WO2024180921A1 - Etching method and plasma processing apparatus - Google Patents
Etching method and plasma processing apparatus Download PDFInfo
- Publication number
- WO2024180921A1 WO2024180921A1 PCT/JP2024/000466 JP2024000466W WO2024180921A1 WO 2024180921 A1 WO2024180921 A1 WO 2024180921A1 JP 2024000466 W JP2024000466 W JP 2024000466W WO 2024180921 A1 WO2024180921 A1 WO 2024180921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- film
- opening
- mask
- etching method
- Prior art date
Links
- 238000005530 etching Methods 0.000 title claims abstract description 123
- 238000000034 method Methods 0.000 title claims abstract description 105
- 238000012545 processing Methods 0.000 title claims abstract description 104
- 239000007789 gas Substances 0.000 claims abstract description 269
- 239000000758 substrate Substances 0.000 claims abstract description 93
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 33
- 239000010703 silicon Substances 0.000 claims abstract description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 229910052731 fluorine Inorganic materials 0.000 claims description 15
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 13
- 239000011737 fluorine Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000011261 inert gas Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 51
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 50
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 238000003860 storage Methods 0.000 description 7
- 229910003481 amorphous carbon Inorganic materials 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 102100032768 Complement receptor type 2 Human genes 0.000 description 4
- 101000941929 Homo sapiens Complement receptor type 2 Proteins 0.000 description 4
- 239000013529 heat transfer fluid Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 3
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 3
- 238000005513 bias potential Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000001636 atomic emission spectroscopy Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
Definitions
- An exemplary embodiment of the present disclosure relates to an etching method and a plasma processing apparatus.
- Patent document 1 discloses the formation of trenches of different depths in a semiconductor substrate using a mask with different opening dimensions.
- This disclosure provides techniques for etching areas with different opening dimensions.
- an etching method performed in a plasma processing apparatus having a chamber, the etching method including the steps of: (a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having an opening dimension larger than that of the first opening, and including at least one of a silicon-containing film and an organic film; and (b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , or C3H2F4 gas .
- a technique can be provided for etching areas having different opening dimensions.
- FIG. 1 is a diagram for explaining a configuration example of a plasma processing apparatus.
- FIG. 1 is a diagram for explaining a configuration example of a capacitively coupled plasma processing apparatus.
- 1 is a flow chart illustrating an example of the method.
- 2 is a diagram showing an example of a cross-sectional structure of a substrate W provided in a process ST1.
- FIG. 1 is a diagram showing an example of a cross-sectional structure in the vicinity of a mask MK being processed in step ST2; 13 is a diagram showing an example of a cross-sectional structure of the substrate W after being processed in step ST2.
- FIG. FIG. 1 is a diagram showing the results of Example 1 and Reference Example 1.
- FIG. 1 shows the results of Example 2 and Reference Example 2.
- FIG. 1 is a graph showing the results of Examples 3 to 5 and Reference Examples 3 to 4.
- an etching method is provided that is performed in a plasma processing apparatus having a chamber, the etching method including the steps of: (a) providing a substrate having a film to be etched that contains silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening that is larger in opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film; and (b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas that includes a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , or C3H2F4 gas .
- a first film containing carbon and fluorine is formed on a first sidewall of the mask that defines the first opening
- a second film containing carbon and fluorine is formed on a second sidewall of the mask that defines the second opening
- the film to be etched is etched through the first opening in which the first film is formed and the second opening in which the second film is formed.
- the thickness of the second film formed on the second sidewall of the mask is greater than the thickness of the first film formed on the first sidewall of the mask.
- a first recess corresponding to the first opening and a second recess corresponding to the second opening are formed in the film to be etched.
- a first film is formed continuously from a first sidewall of the mask on a first sidewall of the film to be etched that defines a first recess
- a second film is formed continuously from a second sidewall of the mask on a second sidewall of the film to be etched that defines a second recess.
- the thickness of the second film formed on the second sidewall of the film to be etched is greater than the thickness of the first film formed on the first sidewall of the film to be etched.
- the first sidewall and the second sidewall of the film to be etched are etched horizontally by the fluorine components in the first film and the second film.
- the horizontal etching amount of the second sidewall of the film to be etched is greater than the horizontal etching amount of the first sidewall of the film to be etched.
- the process gas further comprises an oxygen-containing gas.
- the process gas further comprises an inert gas.
- the ratio of the flow rate of the first gas to the total flow rate of the processing gas excluding the inert gas is 33% by volume or more and 50% by volume or less.
- the process gas further includes a second gas different from the first gas, the second gas being a CF-based gas or a CHF-based gas.
- the number of double bonds between carbon atoms constituting the second gas is greater than the number of double bonds between carbon atoms constituting the first gas.
- the second gas is at least one gas selected from the group consisting of C 4 F 6 gas, C 4 F 8 gas, and C 5 F 8 gas.
- the ratio of the flow rate of the first gas to the combined flow rate of the first gas and the second gas is 33 volume % or more and 67 volume % or less.
- the process gas further comprises an oxygen-containing gas.
- the process gas further comprises an inert gas.
- the ratio of the opening dimension of the second opening to the opening dimension of the first opening is greater than or equal to 1.1 and less than or equal to 20.
- the mask is a silicon nitride film.
- a plasma processing apparatus having a chamber and a controller, the controller performing the following steps: (a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having an opening dimension larger than the first opening, and including at least one of a silicon-containing film and an organic film; and (b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , or C3H2F4 gas .
- FIG. 1 is a diagram for explaining a configuration example of a plasma processing apparatus.
- the plasma processing apparatus 1 is an example of a substrate processing apparatus.
- the plasma processing apparatus 1 includes a control unit 2, a plasma processing chamber 10, a substrate support unit 11, and a plasma generation unit 12.
- the plasma processing chamber 10 has a plasma processing space.
- the plasma processing chamber 10 also has at least one gas supply port for supplying at least one processing gas to the plasma processing space, and at least one gas exhaust port for exhausting gas from the plasma processing space.
- the gas supply port is connected to a gas supply unit 20 described later, and the gas exhaust port is connected to an exhaust system 40 described later.
- the substrate support unit 11 is disposed in the plasma processing space, and has a substrate support surface for supporting a substrate.
- the plasma generating unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space.
- the plasma formed in the plasma processing space may be capacitively coupled plasma (CCP), inductively coupled plasma (ICP), ECR plasma (Electron-Cyclotron-resonance plasma), Helicon wave excited plasma (HWP), or surface wave plasma (SWP), etc.
- various types of plasma generating units may be used, including AC (Alternating Current) plasma generating units and DC (Direct Current) plasma generating units.
- the AC signal (AC power) used in the AC plasma generating unit has a frequency in the range of 100 kHz to 10 GHz.
- AC signals include RF (Radio Frequency) signals and microwave signals.
- the RF signal has a frequency in the range of 100 kHz to 150 MHz.
- the control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure.
- the control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein.
- a part or all of the control unit 2 may be configured as a system external to the plasma processing apparatus 1.
- the control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3.
- the control unit 2 is realized, for example, by a computer 2a.
- the processing unit 2a1 may be configured to perform various control operations by reading a program from the storage unit 2a2 and executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary.
- the acquired program is stored in the storage unit 2a2 and is read from the storage unit 2a2 by the processing unit 2a1 and executed.
- the medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3.
- the processing unit 2a1 may be a CPU (Central Processing Unit).
- the memory unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), a SSD (Solid State Drive), or a combination of these.
- the communication interface 2a3 may communicate with each element of the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
- FIG. 1 is a diagram for explaining a configuration example of a capacitively coupled plasma processing device.
- the capacitively coupled plasma processing apparatus 1 includes a control unit 2, a plasma processing chamber 10, a gas supply unit 20, a power supply 30, and an exhaust system 40.
- the plasma processing apparatus 1 also includes a substrate support unit 11 and a gas inlet unit.
- the gas inlet unit is configured to introduce at least one processing gas into the plasma processing chamber 10.
- the gas inlet unit includes a shower head 13.
- the substrate support unit 11 is disposed in the plasma processing chamber 10.
- the shower head 13 is disposed above the substrate support unit 11. In one embodiment, the shower head 13 constitutes at least a part of the ceiling of the plasma processing chamber 10.
- the plasma processing chamber 10 has a plasma processing space 10s defined by the shower head 13, the sidewall 10a of the plasma processing chamber 10, and the substrate support unit 11.
- the plasma processing chamber 10 is grounded.
- the shower head 13 and the substrate support unit 11 are electrically insulated from the housing of the plasma processing chamber 10.
- the substrate support 11 includes a main body 111 and a ring assembly 112.
- the main body 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112.
- a wafer is an example of a substrate W.
- the annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in a plan view.
- the substrate W is disposed on the central region 111a of the main body 111
- the ring assembly 112 is disposed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 112.
- the main body 111 includes a base 1110 and an electrostatic chuck 1111.
- the base 1110 includes a conductive member.
- the conductive member of the base 1110 may function as a lower electrode.
- the electrostatic chuck 1111 is disposed on the base 1110.
- the electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within the ceramic member 1111a.
- the ceramic member 1111a has a central region 111a. In one embodiment, the ceramic member 1111a also has an annular region 111b. Note that other members surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b.
- the ring assembly 112 may be disposed on the annular electrostatic chuck or the annular insulating member, or may be disposed on both the electrostatic chuck 1111 and the annular insulating member.
- At least one RF/DC electrode coupled to an RF power source 31 and/or a DC power source 32, which will be described later, may be disposed within the ceramic member 1111a.
- the at least one RF/DC electrode functions as a lower electrode.
- the RF/DC electrode is also called a bias electrode.
- the conductive member of the base 1110 and the at least one RF/DC electrode may function as multiple lower electrodes.
- the electrostatic electrode 1111b may function as a lower electrode.
- the substrate support 11 includes at least one lower electrode.
- the ring assembly 112 includes one or more annular members.
- the one or more annular members include one or more edge rings and at least one cover ring.
- the edge rings are formed of a conductive or insulating material, and the cover rings are formed of an insulating material.
- the substrate support 11 may also include a temperature adjustment module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature.
- the temperature adjustment module may include a heater, a heat transfer medium, a flow passage 1110a, or a combination thereof.
- a heat transfer fluid such as brine or a gas flows through the flow passage 1110a.
- the flow passage 1110a is formed in the base 1110, and one or more heaters are disposed in the ceramic member 1111a of the electrostatic chuck 1111.
- the substrate support 11 may also include a heat transfer gas supply configured to supply a heat transfer gas to a gap between the back surface of the substrate W and the central region 111a.
- the shower head 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s.
- the shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas inlets 13c.
- the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the multiple gas inlets 13c.
- the shower head 13 also includes at least one upper electrode.
- the gas introduction unit may include, in addition to the shower head 13, one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
- SGI side gas injectors
- the gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22.
- the gas supply unit 20 is configured to supply at least one process gas from a respective gas source 21 through a respective flow controller 22 to the showerhead 13.
- Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller.
- the gas supply unit 20 may include at least one flow modulation device that modulates or pulses the flow rate of the at least one process gas.
- the power supply 30 includes an RF power supply 31 coupled to the plasma processing chamber 10 via at least one impedance matching circuit.
- the RF power supply 31 is configured to supply at least one RF signal (RF power) to at least one lower electrode and/or at least one upper electrode. This causes a plasma to be formed from at least one processing gas supplied to the plasma processing space 10s.
- the RF power supply 31 can function as at least a part of the plasma generating unit 12.
- a bias RF signal to at least one lower electrode, a bias potential is generated on the substrate W, and ion components in the formed plasma can be attracted to the substrate W.
- the RF power supply 31 includes a first RF generating unit 31a and a second RF generating unit 31b.
- the first RF generating unit 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit and configured to generate a source RF signal (source RF power) for plasma generation.
- the source RF signal has a frequency in the range of 10 MHz to 150 MHz.
