is preferably 0.005% or more, more preferably 0.006% or more, and further preferably 0.007% or more.
- coarse Nb precipitates Since Nb precipitates are likely to become crack initiation points for hydrogen-induced cracking, the presence of a large amount of Nb precipitates due to a large Nb content exceeding 0.020% leads to a significant decrease in hydrogen embrittlement resistance in high-strength steel materials. Therefore, from the viewpoint of achieving both the desired high strength and excellent hydrogen embrittlement resistance, the Nb content is set to 0.020% or less in the present invention. It is preferably less than 0.015%, and more preferably less than 0.010%.
- B 0.0003-0.0030% B segregates at the austenite grain boundaries and inhibits ferrite transformation from the grain boundaries, thereby enhancing the hardenability of steel even when contained in small amounts.
- the B content is preferably 0.0007% or more, and more preferably 0.0010% or more.
- the B content is set to 0.0030% or less.
- the B content is preferably set to 0.0025% or less.
- the B content is more preferably 0.0020% or less, and further preferably 0.0015% or less.
- O (oxygen) 0.0030% or less
- O (oxygen) is an inevitable impurity and exists as oxide-based inclusions in steel. These inclusions become the starting point of generation in a hydrogen gas environment and reduce hydrogen embrittlement resistance, so in the present invention, it is preferable to reduce O (oxygen) as much as possible. However, excessive reduction leads to high refining costs, so the O (oxygen) content is permissible up to 0.0030%. For this reason, the O (oxygen) content is limited to 0.0030% or less.
- the O content is preferably 0.0025% or less, and more preferably, the O content is 0.0020% or less.
- the O content is further preferably 0.0015% or less.
- the lower limit is not particularly limited, the O content is preferably 0.0010% or more.
- Ti 0.003-0.025%
- Ti combines with N when molten steel solidifies and precipitates as fine TiN, and its pinning effect contributes to the refinement of austenite grains. To obtain this effect, Ti should be 0.003% or more. It is necessary to include Ti. If the Ti content is less than 0.003%, the effect is small. Therefore, the Ti content is set to 0.003% or more. The Ti content is set to 0.005% or more. On the other hand, if the Ti content exceeds 0.025%, TiN becomes coarse, the pinning effect described above cannot be exerted, and the toughness is deteriorated. Furthermore, the hydrogen embrittlement resistance is deteriorated due to the coarse TiN. For these reasons, the Ti content is set to 0.025% or less. The Ti content is set to 0.020% or less. It is preferable to set the content at 0.015% or less, and more preferable to set the content at 0.015% or less.
- Mo/C over 2.0 to 12.0
- Mo/C is set to more than 2.0.
- Mo/C is preferably set to 2.5 or more, more preferably set to 3.0 or more, and more preferably set to 3.5 or more.
- Mo/C is greater than 12.0, the Mo precipitates tend to become coarse, and the toughness and hydrogen embrittlement resistance are deteriorated.
- the Mo/C ratio is preferably 10.0 or less, more preferably 8.0 or less, further preferably 6.0 or less, and most preferably 5.0 or less.
- the above components are the basic components, but in addition to the basic composition, optional elements may be included, such as one or more selected from V: 0.30% or less, Cu: 1.00% or less, Ni: 2.0% or less, W: 3.0% or less, H: 0.0010% or less, or Ca: 0.0005-0.005%, or any combination of these.
- V 0.30% or less
- Cu 1.00% or less
- Ni 2.0% or less
- W 3.0% or less.
- V, Cu, Ni and W are all elements that contribute to increasing the strength of steel, and one or more can be selected and contained as necessary.
- V 0.30% or less
- V is an element that forms precipitates and carbonitrides and contributes to strengthening of steel.
- the V content may be 0% or more, but in order to obtain the above-mentioned effects, the V content is preferably 0.02% or more, and more preferably 0.03% or more.
- the V content is set to 0.30% or less.
- the V content is preferably 0.20% or less, and more preferably 0.15% or less.
- Cu 1.00% or less
- Cu is an element effective in improving toughness and increasing strength, but if the content is too high, weldability deteriorates. Therefore, when Cu is contained, the Cu content is limited to 1.00% or less.
- the Cu content is preferably 0.75% or less, more preferably 0.50% or less, and even more preferably 0.25% or less.
- the Cu content may be 0% or more, but it is preferable to contain 0.01% or more to obtain the above effect.
- Ni 2.0% or less
- Ni is an element that contributes to increasing the strength of steel and improves toughness and corrosion resistance.
- the Ni content is desirably 0.03% or more.
- the Ni content is more preferably 0.1% or more.
- Ni content is limited to 2.0% or less.
- the Ni content is preferably 1.5% or less, more preferably 1.0% or less, and even more preferably 0.5% or less.
- W 3.0% or less W is an element that forms precipitates, contributes to increasing the strength of steel by precipitation strengthening, and also dissolves and segregates at prior austenite grain boundaries to contribute to improving hydrogen embrittlement resistance. In order to obtain such effects, it is desirable to set the W content to 0.03% or more.
- the W content is preferably 0.1% or more.
- the W content is preferably 2.5% or less.
- the W content is more preferably 2.0% or less, even more preferably 1.5% or less, and most preferably 1.0% or less.
- H 0.0010% or less H may be introduced into the steel material in various processes during manufacturing. If the amount of H introduced is large, the risk of cracking after solidification increases and the hydrogen embrittlement resistance deteriorates, so it is important to reduce the amount of hydrogen in the steel material. These effects do not cause problems if the H content is 0.0010% or less, so if H is contained, the H content is set to 0.0010% or less.
- the H content is preferably 0.0008% or less, more preferably 0.0005% or less, and even more preferably 0.0001% or less. Since a H content of less than 0.00001% causes an increase in cost, the H content is preferably 0.00001% or more. The H content is more preferably 0.00005% or more.
- the amount of hydrogen is the amount of hydrogen remaining after forming of a plate, steel pipe, etc.
- Ca 0.0005-0.005%
- Ca is an element that combines with S to form CaS and effectively controls the morphology of sulfide-based inclusions. Through the control of the morphology of sulfide-based inclusions, it is possible to improve toughness and hydrogen embrittlement resistance.
- the Ca content when Ca is contained, the Ca content must be 0.0005% or more.
- the Ca content is 0.001% or less.
- the Ca content exceeds 0.005%, the effect is saturated and the effect commensurate with the content cannot be expected, which is economically disadvantageous.
- the Ca content is limited to 0.005% or less.
- the Ca content is preferably 0.004% or less, more preferably 0.003% or less, and further preferably 0.002% or less. % or less.
- the balance other than the above components consists of Fe and unavoidable impurities.
- unavoidable impurities for example, Mg: 0.0008% or less, Co: 0.0008% or less are acceptable.
- the high-strength seamless steel pipe of the present invention has the above-mentioned composition, and further has a structure in which tempered martensite is the main phase, in which precipitates are present, and further contains precipitates having a diameter of 50 nm or less.
- Main phase tempered martensite phase
- the structure in order to ensure a high strength of tensile strength TS of 850 MPa or more, the structure is made mainly of martensite phase, but in order to maintain the ductility and toughness required for a structure, the tempered martensite phase obtained by tempering the martensite phase is made the main phase.
- the "main phase” here refers to a single phase in which the tempered martensite phase is 100% in area ratio, or a tempered martensite phase of 95% or more containing a second phase of 5% or less in area ratio that does not affect the characteristics.
- the tempered martensite phase is preferably 97% or more, and more preferably 98% or more. As described above, the tempered martensite phase may be 100%.
- the second phase in the present invention can be exemplified by a bainite phase, a retained austenite phase, pearlite, or a mixture thereof.
- the above-mentioned structure of the high-strength seamless steel pipe for high-pressure hydrogen containers of the present invention can be adjusted by appropriately selecting the heating temperature during quenching and the cooling rate during cooling according to the steel composition.
- the grain size number of the prior austenite grains is 8.5 or more.
- the grain size number of the prior austenite grains is preferably 9.0 or more, more preferably 9.6 or more, and even more preferably 10.0 or more. It is most preferable that the grain size number of the prior austenite grains is 12.0 or more. There is no particular upper limit, and the smaller the better, but for reasons such as the difficulty of observation and appropriate evaluation, 18.0 or less is preferable.
- the grain size number is a value measured in accordance with the provisions of JIS G 0551.
- the grain size number of the prior austenite grains can be adjusted by changing the heating rate, heating temperature, and holding temperature during the quenching process, as well as the number of times the quenching process is performed.
- the concentration of Mo precipitates is adjusted within an appropriate range depending on the size in order to improve hydrogen embrittlement resistance.
- the Mo precipitates were identified by the extraction method described in Patent Document 6 and Reference Document 1 using filter filtration.
- a 10 mm square sample taken at a cross section perpendicular to the rolling direction of the steel pipe (cross section perpendicular to the tube axis direction: C cross section) was electrolyzed with an electrolytic solution, and the precipitates attached to the steel billet surface were placed in a dispersive liquid and irradiated with ultrasonic waves to extract the precipitates in the aqueous solution.
- the aqueous solution from which the precipitates were extracted was filtered, the precipitates were separated by size, and the precipitates classified by size were dissolved in a dissolving solution, and the Mo concentration was analyzed by ICP to calculate the Mo content of the precipitates at each size.
- the solution is introduced into plasma to emit an element-specific spectrum, and the concentration of the element in the solution can be obtained from the emission intensity of the light, so that the concentration (mass%) of Mo in the precipitate can be calculated.
- This method allows the content of Mo in the entire precipitate to be calculated, and the ratio (mass%) of Mo contained in the precipitate to the Mo contained in the steel can be obtained from this value and the content of Mo in the steel.
- the solid solution concentration of Mo in the steel was obtained by analyzing the concentration of the above-mentioned electrolytic solution by ICP in accordance with Patent Document 7. Furthermore, the content of Mo contained in the precipitates remaining on the filter is analyzed by ICP, and the content of Mo contained in the precipitates exceeding 50 nm is analyzed. The ratio (mass%) of Mo contained in the precipitates having a diameter of 50 nm or less to the Mo contained in the precipitates can be obtained by subtracting the content of Mo contained in the precipitates exceeding 50 nm from the content of Mo contained in the entire precipitates.
- Patent Document 6 JP 2010-127791 A
- Patent Document 7 JP 2009-031269 A
- Reference 1 Ishida et al., Analysis of the Formation State of Fine Precipitates in Steel, Tetsu to Hagane Vol. 107 No. 08
- the Mo contained in the steel 50% or more by mass is contained in the precipitates.
- the presence of Mo in the composition of the steel as precipitates improves the hydrogen environment characteristics. Even if the amount of Mo contained in the steel is increased, the effect cannot be expected if it is in solid solution.
- the greater the amount of Mo precipitates the better the hydrogen trapping ability, and the greater the improvement is achieved by having 50% or more of the Mo contained in the steel in the precipitates. For this reason, it is necessary that 50% or more by mass of the Mo contained in the steel is contained in the precipitates.
- the upper limit is not particularly limited, but it is preferable that 95% or less by mass of the Mo contained in the steel is present in the precipitates. More preferably, it is 90% or less by mass.
- Mo precipitates trap hydrogen in steel, inhibiting hydrogen accumulation at grain boundaries and improving grain boundary strength in a hydrogen environment.
- the size is larger than 50 nm, the hydrogen trapping ability decreases, and the effect on improving grain boundary strength decreases. Therefore, it is necessary that a large amount of Mo is contained in precipitates with a diameter of 50 nm or less.
- the hydrogen trapping ability improves as the amount of Mo in the precipitate increases, and the Mo contained in fine precipitates with a diameter of 50 nm or less occupies 50% or more by mass of the Mo in the precipitate, which improves the hydrogen trapping ability.
- the Mo contained in fine precipitates with a diameter of 50 nm or less is limited to the case where the Mo contained in the precipitate is 50% or more by mass. It is preferable that the Mo contained in fine precipitates with a diameter of 50 nm or less is 60% or more by mass of the Mo contained in the precipitate. It is more preferable that the content is 65% or more by mass, and even more preferable that the content is 70% or more by mass. Although the upper limit is not particularly limited, the Mo contained in the fine precipitates having a diameter of 50 nm or less is preferably 95% or less by mass, and more preferably 90% or less by mass, of the Mo contained in the precipitates.
- the precipitates have a diameter of 20 nm or less.
- the coarsening of Mo precipitates occurs due to the aggregation and coalescence of fine Mo precipitates, so that the coarsening leads to a decrease in the number of fine Mo precipitates.
- the lower limit of the diameter of the target precipitates is not particularly limited, it is preferable that the target precipitates are 1 nm or more.
- nitride-based inclusions and oxide-based inclusions that can be the starting point of fracture in order to improve hydrogen embrittlement resistance.
- management of the molten steel refining process is important. Desulfurization and dephosphorization are performed in the hot metal pretreatment, and decarburization and dephosphorization are performed in the converter, followed by heating and stirring refining process (LF) and RH vacuum degassing process in the ladle. Sufficient processing time is then ensured for the heating and stirring refining process (LF), as well as the RH vacuum degassing process, and the RH return flow rate is controlled.
- LF heating and stirring refining process
- the steel pipe material having the above composition is heated and hot rolled to produce a seamless steel pipe of a specified shape.
- seamless steel pipes for high-pressure hydrogen containers are used in hydrogen containers with a hydrogen pressure of 1 MPa or more, and more preferably 20 MPa or more. There is no particular upper limit to the hydrogen pressure, but it is intended for pressures up to 120 MPa.
- the steel pipe material (hereinafter also simply referred to as steel material) used in the present invention is preferably produced by melting molten steel having the above-mentioned composition using a conventional melting method such as a converter, and forming a slab (round slab) using a conventional casting method such as a continuous casting method.
- the slab may be further hot-rolled to produce a round slab of a specified shape, or may be produced by undergoing ingot making and blooming rolling.
- the manufacturing method will be described by taking the case where the steel pipe is a seamless steel pipe as an example, but it goes without saying that electric resistance welded pipes and UOE steel pipes can be manufactured by performing processing so as to have a similar thermal history.
- a steel plate is hot rolled under a temperature condition in the range of from the Ac 3 transformation point to 1000°C, followed by one or more quenching treatments in which the steel plate is rapidly cooled to a surface temperature of 200°C or less, and then, after the quenching treatment, a tempering treatment is performed in which the steel plate is heated to a temperature in the range of 600 to 740°C, and the average heating rate until the tempering treatment temperature is reached is 0.5°C/min or more and the holding time at the tempering temperature is 10 minutes or more and less than 60 minutes, and then welding is performed to manufacture an electric resistance welded pipe, which can obtain similar characteristics.
- the steel pipe of the present invention can be produced by sequentially carrying out the following steps (1) to (3).
- (2) A process for casting a steel pipe material after adjusting its composition (2) A rolling process for heating and rolling a slab (cast material) to obtain a steel pipe, and (3) A process for cooling and tempering the steel pipe obtained in the rolling process.
- Each process will be described below. Note that, unless otherwise specified, the temperature in the following description refers to the temperature at the surface of the slab or steel pipe.
- Casting speed 1.8 m/min or less If the casting speed is too fast, the number of inclusions increases and hydrogen embrittlement resistance deteriorates, so the casting speed is preferably 1.8 m/min or less. The slower the casting speed, the more hydrogen concentration and inclusions in the steel can be reduced, and the effect is more pronounced at 1.0 m/min or less, so the casting speed is more preferably 1.0 m/min or less. More preferably, it is 0.5 m/min or less, and most preferably, it is 0.1 m/min or less. The lower limit is not particularly limited, but it is preferably 0.01 m/min or more because it is difficult to control the device.
- a slab having the above-mentioned composition is heated.
- the slab is not particularly limited, but for example, a billet obtained by a normal continuous casting method can be used.
- Heating temperature 1050-1350°C If the heating temperature is less than 1050°C, the precipitates in the steel pipe material will not dissolve sufficiently. Therefore, the heating temperature is set to 1050°C or higher.
- the heating temperature is preferably 1100°C or higher, and more preferably 1150°C or higher.
- the crystal grains become coarse, and the precipitates such as TiN that precipitated during solidification also become coarse, and the cementite also becomes coarse, so that the toughness of the steel pipe decreases.
- the heating temperature is limited to a temperature of 1350° C. or less.
- the heating temperature is preferably 1300° C. or less.
- the heating temperature is more preferably 1250° C. or less.
- the predetermined shape refers to, for example, a cylindrical shape such as a steel pipe, and examples thereof include a steel pipe whose end diameter is smaller than the center diameter and a cylinder shape represented by a pressure vessel.
- the steel pipe having the cylindrical shape preferably has an outer diameter of 200 to 600 mm and a steel pipe length in the pipe axis direction of 500 to 12000 mm.
- the steel pipe whose end diameter is smaller than the center diameter preferably has an outer diameter of the center part of 200 to 600 mm, an end diameter of 50 to 550 mm, and a steel pipe length in the pipe axis direction of 500 to 12000 mm. It is also preferable that the cylinder has an outer diameter of 200 to 600 mm and a length of the cylinder in the axial direction of 500 to 12,000 mm.
- the hot rolling also includes a method in which a step of rolling a billet into a steel pipe shape (hot working step) and a pipe expansion step are carried out simultaneously.
- a sizing process for adjusting the plate thickness may be carried out after the reheating process described below.
- the resulting seamless steel pipe is subjected to a cooling process in which it is cooled at a rate faster than air cooling until the surface temperature reaches 200°C or below.
- Cooling treatment after hot rolling average cooling rate: air cooling or more, cooling stop temperature: 200 ° C or less
- average cooling rate air cooling or more
- cooling stop temperature 200 ° C or less
- the average cooling rate is less than 0.1 ° C / s, the metal structure after cooling becomes non-uniform, and the metal structure after the subsequent heat treatment becomes non-uniform.
- the average cooling rate is preferably 1.0 ° C / s or more, more preferably 10.0 ° C / s or more. Although the upper limit is not particularly limited, the average cooling rate is preferably 1000.0 ° C / s or less.
- the above-mentioned average cooling rate is the average value of the cooling rate from the Ac3 transformation point to 200°C.
- [Heat treatment process] Reheating temperature for quenching: Ac 3 transformation point or higher and 1000°C or lower
- the reheating temperature is set to Ac 3 transformation point or higher.
- the reheating temperature is preferably Ac 3 +30°C or higher, and more preferably Ac 3 +50°C or higher.
- Ac 3 point +30°C and Ac 3 point +50°C exceed 1000°C, the above Ac 3 point +30°C or higher and Ac 3 point +50°C or higher are not applied.
- the reheating temperature for the quenching treatment is limited to 1000° C. or less, preferably 980° C. or less, and more preferably 950° C. or less.
- the plate After reheating, the plate is quenched, and the plate is quenched until the surface temperature is 200°C or less.
- the quenching is performed by cooling the plate from the Ac 3 transformation point to 200°C at an average cooling rate of 2.0°C/s or more.
- the average cooling rate is preferably 5.0°C/s or more, and more preferably 10.0°C/s or more.
- the upper limit is not particularly limited, but the average cooling rate is preferably 1000.0°C/s or less.
- the plate After satisfying the above, the plate is preferably water-cooled at an average cooling rate of 2.0°C/s or more from the temperature at the center of the plate thickness to a temperature between the Ac 3 transformation point and 400°C or less.
- the upper limit is not particularly limited, but the average cooling rate is preferably 1000.0°C/s or less.
- the surface temperature is preferably cooled to a temperature of 100°C or less.
- the surface temperature after cooling is preferably low, and the plate is preferably cooled to room temperature.
- the quenching treatment may be repeated two or more times.
- the Ac3 transformation point is calculated using the following formula.
- Ac 3 transformation point (°C) 937-476.5C + 56Si-19.7Mn-16.3Cu-4.9Cr-26.6Ni + 38.1Mo + 124.8V + 136.3Ti + 198Al + 3315B (Here, C, Si, Mn, Cu, Cr, Ni, Mo, V, Ti, Al, B: Content of each element (mass%)) In calculating the Ac3 transformation point, when an element described in the above formula is not contained, the content of the element is set to zero percent.
- the material After cooling at a rate faster than air cooling, the material is tempered.
- the tempering process involves heating the material to a temperature in the range of 600-740°C.
- Tempering temperature 600-740°C
- the tempering treatment is carried out for the purpose of reducing the dislocation density and precipitating Mo precipitates, thereby improving the toughness and hydrogen embrittlement resistance. Since the precipitation is insufficient, it is not possible to ensure excellent hydrogen embrittlement resistance. Therefore, the tempering temperature is set to 600° C. or higher.
- the tempering temperature is preferably set to 620° C. or higher, and more preferably set to 640° C. or higher. It is more preferable that the tempering temperature is 660°C or higher, and even more preferable that the tempering temperature is 660°C or higher.
- the tempering temperature is set to 740°C or lower.
- the tempering temperature is preferably 710° C. or less, more preferably 700° C. or less, and further preferably 680° C. or less.
- the average heating rate until the tempering temperature is reached is 0.5°C/min or more Mo precipitates are precipitated during the temperature rise process of tempering, and their size increases. Therefore, if the heating rate until the specified temperature in the tempering process is reached is slow, the size of the precipitates becomes too large, and the desired hydrogen embrittlement resistance properties cannot be obtained. Therefore, the average heating rate until the tempering temperature is reached is set to 0.5°C/min or more, preferably 1.0°C/min or more, and more preferably 2.0°C/min or more. Most preferably, it is set to 5.0°C/min or more. There is no particular upper limit, but if it is too fast, unevenness in the temperature distribution occurs, resulting in inhomogeneity in the material structure, so 50.0°C/min or less is preferable.
- Holding time at tempering temperature is 10 minutes or more and less than 60 minutes Mo precipitates are most precipitated during tempering. If this time is short, they do not precipitate sufficiently and the desired hydrogen embrittlement resistance cannot be obtained. Holding time at tempering temperature is 10 minutes or more. Holding time at tempering temperature is preferably 15 minutes or more, more preferably 20 minutes or more. In addition, if the holding time at tempering temperature is too long, the size of the precipitates becomes too large, so it is less than 60 minutes. In addition, since the holding time is a factor of increased costs in terms of energy, the tempering time is preferably less than 50 minutes, more preferably less than 40 minutes. It is further preferably less than 30 minutes.
- the material is cooled at a rate faster than air cooling, and then reheated and quenched at least once by water cooling or the like, after which the above-mentioned tempering process is carried out.
- the number of quenching processes it is preferable to carry out the process five times or less.
- a straightening process may be performed in a warm or cold state to correct any defects in the shape of the steel pipe.
- Table 1 shows the composition of steel No. 1 to 24.
- Table 2 shows the tempering conditions for each of No. 1 to 24, the area ratio of tempered martensite, the prior austenite grain size number, the percentage by mass of Mo contained in precipitates out of Mo contained in the steel, the percentage of Mo contained in precipitates with a diameter of 50 nm or less out of Mo contained in the precipitates, TS, and relative reduction of area (RRA).
- Billets having the composition shown in No. 1 to No. 24 in Table 1 were produced at a casting speed of 0.6 m/min, and the billets were heated to 1250 ° C., hot worked and expanded to obtain seamless steel pipes.
- the seamless steel pipes were produced under conditions in which the expansion was completed at 820 ° C. or higher, and after the hot working, the pipes were cooled to a temperature at which the surface temperature was 200 ° C. or lower at a cooling rate of air cooling or higher.
- the obtained steel pipes were heated and held at 950 ° C. for steel pipes having an Ac 3 transformation point of 950 ° C. or lower, and heated and held at 1000 ° C.
- any one of billets No. 5, 8, and 12 having the composition shown in Table 1 was produced at various casting speeds, and the billet was heated to 1250°C and expanded to obtain seamless steel pipes.
- the steel pipes were produced under conditions in which expansion was completed at 820°C or higher, and after hot working, cooling was performed at a cooling rate of air cooling or higher to a temperature at which the surface temperature was 200°C or lower.
- the obtained steel pipes having an Ac3 transformation point of 950°C or lower were heated and held at 950°C, and the steel pipes having an Ac3 transformation point of more than 950°C were heated and held at 1000°C, and then water-cooled to 200°C or lower at a condition of 5.0°C/s, and then tempered under the conditions shown in Table 3.
- the metal structure and mechanical properties of the obtained steel pipes were evaluated.
- the evaluation method is as follows:
- the metal structure at the 1/4 position of the wall thickness on the inner side of the obtained steel pipe was evaluated as follows. In a cross section parallel to the longitudinal direction and the thickness direction of the steel pipe, samples were taken so that the 1/4 position of the wall thickness on the inner side and the center position of the wall thickness were the observation surfaces, and the cross section of the taken sample was etched using a 3 vol% nital solution. Scanning electron microscope photographs were taken at an appropriate magnification between 1000 and 5000 times, and tempered martensite, ferrite, bainite, and pearlite were observed.
- the tempered martensite was judged visually by comparing with the structure photograph in Reference 2, and the structure fraction was determined by binarizing martensite and other regions by image analysis using an image obtained by dividing the SEM photograph into regions based on the above judgment, and the tempered martensite fraction was determined, which was taken as the area fraction of the tempered martensite.
- Prior austenite ( ⁇ ) was measured by polishing a cross section (C cross section) of a test piece for microstructural observation perpendicular to the longitudinal direction of the pipe, etching it (picral (picric acid-ethanol mixed liquid)) to reveal the prior ⁇ grain boundaries, and observing it using an optical microscope (magnification: 1000 times) and taking images in a field of view of three or more points.
- the grain size number of the prior ⁇ grains was determined using a cut-off method in accordance with the provisions of JIS G 0551. The average value determined above was taken as the grain size number of the prior ⁇ grains of each steel pipe.
- the method for measuring Mo precipitates in steel material collected from steel pipes is as follows. Identification of Mo precipitates was performed by an extraction method in which the steel material was electrolyzed and the obtained precipitates were filtered. A 10 mm square sample collected at a cross section perpendicular to the rolling direction of the steel pipe (cross section perpendicular to the tube axis direction: C cross section) was dissolved in a steel piece by constant current electrolysis using a 10% AA-based electrolyte, placed in a 0.05 wt% sodium hexametaphosphate aqueous solution, and irradiated with ultrasonic waves to extract the precipitates.
- the solution was filtered through a filter with a filter diameter of 50 nm to obtain precipitates of 50 nm or less.
- the precipitates of 50 nm or less that passed through the filter and those of more than 50 nm on the filter were subjected to heating white smoke treatment with sulfuric acid, perchloric acid, and nitric acid, and then dissolved in hydrochloric acid.
- the precipitate solution and the electrolyte solution containing the dissolved Mo were then subjected to concentration analysis by ICP to calculate the Mo concentration (mass%) and the dissolved Mo concentration (mass%) in the precipitates of each size.
- the Mo amount and the dissolved Mo amount in all the precipitates obtained as above were added together to obtain the total Mo amount in the steel, and the Mo amount in all precipitates/total Mo amount and the Mo amount in precipitates of 50 nm or less/the Mo amount in all precipitates were obtained.
- Test pieces were taken from a cross section perpendicular to the steel pipe axis (C direction) at a position 1/4 of the wall thickness from the inner surface of the steel pipe, with the longitudinal direction of the test piece being in the C direction.
- a bar-shaped test piece as specified in JIS Z 2201 "Tensile test piece for metal materials" was used. The test was performed using the method specified in JIS Z2241, and the maximum load was taken as the TS of the steel pipe. It is preferable to center the sampling at the 1/4 position of the wall thickness, but for steel pipes with a small wall thickness (for example, a wall thickness of 45 mm or less), a method of sampling without centering the sampling at the 1/4 position of the wall thickness can also be used.
- Hydrogen embrittlement resistance was evaluated from the relative reduction of area (RRA) of the test piece after a slow strain rate tensile test in hydrogen gas in accordance with ASTM G 142.
- RRA relative reduction of area
- ASTM G 142 ASTM G 142.
- the steel undergoes plastic deformation, and the area of the fracture surface becomes smaller, so the reduction of area ⁇ air becomes larger.
- the elongation of the steel decreases, so the material breaks before it can be reduced, and the area of the fracture surface remains large. Therefore, the reduction of area ⁇ H of the fracture surface after the test in hydrogen becomes smaller, unlike in air. Hydrogen embrittlement resistance was evaluated from this decrease in reduction of area.
- RRA ⁇ H / ⁇ air ⁇ 100
- the relative reduction in area obtained from a slow strain rate tensile test (tensile speed 0.002 mm/s) at room temperature under 105 MPa hydrogen gas is shown in Table 2.
- ⁇ air is the test piece cross-sectional area after the test in air/the cross-sectional area before the test
- ⁇ H is the test piece cross-sectional area after the test in hydrogen/the cross-sectional area before the test.