- the first RF generating unit 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are supplied to at least one lower electrode and/or at least one upper electrode.
- the second RF generator 31b is coupled to at least one lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power).
- the frequency of the bias RF signal may be the same as or different from the frequency of the source RF signal.
- the bias RF signal has a frequency lower than the frequency of the source RF signal.
- the bias RF signal has a frequency in the range of 100 kHz to 60 MHz.
- the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies.
- the generated one or more bias RF signals are provided to at least one lower electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
- the power supply 30 may also include a DC power supply 32 coupled to the plasma processing chamber 10.
- the DC power supply 32 includes a first DC generator 32a and a second DC generator 32b.
- the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal.
- the generated first DC signal is applied to the at least one lower electrode.
- the second DC generator 32b is connected to at least one upper electrode and configured to generate a second DC signal.
- the generated second DC signal is applied to the at least one upper electrode.
- the first and second DC signals may be pulsed.
- a sequence of voltage pulses is applied to at least one lower electrode and/or at least one upper electrode.
- the voltage pulses may have a rectangular, trapezoidal, triangular or combination thereof pulse waveform.
- a waveform generator for generating a sequence of voltage pulses from the DC signal is connected between the first DC generator 32a and at least one lower electrode.
- the first DC generator 32a and the waveform generator constitute a voltage pulse generator.
- the second DC generator 32b and the waveform generator constitute a voltage pulse generator
- the voltage pulse generator is connected to at least one upper electrode.
- the voltage pulses may have a positive polarity or a negative polarity.
- the sequence of voltage pulses may include one or more positive polarity voltage pulses and one or more negative polarity voltage pulses within one period.
- the first and second DC generating units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generating unit 32a may be provided in place of the second RF generating unit 31b.
- the exhaust system 40 may be connected to, for example, a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10.
- the exhaust system 40 may include a pressure regulating valve and a vacuum pump. The pressure in the plasma processing space 10s is adjusted by the pressure regulating valve.
- the vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
- Fig. 3 is a flow chart showing an example of an etching method (hereinafter also referred to as "the method") according to an exemplary embodiment.
- the method includes a step ST1 of providing a substrate and a step ST2 of etching the substrate.
- the processes in each step may be performed by the above-mentioned plasma processing apparatus 1.
- the control unit 2 controls each part of the capacitively coupled plasma processing apparatus 1 (see Fig. 2) to perform the method.
- Step ST1 Providing a substrate
- a substrate W is provided in a plasma processing space 10s of the plasma processing apparatus 1.
- the substrate W is carried into the plasma processing chamber 10 by a transport arm, and placed on a central region 111a of a substrate support 11.
- the substrate W is attracted to and held on the substrate support 11 by an electrostatic chuck 1111.
- FIG. 4 is a diagram showing an example of a cross-sectional structure of a substrate W provided in process ST1.
- the substrate W has a silicon oxide film Ox and a mask MK.
- the substrate W may further include an undercoat film UF.
- the substrate W may be used in the manufacture of semiconductor devices.
- the semiconductor devices include, for example, semiconductor memory devices such as DRAMs and 3D-NAND flash memories.
- the substrate W has a first region RE1 and a second region RE2.
- the first region RE1 and the second region RE2 are regions each having a given range on the substrate W in a plan view of the substrate W (when viewed from above in FIG. 4).
- the first region RE1 and the second region RE2 may be two regions adjacent to each other, or may be two regions separated from each other.
- the first region RE1 is a region in which the density of patterns such as grooves and holes formed in the mask MK is high (hereinafter also referred to as a "high-density region").
- the second region RE2 is a region in which the density of patterns such as grooves and holes formed in the mask MK is low (hereinafter also referred to as a "low-density region").
- the base film UF is provided from the first region RE1 to the second region RE2.
- the base film UF may be, for example, a silicon wafer, an organic film formed on a silicon wafer, a dielectric film, a metal film, a semiconductor film, or a laminated film of these.
- the base film UF may include a silicon-containing film.
- the silicon-containing film may be, for example, a silicon oxide film, a silicon nitride film, a silicon carbonitride film, a polysilicon film, or a laminated film containing two or more of these films.
- the silicon-containing film may be, for example, a silicon oxide film and a silicon nitride film alternately laminated.
- the silicon-containing film may be, for example, a silicon oxide film and a polysilicon film alternately laminated.
- the silicon-containing film may be, for example, a laminated film containing a silicon nitride film, a silicon oxide film, and a polysilicon film.
- the silicon oxide film Ox is provided on the base film UF from the first region RE1 to the second region RE2.
- the silicon oxide film Ox is an example of a film to be etched in this method.
- the film to be etched in this method may be a film containing silicon and oxygen.
- films containing silicon and oxygen include a silicon oxide film, a SiON film, a SiCOH film, etc.
- the mask MK is provided on the silicon oxide film Ox from the first region RE1 to the second region RE2.
- the mask MK has one or more first openings OP1 in the first region RE1.
- the first openings OP1 are openings defined by a first sidewall s1 of the mask MK.
- the mask MK has one or more second openings OP2 in the second region RE2.
- the second openings OP2 are openings defined by a second sidewall s2 of the mask MK.
- the first opening OP1 and the second opening OP2 are openings for forming holes, contact holes, lines and spaces, slits, trenches, etc. in the silicon oxide film Ox.
- the first opening OP1 and the second opening OP2 have a shape such as a circle, an ellipse, a line, a rectangle, etc. in a plan view.
- the first opening OP1 and the second opening OP2 may have similar shapes in a plan view, or may have different shapes. As shown in FIG.
- the opening dimension CD22 of the second opening OP2 (e.g., the diameter of a circular opening, the minor axis of an elliptical opening, the line width of a linear opening, and the length of the short side or long side of a rectangular opening) is larger than the opening dimension CD12 of the first opening OP1. That is, the ratio of the opening dimension CD22 to the opening dimension CD12 is larger than 1. In one example, the ratio of the opening dimension CD22 to the opening dimension CD12 is 1.1 or more. In one example, the ratio is 20 or less.
- the mask MK has a given pattern.
- the mask MK may have a line and space pattern (trench) in the first region RE1 and/or the second region RE2.
- the line and space pattern may be configured by arranging a plurality of openings (first opening OP1/second opening OP2) having a planar line-of-sight shape at regular intervals.
- the mask MK may have an array pattern in the first region RE1 and/or the second region RE2.
- the array pattern may be configured by arranging a plurality of openings (first opening OP1 and/or second opening OP2) having a planar circular or elliptical shape at regular intervals.
- the dimension P2 between the patterns of the mask MK in the second region RE2 (e.g., the pitch of the line and space pattern) is larger than the dimension P1 between the patterns of the mask MK in the first region RE1.
- the pattern dimension CD21 (e.g., the line width in a line and space pattern) in the second region RE2 of the mask MK is different from the pattern dimension CD11 in the first region RE1.
- the pattern dimension CD21 is larger than the pattern dimension CD11.
- the pattern dimension CD21 is smaller than the pattern dimension CD11.
- the pattern dimension CD21 and the pattern dimension CD11 are the same.
- the mask MK is formed from a material having an etching rate lower than that of the silicon oxide film Ox with respect to the plasma generated in step ST2.
- the mask MK includes a silicon-containing film or an organic film.
- the silicon-containing film may be, for example, a silicon nitride film, a silicon carbonitride film, a polycrystalline silicon film, or a laminated film including two or more of these films.
- the organic film may be, for example, an amorphous carbon film, a spin-on carbon (SOC) film, or a photoresist film.
- the amorphous carbon (ACL) film may be doped with an element such as boron, and may be, for example, a boron-containing amorphous carbon film (B-doped ACL), an arsenic-containing amorphous carbon film (As-doped ACL), a tungsten-containing amorphous carbon film (W-doped ACL), or a xenon-containing amorphous carbon film (Xe-doped ACL).
- B-doped ACL boron-containing amorphous carbon film
- Al-doped ACL arsenic-containing amorphous carbon film
- W-doped ACL tungsten-containing amorphous carbon film
- Xe-doped ACL xenon-containing amorphous carbon film
- each film constituting the substrate W may be formed by CVD, ALD, PVD, spin coating, or the like.
- the first opening OP1 and the second opening OP2 of the mask MK may be formed by etching the mask MK, or may be formed by lithography.
- each film may be a flat film or may have irregularities.
- the substrate W may further have another film below the undercoat film UF. In this case, recesses having shapes corresponding to the first opening OP1 and the second opening OP2 may be formed in the silicon oxide film Ox and the undercoat film UF, and used as a mask for etching the other film.
- At least a part of the process for forming each film on the substrate W may be performed within the space of the plasma processing chamber 10.
- the etching and the etching of the silicon oxide film Ox in step ST2 may be performed consecutively within the same chamber.
- the substrate W may be provided by being loaded into the plasma processing space 10s of the plasma processing apparatus 1.
- the substrate support 11 is controlled to a given temperature by a temperature control module.
- controlling the temperature of the substrate support 11 to a given temperature includes setting the temperature of the heat transfer fluid flowing through the flow path 1110a or the heater temperature to a given temperature, or to a temperature different from the given temperature.
- the timing at which the heat transfer fluid starts to flow through the flow path 1110a may be before or after the substrate W is placed on the substrate support 11, or may be simultaneous.
- the temperature of the substrate support 11 may be controlled to a given temperature before step ST1. That is, the substrate W may be provided to the substrate support 11 after the temperature of the substrate support 11 is controlled to a given temperature.
- the given temperature is equal to or greater than 0°C and equal to or less than 170°C.
- the substrate W may be controlled to a given temperature.
- Controlling the temperature of the substrate W to a given temperature includes setting the temperature of the substrate support 11, the temperature of the heat transfer fluid flowing through the flow path 1110a, and/or the heater temperature to a given temperature or to a temperature different from the given temperature.
- Step ST2 Etching
- the silicon oxide film Ox is etched, whereby the portions of the silicon oxide film Ox that are not covered by the mask MK (the portions exposed in the first opening OP1 and the second opening OP2) are etched to form recesses.
- a processing gas containing a first gas is supplied into the plasma processing space 10s from the gas supply unit 20.
- the first gas is at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas.
- the process gas further comprises an oxygen-containing gas, which in one example is at least one gas selected from the group consisting of O2 gas, CO gas, and CO2 gas.
- the process gas further comprises an inert gas, which in one example is a noble gas such as Ar gas, He gas, and Kr gas, or N2 gas.
- an inert gas which in one example is a noble gas such as Ar gas, He gas, and Kr gas, or N2 gas.
- the ratio of the flow rate of the first gas to the total flow rate of the processing gas excluding the inert gas is 33% by volume or more and 50% by volume or less.
- the process gas further includes a second gas, which is a CF-based gas or a CHF-based gas different from the first gas.
- the number of double bonds between carbon atoms constituting the second gas is greater than the number of double bonds between carbon atoms constituting the first gas.
- the second gas may be at least one gas selected from the group consisting of C4F6 gas, C4F8 gas , and C5F8 gas .
- the ratio (Q1/(Q1+Q2)) of the flow rate of the first gas to the combined flow rate (Q1+Q2) of the flow rate of the first gas (Q1) and the flow rate of the second gas (Q2) is 33 volume % or more and 67 volume % or less.
- a source RF signal is supplied to the lower electrode of the substrate support 11 and/or the upper electrode of the shower head 13. This generates a high-frequency electric field between the shower head 13 and the substrate support 11, and plasma is generated from the processing gas in the plasma processing space 10s.
- a bias signal may be supplied to the lower electrode of the substrate support 11. In this case, a bias potential is generated between the plasma and the substrate W. The bias potential attracts active species such as ions and radicals in the plasma to the substrate W.
- the bias signal may be a bias RF signal supplied from the second RF generator 31b.
- the bias signal may also be a bias DC signal supplied from the DC generator 32a.
- the source RF signal and the bias signal may both be continuous waves or pulse waves, or one may be a continuous wave and the other a pulse wave.