- All of the inventive examples satisfied the conditions of a TS of 850 MPa or more in tensile tests in air, and an RRA of 60% or more in slow strain rate tensile tests in hydrogen gas.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本発明は、耐水素脆化特性に優れた高圧水素容器用高強度継目無鋼管およびその製造方法を提供することを目的とする。 特定の組成を有し、焼戻マルテンサイトを面積率で95%以上である組織を有し、
鋼中に含まれるMoのうち、質量%で50%以上が析出物中に含まれ、
さらに、前記析出物中に含まれるMoのうち、質量%で50%以上が直径50nm以下の析出物中に含まれ、
引張強さTSが850MPa以上である高圧水素容器用高強度継目無鋼管。
Description
本発明は、高圧水素容器用高強度継目無鋼管およびその製造方法に関する。
水素を燃料として用いる燃料電池自動車は、二酸化炭素(CO2)を排出せず、エネルギー効率にも優れることから、CO2排出問題とエネルギー問題を解決し得る自動車として期待されている。この燃料電池自動車を普及させるためには、燃料電池自動車に水素を供給するための水素ステーション用や水素を燃料電池自動車に積載する車載用として、35MPa以上、特に70MPa程度以上の高圧の水素を安全に貯蔵することができる強度と耐久性に優れた容器が必要であり、その開発が進められている。
軽量化が求められる車載用の蓄圧器としては、アルミニウムや樹脂などの軽量な材料からなるライナーを、炭素繊維強化樹脂(CFRP)で被覆したものが提案されている。例えば、特許文献1には、疲労特性に優れたAl-Mg-Si系合金からなるライナーが記載されている。
一方、水素ステーションで使用する蓄圧器の場合、車載用蓄圧器の場合ほど軽量化を行う必要がないため、全体が鋼材で形成された蓄圧器(例えば、特許文献2)や、Cr-Mo鋼製のライナーを炭素繊維またはガラス繊維で被覆した蓄圧器(例えば、特許文献3)が提案されている。
一方で、Cr-Mo鋼をはじめとする低合金鋼は水素による脆化が知られている。そのため、35MPa以上の高圧水素蓄圧器用の材料は水素による材質劣化の少ないアルミ合金やSUS316限定されている。
しかし、SUS316等のステンレス鋼は強度が低いため、例えば水素圧を70MPaまで高める場合、貯蔵容器の肉厚が極めて厚くなり、容器重量が増大する。そのため、貯蔵容器の大きさが制限され、容器内に貯蔵する水素量が少なくなるだけでなく、素材コストが大きくなり過ぎて経済性に劣るという問題がある。
高圧水素貯蔵容器用材料として、オーステナイト系ステンレス鋼の代わりに、素材コストのより低い低合金鋼を適用するために多くの研究がなされている。特許文献4では、鋼中水素のトラップサイトとして、微細なV-Mo系析出物を活用して非拡散性水素とし、拡散性水素による脆化を抑制する高圧水素環境用鋼が提案されている。
特許文献5では、Cr-Mo鋼の調質処理において比較的高い温度で焼戻し処理をすることで引張強度を900~950MPaの極めて狭い範囲に制御した、耐高圧水素環境脆化特性に優れた低合金高強度鋼が提案されている。
これら先行技術が示すように低コスト化を達成するために、耐水素脆化特性を高めた低合金鋼を高圧水素ガス環境のインフラ材料で用いることが広く検討されている。なお、ここで言う高圧水素ガス環境とは、総圧1MPa以上かつ水素の分圧において1MPa以上の環境である。
水素用の圧力容器等に低合金鋼を用いる場合、水素脆化によって材料の引張強度が低下したり、疲労き裂伝播速度が著しく加速したりすることが知られている。高圧水素用の蓄圧器等の圧力容器は、材料を高強度化することで容器の肉厚を薄く設計することが可能となるため、貯槽容量の拡大や製品重量の削減を目的に高強度鋼材のニーズが高まっている。一方で、鋼材強度が850MPa以上になると水素脆化現象は顕著となり、大気中で試験した際の最大引張強度よりも低い値で破壊が生じることがある。
本発明は、上記事情を鑑みてなされたものであり、耐水素脆化特性に優れた高圧水素容器用高強度継目無鋼管およびその製造方法を提供することを目的とする。
本発明者らは、上記した目的を達成した高圧水素容器用高強度継目無鋼管(以下、単に高強度継目無鋼管ともいう)とするためには、所望の高強度と耐水素脆化特性とを両立させることが必要であることから、強度と耐水素脆化特性に及ぼす各種要因について鋭意研究した。その結果、引張強さTS:850MPa以上の高強度鋼管では、粒界破壊の発生の有無が、耐水素脆化特性に大きな影響を与えることを見出した。そこで、微細なMo析出物を鋼組織中に分散析出させることで、Mo析出物が強力な水素捕捉サイトとなり、粒界への水素集積を低減し、粒界破壊の発生を抑制できることを見出した。さらに、Mo析出物の大きさが50nm以下で、かつ量が多いほど、耐水素脆化特性を向上することを見出した。
このような知見から、本発明者らは、高強度継目無鋼管において、耐水素脆化特性の更なる向上のためには、析出物に含まれるMoの量を増加させ、特に50nm以下の析出物に含まれるMoの量を適正な量以上に調整する必要があることに思い至った。
[1] 質量%で、
C:0.20~0.50%、
Si:0.05~2.00%、
Mn:0.30~1.50%、
P:0.015%以下、
S:0.005%以下、
Al:0.005~0.150%、
N:0.006%以下、
Cr:0.2%超1.7%以下、
Mo:1.0%超3.0%以下、
Nb:0.001~0.020%、
B:0.0003~0.0030%、
O:0.0030%以下、
Ti:0.003~0.025%を含み、
かつ前記Cの含有量に対する前記Moの含有量の比であるMo/Cが2.0超~12.0の範囲となるように含有し、
残部がFeおよび不可避的不純物からなる組成を有し、
焼戻マルテンサイトを面積率で95%以上である組織を有し、
鋼中に含まれる前記Moのうち、質量%で50%以上が析出物中に含まれ、
さらに、前記析出物中に含まれるMoのうち、質量%で50%以上が直径50nm以下の析出物中に含まれ、
引張強さTSが850MPa以上である高圧水素容器用高強度継目無鋼管。
[2] 前記組成に加えてさらに、質量%で、
V:0.30%以下、
Cu:1.00%以下、
Ni:2.0%以下、
W:3.0%以下
のうちから選ばれた1種または2種以上を含有する[1]に記載の高圧水素容器用高強度継目無鋼管。
[3] 前記組成に加えてさらに、質量%で、
H:0.0010%以下
を含有する[1]または[2]に記載の高圧水素容器用高強度継目無鋼管。
[4] 前記組成に加えてさらに、質量%で、
Ca:0.0005~0.005%
を含有する[1]~[3]のいずれかに記載の高圧水素容器用高強度継目無鋼管。
[5] [1]~[4]のいずれかに記載の高圧水素容器用高強度継目無鋼管の製造方法であって、
前記組成を有する鋼管素材を鋳造して鋳片とし、前記鋳片を1050~1350℃の範囲の温度で加熱し、
前記鋳片に熱間圧延を施して所定形状の継目無鋼管とし、
前記熱間圧延後に、前記継目無鋼管に空冷以上の平均冷却速度で表面温度が200℃以下となる温度まで冷却を施し、
前記冷却後、Ac3変態点以上1000℃以下の範囲の温度に再加熱し、
表面温度で200℃以下となる温度まで急冷する焼入れ処理を1回以上施し、
前記焼入れ処理後600~740℃の焼戻温度に加熱する焼戻処理を施し、
前記焼戻温度に到達するまでの平均昇温速度が0.5℃/分以上かつ、前記焼戻温度での保持時間を10分以上60分未満とする高圧水素容器用高強度継目無鋼管の製造方法。
[6] 前記鋳造において、1.8m/分以下の鋳造速度とする、[5]に記載の高圧水素容器用高強度継目無鋼管の製造方法。
[1] 質量%で、
C:0.20~0.50%、
Si:0.05~2.00%、
Mn:0.30~1.50%、
P:0.015%以下、
S:0.005%以下、
Al:0.005~0.150%、
N:0.006%以下、
Cr:0.2%超1.7%以下、
Mo:1.0%超3.0%以下、
Nb:0.001~0.020%、
B:0.0003~0.0030%、
O:0.0030%以下、
Ti:0.003~0.025%を含み、
かつ前記Cの含有量に対する前記Moの含有量の比であるMo/Cが2.0超~12.0の範囲となるように含有し、
残部がFeおよび不可避的不純物からなる組成を有し、
焼戻マルテンサイトを面積率で95%以上である組織を有し、
鋼中に含まれる前記Moのうち、質量%で50%以上が析出物中に含まれ、
さらに、前記析出物中に含まれるMoのうち、質量%で50%以上が直径50nm以下の析出物中に含まれ、
引張強さTSが850MPa以上である高圧水素容器用高強度継目無鋼管。
[2] 前記組成に加えてさらに、質量%で、
V:0.30%以下、
Cu:1.00%以下、
Ni:2.0%以下、
W:3.0%以下
のうちから選ばれた1種または2種以上を含有する[1]に記載の高圧水素容器用高強度継目無鋼管。
[3] 前記組成に加えてさらに、質量%で、
H:0.0010%以下
を含有する[1]または[2]に記載の高圧水素容器用高強度継目無鋼管。
[4] 前記組成に加えてさらに、質量%で、
Ca:0.0005~0.005%
を含有する[1]~[3]のいずれかに記載の高圧水素容器用高強度継目無鋼管。
[5] [1]~[4]のいずれかに記載の高圧水素容器用高強度継目無鋼管の製造方法であって、
前記組成を有する鋼管素材を鋳造して鋳片とし、前記鋳片を1050~1350℃の範囲の温度で加熱し、
前記鋳片に熱間圧延を施して所定形状の継目無鋼管とし、
前記熱間圧延後に、前記継目無鋼管に空冷以上の平均冷却速度で表面温度が200℃以下となる温度まで冷却を施し、
前記冷却後、Ac3変態点以上1000℃以下の範囲の温度に再加熱し、
表面温度で200℃以下となる温度まで急冷する焼入れ処理を1回以上施し、
前記焼入れ処理後600~740℃の焼戻温度に加熱する焼戻処理を施し、
前記焼戻温度に到達するまでの平均昇温速度が0.5℃/分以上かつ、前記焼戻温度での保持時間を10分以上60分未満とする高圧水素容器用高強度継目無鋼管の製造方法。
[6] 前記鋳造において、1.8m/分以下の鋳造速度とする、[5]に記載の高圧水素容器用高強度継目無鋼管の製造方法。
本発明によれば、引張強さTS:850MPa以上の高強度を有し、耐水素脆化特性にすぐれた高圧水素容器用高強度継目無鋼管を、容易にしかも安価に製造でき、産業上格段の効果を奏する。また、適正な合金元素を適正量含有させるとともにMo析出物の生成を促進する製造方法を用いることにより、圧力容器用として所望の高強度とともに優れた耐水素脆化特性を有する高強度継目無鋼管を安定して製造できる。
[成分組成]
まず、本発明の高圧水素容器用高強度継目無鋼管(以下、単に高強度継目無鋼管ともいう)の組成限定理由について説明する。以下、組成における質量%は、単に%で記す。
まず、本発明の高圧水素容器用高強度継目無鋼管(以下、単に高強度継目無鋼管ともいう)の組成限定理由について説明する。以下、組成における質量%は、単に%で記す。
C:0.20~0.50%
Cは、固溶して鋼の強度増加に寄与するとともに、鋼の焼入性を向上させ、焼入れ時にマルテンサイト相を主相とする組織の形成に寄与する。このような効果を得るためには、C含有量は0.20%以上とする必要がある。C含有量は好ましくは0.22%以上であり、より好ましくは0.25%以上であり、さらに好ましくは0.28%以上である。一方、Cの含有量を0.50%超とする場合、焼入れ時に割れが発生し、製造性が著しく低下する。このため、C含有量を0.50%以下とする。なお、C含有量は、好ましくは0.45%以下であり、より好ましくは0.40%以下である。C含有量は、さらに好ましくは、0.35%以下である。
Cは、固溶して鋼の強度増加に寄与するとともに、鋼の焼入性を向上させ、焼入れ時にマルテンサイト相を主相とする組織の形成に寄与する。このような効果を得るためには、C含有量は0.20%以上とする必要がある。C含有量は好ましくは0.22%以上であり、より好ましくは0.25%以上であり、さらに好ましくは0.28%以上である。一方、Cの含有量を0.50%超とする場合、焼入れ時に割れが発生し、製造性が著しく低下する。このため、C含有量を0.50%以下とする。なお、C含有量は、好ましくは0.45%以下であり、より好ましくは0.40%以下である。C含有量は、さらに好ましくは、0.35%以下である。
Si:0.05~2.00%
Siは、脱酸のため添加するが、含有量が0.05%未満では脱酸効果が十分でない。このため、Si含有量を0.05%以上とする。Si含有量は0.10%以上であることが好ましい。0.20%以上であることがより好ましく、0.30%以上であることがさらに好ましい。一方、Si含有量が2.00%超の場合、その効果は飽和するため、Si含有量を2.00%以下とする。Si含有量は、1.00%以下であることが好ましく、0.80%以下であることがより好ましい。さらに0.50%を超えると靭性や溶接性を劣化させるため、Si含有量は0.50%以下であることがさらに好ましい。
Siは、脱酸のため添加するが、含有量が0.05%未満では脱酸効果が十分でない。このため、Si含有量を0.05%以上とする。Si含有量は0.10%以上であることが好ましい。0.20%以上であることがより好ましく、0.30%以上であることがさらに好ましい。一方、Si含有量が2.00%超の場合、その効果は飽和するため、Si含有量を2.00%以下とする。Si含有量は、1.00%以下であることが好ましく、0.80%以下であることがより好ましい。さらに0.50%を超えると靭性や溶接性を劣化させるため、Si含有量は0.50%以下であることがさらに好ましい。
Mn:0.30~1.50%
Mnは、Cと同様に、鋼の焼入性を向上させ、鋼の強度増加に寄与する元素である。このような効果を得るためには、Mnの含有量0.30%以上とする。Mn含有量は、0.40%以上が好ましく、0.45%以上がより好ましく、0.50%以上がさらに好ましい。一方、Mnは、鋼中で偏析して局部的に鋼を硬化させる元素であり、多量のMnを含有する場合、局部的硬化領域を形成し、耐水素脆化特性を低下させるという悪影響をおよぼす。このため、本発明では、Mn含有量を1.50%以下とする。なお、Mn含有量は、好ましくは1.20%以下であり、より好ましくは、1.00%以下である。さらに好ましくは、0.80%以下である。
Mnは、Cと同様に、鋼の焼入性を向上させ、鋼の強度増加に寄与する元素である。このような効果を得るためには、Mnの含有量0.30%以上とする。Mn含有量は、0.40%以上が好ましく、0.45%以上がより好ましく、0.50%以上がさらに好ましい。一方、Mnは、鋼中で偏析して局部的に鋼を硬化させる元素であり、多量のMnを含有する場合、局部的硬化領域を形成し、耐水素脆化特性を低下させるという悪影響をおよぼす。このため、本発明では、Mn含有量を1.50%以下とする。なお、Mn含有量は、好ましくは1.20%以下であり、より好ましくは、1.00%以下である。さらに好ましくは、0.80%以下である。