- the periods of the two pulse waves may or may not be synchronized.
- the duty ratio of the source RF signal and/or bias signal pulse wave may be set appropriately, for example, 1 to 80%, or 5 to 50%.
- the pulse wave may have a rectangular, trapezoidal, triangular, or combination thereof.
- the polarity of the bias DC signal may be negative or positive, as long as the potential of the substrate W is set to provide a potential difference between the plasma and the substrate to attract ions.
- the supply and halt of at least one of the source RF signal and the bias signal may be alternately repeated.
- the supply and halt of the bias signal may be alternately repeated while the source RF signal is continuously supplied.
- the bias signal may be continuously supplied while the supply and halt of the source RF signal are alternately repeated.
- the supply and halt of both the source RF signal and the bias signal may be alternately repeated.
- the temperature of the substrate support 11 may be controlled to a given temperature set in step ST1. In one embodiment, instead of the temperature of the substrate support 11, the temperature of the substrate W may be controlled to a given temperature.
- FIG. 5 is a diagram showing an example of a cross-sectional structure near the mask MK during processing in step ST2.
- the portion of the silicon oxide film Ox exposed in the first opening OP1 is etched in the depth direction (from top to bottom in FIG. 5) by active species in the plasma. This forms a recess RC1 corresponding to the first opening OP1.
- a first film FM1 is formed on the mask MK and the silicon oxide film Ox.
- the first film FM1 is formed by deposition on the first top tp1 and first sidewall s1 of the mask MK.
- the first film FM1 is formed by deposition on the first sidewall ss1 and first bottom bt1 of the silicon oxide film Ox that define the first recess RC1.
- the portion of the silicon oxide film Ox exposed at the second opening OP2 is etched in the depth direction by active species in the plasma. This forms a second recess RC2 corresponding to the second opening OP2.
- the second film FM2 is formed on the mask MK and the silicon oxide film Ox in the second region RE2
- the second film FM2 is deposited on the second top tp2 and second sidewall s2 of the mask MK.
- the second film FM2 is also deposited and formed on the second sidewall ss2 and second bottom bt2 of the silicon oxide film Ox that define the second recess RC2.
- the first film FM1 and the second film FM2 contain carbon (C) and fluorocarbon ( CF2 ) dissociated from the first gas into the plasma.
- the first film FM1 and the second film FM2 on the mask MK can function as a protective film that suppresses etching of the mask MK due to the carbon component.
- the first film FM1 and the second film FM2 on the silicon oxide film Ox can function as a film that promotes etching of the silicon oxide film Ox due to the fluorine component.
- the thickness (t2) of the second film FM2 formed on the second sidewall s2 of the mask MK and the second sidewall ss2 of the silicon oxide film Ox is greater than the thickness (t1) of the first film FM1 formed on the first sidewall s1 of the mask MK and the first sidewall ss1 of the silicon oxide film Ox. This is believed to be due to the fact that the second opening OP2 has a larger opening dimension than the first opening OP1, allowing more active species in the plasma to flow in.
- the first film FM1 and the second film FM2 can function as films that promote etching of the silicon oxide film Ox due to their fluorine components.
- the first sidewall ss1 and the second sidewall ss2 of the silicon oxide film Ox can be etched in the horizontal direction as process ST2 progresses.
- the thickness (t2) of the second film FM2 formed on the second sidewall ss2 of the silicon oxide film Ox is greater than the thickness (t1) of the first film FM1 formed on the first sidewall ss1 of the silicon oxide film Ox. Therefore, in process ST2, the amount of etching in the horizontal direction of the second sidewall ss2 of the silicon oxide film Ox can be greater than the amount of etching in the horizontal direction of the first sidewall ss1.
- the first film FM1 formed on the first sidewall s1 of the mask MK and the first sidewall ss1 of the silicon oxide film Ox is thicker than the first film FM1 formed on the first top tp1 of the mask MK. In one embodiment, the first film FM1 formed on the first top tp1 of the mask MK is thicker than the first film FM1 formed on the first bottom bt1 of the silicon oxide film Ox.
- the second film FM2 formed on the second sidewall s2 of the mask MK and the second sidewall ss2 of the silicon oxide film Ox is thicker than the second film FM2 formed on the second top tp2 of the mask MK. In one embodiment, the second film FM2 formed on the second top tp2 of the mask MK is thicker than the second film FM2 formed on the second bottom bt2 of the silicon oxide film Ox.
- FIG. 6 is a diagram showing an example of the cross-sectional structure of the substrate W after processing in step ST2.
- the first recess RC1 and the second recess RC2 are etched in the depth direction by the etching in step ST2, and the bottoms bt1 and bt2 of both recesses reach the base film UF.
- the first film FM1 and the second film FM2 may be removed.
- the amount of etching of the second sidewall ss2 of the silicon oxide film Ox in the horizontal direction can be greater than the amount of etching of the first sidewall ss1 in the horizontal direction.
- This can reduce the difference in pattern dimensions (CD loading) between the first region RE1 and the second region RE2.
- CD loading before process ST2 shown in FIG. 4 is ⁇ CD1 (CD21-CD11).
- the CD loading after process ST2 shown in FIG. 6 is ⁇ CD2 (CD21x-CD11x). In this case, the relationship ⁇ CD2 ⁇ CD1 holds. According to this method, the CD loading can be improved before and after etching.
- the first gas is at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas .
- etching of the silicon oxide film Ox can be promoted. This is considered to be because the first gas is easily dissociated by single bonds between carbons constituting the first gas, and provides more fluorine, which is an etchant for the silicon oxide film Ox, in the plasma. According to this method, the etching process time can be shortened.
- the first film FM1 and the second film FM2 on the mask MK formed in step ST2 can function as a protective film that suppresses etching of the mask MK due to their carbon components. Therefore, etching of the mask MK in the depth direction can be suppressed in step ST2. According to this method, the etching selectivity of the silicon oxide film Ox to the mask MK can be improved.
- Example 1 a substrate having a structure similar to that of the substrate W shown in FIG. 4 was etched using the plasma processing apparatus 1 shown in FIG. 2 along the flow described with reference to FIG. 3.
- a silicon nitride film was used as the mask MK.
- a line and space pattern was formed in each of the first region RE1 and the second region RE2 of the mask MK.
- the line width of the line formed in the first region RE1 was 26.9 nm, and the pitch was 40 nm.
- the line width of the line formed in the second region RE2 of the mask MK was 50.8 nm, and the pitch was 200 nm.
- the processing gas used in step ST2 contained C 3 F 6 gas and Ar gas.
- the etching by step ST2 was performed for 20 seconds.
- the emission of plasma was analyzed using an OES (Optical Emission Spectrometry) device, and the component ratios of CF 2 , C, and F in the plasma were measured. Further, from a TEM image of the substrate after etching, the film thicknesses of the first film FM1 and the second film FM2 formed on the top, corners and sidewalls of the mask MK and on the bottom of the silicon oxide film Ox were measured.
- OES Optical Emission Spectrometry
- Reference Example 1 a substrate having the same configuration as that of Example 1 was etched under the same conditions as those of Example 1, except that the processing gas contained C4F6 gas and Ar gas. As in Example 1, the component ratios of F, CF, and CF2 in the plasma in step ST2 were measured. In addition, the film thicknesses of the film DP1 in the first region RE1 and the film DP2 in the second region RE2 formed on the top, corners, and sidewalls of the mask MK and the bottom of the silicon oxide film Ox were measured from the TEM image of the substrate after etching.
- FIG. 7 shows the results of Example 1 and Reference Example 1.
- films FM1, FM2, DP1, DP2
- films were formed on the mask MK and the silicon oxide film Ox.
- the film thickness (5.6 nm/6.3 nm) formed on the sidewall of the mask MK in both regions R1 and R2 was sufficiently larger than the film thickness (2.0 nm/3.9 nm) in Reference Example 1.
- the film thickness (6.3 nm) of the second film FM2 on the sidewall of the mask MK in Example 1 was large.
- Example 1 the film thickness formed on other parts (the top, corners, and bottom of the recess of the mask MK) was smaller than that of Reference Example 1 in both regions RE1 and RE2. That is, in Example 1, a film was more likely to be formed on the sidewall of the mask MK than in Reference Example 1, and a film was less likely to be formed on other parts. From the above, it is presumed that if etching is continued under the same conditions, etching of the side walls of the mask MK and silicon oxide film Ox in the second region RE2 will proceed more easily in Example 1, resulting in improved CD loading compared to Reference Example 1.
- Example 1 the ratios of CF2 and F in the plasma were higher than those in Reference Example 1. Since the fluorine component in the plasma is greater in Example 1 than in Reference Example 1, it is presumed that when etching is continued under the same conditions, the etching of the silicon oxide film Ox in Example 1 proceeds more easily than in Reference Example 1, and the etching processing time is shortened.
- Example 2 In Example 2, a substrate having the same structure as Example 1 was etched using the plasma processing apparatus 1 shown in FIG. 2 along the flow described with reference to FIG. 3.
- the processing gas used in step ST2 contained C 3 F 6 gas, O 2 gas, and Ar gas.
- the etching in step ST2 was performed until the bottom of the recess formed in the silicon oxide film Ox reached the undercoat film UF, and the processing time was measured.
- the etching selectivity of the silicon oxide film Ox to the mask MK was also measured.
- the line widths (CD11x and CD21x) of the lines in the first region RE1 and the second region RE2 were measured to obtain the CD loading ( ⁇ CD2). This allowed the CD loading improvement rate ( ⁇ CD improvement rate) before and after etching to be calculated.
- Reference Example 2 a substrate having the same configuration as that of Example 2 (Example 1) was etched under the same conditions as those of Example 2, except that the processing gas contained C4F6 gas, O2 gas, and Ar gas. As in Example 2, etching was performed until the bottom of the recess formed in the silicon oxide film Ox reached the undercoat film UF, and the processing time was measured. In addition, the etching selectivity of the silicon oxide film Ox to the mask MK was measured. After etching, the line widths (CD11x and CD21x) of the lines in the first region RE1 and the second region RE2 were measured to obtain the CD loading ( ⁇ CD2). This allowed the CD loading improvement rate ( ⁇ CD improvement rate) before and after etching to be calculated.
- the processing gas contained C4F6 gas, O2 gas, and Ar gas.
- Figure 8 shows the results of Example 2 and Reference Example 2. As shown in Figure 8, Example 2 had a higher improvement rate in CD loading than Reference Example 2. Furthermore, the etching processing time was 63.7 (seconds) in Example 2, which was significantly shorter than the 90.5 (seconds) in Reference Example 2. The selectivity of the mask MK was the same in Example 2 and Reference Example 2.
- Examples 3 to 5 a substrate having the same structure as in Example 1 was etched using the plasma processing apparatus 1 shown in FIG. 2 along the flow described with reference to FIG. 3.
- the process gas in step ST2 contained C 3 F 6 gas, C 4 F 6 gas, O 2 gas, and Ar gas.
- the flow rate ratio of C 3 F 6 gas to the combined flow rate of C 3 F 6 gas and C 4 F 6 gas was 67 vol%, 67 vol%, and 33 vol%, respectively.
- the flow rate ratio of O 2 gas to the total flow rate of the process gas excluding Ar gas was 40 vol%, 45 vol%, and 57 vol%, respectively.
- the etching in step ST2 was performed until the bottom of the recess formed in the silicon oxide film Ox reached the undercoat film UF, and the process time and the selectivity of the mask MK at the end of the etching were measured.
- Reference Examples 3 and 4 substrates having the same configuration as in Examples 3 to 5 (Example 1) were etched under the same conditions as in Examples 3 to 5, except that the processing gas contained C 4 F 6 gas, O 2 gas, and Ar gas.
- the flow rate ratio of O 2 gas to the total flow rate of the processing gas excluding Ar gas was 60 volume % and 80 volume %, respectively.