P:0.015%以下
Pは、鋼組織中で粒界に偏析して粒界脆化を引き起こすだけでなく、偏析して局部的に鋼を硬化させる元素であり、本発明では、Pは不可避的不純物として、できるだけ低減することが好ましいが、0.015%までは許容できる。このため、Pの含有量を0.015%以下とする。なお、Pの含有量は、好ましくは、0.008%以下である。P含有量は、より好ましくは0.005%以下であり、さらに好ましくは0.003%以下である。含有量は低いほどよいが、精錬コストの観点からP含有量は0.0001%以上であることが好ましく、0.001%以上であることがより好ましい。
Pは、鋼組織中で粒界に偏析して粒界脆化を引き起こすだけでなく、偏析して局部的に鋼を硬化させる元素であり、本発明では、Pは不可避的不純物として、できるだけ低減することが好ましいが、0.015%までは許容できる。このため、Pの含有量を0.015%以下とする。なお、Pの含有量は、好ましくは、0.008%以下である。P含有量は、より好ましくは0.005%以下であり、さらに好ましくは0.003%以下である。含有量は低いほどよいが、精錬コストの観点からP含有量は0.0001%以上であることが好ましく、0.001%以上であることがより好ましい。
S:0.005%以下
Sは、不可避的不純物として、鋼中ではそのほとんどが硫化物系介在物として存在し、延性、靭性、さらには耐SSC性を低下させるため、できるだけ低減することが好ましいが、0.005%までは許容できる。このため、Sの含有量を0.005%以下とする。なお、S含有量は、好ましくは、0.003%以下である。より好ましくは0.002%以下である。含有量は低いほどよいが、精錬コストの観点からS含有量は0.0002%以上であることが好ましい。S含有量は0.001%以上であることがより好ましい。
Sは、不可避的不純物として、鋼中ではそのほとんどが硫化物系介在物として存在し、延性、靭性、さらには耐SSC性を低下させるため、できるだけ低減することが好ましいが、0.005%までは許容できる。このため、Sの含有量を0.005%以下とする。なお、S含有量は、好ましくは、0.003%以下である。より好ましくは0.002%以下である。含有量は低いほどよいが、精錬コストの観点からS含有量は0.0002%以上であることが好ましい。S含有量は0.001%以上であることがより好ましい。
Al:0.005~0.150%
Alは、脱酸剤として添加するが、0.005%未満では添加効果がない。このため、Alの含有量を0.005%以上とする。Al含有量は、0.010%以上とすることが好ましく、0.020%以上とすることがより好ましい。一方、0.150%を超えると鋼の清浄度が低下し、靱性が劣化するため、Alの含有量を0.150%以下とする。Al含有量は、0.130%以下とすることが好ましく、0.100%以下とすることがより好ましく、0.080%以下とすることがもっとも好ましい。
Alは、脱酸剤として添加するが、0.005%未満では添加効果がない。このため、Alの含有量を0.005%以上とする。Al含有量は、0.010%以上とすることが好ましく、0.020%以上とすることがより好ましい。一方、0.150%を超えると鋼の清浄度が低下し、靱性が劣化するため、Alの含有量を0.150%以下とする。Al含有量は、0.130%以下とすることが好ましく、0.100%以下とすることがより好ましく、0.080%以下とすることがもっとも好ましい。
N:0.006%以下
Nは、不可避的不純物として鋼中に存在するが、Alと結合してAlNを形成し、また、Tiを含有する場合はTiNを形成して、結晶粒を微細化し、靭性を向上させる作用を有する。このため、N含有量は0.0005%以上とすることが好ましい。より好ましくは0.001%以上である。しかし、N含有量が0.006%を超える場合、形成される窒化物が粗大化し、靭性を著しく低下させる。このため、Nの含有量を0.006%以下とする。N含有量は0.005%以下とすることが好ましく、0.004%以下とすることがより好ましく、0.003%以下とすることがさらに好ましい。
Nは、不可避的不純物として鋼中に存在するが、Alと結合してAlNを形成し、また、Tiを含有する場合はTiNを形成して、結晶粒を微細化し、靭性を向上させる作用を有する。このため、N含有量は0.0005%以上とすることが好ましい。より好ましくは0.001%以上である。しかし、N含有量が0.006%を超える場合、形成される窒化物が粗大化し、靭性を著しく低下させる。このため、Nの含有量を0.006%以下とする。N含有量は0.005%以下とすることが好ましく、0.004%以下とすることがより好ましく、0.003%以下とすることがさらに好ましい。
Cr:0.2%超1.7%以下
Crは、焼入性の向上を介して鋼の強度を増加させるとともに、耐食性を向上させる元素である。また、Crは、焼戻処理時にCと結合し、M3C、M7C3、M23C6(Mは金属元素)などの析出物を形成し、焼戻軟化抵抗を向上させる元素であり、とくに鋼管の高強度化に際しては必要な元素である。特にM3C型析出物は、焼戻軟化抵抗を向上させる作用が強い。このような効果を得るために、Cr含有量は0.2%超とする。Cr含有量は好ましくは、0.3%以上であり、より好ましくは0.5%以上である。一方、Crの含有量を1.7%超にすると、多量のM7C3、M23C6を形成し、水素のトラップサイトとして作用して耐水素侵食を低下させる。また、Crを多く含有させるとMo析出物の粗大化が生じる。微細なMo析出物が凝集・合体によって粗大化することから、微細なMo析出物の個数密度が低下することで耐水素脆化特性が低下する。このようなことから、Crの含有量は、1.7%以下とする。Cr含有量は、好ましくは、1.5%以下であり、より好ましくは1.0%以下である。さらに好ましくは、0.8%以下である。
Crは、焼入性の向上を介して鋼の強度を増加させるとともに、耐食性を向上させる元素である。また、Crは、焼戻処理時にCと結合し、M3C、M7C3、M23C6(Mは金属元素)などの析出物を形成し、焼戻軟化抵抗を向上させる元素であり、とくに鋼管の高強度化に際しては必要な元素である。特にM3C型析出物は、焼戻軟化抵抗を向上させる作用が強い。このような効果を得るために、Cr含有量は0.2%超とする。Cr含有量は好ましくは、0.3%以上であり、より好ましくは0.5%以上である。一方、Crの含有量を1.7%超にすると、多量のM7C3、M23C6を形成し、水素のトラップサイトとして作用して耐水素侵食を低下させる。また、Crを多く含有させるとMo析出物の粗大化が生じる。微細なMo析出物が凝集・合体によって粗大化することから、微細なMo析出物の個数密度が低下することで耐水素脆化特性が低下する。このようなことから、Crの含有量は、1.7%以下とする。Cr含有量は、好ましくは、1.5%以下であり、より好ましくは1.0%以下である。さらに好ましくは、0.8%以下である。
Mo:1.0%超3.0%以下
Moは、析出物を形成し、析出強化により鋼の強化に寄与する元素であり、焼戻により転位密度を低減させたうえで所望の高強度を確保するのに有効に寄与する。また、Moは、鋼中に固溶して、旧オーステナイト粒界に偏析して、耐水素脆化特性の向上に寄与する。さらに、Moは、腐食生成物を緻密化し、さらに割れの起点となるピットの生成・成長を抑制する作用を有する。このような効果を得るために、Mo含有量は1.0%超とする。Mo含有量は、好ましくは1.1%超であり、より好ましくは1.2%超であり、さらに好ましくは1.3%以上であり、もっとも好ましくは1.4%以上である。一方、Mo含有量が3.0%を超える場合、針状のM2C析出物や、場合によってはLaves相(Fe2Mo)の形成を促進して、耐水素脆化特性を低下させる。このため、Mo含有量を3.0%以下とする。なお、Mo含有量は、好ましくは、2.8%以下、より好ましくは、2.5%以下である。さらに好ましくは、1.8%以下である。もっとも好ましくは、1.5%以下である。
Moは、析出物を形成し、析出強化により鋼の強化に寄与する元素であり、焼戻により転位密度を低減させたうえで所望の高強度を確保するのに有効に寄与する。また、Moは、鋼中に固溶して、旧オーステナイト粒界に偏析して、耐水素脆化特性の向上に寄与する。さらに、Moは、腐食生成物を緻密化し、さらに割れの起点となるピットの生成・成長を抑制する作用を有する。このような効果を得るために、Mo含有量は1.0%超とする。Mo含有量は、好ましくは1.1%超であり、より好ましくは1.2%超であり、さらに好ましくは1.3%以上であり、もっとも好ましくは1.4%以上である。一方、Mo含有量が3.0%を超える場合、針状のM2C析出物や、場合によってはLaves相(Fe2Mo)の形成を促進して、耐水素脆化特性を低下させる。このため、Mo含有量を3.0%以下とする。なお、Mo含有量は、好ましくは、2.8%以下、より好ましくは、2.5%以下である。さらに好ましくは、1.8%以下である。もっとも好ましくは、1.5%以下である。
Nb:0.001~0.020%
Nbは、析出物やあるいは炭窒化物を形成し、析出強化により鋼の強度増加に寄与するとともに、オーステナイト粒の微細化にも寄与する。このような効果を得るために、Nbの含有量は0.001%以上とする。Nb含有量は、好ましくは0.005%以上であり、より好ましくは0.006%以上、さらに好ましくは0.007%以上である。一方、粗大なNb析出物は、水素誘起割れのき裂発生点となりやすいため、0.020%を超える多量のNb含有に基づく多量のNb析出物の存在は、高強度鋼材において、耐水素脆化特性の顕著な低下に繋がる。このため、所望の高強度と優れた耐水素脆化特性の両立の観点から、本発明では、Nbの含有量を0.020%以下とする。なお、Nb含有量は、好ましくは0.015%以下であり、より好ましくは0.010%未満である。
Nbは、析出物やあるいは炭窒化物を形成し、析出強化により鋼の強度増加に寄与するとともに、オーステナイト粒の微細化にも寄与する。このような効果を得るために、Nbの含有量は0.001%以上とする。Nb含有量は、好ましくは0.005%以上であり、より好ましくは0.006%以上、さらに好ましくは0.007%以上である。一方、粗大なNb析出物は、水素誘起割れのき裂発生点となりやすいため、0.020%を超える多量のNb含有に基づく多量のNb析出物の存在は、高強度鋼材において、耐水素脆化特性の顕著な低下に繋がる。このため、所望の高強度と優れた耐水素脆化特性の両立の観点から、本発明では、Nbの含有量を0.020%以下とする。なお、Nb含有量は、好ましくは0.015%以下であり、より好ましくは0.010%未満である。
B:0.0003~0.0030%
Bは、オーステナイト粒界に偏析し、粒界からのフェライト変態を抑制することにより、微量の含有でも、鋼の焼入性を高める作用を有する。このような効果を得るためには、B含有量は0.0003%以上とする。B含有量は、好ましくは0.0007%以上であり、より好ましくは0.0010%以上である。一方、0.0030%超えてBを含有すると、炭窒化物等として析出し、焼入性が低下し、したがって靭性が低下する。このため、B含有量を0.0030%以下とする。なお、B含有量は、好ましくは、0.0025%以下である。B含有量は、より好ましくは0.0020%以下であり、さらに好ましくは0.0015%以下である。
Bは、オーステナイト粒界に偏析し、粒界からのフェライト変態を抑制することにより、微量の含有でも、鋼の焼入性を高める作用を有する。このような効果を得るためには、B含有量は0.0003%以上とする。B含有量は、好ましくは0.0007%以上であり、より好ましくは0.0010%以上である。一方、0.0030%超えてBを含有すると、炭窒化物等として析出し、焼入性が低下し、したがって靭性が低下する。このため、B含有量を0.0030%以下とする。なお、B含有量は、好ましくは、0.0025%以下である。B含有量は、より好ましくは0.0020%以下であり、さらに好ましくは0.0015%以下である。
O(酸素):0.0030%以下
O(酸素)は、不可避的不純物として、鋼中では酸化物系介在物として存在している。これら介在物は、水素ガス環境中の発生起点となり、耐水素脆化特性を低下させるため、本発明においてO(酸素)は、できるだけ低減することが好ましい。しかし、過剰な低減は精錬コストの高騰を招くため、O(酸素)の含有量を0.0030%までは許容できる。このため、O(酸素)の含有量を0.0030%以下に限定した。なお、Oの含有量は、好ましくは、0.0025%以下であり、より好ましくは、O含有量は0.0020%以下である。O含有量は、さらに好ましくは、0.0015%以下である。下限は特に限定されるものではないが、O含有量は0.0010%以上とすることが好ましい。
O(酸素)は、不可避的不純物として、鋼中では酸化物系介在物として存在している。これら介在物は、水素ガス環境中の発生起点となり、耐水素脆化特性を低下させるため、本発明においてO(酸素)は、できるだけ低減することが好ましい。しかし、過剰な低減は精錬コストの高騰を招くため、O(酸素)の含有量を0.0030%までは許容できる。このため、O(酸素)の含有量を0.0030%以下に限定した。なお、Oの含有量は、好ましくは、0.0025%以下であり、より好ましくは、O含有量は0.0020%以下である。O含有量は、さらに好ましくは、0.0015%以下である。下限は特に限定されるものではないが、O含有量は0.0010%以上とすることが好ましい。
Ti:0.003~0.025%
Tiは、溶鋼の凝固時にNと結合し微細なTiNとして析出して、そのピンニング効果により、オーステナイト粒の微細化に寄与する。このような効果を得るためには、Tiを0.003%以上含有させる必要がある。Tiの含有量が0.003%未満の場合ではその効果が小さい。このため、Ti含有量は0.003%以上とする。Ti含有量は、0.005%以上とすることが好ましく、0.010%以上とすることがより好ましい。一方、Tiの含有量が0.025%を超える場合、TiNが粗大化し、上記したピンニング効果が発揮できず、かえって靭性が低下する。また、さらに粗大なTiNが起因となり、耐水素脆化特性が低下する。このようなことから、Tiの含有量を0.025%以下とする。Ti含有量は、0.020%以下とすることが好ましく、0.015%以下とすることがより好ましい。
Tiは、溶鋼の凝固時にNと結合し微細なTiNとして析出して、そのピンニング効果により、オーステナイト粒の微細化に寄与する。このような効果を得るためには、Tiを0.003%以上含有させる必要がある。Tiの含有量が0.003%未満の場合ではその効果が小さい。このため、Ti含有量は0.003%以上とする。Ti含有量は、0.005%以上とすることが好ましく、0.010%以上とすることがより好ましい。一方、Tiの含有量が0.025%を超える場合、TiNが粗大化し、上記したピンニング効果が発揮できず、かえって靭性が低下する。また、さらに粗大なTiNが起因となり、耐水素脆化特性が低下する。このようなことから、Tiの含有量を0.025%以下とする。Ti含有量は、0.020%以下とすることが好ましく、0.015%以下とすることがより好ましい。