- Figure 9 shows the results of Examples 3 to 5 and Reference Examples 3 to 4. As shown in Figure 9, Examples 3 to 5 improved the selectivity of the mask MK compared to Reference Examples 3 and 4, and the etching processing time was also significantly reduced.
- An etching method performed in a plasma processing apparatus having a chamber comprising: (a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film; (b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas; An etching method comprising:
- (Appendix 7) The etching method according to claim 5, wherein in (b), the first sidewall and the second sidewall of the etching target film are etched in a horizontal direction by fluorine components in the first film and the second film.
- a plasma processing apparatus having a chamber and a control unit,
- the control unit is (a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film; (b) controlling the etching target film through the first opening and the second opening by using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas , C3F7 gas, C2F6 gas , and C3H2F4 gas ;
- the plasma processing apparatus performs the above steps.
- a device manufacturing method carried out in a plasma processing apparatus having a chamber comprising: (a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film; (b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas;
- a device manufacturing method comprising:
- a computer of a plasma processing apparatus having a chamber and a control unit, (a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film; (b) controlling the etching target film through the first opening and the second opening by using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas , C3F7 gas, C2F6 gas , and C3H2F4 gas ;
- a program that executes the following.
- Plasma processing apparatus 2: Control unit, 10: Plasma processing chamber, 10s: Plasma processing space, 11: Substrate support unit, 13: Shower head, 20: Gas supply unit, 31a: First RF generating unit, 31b: Second RF generating unit, 32a: First DC generating unit, FM1: First film, FM2: Second film, MK: Mask, OP1: First opening, OP2: Second opening, Ox: Silicon oxide film, RC1: First recess, RC2: Second recess, RE1: First region, RE2: Second region, UF: Undercoat film, W: Substrate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
The present invention provides a technology for etching regions that have different opening sizes. The present invention provides an etching method which is carried out in a plasma processing apparatus that has a chamber. This method comprises: (a) a step for providing a substrate which comprises an etching object film that contains silicon and oxygen and a mask that is disposed on the etching object film, wherein the mask has at least one of a silicon-containing film and an organic film, while having a first opening and a second opening that has a larger opening size than the first opening; and (b) a step for etching the etching object film through the first opening and the second opening with use of a plasma that is generated from a processing gas which contains a first gas that is composed of at least one gas selected from the group consisting of a C3F6 gas, a C3F7 gas, a C2F6 gas and a C3H2F4 gas.
Description
本開示の例示的実施形態は、エッチング方法及びプラズマ処理装置に関する。
An exemplary embodiment of the present disclosure relates to an etching method and a plasma processing apparatus.
特許文献1には、異なる開口寸法を有するマスクを用いて半導体基板に深さの異なるトレンチを形成することが開示されている。
Patent document 1 discloses the formation of trenches of different depths in a semiconductor substrate using a mask with different opening dimensions.
本開示は、異なる開口寸法を有する領域をエッチングする技術を提供する。
This disclosure provides techniques for etching areas with different opening dimensions.
本開示の一つの例示的実施形態において、チャンバを有するプラズマ処理装置において実行されるエッチング方法であって、(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する工程であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、工程と、(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする工程であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、工程と、を含むエッチング方法が提供される。
In one exemplary embodiment of the present disclosure, there is provided an etching method performed in a plasma processing apparatus having a chamber, the etching method including the steps of: (a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having an opening dimension larger than that of the first opening, and including at least one of a silicon-containing film and an organic film; and (b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , or C3H2F4 gas .
本開示の一つの例示的実施形態によれば、異なる開口寸法を有する領域をエッチングする技術を提供することができる。
In accordance with one exemplary embodiment of the present disclosure, a technique can be provided for etching areas having different opening dimensions.
以下、本開示の各実施形態について説明する。
Each embodiment of the present disclosure is described below.
一つの例示的実施形態において、チャンバを有するプラズマ処理装置において実行されるエッチング方法であって、(a)シリコン及び酸素を含むエッチング対象膜とエッチング対象膜上のマスクとを有する基板を提供する工程であって、マスクは、第1の開口と第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、工程と、(b)第1のガスを含む処理ガスから生成したプラズマを用いて第1の開口及び第2の開口を介してエッチング対象膜をエッチングする工程であって、第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、工程と、を含むエッチング方法が提供される。
In one exemplary embodiment, an etching method is provided that is performed in a plasma processing apparatus having a chamber, the etching method including the steps of: (a) providing a substrate having a film to be etched that contains silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening that is larger in opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film; and (b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas that includes a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , or C3H2F4 gas .
一つの例示的実施形態において、(b)において、第1の開口を規定するマスクの第1の側壁に炭素及びフッ素を含有する第1の膜が形成され、かつ、第2の開口を規定するマスクの第2の側壁に炭素及びフッ素を含有する第2の膜が形成され、第1の膜が形成された第1の開口及び第2の膜が形成された第2の開口を介して、エッチング対象膜がエッチングされる。
In one exemplary embodiment, in (b), a first film containing carbon and fluorine is formed on a first sidewall of the mask that defines the first opening, and a second film containing carbon and fluorine is formed on a second sidewall of the mask that defines the second opening, and the film to be etched is etched through the first opening in which the first film is formed and the second opening in which the second film is formed.
一つの例示的実施形態において、(b)において、マスクの第2の側壁に形成される第2の膜の厚さは、マスクの第1の側壁に形成される第1の膜の厚さよりも大きい。
In one exemplary embodiment, in (b), the thickness of the second film formed on the second sidewall of the mask is greater than the thickness of the first film formed on the first sidewall of the mask.
一つの例示的実施形態において、(b)において、エッチング対象膜に、第1の開口に対応する第1の凹部と第2の開口に対応する第2の凹部とが形成される。
In one exemplary embodiment, in (b), a first recess corresponding to the first opening and a second recess corresponding to the second opening are formed in the film to be etched.
一つの例示的実施形態において、(b)において、第1の凹部を規定するエッチング対象膜の第1の側壁に第1の膜がマスクの第1の側壁から連続して形成され、第2の凹部を規定するエッチング対象膜の第2の側壁に第2の膜がマスクの第2の側壁から連続して形成される。
In one exemplary embodiment, in (b), a first film is formed continuously from a first sidewall of the mask on a first sidewall of the film to be etched that defines a first recess, and a second film is formed continuously from a second sidewall of the mask on a second sidewall of the film to be etched that defines a second recess.
一つの例示的実施形態において、(b)において、エッチング対象膜の第2の側壁に形成される第2の膜の厚さは、エッチング対象膜の第1の側壁に形成される第1の膜の厚さよりも大きい。
In one exemplary embodiment, in (b), the thickness of the second film formed on the second sidewall of the film to be etched is greater than the thickness of the first film formed on the first sidewall of the film to be etched.
一つの例示的実施形態において、(b)において、第1の膜及び第2の膜中のフッ素成分により、エッチング対象膜の第1の側壁及び第2の側壁が水平方向にエッチングされる。
In one exemplary embodiment, in (b), the first sidewall and the second sidewall of the film to be etched are etched horizontally by the fluorine components in the first film and the second film.
一つの例示的実施形態において、(b)において、エッチング対象膜の第2の側壁の水平方向のエッチング量は、エッチング対象膜の第1の側壁の水平方向のエッチング量よりも大きい。
In one exemplary embodiment, in (b), the horizontal etching amount of the second sidewall of the film to be etched is greater than the horizontal etching amount of the first sidewall of the film to be etched.
一つの例示的実施形態において、処理ガスは酸素含有ガスをさらに含む。
In one exemplary embodiment, the process gas further comprises an oxygen-containing gas.
一つの例示的実施形態において、処理ガスは不活性ガスをさらに含む。
In one exemplary embodiment, the process gas further comprises an inert gas.
一つの例示的実施形態において、不活性ガスを除く処理ガスの総流量に対する第1のガスの流量の比は、33体積%以上50%体積以下である。
In one exemplary embodiment, the ratio of the flow rate of the first gas to the total flow rate of the processing gas excluding the inert gas is 33% by volume or more and 50% by volume or less.
一つの例示的実施形態において、処理ガスは、第1のガスと異なる第2のガスをさらに含み、第2のガスはCF系ガス又はCHF系ガスである。
In one exemplary embodiment, the process gas further includes a second gas different from the first gas, the second gas being a CF-based gas or a CHF-based gas.
一つの例示的実施形態において、第2のガスを構成する炭素間の2重結合の数は、第1のガスを構成する炭素間の2重結合の数よりも多い。
In one exemplary embodiment, the number of double bonds between carbon atoms constituting the second gas is greater than the number of double bonds between carbon atoms constituting the first gas.
一つの例示的実施形態において、第2のガスは、C4F6ガス、C4F8ガス及びC5F8ガスからなる群から選択される少なくとも1つのガスである。
In one exemplary embodiment, the second gas is at least one gas selected from the group consisting of C 4 F 6 gas, C 4 F 8 gas, and C 5 F 8 gas.
一つの例示的実施形態において、第1のガス及び第2のガスの合算流量に対する第1のガスの流量の比は、33体積%以上67体積%以下である。
In one exemplary embodiment, the ratio of the flow rate of the first gas to the combined flow rate of the first gas and the second gas is 33 volume % or more and 67 volume % or less.
一つの例示的実施形態において、処理ガスは、酸素含有ガスをさらに含む。
In one exemplary embodiment, the process gas further comprises an oxygen-containing gas.
一つの例示的実施形態において、処理ガスは不活性ガスをさらに含む。
In one exemplary embodiment, the process gas further comprises an inert gas.
一つの例示的実施形態において、第1の開口の開口寸法に対する第2の開口の開口寸法の比は、1.1以上20以下である。
In one exemplary embodiment, the ratio of the opening dimension of the second opening to the opening dimension of the first opening is greater than or equal to 1.1 and less than or equal to 20.
一つの例示的実施形態において、マスクは、シリコン窒化膜である。
In one exemplary embodiment, the mask is a silicon nitride film.
一つの例示的実施形態において、チャンバと制御部とを有するプラズマ処理装置であって、制御部は、(a)シリコン及び酸素を含むエッチング対象膜とエッチング対象上のマスクとを有する基板を提供する制御であって、マスクは、第1の開口と第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、制御と、(b)第1のガスを含む処理ガスから生成したプラズマを用いて第1の開口及び第2の開口を介してエッチング対象膜をエッチングする制御であって、第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、制御と、を実行するプラズマ処理装置が提供される。
In one exemplary embodiment, there is provided a plasma processing apparatus having a chamber and a controller, the controller performing the following steps: (a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having an opening dimension larger than the first opening, and including at least one of a silicon-containing film and an organic film; and (b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , or C3H2F4 gas .
以下、図面を参照して、本開示の各実施形態について詳細に説明する。なお、各図面において同一または同様の要素には同一の符号を付し、重複する説明を省略する。特に断らない限り、図面に示す位置関係に基づいて上下左右等の位置関係を説明する。図面の寸法比率は実際の比率を示すものではなく、また、実際の比率は図示の比率に限られるものではない。
<プラズマ処理装置の構成例>
図1は、プラズマ処理装置の構成例を説明するための図である。一実施形態において、プラズマ処理装置1は、基板処理装置の一例である。プラズマ処理装置1は、制御部2、プラズマ処理チャンバ10、基板支持部11及びプラズマ生成部12を含む。プラズマ処理チャンバ10は、プラズマ処理空間を有する。また、プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間に供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。ガス供給口は、後述するガス供給部20に接続され、ガス排出口は、後述する排気システム40に接続される。基板支持部11は、プラズマ処理空間内に配置され、基板を支持するための基板支持面を有する。 Hereinafter, each embodiment of the present disclosure will be described in detail with reference to the drawings. In addition, the same or similar elements in each drawing are given the same reference numerals, and duplicated explanations will be omitted. Unless otherwise specified, the positional relationship such as up, down, left, right, etc. will be described based on the positional relationship shown in the drawings. The dimensional ratios in the drawings do not indicate the actual ratios, and the actual ratios are not limited to the ratios shown in the drawings.
<Configuration Example of Plasma Processing Apparatus>
FIG. 1 is a diagram for explaining a configuration example of a plasma processing apparatus. In one embodiment, theplasma processing apparatus 1 is an example of a substrate processing apparatus. The plasma processing apparatus 1 includes a control unit 2, a plasma processing chamber 10, a substrate support unit 11, and a plasma generation unit 12. The plasma processing chamber 10 has a plasma processing space. The plasma processing chamber 10 also has at least one gas supply port for supplying at least one processing gas to the plasma processing space, and at least one gas exhaust port for exhausting gas from the plasma processing space. The gas supply port is connected to a gas supply unit 20 described later, and the gas exhaust port is connected to an exhaust system 40 described later. The substrate support unit 11 is disposed in the plasma processing space, and has a substrate support surface for supporting a substrate.
<プラズマ処理装置の構成例>
図1は、プラズマ処理装置の構成例を説明するための図である。一実施形態において、プラズマ処理装置1は、基板処理装置の一例である。プラズマ処理装置1は、制御部2、プラズマ処理チャンバ10、基板支持部11及びプラズマ生成部12を含む。プラズマ処理チャンバ10は、プラズマ処理空間を有する。また、プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間に供給するための少なくとも1つのガス供給口と、プラズマ処理空間からガスを排出するための少なくとも1つのガス排出口とを有する。ガス供給口は、後述するガス供給部20に接続され、ガス排出口は、後述する排気システム40に接続される。基板支持部11は、プラズマ処理空間内に配置され、基板を支持するための基板支持面を有する。 Hereinafter, each embodiment of the present disclosure will be described in detail with reference to the drawings. In addition, the same or similar elements in each drawing are given the same reference numerals, and duplicated explanations will be omitted. Unless otherwise specified, the positional relationship such as up, down, left, right, etc. will be described based on the positional relationship shown in the drawings. The dimensional ratios in the drawings do not indicate the actual ratios, and the actual ratios are not limited to the ratios shown in the drawings.
<Configuration Example of Plasma Processing Apparatus>
FIG. 1 is a diagram for explaining a configuration example of a plasma processing apparatus. In one embodiment, the
プラズマ生成部12は、プラズマ処理空間内に供給された少なくとも1つの処理ガスからプラズマを生成するように構成される。プラズマ処理空間において形成されるプラズマは、容量結合プラズマ(CCP;Capacitively Coupled Plasma)、誘導結合プラズマ(ICP;Inductively Coupled Plasma)、ECRプラズマ(Electron-Cyclotron-resonance plasma)、ヘリコン波励起プラズマ(HWP:Helicon Wave Plasma)、又は、表面波プラズマ(SWP:Surface Wave Plasma)等であってもよい。また、AC(Alternating Current)プラズマ生成部及びDC(Direct Current)プラズマ生成部を含む、種々のタイプのプラズマ生成部が用いられてもよい。一実施形態において、ACプラズマ生成部で用いられるAC信号(AC電力)は、100kHz~10GHzの範囲内の周波数を有する。従って、AC信号は、RF(Radio Frequency)信号及びマイクロ波信号を含む。一実施形態において、RF信号は、100kHz~150MHzの範囲内の周波数を有する。
The plasma generating unit 12 is configured to generate plasma from at least one processing gas supplied into the plasma processing space. The plasma formed in the plasma processing space may be capacitively coupled plasma (CCP), inductively coupled plasma (ICP), ECR plasma (Electron-Cyclotron-resonance plasma), Helicon wave excited plasma (HWP), or surface wave plasma (SWP), etc. Additionally, various types of plasma generating units may be used, including AC (Alternating Current) plasma generating units and DC (Direct Current) plasma generating units. In one embodiment, the AC signal (AC power) used in the AC plasma generating unit has a frequency in the range of 100 kHz to 10 GHz. Thus, AC signals include RF (Radio Frequency) signals and microwave signals. In one embodiment, the RF signal has a frequency in the range of 100 kHz to 150 MHz.
制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1の外部のシステムとして構成されてよい。制御部2は、処理部2a1、記憶部2a2及び通信インターフェース2a3を含んでもよい。制御部2は、例えばコンピュータ2aにより実現される。処理部2a1は、記憶部2a2からプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部2a2に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部2a2に格納され、処理部2a1によって記憶部2a2から読み出されて実行される。媒体は、コンピュータ2aに読み取り可能な種々の記憶媒体であってもよく、通信インターフェース2a3に接続されている通信回線であってもよい。処理部2a1は、CPU(Central Processing Unit)であってもよい。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local AreaNetwork)等の通信回線を介してプラズマ処理装置1の各要素との間で通信してもよい。
The control unit 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. The control unit 2 may be configured to control each element of the plasma processing apparatus 1 to perform the various steps described herein. In one embodiment, a part or all of the control unit 2 may be configured as a system external to the plasma processing apparatus 1. The control unit 2 may include a processing unit 2a1, a storage unit 2a2, and a communication interface 2a3. The control unit 2 is realized, for example, by a computer 2a. The processing unit 2a1 may be configured to perform various control operations by reading a program from the storage unit 2a2 and executing the read program. This program may be stored in the storage unit 2a2 in advance, or may be acquired via a medium when necessary. The acquired program is stored in the storage unit 2a2 and is read from the storage unit 2a2 by the processing unit 2a1 and executed. The medium may be various storage media readable by the computer 2a, or may be a communication line connected to the communication interface 2a3. The processing unit 2a1 may be a CPU (Central Processing Unit). The memory unit 2a2 may include a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), a SSD (Solid State Drive), or a combination of these. The communication interface 2a3 may communicate with each element of the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
以下に、プラズマ処理装置1の一例としての容量結合型のプラズマ処理装置の構成例について説明する。図2は、容量結合型のプラズマ処理装置の構成例を説明するための図である。
Below, we will explain a configuration example of a capacitively coupled plasma processing device as an example of the plasma processing device 1. Figure 2 is a diagram for explaining a configuration example of a capacitively coupled plasma processing device.
容量結合型のプラズマ処理装置1は、制御部2、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持部11及びガス導入部を含む。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。基板支持部11は、プラズマ処理チャンバ10内に配置される。シャワーヘッド13は、基板支持部11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10は、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持部11により規定されたプラズマ処理空間10sを有する。プラズマ処理チャンバ10は接地される。シャワーヘッド13及び基板支持部11は、プラズマ処理チャンバ10の筐体とは電気的に絶縁される。
The capacitively coupled plasma processing apparatus 1 includes a control unit 2, a plasma processing chamber 10, a gas supply unit 20, a power supply 30, and an exhaust system 40. The plasma processing apparatus 1 also includes a substrate support unit 11 and a gas inlet unit. The gas inlet unit is configured to introduce at least one processing gas into the plasma processing chamber 10. The gas inlet unit includes a shower head 13. The substrate support unit 11 is disposed in the plasma processing chamber 10. The shower head 13 is disposed above the substrate support unit 11. In one embodiment, the shower head 13 constitutes at least a part of the ceiling of the plasma processing chamber 10. The plasma processing chamber 10 has a plasma processing space 10s defined by the shower head 13, the sidewall 10a of the plasma processing chamber 10, and the substrate support unit 11. The plasma processing chamber 10 is grounded. The shower head 13 and the substrate support unit 11 are electrically insulated from the housing of the plasma processing chamber 10.
基板支持部11は、本体部111及びリングアセンブリ112を含む。本体部111は、基板Wを支持するための中央領域111aと、リングアセンブリ112を支持するための環状領域111bとを有する。ウェハは基板Wの一例である。本体部111の環状領域111bは、平面視で本体部111の中央領域111aを囲んでいる。基板Wは、本体部111の中央領域111a上に配置され、リングアセンブリ112は、本体部111の中央領域111a上の基板Wを囲むように本体部111の環状領域111b上に配置される。従って、中央領域111aは、基板Wを支持するための基板支持面とも呼ばれ、環状領域111bは、リングアセンブリ112を支持するためのリング支持面とも呼ばれる。
The substrate support 11 includes a main body 111 and a ring assembly 112. The main body 111 has a central region 111a for supporting the substrate W and an annular region 111b for supporting the ring assembly 112. A wafer is an example of a substrate W. The annular region 111b of the main body 111 surrounds the central region 111a of the main body 111 in a plan view. The substrate W is disposed on the central region 111a of the main body 111, and the ring assembly 112 is disposed on the annular region 111b of the main body 111 so as to surround the substrate W on the central region 111a of the main body 111. Therefore, the central region 111a is also called a substrate support surface for supporting the substrate W, and the annular region 111b is also called a ring support surface for supporting the ring assembly 112.
一実施形態において、本体部111は、基台1110及び静電チャック1111を含む。基台1110は、導電性部材を含む。基台1110の導電性部材は下部電極として機能し得る。静電チャック1111は、基台1110の上に配置される。静電チャック1111は、セラミック部材1111aとセラミック部材1111a内に配置される静電電極1111bとを含む。セラミック部材1111aは、中央領域111aを有する。一実施形態において、セラミック部材1111aは、環状領域111bも有する。なお、環状静電チャックや環状絶縁部材のような、静電チャック1111を囲む他の部材が環状領域111bを有してもよい。この場合、リングアセンブリ112は、環状静電チャック又は環状絶縁部材の上に配置されてもよく、静電チャック1111と環状絶縁部材の両方の上に配置されてもよい。また、後述するRF電源31及び/又はDC電源32に結合される少なくとも1つのRF/DC電極がセラミック部材1111a内に配置されてもよい。この場合、少なくとも1つのRF/DC電極が下部電極として機能する。後述するバイアスRF信号及び/又はDC信号が少なくとも1つのRF/DC電極に供給される場合、RF/DC電極はバイアス電極とも呼ばれる。なお、基台1110の導電性部材と少なくとも1つのRF/DC電極とが複数の下部電極として機能してもよい。また、静電電極1111bが下部電極として機能してもよい。従って、基板支持部11は、少なくとも1つの下部電極を含む。
In one embodiment, the main body 111 includes a base 1110 and an electrostatic chuck 1111. The base 1110 includes a conductive member. The conductive member of the base 1110 may function as a lower electrode. The electrostatic chuck 1111 is disposed on the base 1110. The electrostatic chuck 1111 includes a ceramic member 1111a and an electrostatic electrode 1111b disposed within the ceramic member 1111a. The ceramic member 1111a has a central region 111a. In one embodiment, the ceramic member 1111a also has an annular region 111b. Note that other members surrounding the electrostatic chuck 1111, such as an annular electrostatic chuck or an annular insulating member, may have the annular region 111b. In this case, the ring assembly 112 may be disposed on the annular electrostatic chuck or the annular insulating member, or may be disposed on both the electrostatic chuck 1111 and the annular insulating member. At least one RF/DC electrode coupled to an RF power source 31 and/or a DC power source 32, which will be described later, may be disposed within the ceramic member 1111a. In this case, the at least one RF/DC electrode functions as a lower electrode. When a bias RF signal and/or a DC signal, which will be described later, is supplied to the at least one RF/DC electrode, the RF/DC electrode is also called a bias electrode. Note that the conductive member of the base 1110 and the at least one RF/DC electrode may function as multiple lower electrodes. Also, the electrostatic electrode 1111b may function as a lower electrode. Thus, the substrate support 11 includes at least one lower electrode.
リングアセンブリ112は、1又は複数の環状部材を含む。一実施形態において、1又は複数の環状部材は、1又は複数のエッジリングと少なくとも1つのカバーリングとを含む。エッジリングは、導電性材料又は絶縁材料で形成され、カバーリングは、絶縁材料で形成される。
The ring assembly 112 includes one or more annular members. In one embodiment, the one or more annular members include one or more edge rings and at least one cover ring. The edge rings are formed of a conductive or insulating material, and the cover rings are formed of an insulating material.