Mo/C:2.0超~12.0
Cの含有量に対するMoの含有量の比であるMo/Cが2.0未満の場合、Moが不足しMo析出物の形成量が少なくなるため、耐水素脆化特性を向上させるのに十分なMo析出物が形成しない。このため、Mo/Cが2.0超とする。Mo/Cが2.5以上とすることが好ましく、3.0以上とすることがより好ましく、3.5以上とすることがさらに好ましい。一方、Mo/Cが12.0を超えて大きい場合には、Mo析出物が粗大化する傾向が顕著になり、靭性や耐水素脆化特性が低下する。さらに、Mo析出物の粗大化が微細なMo析出物が凝集・合体によっても起こることから、微細なMo析出物の個数密度も低減する。このようなことから、Mo/Cを12.0以下とする。なお、Mo/Cは、好ましくは10.0以下であり、より好ましくは8.0以下であり、さらに好ましくは6.0以下である。もっとも好ましくは5.0以下である。
Cの含有量に対するMoの含有量の比であるMo/Cが2.0未満の場合、Moが不足しMo析出物の形成量が少なくなるため、耐水素脆化特性を向上させるのに十分なMo析出物が形成しない。このため、Mo/Cが2.0超とする。Mo/Cが2.5以上とすることが好ましく、3.0以上とすることがより好ましく、3.5以上とすることがさらに好ましい。一方、Mo/Cが12.0を超えて大きい場合には、Mo析出物が粗大化する傾向が顕著になり、靭性や耐水素脆化特性が低下する。さらに、Mo析出物の粗大化が微細なMo析出物が凝集・合体によっても起こることから、微細なMo析出物の個数密度も低減する。このようなことから、Mo/Cを12.0以下とする。なお、Mo/Cは、好ましくは10.0以下であり、より好ましくは8.0以下であり、さらに好ましくは6.0以下である。もっとも好ましくは5.0以下である。
上記した成分が基本の成分であるが、基本の組成に加えてさらに、選択元素として、V:0.30%以下、Cu:1.00%以下、Ni:2.0%以下、W:3.0%以下のうちから選ばれた1種または2種以上、H:0.0010%以下、または、Ca:0.0005~0.005%、およびこれらを任意に組み合わせて含有できる。
V:0.30%以下、Cu:1.00%以下、Ni:2.0%以下、W:3.0%以下のうちから選ばれた1種または2種以上
V、Cu、Ni、Wはいずれも、鋼の強度増加に寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。
V、Cu、Ni、Wはいずれも、鋼の強度増加に寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。
V:0.30%以下
Vは、析出物や炭窒化物を形成し、鋼の強化に寄与する元素である。Vの含有量は0%以上であってよいが、上記このような効果を得るためには、Vの含有量は0.02%以上であることが好ましく、0.03%以上であることがさらに好ましい。一方、0.30%を超えてVを含有しても、効果が飽和し、含有量に見合う効果を期待できなくなり、経済的に不利となる。このため、Vを含有する場合は、V含有量を0.30%以下とする。なお、V含有量は、好ましくは、0.20%以下であり、より好ましくは、0.15%以下である。
Vは、析出物や炭窒化物を形成し、鋼の強化に寄与する元素である。Vの含有量は0%以上であってよいが、上記このような効果を得るためには、Vの含有量は0.02%以上であることが好ましく、0.03%以上であることがさらに好ましい。一方、0.30%を超えてVを含有しても、効果が飽和し、含有量に見合う効果を期待できなくなり、経済的に不利となる。このため、Vを含有する場合は、V含有量を0.30%以下とする。なお、V含有量は、好ましくは、0.20%以下であり、より好ましくは、0.15%以下である。
Cu:1.00%以下
Cuは、靭性の改善と強度の上昇に有効な元素であるが、含有量が多すぎると溶接性が劣化する。このため、Cuを含有する場合は、Cu含有量を1.00%以下に限定する。Cu含有量は、好ましくは0.75%以下であり、より好ましくは0.50%以下であり、さらに好ましくは0.25%以下である。Cu含有量は0%以上であってよいが、上記効果を得るには0.01%以上を含有することが好ましい。
Cuは、靭性の改善と強度の上昇に有効な元素であるが、含有量が多すぎると溶接性が劣化する。このため、Cuを含有する場合は、Cu含有量を1.00%以下に限定する。Cu含有量は、好ましくは0.75%以下であり、より好ましくは0.50%以下であり、さらに好ましくは0.25%以下である。Cu含有量は0%以上であってよいが、上記効果を得るには0.01%以上を含有することが好ましい。
Ni:2.0%以下
Niは、鋼の強度増加に寄与するとともに、靭性および耐食性を向上させる元素である。このような効果を得るためには、Ni含有量は0.03%以上であることが望ましい。Ni含有量は、より好ましくは0.1%以上である。一方、Niは2.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できず経済性に不利となる。このため、Niを含有する場合は、Ni含有量を2.0%以下に限定する。Ni含有量は、好ましくは1.5%以下であり、より好ましくは1.0%以下であり、さらに好ましくは0.5%以下である。
Niは、鋼の強度増加に寄与するとともに、靭性および耐食性を向上させる元素である。このような効果を得るためには、Ni含有量は0.03%以上であることが望ましい。Ni含有量は、より好ましくは0.1%以上である。一方、Niは2.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できず経済性に不利となる。このため、Niを含有する場合は、Ni含有量を2.0%以下に限定する。Ni含有量は、好ましくは1.5%以下であり、より好ましくは1.0%以下であり、さらに好ましくは0.5%以下である。
W:3.0%以下
Wは、析出物を形成し、析出強化により鋼の強度増加に寄与するとともに、固溶し、旧オーステナイト粒界に偏析し耐水素脆化特性の向上に寄与する元素である。このような効果を得るためにはWの含有量を0.03%以上とすることが望ましい。W含有量は、0.1%以上であることが好ましい。一方、Wの含有量が3.0%を超えた場合、効果が飽和し、含有量に見合う効果が期待できず経済性に不利となる。このため、Wを含有する場合は、Wの含有量を3.0%以下に限定する。W含有量は、好ましくは2.5%以下である。W含有量は、より好ましくは2.0%以下であり、さらに好ましくは1.5%以下であり、もっとも好ましくは1.0%以下である。
Wは、析出物を形成し、析出強化により鋼の強度増加に寄与するとともに、固溶し、旧オーステナイト粒界に偏析し耐水素脆化特性の向上に寄与する元素である。このような効果を得るためにはWの含有量を0.03%以上とすることが望ましい。W含有量は、0.1%以上であることが好ましい。一方、Wの含有量が3.0%を超えた場合、効果が飽和し、含有量に見合う効果が期待できず経済性に不利となる。このため、Wを含有する場合は、Wの含有量を3.0%以下に限定する。W含有量は、好ましくは2.5%以下である。W含有量は、より好ましくは2.0%以下であり、さらに好ましくは1.5%以下であり、もっとも好ましくは1.0%以下である。
H:0.0010%以下
Hは、製造中の種々の工程で鋼材中に導入される場合があり、導入量が多いと凝固後の割れ発生リスクが高まるとともに、耐水素脆化特性を劣化させるため、鋼材中の水素量を低下させることが重要である。これらの影響はH含有量が0.0010%以下であれば問題とならないため、Hを含有する場合は、H含有量を0.0010%以下とする。H含有量は、好ましくは、0.0008%以下であり、より好ましくは0.0005%以下であり、さらに好ましくは、0.0001%以下である。H含有量を0.00001%未満とするコスト増の要因となるため、H含有量は0.00001%以上とすることが好ましい。H含有量は、より好ましくは、0.00005%以上である。なお、水素量は板、鋼管等の成形後の残存水素量である。
Hは、製造中の種々の工程で鋼材中に導入される場合があり、導入量が多いと凝固後の割れ発生リスクが高まるとともに、耐水素脆化特性を劣化させるため、鋼材中の水素量を低下させることが重要である。これらの影響はH含有量が0.0010%以下であれば問題とならないため、Hを含有する場合は、H含有量を0.0010%以下とする。H含有量は、好ましくは、0.0008%以下であり、より好ましくは0.0005%以下であり、さらに好ましくは、0.0001%以下である。H含有量を0.00001%未満とするコスト増の要因となるため、H含有量は0.00001%以上とすることが好ましい。H含有量は、より好ましくは、0.00005%以上である。なお、水素量は板、鋼管等の成形後の残存水素量である。
Ca:0.0005~0.005%
Caは、Sと結合しCaSを形成して、硫化物系介在物の形態制御に有効に作用する元素であり、硫化物系介在物の形態制御を介して、靭性、耐水素脆化特性の向上に寄与する。このような効果を得るためには、Caを含有する場合には、Ca含有量を0.0005%以上とする必要がある。好ましくは、Ca含有量は、0.001%以上である。一方、Caの含有量が0.005%を超えている場合、その効果が飽和し、含有量に見合う効果が期待できなくなり、経済性に不利となる。このため、Caを含有する場合は、Ca含有量を0.005%以下に限定する。Ca含有量は、好ましくは、0.004%以下であり、より好ましくは0.003%以下であり、さらに好ましくは0.002%以下である。
Caは、Sと結合しCaSを形成して、硫化物系介在物の形態制御に有効に作用する元素であり、硫化物系介在物の形態制御を介して、靭性、耐水素脆化特性の向上に寄与する。このような効果を得るためには、Caを含有する場合には、Ca含有量を0.0005%以上とする必要がある。好ましくは、Ca含有量は、0.001%以上である。一方、Caの含有量が0.005%を超えている場合、その効果が飽和し、含有量に見合う効果が期待できなくなり、経済性に不利となる。このため、Caを含有する場合は、Ca含有量を0.005%以下に限定する。Ca含有量は、好ましくは、0.004%以下であり、より好ましくは0.003%以下であり、さらに好ましくは0.002%以下である。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、例えば、Mg:0.0008%以下、Co:0.0008%以下が許容できる。
[鋼組織]
本発明の高強度継目無鋼管は、上記した組成を有し、さらに、焼戻マルテンサイトを主相とする組織を有し、組織中には析出物が存在し、さらに直径が50nm以下の析出物が存在する。
本発明の高強度継目無鋼管は、上記した組成を有し、さらに、焼戻マルテンサイトを主相とする組織を有し、組織中には析出物が存在し、さらに直径が50nm以下の析出物が存在する。
主相:焼戻マルテンサイト相
本発明の高強度継目無鋼管では、引張強さTSが850MPa以上の高強度を確保するために、マルテンサイト相主体の組織とするが、構造物として必要な延性や靭性を保持するために、マルテンサイト相を焼戻した焼戻マルテンサイト相を主相とする。ここでいう「主相」とは、焼戻マルテンサイト相が面積率で100%である単相である場合、あるいは第二相を特性に影響しない程度である面積率で5%以下含む、焼戻マルテンサイト相が95%以上である場合をいう。焼戻マルテンサイト相は、97%以上とすることが好ましく、98%以上とすることがより好ましい。上述しているとおり、焼戻マルテンサイト相は、100%であってよい。なお、本発明における第二相は、ベイナイト相、残留オーステナイト相、パーライトあるいはそれらの混合相が例示できる。
本発明の高強度継目無鋼管では、引張強さTSが850MPa以上の高強度を確保するために、マルテンサイト相主体の組織とするが、構造物として必要な延性や靭性を保持するために、マルテンサイト相を焼戻した焼戻マルテンサイト相を主相とする。ここでいう「主相」とは、焼戻マルテンサイト相が面積率で100%である単相である場合、あるいは第二相を特性に影響しない程度である面積率で5%以下含む、焼戻マルテンサイト相が95%以上である場合をいう。焼戻マルテンサイト相は、97%以上とすることが好ましく、98%以上とすることがより好ましい。上述しているとおり、焼戻マルテンサイト相は、100%であってよい。なお、本発明における第二相は、ベイナイト相、残留オーステナイト相、パーライトあるいはそれらの混合相が例示できる。
本発明の高圧水素容器用高強度継目無鋼管における上記の組織については、鋼の成分に応じた焼入れ処理の際の加熱温度、冷却時の冷却速度を適正に選択することにより調整することができる。
旧オーステナイト粒の粒度番号が8.5未満では、生成するマルテンサイト相の下部組織が粗大化し、靭性が低下する。このため、旧オーステナイト粒の粒度番号を8.5以上とすることが好ましい。旧オーステナイト粒の粒度番号は、9.0以上とすることが好ましく、9.6以上とすることがより好ましく、10.0以上とすることがさらに好ましい。旧オーステナイト粒の粒度番号は、12.0以上とすることがもっとも好ましい。上限は特に限定されるものではなく、小さいほうがよいが、観察が困難で適切な評価が難しい等の理由から、18.0以下が好ましい。なお、粒度番号は、JIS G 0551の規定に準拠して測定した値を用いるものとする。
本発明において、旧オーステナイト粒の粒度番号については、焼入れ処理の際の加熱速度と加熱温度と保持温度、さらに焼入れ処理の実施回数を変えることにより調整することができる。
さらに、本発明における高圧水素容器用高強度継目無鋼管では、耐水素脆化特性の向上のために、Mo析出物の濃度を、大きさに応じて、適正範囲内に調整する。なお、Mo析出物の同定は、フィルターろ過による特許文献6および参考文献1に記載の抽出法によって実施した。析出物のMo濃度を測定するため、鋼管の圧延方向に垂直な断面(管軸方向に垂直な断面:C断面)において採取した10mm角のサンプルを電解液にて電解したのち、鋼片表面に付着した状態の析出物を、分散性を有する液体中に入れて超音波を照射し、水溶液中に析出物を抽出した。析出物を抽出した水溶液をフィルターろ過し、析出物をサイズごとに分け、サイズ別に分類した析出物をそれぞれ溶解液に溶解させ、Mo濃度をICPにて濃度分析することで各サイズにおける析出物のうちのMo含有量を算出した。ICPによる濃度分析では、前記溶解液をプラズマに導入することで元素固有のスペクトルを発光させ、光の発光強度から溶解液中の元素の濃度を求めることができるため、析出物中のMoの濃度(質量%)を算出できる。この手法によって析出物全体におけるMoの含有量を算出でき、この値と鋼中のMoの含有量から鋼中に含まれるMoのうち析出物中に含まれるMoの割合(質量%)を求めることができる。また、特許文献7に準じて前述した電解後の溶液をICPにて濃度分析することで鋼中のMoの固溶濃度を得た。さらに、フィルター上に残った析出物中に含まれるMoの含有量をICPで分析し、50nmを超える析出物中に含まれるMoの含有量を分析する。全析出物中に含まれるMoの含有量から50nmを超える析出物中に含まれるMoの含有量を引くことにより析出物中に含まれるMoのうち直径50nm以下の析出物中に含まれるMoの割合(質量%)を求めることができる。