また、基板支持部11は、静電チャック1111、リングアセンブリ112及び基板のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路1110a、又はこれらの組み合わせを含んでもよい。流路1110aには、ブラインやガスのような伝熱流体が流れる。一実施形態において、流路1110aが基台1110内に形成され、1又は複数のヒータが静電チャック1111のセラミック部材1111a内に配置される。また、基板支持部11は、基板Wの裏面と中央領域111aとの間の間隙に伝熱ガスを供給するように構成された伝熱ガス供給部を含んでもよい。
The substrate support 11 may also include a temperature adjustment module configured to adjust at least one of the electrostatic chuck 1111, the ring assembly 112, and the substrate to a target temperature. The temperature adjustment module may include a heater, a heat transfer medium, a flow passage 1110a, or a combination thereof. A heat transfer fluid such as brine or a gas flows through the flow passage 1110a. In one embodiment, the flow passage 1110a is formed in the base 1110, and one or more heaters are disposed in the ceramic member 1111a of the electrostatic chuck 1111. The substrate support 11 may also include a heat transfer gas supply configured to supply a heat transfer gas to a gap between the back surface of the substrate W and the central region 111a.
シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、少なくとも1つの上部電極を含む。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。
The shower head 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s. The shower head 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas inlets 13c. The processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s from the multiple gas inlets 13c. The shower head 13 also includes at least one upper electrode. Note that the gas introduction unit may include, in addition to the shower head 13, one or more side gas injectors (SGI) attached to one or more openings formed in the side wall 10a.
ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する少なくとも1つの流量変調デバイスを含んでもよい。
The gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22. In one embodiment, the gas supply unit 20 is configured to supply at least one process gas from a respective gas source 21 through a respective flow controller 22 to the showerhead 13. Each flow controller 22 may include, for example, a mass flow controller or a pressure-controlled flow controller. Additionally, the gas supply unit 20 may include at least one flow modulation device that modulates or pulses the flow rate of the at least one process gas.
電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、少なくとも1つのRF信号(RF電力)を少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ生成部12の少なくとも一部として機能し得る。また、バイアスRF信号を少なくとも1つの下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。
The power supply 30 includes an RF power supply 31 coupled to the plasma processing chamber 10 via at least one impedance matching circuit. The RF power supply 31 is configured to supply at least one RF signal (RF power) to at least one lower electrode and/or at least one upper electrode. This causes a plasma to be formed from at least one processing gas supplied to the plasma processing space 10s. Thus, the RF power supply 31 can function as at least a part of the plasma generating unit 12. In addition, by supplying a bias RF signal to at least one lower electrode, a bias potential is generated on the substrate W, and ion components in the formed plasma can be attracted to the substrate W.
一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、10MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に供給される。
In one embodiment, the RF power supply 31 includes a first RF generating unit 31a and a second RF generating unit 31b. The first RF generating unit 31a is coupled to at least one lower electrode and/or at least one upper electrode via at least one impedance matching circuit and configured to generate a source RF signal (source RF power) for plasma generation. In one embodiment, the source RF signal has a frequency in the range of 10 MHz to 150 MHz. In one embodiment, the first RF generating unit 31a may be configured to generate multiple source RF signals having different frequencies. The generated one or more source RF signals are supplied to at least one lower electrode and/or at least one upper electrode.
第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して少なくとも1つの下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。バイアスRF信号の周波数は、ソースRF信号の周波数と同じであっても異なっていてもよい。一実施形態において、バイアスRF信号は、ソースRF信号の周波数よりも低い周波数を有する。一実施形態において、バイアスRF信号は、100kHz~60MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、少なくとも1つの下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。
The second RF generator 31b is coupled to at least one lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power). The frequency of the bias RF signal may be the same as or different from the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency lower than the frequency of the source RF signal. In one embodiment, the bias RF signal has a frequency in the range of 100 kHz to 60 MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. The generated one or more bias RF signals are provided to at least one lower electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、少なくとも1つの下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のDC信号は、少なくとも1つの下部電極に印加される。一実施形態において、第2のDC生成部32bは、少なくとも1つの上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、少なくとも1つの上部電極に印加される。
The power supply 30 may also include a DC power supply 32 coupled to the plasma processing chamber 10. The DC power supply 32 includes a first DC generator 32a and a second DC generator 32b. In one embodiment, the first DC generator 32a is connected to at least one lower electrode and configured to generate a first DC signal. The generated first DC signal is applied to the at least one lower electrode. In one embodiment, the second DC generator 32b is connected to at least one upper electrode and configured to generate a second DC signal. The generated second DC signal is applied to the at least one upper electrode.
種々の実施形態において、第1及び第2のDC信号がパルス化されてもよい。この場合、電圧パルスのシーケンスが少なくとも1つの下部電極及び/又は少なくとも1つの上部電極に印加される。電圧パルスは、矩形、台形、三角形又はこれらの組み合わせのパルス波形を有してもよい。一実施形態において、DC信号から電圧パルスのシーケンスを生成するための波形生成部が第1のDC生成部32aと少なくとも1つの下部電極との間に接続される。従って、第1のDC生成部32a及び波形生成部は、電圧パルス生成部を構成する。第2のDC生成部32b及び波形生成部が電圧パルス生成部を構成する場合、電圧パルス生成部は、少なくとも1つの上部電極に接続される。電圧パルスは、正の極性を有してもよく、負の極性を有してもよい。また、電圧パルスのシーケンスは、1周期内に1又は複数の正極性電圧パルスと1又は複数の負極性電圧パルスとを含んでもよい。なお、第1及び第2のDC生成部32a,32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。
In various embodiments, the first and second DC signals may be pulsed. In this case, a sequence of voltage pulses is applied to at least one lower electrode and/or at least one upper electrode. The voltage pulses may have a rectangular, trapezoidal, triangular or combination thereof pulse waveform. In one embodiment, a waveform generator for generating a sequence of voltage pulses from the DC signal is connected between the first DC generator 32a and at least one lower electrode. Thus, the first DC generator 32a and the waveform generator constitute a voltage pulse generator. When the second DC generator 32b and the waveform generator constitute a voltage pulse generator, the voltage pulse generator is connected to at least one upper electrode. The voltage pulses may have a positive polarity or a negative polarity. Also, the sequence of voltage pulses may include one or more positive polarity voltage pulses and one or more negative polarity voltage pulses within one period. The first and second DC generating units 32a and 32b may be provided in addition to the RF power source 31, or the first DC generating unit 32a may be provided in place of the second RF generating unit 31b.
排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。
The exhaust system 40 may be connected to, for example, a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10. The exhaust system 40 may include a pressure regulating valve and a vacuum pump. The pressure in the plasma processing space 10s is adjusted by the pressure regulating valve. The vacuum pump may include a turbomolecular pump, a dry pump, or a combination thereof.
<エッチング方法の一例>
図3は、一つの例示的実施形態に係るエッチング方法(以下「本方法」ともいう。)の一例を示すフローチャートである。図3に示すように、本方法は、基板を提供する工程ST1と、基板をエッチングする工程ST2とを含む。各工程における処理は、上述したプラズマ処理装置1で実行されてよい。以下では、制御部2が容量結合型のプラズマ処理装置1(図2参照)の各部を制御して、本方法を実行する場合を例に説明する。 <Example of Etching Method>
Fig. 3 is a flow chart showing an example of an etching method (hereinafter also referred to as "the method") according to an exemplary embodiment. As shown in Fig. 3, the method includes a step ST1 of providing a substrate and a step ST2 of etching the substrate. The processes in each step may be performed by the above-mentionedplasma processing apparatus 1. In the following, an example will be described in which the control unit 2 controls each part of the capacitively coupled plasma processing apparatus 1 (see Fig. 2) to perform the method.
図3は、一つの例示的実施形態に係るエッチング方法(以下「本方法」ともいう。)の一例を示すフローチャートである。図3に示すように、本方法は、基板を提供する工程ST1と、基板をエッチングする工程ST2とを含む。各工程における処理は、上述したプラズマ処理装置1で実行されてよい。以下では、制御部2が容量結合型のプラズマ処理装置1(図2参照)の各部を制御して、本方法を実行する場合を例に説明する。 <Example of Etching Method>
Fig. 3 is a flow chart showing an example of an etching method (hereinafter also referred to as "the method") according to an exemplary embodiment. As shown in Fig. 3, the method includes a step ST1 of providing a substrate and a step ST2 of etching the substrate. The processes in each step may be performed by the above-mentioned
(工程ST1:基板の提供)
工程ST1において、基板Wがプラズマ処理装置1のプラズマ処理空間10s内に提供される。基板Wは、搬送アームによりプラズマ処理チャンバ10内に搬入され、基板支持部11の中央領域111aに載置される。基板Wは、静電チャック1111により、基板支持部11上に吸着保持される。 (Step ST1: Providing a substrate)
In step ST1, a substrate W is provided in aplasma processing space 10s of the plasma processing apparatus 1. The substrate W is carried into the plasma processing chamber 10 by a transport arm, and placed on a central region 111a of a substrate support 11. The substrate W is attracted to and held on the substrate support 11 by an electrostatic chuck 1111.
工程ST1において、基板Wがプラズマ処理装置1のプラズマ処理空間10s内に提供される。基板Wは、搬送アームによりプラズマ処理チャンバ10内に搬入され、基板支持部11の中央領域111aに載置される。基板Wは、静電チャック1111により、基板支持部11上に吸着保持される。 (Step ST1: Providing a substrate)
In step ST1, a substrate W is provided in a
図4は、工程ST1で提供される基板Wの断面構造の一例を示す図である。一実施形態において、基板Wは、シリコン酸化膜Ox及びマスクMKを有する。基板Wは、下地膜UFをさらに含んでよい。基板Wは、半導体デバイスの製造に用いられてよい。半導体デバイスは、例えば、DRAM、3D-NANDフラッシュメモリ等の半導体メモリデバイスを含む。
FIG. 4 is a diagram showing an example of a cross-sectional structure of a substrate W provided in process ST1. In one embodiment, the substrate W has a silicon oxide film Ox and a mask MK. The substrate W may further include an undercoat film UF. The substrate W may be used in the manufacture of semiconductor devices. The semiconductor devices include, for example, semiconductor memory devices such as DRAMs and 3D-NAND flash memories.
基板Wは、第1の領域RE1及び第2の領域RE2を有する。第1の領域RE1及び第2の領域RE2は、基板Wの平面視(図4を上面視した場合)において、それぞれ基板W上で所与の範囲を有する領域である。第1の領域RE1及び第2の領域RE2は、互いに隣接した2つの領域であってよく、また、互いに離れた2つの領域であってもよい。一実施形態において、第1の領域RE1は、マスクMKに形成された溝や穴等のパターンの密度が高い領域(以下「高密度領域」ともいう。)である。一実施形態において、第2の領域RE2は、マスクMKに形成された溝や穴等のパターンの密度が低い領域(以下「低密度領域」ともいう。)である。
The substrate W has a first region RE1 and a second region RE2. The first region RE1 and the second region RE2 are regions each having a given range on the substrate W in a plan view of the substrate W (when viewed from above in FIG. 4). The first region RE1 and the second region RE2 may be two regions adjacent to each other, or may be two regions separated from each other. In one embodiment, the first region RE1 is a region in which the density of patterns such as grooves and holes formed in the mask MK is high (hereinafter also referred to as a "high-density region"). In one embodiment, the second region RE2 is a region in which the density of patterns such as grooves and holes formed in the mask MK is low (hereinafter also referred to as a "low-density region").