[特許文献6]特開2010-127791号公報
[特許文献7]特開2009-031269号公報
[参考文献1]石田ら, 鋼中微細析出物生成状態の解析, 鉄と鋼 Vol.107 No.08
[特許文献6]特開2010-127791号公報
[特許文献7]特開2009-031269号公報
[参考文献1]石田ら, 鋼中微細析出物生成状態の解析, 鉄と鋼 Vol.107 No.08
鋼中に含まれるMoのうち、質量%で50%以上が析出物中に含まれる
鋼の組成中のMoが析出物として含まれていることが水素環境の特性を向上させる。鋼中に含有するMoの量を増加させても固溶している場合はその効果は見込めない。一方、Mo析出物の量が多いほど、水素トラップ能力は向上し、鋼中に含まれるMoのうち50%以上が析出物中に含まれることで優位に向上した。このため、鋼中に含まれるMoのうち、質量%で50%以上が析出物中に含まれる必要がある。なお、鋼中に含まれるMoのうち質量%で60%以上が析出物中に存在することが好ましい。より好ましくは質量%で65%以上であり、さらに好ましくは質量%で70%以上である。上限は特に限定されるものではないが、鋼中に含まれるMoのうち質量%で95%以下が析出物中に存在することが好ましい。より好ましくは、質量%で90%以下である。
鋼の組成中のMoが析出物として含まれていることが水素環境の特性を向上させる。鋼中に含有するMoの量を増加させても固溶している場合はその効果は見込めない。一方、Mo析出物の量が多いほど、水素トラップ能力は向上し、鋼中に含まれるMoのうち50%以上が析出物中に含まれることで優位に向上した。このため、鋼中に含まれるMoのうち、質量%で50%以上が析出物中に含まれる必要がある。なお、鋼中に含まれるMoのうち質量%で60%以上が析出物中に存在することが好ましい。より好ましくは質量%で65%以上であり、さらに好ましくは質量%で70%以上である。上限は特に限定されるものではないが、鋼中に含まれるMoのうち質量%で95%以下が析出物中に存在することが好ましい。より好ましくは、質量%で90%以下である。
前記析出物中に含まれるMoのうち、質量%で50%以上が直径50nm以下の析出物中に含まれる
Mo析出物は、鋼中の水素をトラップすることで粒界への水素蓄積を阻害し、水素環境中での粒界強度を向上させる。しかし、その大きさが50nmよりも大きくなると、水素トラップ能力が低下し、粒界強度の向上への影響が小さくなる。そのため、50nm以下の析出物中にMoが多く含まれることが必要である。ここで、析出物中のMoの量が多いほど、水素トラップ能力は向上し、直径50nm以下の微細な析出物中に含まれるMoが析出物中のMoのうち、質量%で50%以上を占めることで優位に向上した。このため、本発明では直径50nm以下の微細な析出物中に含まれるMoが、析出物中に含まれるMoのうち、質量%で50%以上である場合に限定した。なお、直径50nm以下の微細な析出物中に含まれるMoが、析出物中に含まれるMoのうち、質量%で60%以上であることが好ましい。質量%で65%以上とすることがより好ましく、70%以上とすることがさらに好ましい。上限は特に限定されるものではないが、直径50nm以下の微細な析出物中に含まれるMoが、析出物中に含まれるMoのうち、質量%で95%以下であることが好ましく、質量%で90以下であることがより好ましい。なお、Mo析出物の大きさは小さい方が水素トラップ能力に優れるため、析出物の直径20nm以下であることがより好ましい。なお、前述の通り、Mo析出物の粗大化は微細なMo析出物が凝集・合体によっておこることから、粗大化することは微細なMo析出物の数量の減少につながる。対象とする析出物の直径の下限は特に限定されるものではないが、1nm以上を対象とすることが好ましい。
Mo析出物は、鋼中の水素をトラップすることで粒界への水素蓄積を阻害し、水素環境中での粒界強度を向上させる。しかし、その大きさが50nmよりも大きくなると、水素トラップ能力が低下し、粒界強度の向上への影響が小さくなる。そのため、50nm以下の析出物中にMoが多く含まれることが必要である。ここで、析出物中のMoの量が多いほど、水素トラップ能力は向上し、直径50nm以下の微細な析出物中に含まれるMoが析出物中のMoのうち、質量%で50%以上を占めることで優位に向上した。このため、本発明では直径50nm以下の微細な析出物中に含まれるMoが、析出物中に含まれるMoのうち、質量%で50%以上である場合に限定した。なお、直径50nm以下の微細な析出物中に含まれるMoが、析出物中に含まれるMoのうち、質量%で60%以上であることが好ましい。質量%で65%以上とすることがより好ましく、70%以上とすることがさらに好ましい。上限は特に限定されるものではないが、直径50nm以下の微細な析出物中に含まれるMoが、析出物中に含まれるMoのうち、質量%で95%以下であることが好ましく、質量%で90以下であることがより好ましい。なお、Mo析出物の大きさは小さい方が水素トラップ能力に優れるため、析出物の直径20nm以下であることがより好ましい。なお、前述の通り、Mo析出物の粗大化は微細なMo析出物が凝集・合体によっておこることから、粗大化することは微細なMo析出物の数量の減少につながる。対象とする析出物の直径の下限は特に限定されるものではないが、1nm以上を対象とすることが好ましい。
本発明においては、Mo析出物の析出以外にも、破壊の起点と成り得る窒化物系介在物や酸化物系介在物を削減することも耐水素脆化特性の向上のために重要である。とくに溶鋼の精錬工程における管理が重要であり、溶銑予備処理で、脱硫および脱燐を行ない、転炉で、脱炭および脱燐を行った後、取鍋で、加熱攪拌精錬処理(LF)、RH真空脱ガス処理を行う。そして、加熱攪拌精錬処理(LF)の処理時間を十分に確保し、また、RH真空脱ガス処理の処理時間を確保、RH還流量を管理する。また、連続鋳造法で鋳片(鋼管素材)とするに際しては、窒化物系介在物および酸化物系介在物を削減するために、取鍋からタンディッシュへの注入に際し、不活性ガスによるシールを施し、また、鋳型内での電磁撹拌を施し、介在物の浮上分離を図る。なお、精錬工程は上記に限定しないが、その場合においても精錬工程の管理は重要である。
[製造方法]
次に、本発明における高圧水素容器用高強度継目無鋼管の製造方法について説明する。
次に、本発明における高圧水素容器用高強度継目無鋼管の製造方法について説明する。
本発明では、上記した組成の鋼管素材を加熱し、熱間圧延を施して所定形状の継目無鋼管とする。なお、高圧水素容器用継目無鋼管は水素圧が1MPa以上の水素容器に適用することが好ましく、20MPa以上がさらに好ましい。水素圧の上限は特に限定されるものではないが、120MPa以下までを対象とする。
本発明で使用する鋼管素材(以下、単に鋼素材ともいう)は、上記した組成を有する溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法で、鋳片(丸鋳片)とすることが好ましい。鋳片をさらに熱間圧延し所定形状の丸鋼片としても、あるいは造塊-分塊圧延を経た丸鋼片としてもよい。
以下の説明においては、前記鋼管が継目無鋼管である場合を例として製造方法を説明するが、同様の熱履歴となるように処理を行うことにより、電縫管やUOE鋼管を製造可能であることはいうまでもない。例えば、電縫管の場合には、Ac3変態点以上1000℃以下の範囲の温度の条件で鋼板を熱間圧延し、引き続き、表面温度で200℃以下となる温度まで急冷する焼入れ処理を1回以上施し、前記焼入れ処理後600~740℃の範囲の温度に加熱する焼戻処理を施し、前記焼戻処理温度に到達するまでの平均昇温速度が0.5℃/分以上かつ、焼戻到達温度での保持時間を10分以上60分未満とする焼戻し行った後に溶接を行って電縫管を製造することで同様の特性を得ることができる。
本発明の鋼管は、次の(1)~(3)の工程を順次行うことによって製造することができる。
(1)鋼管素材を成分調整後鋳造する工程
(2)鋳片(鋳造材)を加熱し、圧延して鋼管を得る圧延工程、および
(3)圧延工程で得られた鋼管を冷却・焼き戻しする工程
以下、各工程について説明する。なお、以下の説明における温度は、特に断らない限り、鋳片または鋼管の表面における温度を意味する。
(1)鋼管素材を成分調整後鋳造する工程
(2)鋳片(鋳造材)を加熱し、圧延して鋼管を得る圧延工程、および
(3)圧延工程で得られた鋼管を冷却・焼き戻しする工程
以下、各工程について説明する。なお、以下の説明における温度は、特に断らない限り、鋳片または鋼管の表面における温度を意味する。
[鋳造工程]
鋳造速度:1.8m/分以下
鋳造速度が速すぎると介在物が増加し耐水素脆化性が悪化するため、鋳造速度は1.8m/分以下とすることが好ましい。なお、鋳造速度が遅いほど、鋼中の水素濃度および介在物を低減でき、その効果は1.0m/分以下でより顕著となるため、鋳造速度は1.0m/分以下とすることがより好ましい。さらに好ましくは0.5m/分以下、もっとも好ましくは0.1m/分以下である。下限は特に限定されるものではないが、装置制御が難しい理由から0.01m/分以上とすることが好ましい。
鋳造速度:1.8m/分以下
鋳造速度が速すぎると介在物が増加し耐水素脆化性が悪化するため、鋳造速度は1.8m/分以下とすることが好ましい。なお、鋳造速度が遅いほど、鋼中の水素濃度および介在物を低減でき、その効果は1.0m/分以下でより顕著となるため、鋳造速度は1.0m/分以下とすることがより好ましい。さらに好ましくは0.5m/分以下、もっとも好ましくは0.1m/分以下である。下限は特に限定されるものではないが、装置制御が難しい理由から0.01m/分以上とすることが好ましい。
[加熱工程]
熱間圧延を行うために、上記した成分組成を有する鋳片を加熱する。前記鋳片としては、特に限定されないが、例えば、通常の連続鋳造法で得られるビレット等を使用することができる。
熱間圧延を行うために、上記した成分組成を有する鋳片を加熱する。前記鋳片としては、特に限定されないが、例えば、通常の連続鋳造法で得られるビレット等を使用することができる。
加熱温度:1050~1350℃
加熱温度が1050℃未満では、鋼管素材中の析出物の溶解が不十分となる。このため、加熱温度は1050℃以上とする。加熱温度は、好ましくは1100℃以上であり、より好ましくは1150℃以上である。一方、1350℃を超えて加熱すると、結晶粒が粗大化するとともに、凝固時に析出したTiNなどの析出物が粗大化し、また、セメンタイトが粗大化するため、鋼管靭性が低下する。また、1350℃を超える高温に加熱すると、鋼管素材表面にスケール層が厚く生成し、圧延時に表面疵等の発生原因になるとともに、エネルギーロスが増大し省エネルギーの観点から好ましくない。このようなことから、加熱温度は1350℃以下の温度に限定した。なお、加熱温度は、好ましくは1300℃以下である。加熱温度は、より好ましくは1250℃以下である。
加熱温度が1050℃未満では、鋼管素材中の析出物の溶解が不十分となる。このため、加熱温度は1050℃以上とする。加熱温度は、好ましくは1100℃以上であり、より好ましくは1150℃以上である。一方、1350℃を超えて加熱すると、結晶粒が粗大化するとともに、凝固時に析出したTiNなどの析出物が粗大化し、また、セメンタイトが粗大化するため、鋼管靭性が低下する。また、1350℃を超える高温に加熱すると、鋼管素材表面にスケール層が厚く生成し、圧延時に表面疵等の発生原因になるとともに、エネルギーロスが増大し省エネルギーの観点から好ましくない。このようなことから、加熱温度は1350℃以下の温度に限定した。なお、加熱温度は、好ましくは1300℃以下である。加熱温度は、より好ましくは1250℃以下である。
[熱間圧延工程]
次に、上記加熱工程で加熱された鋳片を圧延して所定形状の鋼管とする。前記圧延には、通常のマンネスマン-プラグミル方式またはマンネスマン-マンドレルミル方式の、穿孔圧延を含む熱間圧延を用いることができる。前記所定形状とは、例えば、鋼管のように筒状の形状のことを指し、鋼管の末端径が中央径より小さくすぼんでいる鋼管や圧力容器に代表されるボンベの形状が挙げられる。例えば、前記筒状の形状を有する鋼管は、外径が200~600mm、管軸方向の鋼管長さが500~12000mmであることが好ましい。また、鋼管の末端径が中央径より小さくすぼんでいる鋼管は、中央部分の外径が200~600mm、末端の直径が50~550mm、管軸方向の鋼管長さが500~12000mmであることが好ましい。また、前記ボンベは、外径が200~600mm、管軸方向のボンベ長さが500~12000mmであることが好ましい。
また、前記熱間圧延には、ビレットを圧延して鋼管形状とする工程(熱間加工工程)と拡管工程を同時に行う方法も含まれている。
また、必要に応じて、後述する再加熱工程後、板厚調整のためのサイジング工程を実施することもある。
次に、上記加熱工程で加熱された鋳片を圧延して所定形状の鋼管とする。前記圧延には、通常のマンネスマン-プラグミル方式またはマンネスマン-マンドレルミル方式の、穿孔圧延を含む熱間圧延を用いることができる。前記所定形状とは、例えば、鋼管のように筒状の形状のことを指し、鋼管の末端径が中央径より小さくすぼんでいる鋼管や圧力容器に代表されるボンベの形状が挙げられる。例えば、前記筒状の形状を有する鋼管は、外径が200~600mm、管軸方向の鋼管長さが500~12000mmであることが好ましい。また、鋼管の末端径が中央径より小さくすぼんでいる鋼管は、中央部分の外径が200~600mm、末端の直径が50~550mm、管軸方向の鋼管長さが500~12000mmであることが好ましい。また、前記ボンベは、外径が200~600mm、管軸方向のボンベ長さが500~12000mmであることが好ましい。
また、前記熱間圧延には、ビレットを圧延して鋼管形状とする工程(熱間加工工程)と拡管工程を同時に行う方法も含まれている。
また、必要に応じて、後述する再加熱工程後、板厚調整のためのサイジング工程を実施することもある。
得られた継目無鋼管には、熱間圧延を終了した後、表面温度が200℃以下となるまで空冷以上の冷却速度で冷却する冷却処理を施す。
熱間圧延終了後の冷却処理:平均冷却速度:空冷以上、冷却停止温度:200℃以下
本発明の成分組成の範囲では、熱間圧延後に空冷以上の平均冷却速度で冷却すれば、マルテンサイト相を主相とする組織を得ることができる。表面温度が200℃超えで空冷(冷却)を停止すると、変態が完全に完了していない場合がある。そのため、熱間圧延後の冷却処理は、表面温度が200℃以下となるまで、空冷以上の平均冷却速度で冷却することとした。また、本発明において、「空冷以上の冷却速度」とは、0.1℃/s以上のことを指す。0.1℃/s未満の平均冷却速度であると、冷却後の金属組織が不均一になり、その後の熱処理後の金属組織が不均一となる。平均冷却速度は、1.0℃/s以上が好ましく、より好ましくは10.0℃/s以上である。上限は特に限定されるものではないが、平均冷却速度は1000.0℃/s以下であることが好ましい。なお、上述の平均冷却速度とは、Ac3変態点~200℃までの冷却速度の平均値である。