一実施形態において、下地膜UFは、第1の領域RE1から第2の領域RE2に亘って設けられている。下地膜UFは、例えば、シリコンウェハやシリコンウェハ上に形成された有機膜、誘電体膜、金属膜、半導体膜又はこれらの積層膜でよい。一実施形態において、下地膜UFは、シリコン含有膜を含んでよい。シリコン含有膜は、例えば、シリコン酸化膜、シリコン窒化膜、シリコン炭窒化膜、ポリシリコン膜又はこれらの膜を2以上含む積層膜でよい。シリコン含有膜は、例えば、シリコン酸化膜とシリコン窒化膜とが交互に積層されて構成されてよい。シリコン含有膜は、例えば、シリコン酸化膜とポリシリコン膜とが交互に積層されて構成されてよい。シリコン含有膜は、例えば、シリコン窒化膜、シリコン酸化膜及びポリシリコン膜を含む積層膜でもよい。
In one embodiment, the base film UF is provided from the first region RE1 to the second region RE2. The base film UF may be, for example, a silicon wafer, an organic film formed on a silicon wafer, a dielectric film, a metal film, a semiconductor film, or a laminated film of these. In one embodiment, the base film UF may include a silicon-containing film. The silicon-containing film may be, for example, a silicon oxide film, a silicon nitride film, a silicon carbonitride film, a polysilicon film, or a laminated film containing two or more of these films. The silicon-containing film may be, for example, a silicon oxide film and a silicon nitride film alternately laminated. The silicon-containing film may be, for example, a silicon oxide film and a polysilicon film alternately laminated. The silicon-containing film may be, for example, a laminated film containing a silicon nitride film, a silicon oxide film, and a polysilicon film.
一実施形態において、シリコン酸化膜Oxは、第1の領域RE1から第2の領域RE2に亘って、下地膜UF上に設けられている。シリコン酸化膜Oxは、本方法においてエッチングされるエッチング対象膜の一例である。本方法においてエッチングされるエッチング対象膜は、シリコン及び酸素を含む膜であってよい。シリコン及び酸素を含む膜としては、シリコン酸化膜のほか、例えば、SiON膜又はSiCOH膜等が挙げられる。
In one embodiment, the silicon oxide film Ox is provided on the base film UF from the first region RE1 to the second region RE2. The silicon oxide film Ox is an example of a film to be etched in this method. The film to be etched in this method may be a film containing silicon and oxygen. Examples of films containing silicon and oxygen include a silicon oxide film, a SiON film, a SiCOH film, etc.
一実施形態において、マスクMKは、第1の領域RE1から第2の領域RE2に亘ってシリコン酸化膜Ox上に設けられている。マスクMKは第1の領域RE1において1つ以上の第1の開口OP1を有する。第1の開口OP1は、マスクMKの第1の側壁s1により規定される開口である。マスクMKは第2の領域RE2において1つ以上の第2の開口OP2を有する。第2の開口OP2は、マスクMKの第2の側壁s2により規定される開口である。
In one embodiment, the mask MK is provided on the silicon oxide film Ox from the first region RE1 to the second region RE2. The mask MK has one or more first openings OP1 in the first region RE1. The first openings OP1 are openings defined by a first sidewall s1 of the mask MK. The mask MK has one or more second openings OP2 in the second region RE2. The second openings OP2 are openings defined by a second sidewall s2 of the mask MK.
一実施形態において、第1の開口OP1及び第2の開口OP2は、シリコン酸化膜Oxに、ホール、コンタクトホール、ラインアンドスペース、スリット、トレンチ等を形成するための開口である。第1の開口OP1及び第2の開口OP2は、一例では、平面視において、円、楕円形、線、矩形等の形状を有する。第1の開口OP1及び第2の開口OP2は、平面視において、相似形状であってよく、また、異なる形状であってもよい。図4に示すように、第2の開口OP2の開口寸法CD22(例えば、円形状の開口の径、楕円形状の開口の短径、線形状の開口の線幅、及び、矩形状の開口短辺又は長辺の長さ)は、第1の開口OP1の開口寸法CD12よりも大きい。すなわち、開口寸法CD12に対する開口寸法CD22の比は1よりも大きい。一例では、開口寸法CD12に対する開口寸法CD22の比は、1.1以上である。一例では、当該比は、20以下である。
In one embodiment, the first opening OP1 and the second opening OP2 are openings for forming holes, contact holes, lines and spaces, slits, trenches, etc. in the silicon oxide film Ox. In one example, the first opening OP1 and the second opening OP2 have a shape such as a circle, an ellipse, a line, a rectangle, etc. in a plan view. The first opening OP1 and the second opening OP2 may have similar shapes in a plan view, or may have different shapes. As shown in FIG. 4, the opening dimension CD22 of the second opening OP2 (e.g., the diameter of a circular opening, the minor axis of an elliptical opening, the line width of a linear opening, and the length of the short side or long side of a rectangular opening) is larger than the opening dimension CD12 of the first opening OP1. That is, the ratio of the opening dimension CD22 to the opening dimension CD12 is larger than 1. In one example, the ratio of the opening dimension CD22 to the opening dimension CD12 is 1.1 or more. In one example, the ratio is 20 or less.
一実施形態において、マスクMKは、所与のパターンを有する。例えば、マスクMKは、第1の領域RE1及び/又は第2の領域RE2において、ライン&スペースのパターン(トレンチ)を有してよい。ライン&スペースパターンは、平面視線形状を有する複数の開口(第1の開口OP1/第2の開口OP2)が一定の間隔で並んで構成され得る。また例えば、マスクMKは、第1の領域RE1及び/又は第2の領域RE2において、アレイパターンを有してよい。アレイパターンは、平面視円又は楕円形状を有する複数の開口(第1の開口OP1及び/又は第2の開口OP2)が一定の間隔で配列されて構成され得る。図4に示すように、第2の領域RE2におけるマスクMKのパターン間の寸法P2(例えばライン&スペースパターンのピッチ)は、第1の領域RE1におけるマスクMKのパターン間の寸法P1よりも大きい。
In one embodiment, the mask MK has a given pattern. For example, the mask MK may have a line and space pattern (trench) in the first region RE1 and/or the second region RE2. The line and space pattern may be configured by arranging a plurality of openings (first opening OP1/second opening OP2) having a planar line-of-sight shape at regular intervals. For example, the mask MK may have an array pattern in the first region RE1 and/or the second region RE2. The array pattern may be configured by arranging a plurality of openings (first opening OP1 and/or second opening OP2) having a planar circular or elliptical shape at regular intervals. As shown in FIG. 4, the dimension P2 between the patterns of the mask MK in the second region RE2 (e.g., the pitch of the line and space pattern) is larger than the dimension P1 between the patterns of the mask MK in the first region RE1.
一実施形態において、マスクMKの第2の領域RE2におけるパターン寸法CD21(例えばライン&スペースパターンにおける線幅)は、第1の領域RE1におけるパターン寸法CD11と異なる。一例では、パターン寸法CD21は、パターン寸法CD11よりも大きい。一例では、パターン寸法CD21は、パターン寸法CD11よりも小さい。一実施形態において、パターン寸法CD21とパターン寸法CD11とは同一である。
In one embodiment, the pattern dimension CD21 (e.g., the line width in a line and space pattern) in the second region RE2 of the mask MK is different from the pattern dimension CD11 in the first region RE1. In one example, the pattern dimension CD21 is larger than the pattern dimension CD11. In one example, the pattern dimension CD21 is smaller than the pattern dimension CD11. In one embodiment, the pattern dimension CD21 and the pattern dimension CD11 are the same.
一実施形態において、マスクMKは、工程ST2で生成されるプラズマに対するエッチングレートがシリコン酸化膜Oxよりも低い材料から形成される。一実施形態において、マスクMKは、シリコン含有膜又は有機膜を含む。シリコン含有膜は、例えば、シリコン窒化膜、シリコン炭窒化膜、多結晶シリコン膜又はこれらの膜を2以上含む積層膜でよい。有機膜は、例えば、アモルファスカーボン膜、スピンオンカーボン(SOC)膜、又はフォトレジスト膜である。アモルファスカーボン(ACL)膜は、ホウ素等の元素がドープされてよく、例えば、ホウ素含有アモルファスカーボン膜(B-doped ACL)、ヒ素含有アモルファスカーボン膜(As-doped ACL)、タングステン含有アモルファスカーボン膜(W-doped ACL)、キセノン含有アモルファスカーボン膜(Xe-doped ACL)であってよい。
In one embodiment, the mask MK is formed from a material having an etching rate lower than that of the silicon oxide film Ox with respect to the plasma generated in step ST2. In one embodiment, the mask MK includes a silicon-containing film or an organic film. The silicon-containing film may be, for example, a silicon nitride film, a silicon carbonitride film, a polycrystalline silicon film, or a laminated film including two or more of these films. The organic film may be, for example, an amorphous carbon film, a spin-on carbon (SOC) film, or a photoresist film. The amorphous carbon (ACL) film may be doped with an element such as boron, and may be, for example, a boron-containing amorphous carbon film (B-doped ACL), an arsenic-containing amorphous carbon film (As-doped ACL), a tungsten-containing amorphous carbon film (W-doped ACL), or a xenon-containing amorphous carbon film (Xe-doped ACL).
一実施形態において、基板Wを構成する各膜(下地膜UF、シリコン酸化膜Ox及びマスクMK)は、それぞれ、CVD法、ALD法、PVD法、スピンコート法等により形成されてよい。一実施形態において、マスクMKの第1の開口OP1及び第2の開口OP2は、マスクMKをエッチングすることで形成されてよく、またリソグラフィにより形成されてもよい。一実施形態において、各膜は、それぞれ、平坦な膜であってよく、また凹凸を有する膜であってもよい。一実施形態において、基板Wは、下地膜UFの下に他の膜をさらに有してよい。この場合、シリコン酸化膜Ox及び下地膜UFに第1の開口OP1及び第2の開口OP2に対応する形状の凹部を形成し、当該他の膜をエッチングするためのマスクとして用いてもよい。
In one embodiment, each film constituting the substrate W (undercoat film UF, silicon oxide film Ox, and mask MK) may be formed by CVD, ALD, PVD, spin coating, or the like. In one embodiment, the first opening OP1 and the second opening OP2 of the mask MK may be formed by etching the mask MK, or may be formed by lithography. In one embodiment, each film may be a flat film or may have irregularities. In one embodiment, the substrate W may further have another film below the undercoat film UF. In this case, recesses having shapes corresponding to the first opening OP1 and the second opening OP2 may be formed in the silicon oxide film Ox and the undercoat film UF, and used as a mask for etching the other film.
一実施形態において、基板Wの各膜を形成するプロセスの少なくとも一部は、プラズマ処理チャンバ10の空間内で行われてよい。例えば、第1の開口OP1及び第2の開口OP2をエッチングにより形成する場合、当該エッチングと、工程ST2のシリコン酸化膜Oxのエッチングは、同一のチャンバ内で連続して実行されてよい。一実施形態において、基板Wの各膜の全部がプラズマ処理装置1の外部の装置やチャンバで形成された後、基板Wがプラズマ処理装置1のプラズマ処理空間10s内に搬入されることで、基板Wが提供されてよい。
In one embodiment, at least a part of the process for forming each film on the substrate W may be performed within the space of the plasma processing chamber 10. For example, when the first opening OP1 and the second opening OP2 are formed by etching, the etching and the etching of the silicon oxide film Ox in step ST2 may be performed consecutively within the same chamber. In one embodiment, after all of the films on the substrate W are formed in an apparatus or chamber external to the plasma processing apparatus 1, the substrate W may be provided by being loaded into the plasma processing space 10s of the plasma processing apparatus 1.