本発明の成分組成の範囲では、熱間圧延後に空冷以上の平均冷却速度で冷却すれば、マルテンサイト相を主相とする組織を得ることができる。表面温度が200℃超えで空冷(冷却)を停止すると、変態が完全に完了していない場合がある。そのため、熱間圧延後の冷却処理は、表面温度が200℃以下となるまで、空冷以上の平均冷却速度で冷却することとした。また、本発明において、「空冷以上の冷却速度」とは、0.1℃/s以上のことを指す。0.1℃/s未満の平均冷却速度であると、冷却後の金属組織が不均一になり、その後の熱処理後の金属組織が不均一となる。平均冷却速度は、1.0℃/s以上が好ましく、より好ましくは10.0℃/s以上である。上限は特に限定されるものではないが、平均冷却速度は1000.0℃/s以下であることが好ましい。なお、上述の平均冷却速度とは、Ac3変態点~200℃までの冷却速度の平均値である。
[熱処理工程]
焼入れ処理のための再加熱温度:Ac3変態点以上1000℃以下
焼入れ処理を行う場合には、再加熱温度がAc3変態点未満では、オーステナイト単相域に加熱されないため、マルテンサイト相を主相とする組織が得られない。このため、再加熱温度はAc3変態点以上とする。再加熱温度は、好ましくはAc3+30℃以上であり、より好ましくはAc3+50℃以上である。ただし、Ac3点+30℃、Ac3点+50℃が1000℃を超える成分系については、上記のAc3点+30℃以上、Ac3点+50℃以上は適用されない。一方、1000℃を超えると、結晶粒が粗大化し靭性が低下することに加え、表面の酸化スケールが厚くなり、剥離しやすくなり鋼板表面の疵発生の原因となる、などの悪影響がある。さらに、熱処理炉への負荷が過大となり、省エネルギーの観点からも問題となる。このようなことから、また、省エネルギーの観点から、焼入れ処理のための再加熱温度は、1000℃以下に限定した。なお、好ましくは980℃以下であり、より好ましくは950℃以下である。
焼入れ処理のための再加熱温度:Ac3変態点以上1000℃以下
焼入れ処理を行う場合には、再加熱温度がAc3変態点未満では、オーステナイト単相域に加熱されないため、マルテンサイト相を主相とする組織が得られない。このため、再加熱温度はAc3変態点以上とする。再加熱温度は、好ましくはAc3+30℃以上であり、より好ましくはAc3+50℃以上である。ただし、Ac3点+30℃、Ac3点+50℃が1000℃を超える成分系については、上記のAc3点+30℃以上、Ac3点+50℃以上は適用されない。一方、1000℃を超えると、結晶粒が粗大化し靭性が低下することに加え、表面の酸化スケールが厚くなり、剥離しやすくなり鋼板表面の疵発生の原因となる、などの悪影響がある。さらに、熱処理炉への負荷が過大となり、省エネルギーの観点からも問題となる。このようなことから、また、省エネルギーの観点から、焼入れ処理のための再加熱温度は、1000℃以下に限定した。なお、好ましくは980℃以下であり、より好ましくは950℃以下である。
また、再加熱した後に、焼入れ処理を施す、焼入れ処理の冷却は、焼入処理の冷却によって、表面温度は200℃以下となるまで急冷する。前記急冷とは、Ac3変態点~200℃までを2.0℃/s以上の平均冷却速度で冷却することである。前記平均冷却速度は、5.0℃/s以上とすることが好ましく、10.0℃/s以上とすることがより好ましい。上限は特に限定されるものではないが、前記平均冷却速度は1000.0℃/s以下とすることが好ましい。また、上記を満足したうえで、板厚中心位置の温度でAc3変態点~400℃以下の温度まで、2.0℃/s以上の平均冷却速度で水冷することが好ましい。上限は特に限定されるものではないが、前記平均冷却速度は1000.0℃/s以下とすることが好ましい。また、表面温度は100℃以下の温度まで冷却することが好ましい。冷却後の表面温度は低い方が好ましく、室温まで冷却することが好ましい。なお、焼入れ処理は、2回以上繰り返しても良い。
なお、Ac3変態点は、下記式で算出された値を使用するものとする。
Ac3変態点(℃)=937-476.5C+56Si-19.7Mn-16.3Cu-4.9Cr-26.6Ni+38.1Mo+124.8V+136.3Ti+198Al+3315B
(ここで、C、Si、Mn、Cu、Cr、Ni、Mo、V、Ti、Al、B:各元素の含有量(質量%))
Ac3変態点の計算にあたっては、上記した式に記載された元素を含有しない場合には、当該元素の含有量を零%として算出するものとする。
(ここで、C、Si、Mn、Cu、Cr、Ni、Mo、V、Ti、Al、B:各元素の含有量(質量%))
Ac3変態点の計算にあたっては、上記した式に記載された元素を含有しない場合には、当該元素の含有量を零%として算出するものとする。
空冷以上の冷却速度で冷却する冷却処理を行なったのち、焼戻処理を施す。焼戻処理は、600~740℃の範囲の温度に加熱する処理とする。
焼戻温度:600~740℃
焼戻処理は、転位密度を減少させ、とMo析出物を析出させ、靭性および耐水素脆化特性を向上させる目的で行なう。焼戻温度が600℃未満では、転位の減少およびMo析出物の析出が不十分であるため、優れた耐水素脆化特性を確保できない。このため、焼戻温度は600℃以上とする。焼戻温度は620℃以上とすることが好ましく、640℃以上とすることがより好ましく、660℃以上とすることがさらに好ましい。一方、740℃を超える温度では、組織の軟化が著しく、所望の高強度を確保できない。このため、焼戻温度は740℃以下温度に限定した。なお、焼戻温度は、710℃以下であることが好ましい。焼戻温度は、700℃以下であることがより好ましく、680℃以下であることがさらに好ましい。
焼戻処理は、転位密度を減少させ、とMo析出物を析出させ、靭性および耐水素脆化特性を向上させる目的で行なう。焼戻温度が600℃未満では、転位の減少およびMo析出物の析出が不十分であるため、優れた耐水素脆化特性を確保できない。このため、焼戻温度は600℃以上とする。焼戻温度は620℃以上とすることが好ましく、640℃以上とすることがより好ましく、660℃以上とすることがさらに好ましい。一方、740℃を超える温度では、組織の軟化が著しく、所望の高強度を確保できない。このため、焼戻温度は740℃以下温度に限定した。なお、焼戻温度は、710℃以下であることが好ましい。焼戻温度は、700℃以下であることがより好ましく、680℃以下であることがさらに好ましい。
焼戻温度に到達するまでの平均昇温速度が0.5℃/分以上
Mo析出物は焼き戻しの昇温過程において析出し、そのサイズが増大してく。そのため焼戻処理におけるの所定の温度に到達するまでの昇温速度が遅い場合には、析出物のサイズが大きくなりすぎて、所望の耐水素脆化特性が得られない。そのため、焼戻温度に到達するまでの平均昇温速度を0.5℃/分以上とし、好ましくは1.0℃/分以上とし、さらに好ましくは2.0℃/分以上とする。もっとも好ましくは、5.0℃/分以上とする。上限は特に定められないが、早すぎる場合には温度分布の不均一が生じて、材料組織の不均質が生じるため、50.0℃/分以下が好ましい。
Mo析出物は焼き戻しの昇温過程において析出し、そのサイズが増大してく。そのため焼戻処理におけるの所定の温度に到達するまでの昇温速度が遅い場合には、析出物のサイズが大きくなりすぎて、所望の耐水素脆化特性が得られない。そのため、焼戻温度に到達するまでの平均昇温速度を0.5℃/分以上とし、好ましくは1.0℃/分以上とし、さらに好ましくは2.0℃/分以上とする。もっとも好ましくは、5.0℃/分以上とする。上限は特に定められないが、早すぎる場合には温度分布の不均一が生じて、材料組織の不均質が生じるため、50.0℃/分以下が好ましい。
焼戻温度での保持時間を10分以上60分未満
Mo析出物は焼き戻しの保持時に最も析出される。この時間が短い場合には、十分に析出せずに所望の耐水素脆化特性が得られない。焼戻温度での保持時間は10分以上とする。焼戻温度での保持時間は、15分以上とすることが好ましく、20分以上とすることがより好ましい。また、焼戻温度で保持する時間が長すぎる場合には、析出物のサイズが大きくなりすぎるため60分未満とする。なお、保持時間はエネルギー的にはコスト増の要因となるため、焼戻時間は、50分未満とすることが好ましく、より好ましくは40分未満とする。さらに好ましくは30分未満とする。
Mo析出物は焼き戻しの保持時に最も析出される。この時間が短い場合には、十分に析出せずに所望の耐水素脆化特性が得られない。焼戻温度での保持時間は10分以上とする。焼戻温度での保持時間は、15分以上とすることが好ましく、20分以上とすることがより好ましい。また、焼戻温度で保持する時間が長すぎる場合には、析出物のサイズが大きくなりすぎるため60分未満とする。なお、保持時間はエネルギー的にはコスト増の要因となるため、焼戻時間は、50分未満とすることが好ましく、より好ましくは40分未満とする。さらに好ましくは30分未満とする。
なお、安定して所望の特性を確保するためには、熱間圧延後、空冷以上の冷却速度で冷却する冷却処理を施したのち、さらに再加熱し、水冷などで急冷する焼入れ処理を1回以上施し、しかる後、上記した焼戻処理を施す。上記焼入れ処理の回数の上限は特に限定されるものではないが、5回以下とすることが好ましい。
なお、焼入れ処理、焼戻処理を施したのち、必要に応じて、温間または冷間で、鋼管の形状不良を矯正する矯正処理を施してもよい。
以下、本発明の効果を検証した実施例について、説明する。以下の説明は本発明の好適な一例を示すものであり、本発明は、これらの実施例によって何ら限定されるものではない。なお、以下の実施例においては、実鋼構造物用の継目無鋼管の製造方法および特性評価で検討した。表1に、No.1~24の鋼の成分組成を示す。また、表2に、No.1~24のそれぞれの焼戻し条件、焼戻マルテンサイトの面積率、旧オーステナイト粒度番号、鋼中に含まれるMoのうち析出物に含まれるMoの質量%での割合、析出物中に含まれるMoのうち直径50nm以下の析出物中に含まれるMoの割合、TS、および相対絞り(RRA)を示す。
表1のNo.1~24に示した成分組成のビレットを鋳造速度0.6m/分で作製し、前記ビレットを1250℃に加熱し、熱間加工および拡管して継目無鋼管を得た。前記継目無鋼管の製造は、拡管を820℃以上で終了する条件で行い、熱間加工後に空冷以上の冷却速度で表面温度が200℃以下となる温度まで冷却を施した。得られた鋼管をAc3変態点が950℃以下の鋼管については950℃で加熱保持、Ac3変態点が950℃超えの鋼管については1000℃で加熱保持した後に、5.0℃/sの条件で200℃以下まで水冷した後、焼戻しを行った。焼戻工程は表2に記載の昇温速度と保持温度と保持時間にて行った。なお、焼戻温度は、引張強度が850~950MPaの範囲となる様に調整した。得られた鋼管について、金属組織と機械的特性を評価した。
さらに、表3の鋼管No.25~39は、表1に示した成分組成のビレットNo.5、8、12のいずれかを種々の鋳造速度で作製し、前記ビレットを1250℃に加熱し、拡管して継目無鋼管を得た。前記鋼管の製造は、拡管を820℃以上で終了する条件で行い、熱間加工後に空冷以上の冷却速度で表面温度が200℃以下となる温度まで冷却を施した。得られた鋼管をAc3変態点が950℃以下の鋼管については950℃で加熱保持、Ac3変態点が950℃超えの鋼管については1000℃で加熱保持した後に、5.0℃/sの条件で200℃以下まで水冷した後、表3に記載の条件で焼戻しを行った。得られた鋼管について、金属組織と機械的特性を評価した。
評価方法は、以下の通りである。
マルテンサイトの面積分率測定
得られた鋼管の内面側の肉厚1/4位置における金属組織を以下のようにして評価した。鋼管の長手方向と肉厚方向に平行な断面において、内面側の肉厚1/4位置および肉厚中心位置が観察対象面となるように、それぞれサンプルを採取し、採取されたサンプルの断面に対して3vol%ナイタール溶液を用いてエッチングした。1000~5000倍間の適切な倍率で走査電子顕微鏡(scanning electron microscope)写真を撮影し、焼戻マルテンサイト、フェライト、ベイナイト、パーライトを観察した。焼戻マルテンサイトは、参考文献2の組織写真と比較して目視で判断し、組織分率は、上記判断を基にSEM写真を領域分けした画像を用いて、画像解析(image analysis)により、マルテンサイトとその他の領域を二値化して、焼戻マルテンサイト分率を求め、これを焼戻マルテンサイトの面積分率とした。
[参考文献2]日本熱処理技術協会(著)、入門・金属材料の組織と性質-材料を生かす熱処理と組織制御、2004
得られた鋼管の内面側の肉厚1/4位置における金属組織を以下のようにして評価した。鋼管の長手方向と肉厚方向に平行な断面において、内面側の肉厚1/4位置および肉厚中心位置が観察対象面となるように、それぞれサンプルを採取し、採取されたサンプルの断面に対して3vol%ナイタール溶液を用いてエッチングした。1000~5000倍間の適切な倍率で走査電子顕微鏡(scanning electron microscope)写真を撮影し、焼戻マルテンサイト、フェライト、ベイナイト、パーライトを観察した。焼戻マルテンサイトは、参考文献2の組織写真と比較して目視で判断し、組織分率は、上記判断を基にSEM写真を領域分けした画像を用いて、画像解析(image analysis)により、マルテンサイトとその他の領域を二値化して、焼戻マルテンサイト分率を求め、これを焼戻マルテンサイトの面積分率とした。
[参考文献2]日本熱処理技術協会(著)、入門・金属材料の組織と性質-材料を生かす熱処理と組織制御、2004
旧オーステナイト粒度の評価
旧オーステナイト(γ)は組織観察用試験片の管長手方向に直交する断面(C断面)を研磨し、腐食(ピクラール液(picral(ピクリン酸-エタノール混合液))して旧γ粒界を現出させ、光学顕微鏡(倍率:1000倍)を用いて観察し、視野:3箇所以上で撮像した。得られた組織写真について、JIS G 0551の規定に準拠して、切断法を用いて旧γ粒の粒度番号を求めた。上記で求めた平均値を各鋼管の旧γ粒の粒度番号とした。
旧オーステナイト(γ)は組織観察用試験片の管長手方向に直交する断面(C断面)を研磨し、腐食(ピクラール液(picral(ピクリン酸-エタノール混合液))して旧γ粒界を現出させ、光学顕微鏡(倍率:1000倍)を用いて観察し、視野:3箇所以上で撮像した。得られた組織写真について、JIS G 0551の規定に準拠して、切断法を用いて旧γ粒の粒度番号を求めた。上記で求めた平均値を各鋼管の旧γ粒の粒度番号とした。
鋼材のMo析出物測定方法
また、鋼管から採取した鋼材のMo析出物測定方法は以下に記載するとおりである。Mo析出物の同定は、鋼材を電解し、得られた析出物をフィルターろ過する抽出法によって実施した。鋼管の圧延方向に垂直な断面(管軸方向に垂直な断面:C断面)において採取した10mm角のサンプルを10%AA系電解液による定電流電解法により鋼片を溶かし、0.05wt%のヘキサメタリン酸ナトリウム水溶液中に入れて超音波を照射し,析出物を取りだした。溶解液をフィルター径が50nmのフィルターによるろ過にて50nm以下の析出物を得た。フィルターを通過した50nm以下、および、フィルター上の50nmを超える析出物は、硫酸、過塩素酸、硝酸で加熱白煙処理を実施し、塩酸溶解を行った。その後、析出物溶解液および固溶分を含む電解液を各々ICPにて濃度分析することで各サイズの析出物中に含まれるMo濃度(質量%)および固溶Mo濃度(質量%)を算出した。上記のように求めた全ての析出物中に含まれるMo量と固溶Mo量を合算して鋼中に含まれる総Mo量を求め、全ての析出物中に含まれるMo量/総Mo量と50nm以下の析出物に含まれるMo量/全ての析出物中に含まれるMo量を求めた。
また、鋼管から採取した鋼材のMo析出物測定方法は以下に記載するとおりである。Mo析出物の同定は、鋼材を電解し、得られた析出物をフィルターろ過する抽出法によって実施した。鋼管の圧延方向に垂直な断面(管軸方向に垂直な断面:C断面)において採取した10mm角のサンプルを10%AA系電解液による定電流電解法により鋼片を溶かし、0.05wt%のヘキサメタリン酸ナトリウム水溶液中に入れて超音波を照射し,析出物を取りだした。溶解液をフィルター径が50nmのフィルターによるろ過にて50nm以下の析出物を得た。フィルターを通過した50nm以下、および、フィルター上の50nmを超える析出物は、硫酸、過塩素酸、硝酸で加熱白煙処理を実施し、塩酸溶解を行った。その後、析出物溶解液および固溶分を含む電解液を各々ICPにて濃度分析することで各サイズの析出物中に含まれるMo濃度(質量%)および固溶Mo濃度(質量%)を算出した。上記のように求めた全ての析出物中に含まれるMo量と固溶Mo量を合算して鋼中に含まれる総Mo量を求め、全ての析出物中に含まれるMo量/総Mo量と50nm以下の析出物に含まれるMo量/全ての析出物中に含まれるMo量を求めた。
機械特性評価
試験片は、鋼管管軸と垂直(C方向)な断面で鋼管の内面から肉厚1/4位置を中心として、試験片の長手方向がC方向となるよう引張試験片を採取した。JIS Z 2201「金属材料引張試験片」に規定されている棒状試験片を使用した。試験は、JIS Z2241に規定されている方法を用い、最大荷重を鋼管のTSとした。
なお、肉厚1/4位置を中心とすることが好ましいが、肉厚が小さい鋼管(例えば肉厚45mm以下)については、肉厚1/4位置を中心とせずに採取する方法も挙げられる。
試験片は、鋼管管軸と垂直(C方向)な断面で鋼管の内面から肉厚1/4位置を中心として、試験片の長手方向がC方向となるよう引張試験片を採取した。JIS Z 2201「金属材料引張試験片」に規定されている棒状試験片を使用した。試験は、JIS Z2241に規定されている方法を用い、最大荷重を鋼管のTSとした。
なお、肉厚1/4位置を中心とすることが好ましいが、肉厚が小さい鋼管(例えば肉厚45mm以下)については、肉厚1/4位置を中心とせずに採取する方法も挙げられる。
耐水素脆化特性の評価は、ASTM G 142に準拠した水素ガス中における低ひずみ速度引張試験後の試験片の相対絞り(RRA)から評価した。大気中では鋼材が塑性変形して、破面の面積は小さくなるため絞りφairは大きくなる。一方、水素中では鋼材の伸びが低下するために、材料が絞れる前に破断し、破面部の面積は大きいままである。そのため、水素中試験後の破面部の絞りφHは大気中とは異なり小さくなる。この絞りの低下から耐水素脆化特性を評価した。なお、相対絞り(RRA)は
相対絞り(RRA)=φH/φair×100
で得られる。水素ガス105MPa、室温における低ひずみ速度引張試験(引張速度0.002mm/s)から得られた相対絞りを表2に示す。RRAが大きいほど、耐水素脆化特性は優れており、本評価では60%以上を良好と判断した。なお、φairは、大気中における試験後の試験片断面積/試験前の断面積であり、φHは水素中における試験後の試験片断面積/試験前の断面積である。
相対絞り(RRA)=φH/φair×100
で得られる。水素ガス105MPa、室温における低ひずみ速度引張試験(引張速度0.002mm/s)から得られた相対絞りを表2に示す。RRAが大きいほど、耐水素脆化特性は優れており、本評価では60%以上を良好と判断した。なお、φairは、大気中における試験後の試験片断面積/試験前の断面積であり、φHは水素中における試験後の試験片断面積/試験前の断面積である。
発明例は、すべて大気中の引張試験においてTSが850MPa以上、および水素ガス中の低ひずみ速度引張試験におけるRRA60%以上の条件を満足した。
Claims (6)
- 質量%で、
C:0.20~0.50%、
Si:0.05~2.00%、
Mn:0.30~1.50%、
P:0.015%以下、
S:0.005%以下、
Al:0.005~0.150%、
N:0.006%以下、
Cr:0.2%超1.7%以下、
Mo:1.0%超3.0%以下、
Nb:0.001~0.020%、
B:0.0003~0.0030%、
O:0.0030%以下、
Ti:0.003~0.025%を含み、
かつ前記Cの含有量に対する前記Moの含有量の比であるMo/Cが2.0超~12.0の範囲となるように含有し、
残部がFeおよび不可避的不純物からなる組成を有し、
焼戻マルテンサイトを面積率で95%以上である組織を有し、
鋼中に含まれる前記Moのうち、質量%で50%以上が析出物中に含まれ、
さらに、前記析出物中に含まれるMoのうち、質量%で50%以上が直径50nm以下の析出物中に含まれ、
引張強さTSが850MPa以上である高圧水素容器用高強度継目無鋼管。 - 前記組成に加えてさらに、質量%で、
V:0.30%以下、
Cu:1.00%以下、
Ni:2.0%以下、
W:3.0%以下
のうちから選ばれた1種または2種以上を含有する請求項1に記載の高圧水素容器用高強度継目無鋼管。 - 前記組成に加えてさらに、質量%で、
H:0.0010%以下
を含有する請求項1または2に記載の高圧水素容器用高強度継目無鋼管。 - 前記組成に加えてさらに、質量%で、
Ca:0.0005~0.005%
を含有する請求項1~3のいずれかに記載の高圧水素容器用高強度継目無鋼管。 - 請求項1~4のいずれかに記載の高圧水素容器用高強度継目無鋼管の製造方法であって、
前記組成を有する鋼管素材を鋳造して鋳片とし、前記鋳片を1050~1350℃の範囲の温度で加熱し、
前記鋳片に熱間圧延を施して所定形状の継目無鋼管とし、
前記熱間圧延後に、前記継目無鋼管に空冷以上の平均冷却速度で表面温度が200℃以下となる温度まで冷却を施し、
前記冷却後、Ac3変態点以上1000℃以下の範囲の温度に再加熱し、
表面温度で200℃以下となる温度まで急冷する焼入れ処理を1回以上施し、
前記焼入れ処理後600~740℃の焼戻温度に加熱する焼戻処理を施し、
前記焼戻温度に到達するまでの平均昇温速度が0.5℃/分以上かつ、前記焼戻温度での保持時間を10分以上60分未満とする高圧水素容器用高強度継目無鋼管の製造方法。 - 前記鋳造において、1.8m/分以下の鋳造速度とする、請求項5に記載の高圧水素容器用高強度継目無鋼管の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024540982A JP7697601B2 (ja) | 2023-03-07 | 2024-02-27 | 高圧水素容器用高強度継目無鋼管およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-034158 | 2023-03-07 | ||
JP2023034158 | 2023-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024185593A1 true WO2024185593A1 (ja) | 2024-09-12 |
Family
ID=92675108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/007115 WO2024185593A1 (ja) | 2023-03-07 | 2024-02-27 | 高圧水素容器用高強度継目無鋼管およびその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7697601B2 (ja) |
WO (1) | WO2024185593A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016079908A1 (ja) * | 2014-11-18 | 2016-05-26 | Jfeスチール株式会社 | 油井用高強度継目無鋼管およびその製造方法 |
WO2017047099A1 (ja) * | 2015-09-17 | 2017-03-23 | Jfeスチール株式会社 | 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法 |
WO2019198468A1 (ja) * | 2018-04-09 | 2019-10-17 | 日本製鉄株式会社 | サワー環境での使用に適した鋼材 |
JP2022068942A (ja) * | 2020-10-23 | 2022-05-11 | Jfeスチール株式会社 | 高圧水素ガス環境用鋼材およびその製造方法 |
-
2024
- 2024-02-27 JP JP2024540982A patent/JP7697601B2/ja active Active
- 2024-02-27 WO PCT/JP2024/007115 patent/WO2024185593A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016079908A1 (ja) * | 2014-11-18 | 2016-05-26 | Jfeスチール株式会社 | 油井用高強度継目無鋼管およびその製造方法 |
WO2017047099A1 (ja) * | 2015-09-17 | 2017-03-23 | Jfeスチール株式会社 | 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法 |
WO2019198468A1 (ja) * | 2018-04-09 | 2019-10-17 | 日本製鉄株式会社 | サワー環境での使用に適した鋼材 |
JP2022068942A (ja) * | 2020-10-23 | 2022-05-11 | Jfeスチール株式会社 | 高圧水素ガス環境用鋼材およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024185593A1 (ja) | 2024-09-12 |
JP7697601B2 (ja) | 2025-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10472690B2 (en) | High-strength seamless steel pipe for oil country tubular goods and method of producing the same | |
EP2505683B1 (en) | Process for producing a welded steel pipe for linepipe with superior compressive strength and excellent sour resistance | |
US10358688B2 (en) | Steel plate and method of producing same | |
KR101615842B1 (ko) | 내수소 유기 균열성이 우수한 고강도 라인 파이프용 강관 및 이것에 사용하는 고강도 라인 파이프용 강판 및 이들의 제조 방법 | |
CA2731908C (en) | Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method for producing same | |
KR101686257B1 (ko) | 내 hic 성이 우수한 후육 고장력 열연강판 및 그 제조 방법 | |
CN111094610B9 (zh) | 钢管和钢板 | |
WO2013002418A1 (ja) | 耐サワー性に優れたラインパイプ用厚肉高強度継目無鋼管およびその製造方法 | |
EP2505681A1 (en) | Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same | |
JP7155702B2 (ja) | 耐サワーラインパイプ用厚鋼板およびその製造方法 | |
JP5141073B2 (ja) | X70グレード以下の低降伏比高強度高靱性鋼管およびその製造方法 | |
CN109642286B (zh) | 铁素体系不锈钢热轧退火钢板及其制造方法 | |
EP1918395A1 (en) | Seamless steel pipe and method for producing same | |
WO2018074109A1 (ja) | 油井用高強度継目無鋼管およびその製造方法 | |
JP2015190026A (ja) | ラインパイプ用厚肉高強度電縫鋼管およびその製造方法 | |
US10640856B2 (en) | High-strength seamless steel pipe for oil country tubular goods and method of producing the same | |
JP7127753B2 (ja) | 鋼板およびその製造方法 | |
CA3218133A1 (en) | High-strength hot rolled steel sheet and method for producing the same, and high-strength electric resistance welded steel pipe and method for producing the same | |
CN113166903B (zh) | 具有优异的抗氢致开裂性的钢材及其制造方法 | |
CN116888292A (zh) | 钢材及其制造方法、罐及其制造方法 | |
EP4116453A1 (en) | Steel pipe and steel sheet | |
JP7601218B2 (ja) | 鋼板およびその製造方法 | |
JP7697601B2 (ja) | 高圧水素容器用高強度継目無鋼管およびその製造方法 | |
JP7622839B2 (ja) | 鋼板およびその製造方法 | |
JP7472826B2 (ja) | 電縫溶接鋼管およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2024540982 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24766964 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2024231754 Country of ref document: AU |