一実施形態において、基板Wが基板支持部11の中央領域111aに提供された後、基板支持部11が温調モジュールにより所与の温度に制御される。一例では、基板支持部11の温度を所与の温度に制御することは、流路1110aを流れる伝熱流体の温度やヒータ温度を所与の温度にすること、又は、所与の温度とは異なる温度にすることを含む。なお、流路1110aに伝熱流体が流れ始めるタイミングは、基板Wが基板支持部11に載置される前でも後でもよく、また同時でもよい。また、基板支持部11の温度は、工程ST1の前に所与の温度に制御されてよい。すなわち、基板支持部11の温度が所与の温度に制御された後に、基板支持部11に基板Wが提供されてよい。一実施形態において、所与の温度は、0℃以上170℃以下である。
In one embodiment, after the substrate W is provided to the central region 111a of the substrate support 11, the substrate support 11 is controlled to a given temperature by a temperature control module. In one example, controlling the temperature of the substrate support 11 to a given temperature includes setting the temperature of the heat transfer fluid flowing through the flow path 1110a or the heater temperature to a given temperature, or to a temperature different from the given temperature. The timing at which the heat transfer fluid starts to flow through the flow path 1110a may be before or after the substrate W is placed on the substrate support 11, or may be simultaneous. The temperature of the substrate support 11 may be controlled to a given temperature before step ST1. That is, the substrate W may be provided to the substrate support 11 after the temperature of the substrate support 11 is controlled to a given temperature. In one embodiment, the given temperature is equal to or greater than 0°C and equal to or less than 170°C.
一実施形態において、基板支持部11を所与の温度に制御することに代えて、基板Wを所与の温度に制御してもよい。基板Wの温度を所与の温度に制御することは、基板支持部11、流路1110aを流れる伝熱流体の温度及び/又はヒータ温度を所与の温度にすること、又は、所与の温度とは異なる温度にすることを含む。
In one embodiment, instead of controlling the substrate support 11 to a given temperature, the substrate W may be controlled to a given temperature. Controlling the temperature of the substrate W to a given temperature includes setting the temperature of the substrate support 11, the temperature of the heat transfer fluid flowing through the flow path 1110a, and/or the heater temperature to a given temperature or to a temperature different from the given temperature.
(工程ST2:エッチング)
工程ST2において、シリコン酸化膜Oxがエッチングされる。これによりシリコン酸化膜Oxのうち、マスクMKにより覆われていない部分(第1の開口OP1及び第2の開口OP2において露出した部分)がエッチングされ凹部が形成される。 (Step ST2: Etching)
In step ST2, the silicon oxide film Ox is etched, whereby the portions of the silicon oxide film Ox that are not covered by the mask MK (the portions exposed in the first opening OP1 and the second opening OP2) are etched to form recesses.
工程ST2において、シリコン酸化膜Oxがエッチングされる。これによりシリコン酸化膜Oxのうち、マスクMKにより覆われていない部分(第1の開口OP1及び第2の開口OP2において露出した部分)がエッチングされ凹部が形成される。 (Step ST2: Etching)
In step ST2, the silicon oxide film Ox is etched, whereby the portions of the silicon oxide film Ox that are not covered by the mask MK (the portions exposed in the first opening OP1 and the second opening OP2) are etched to form recesses.
まず、ガス供給部20から第1のガスを含む処理ガスがプラズマ処理空間10s内に供給される。第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである。
First, a processing gas containing a first gas is supplied into the plasma processing space 10s from the gas supply unit 20. The first gas is at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas.
一実施形態において、処理ガスは、酸素含有ガスをさらに含む。酸素含有ガスは、一例では、O2ガス、COガス及びCO2ガスからなる群から選択される少なくとも1つのガスである。
In one embodiment, the process gas further comprises an oxygen-containing gas, which in one example is at least one gas selected from the group consisting of O2 gas, CO gas, and CO2 gas.
一実施形態において、処理ガスは不活性ガスをさらに含む。不活性ガスは、一例では、Arガス、Heガス及びKrガス等の貴ガス又はN2ガスである。
In one embodiment, the process gas further comprises an inert gas, which in one example is a noble gas such as Ar gas, He gas, and Kr gas, or N2 gas.
一実施形態において、不活性ガスを除く処理ガスの総流量に対する第1のガスの流量の比は、33体積%以上50%体積以下である。
In one embodiment, the ratio of the flow rate of the first gas to the total flow rate of the processing gas excluding the inert gas is 33% by volume or more and 50% by volume or less.
一実施形態において、処理ガスは、第1のガスと異なるCF系ガス又はCHF系ガスからなる第2のガスをさらに含む。一実施形態において、第2のガスを構成する炭素間の2重結合の数は、第1のガスを構成する炭素間の2重結合の数よりも多い。例えば、第2のガスは、C4F6ガス、C4F8ガス及びC5F8ガスからなる群から選択される少なくとも1つのガスでよい。
In one embodiment, the process gas further includes a second gas, which is a CF-based gas or a CHF-based gas different from the first gas. In one embodiment, the number of double bonds between carbon atoms constituting the second gas is greater than the number of double bonds between carbon atoms constituting the first gas. For example, the second gas may be at least one gas selected from the group consisting of C4F6 gas, C4F8 gas , and C5F8 gas .
一実施形態において、第1のガスの流量(Q1)及び第2のガスの流量(Q2)の合算流量(Q1+Q2)に対する第1のガスの流量の比(Q1/(Q1+Q2))は、33体積%以上67体積%以下である。
In one embodiment, the ratio (Q1/(Q1+Q2)) of the flow rate of the first gas to the combined flow rate (Q1+Q2) of the flow rate of the first gas (Q1) and the flow rate of the second gas (Q2) is 33 volume % or more and 67 volume % or less.
次に、基板支持部11の下部電極及び/又はシャワーヘッド13の上部電極にソースRF信号が供給される。これにより、シャワーヘッド13と基板支持部11との間で高周波電界が生成され、プラズマ処理空間10s内の処理ガスからプラズマが生成される。基板支持部11の下部電極にバイアス信号が供給されてよいお。この場合、プラズマと基板Wとの間にバイアス電位が発生する。バイアス電位によって、プラズマ中のイオン、ラジカル等の活性種が基板Wに引きよせられる。バイアス信号は、第2のRF生成部31bから供給されるバイアスRF信号であってよい。またバイアス信号は、DC生成部32aから供給されるバイアスDC信号であってもよい。
Next, a source RF signal is supplied to the lower electrode of the substrate support 11 and/or the upper electrode of the shower head 13. This generates a high-frequency electric field between the shower head 13 and the substrate support 11, and plasma is generated from the processing gas in the plasma processing space 10s. A bias signal may be supplied to the lower electrode of the substrate support 11. In this case, a bias potential is generated between the plasma and the substrate W. The bias potential attracts active species such as ions and radicals in the plasma to the substrate W. The bias signal may be a bias RF signal supplied from the second RF generator 31b. The bias signal may also be a bias DC signal supplied from the DC generator 32a.
一実施形態において、ソースRF信号及びバイアス信号は、双方が連続波又はパルス波でよく、また一方が連続波で他方がパルス波でもよい。ソースRF信号及びバイアス信号の双方がパルス波である場合、双方のパルス波の周期は同期してよく、また同期しなくてもよい。ソースRF信号及び/又はバイアス信号パルス波のデューティ比は適宜設定してよく、例えば、1~80%でよく、また5~50%でよい。またバイアス信号として、バイアスDC信号を用いる場合、パルス波は、矩形、台形、三角形又はこれらの組み合わせの波形を有してよい。バイアスDC信号の極性は、プラズマと基板との間に電位差を与えてイオンを引き込むように基板Wの電位が設定されれば、負であっても正であってもよい。
In one embodiment, the source RF signal and the bias signal may both be continuous waves or pulse waves, or one may be a continuous wave and the other a pulse wave. When the source RF signal and the bias signal are both pulse waves, the periods of the two pulse waves may or may not be synchronized. The duty ratio of the source RF signal and/or bias signal pulse wave may be set appropriately, for example, 1 to 80%, or 5 to 50%. When a bias DC signal is used as the bias signal, the pulse wave may have a rectangular, trapezoidal, triangular, or combination thereof. The polarity of the bias DC signal may be negative or positive, as long as the potential of the substrate W is set to provide a potential difference between the plasma and the substrate to attract ions.
一実施形態において、ソースRF信号及びバイアス信号の少なくとも一方の供給と停止とが交互に繰り返されてよい。例えば、ソースRF信号が連続して供給される間に、バイアス信号の供給と停止とが交互に繰り返されてよい。また例えば、ソースRF信号の供給と停止とが交互に繰り返される間に、バイアス信号が連続して供給されてもよい。また例えば、ソースRF信号及びバイアス信号の双方の供給と停止とが交互に繰り返されてもよい。
In one embodiment, the supply and halt of at least one of the source RF signal and the bias signal may be alternately repeated. For example, the supply and halt of the bias signal may be alternately repeated while the source RF signal is continuously supplied. For example, the bias signal may be continuously supplied while the supply and halt of the source RF signal are alternately repeated. For example, the supply and halt of both the source RF signal and the bias signal may be alternately repeated.
一実施形態において、工程ST2における処理の間、基板支持部11の温度は、工程ST1で設定した所与の温度に制御されてよい。一実施形態において、基板支持部11の温度に代えて、基板Wの温度が所与の温度に制御されてもよい。
In one embodiment, during processing in step ST2, the temperature of the substrate support 11 may be controlled to a given temperature set in step ST1. In one embodiment, instead of the temperature of the substrate support 11, the temperature of the substrate W may be controlled to a given temperature.
図5は、工程ST2の処理中のマスクMK近傍の断面構造の一例を示す図である。図5に示すように、プラズマ中の活性種により、第1の領域RE1において、シリコン酸化膜Oxのうち第1の開口OP1において露出した部分が深さ方向(図5で上から下に向かう方向)にエッチングされる。これにより第1の開口OP1に対応する凹部RC1が形成される。また第1の領域RE1において、マスクMK及びシリコン酸化膜Ox上に第1の膜FM1が形成される。一実施形態において、第1の膜FM1は、マスクMKの第1の頂部tp1及び第1の側壁s1に堆積して形成される。また第1の膜FM1は、第1の凹部RC1を規定するシリコン酸化膜Oxの第1の側壁ss1及び第1の底部bt1上に堆積して形成される。
FIG. 5 is a diagram showing an example of a cross-sectional structure near the mask MK during processing in step ST2. As shown in FIG. 5, in the first region RE1, the portion of the silicon oxide film Ox exposed in the first opening OP1 is etched in the depth direction (from top to bottom in FIG. 5) by active species in the plasma. This forms a recess RC1 corresponding to the first opening OP1. Also, in the first region RE1, a first film FM1 is formed on the mask MK and the silicon oxide film Ox. In one embodiment, the first film FM1 is formed by deposition on the first top tp1 and first sidewall s1 of the mask MK. Also, the first film FM1 is formed by deposition on the first sidewall ss1 and first bottom bt1 of the silicon oxide film Ox that define the first recess RC1.
同様に第2の領域RE2において、プラズマ中の活性種により、シリコン酸化膜Oxのうち第2の開口OP2において露出した部分が深さ方向にエッチングされる。これにより第2の開口OP2に対応する第2の凹部RC2が形成される。また第2の領域RE2において、マスクMK及びシリコン酸化膜Ox上に第2の膜FM2が形成される一実施形態において、第2の膜FM2は、マスクMKの第2の頂部tp2及び第2の側壁s2に堆積される。また第2の膜FM2は、第2の凹部RC2を規定するシリコン酸化膜Oxの第2の側壁ss2及び第2の底部bt2上に堆積して形成される。
Similarly, in the second region RE2, the portion of the silicon oxide film Ox exposed at the second opening OP2 is etched in the depth direction by active species in the plasma. This forms a second recess RC2 corresponding to the second opening OP2. In one embodiment in which the second film FM2 is formed on the mask MK and the silicon oxide film Ox in the second region RE2, the second film FM2 is deposited on the second top tp2 and second sidewall s2 of the mask MK. The second film FM2 is also deposited and formed on the second sidewall ss2 and second bottom bt2 of the silicon oxide film Ox that define the second recess RC2.
第1の膜FM1及び第2の膜FM2は、第1のガスからプラズマ中に乖離した炭素(C)及びフルオロカーボン(CF2)を含む。マスクMK上の第1の膜FM1及び第2の膜FM2は、その炭素成分により、マスクMKのエッチングを抑制する保護膜として機能し得る。シリコン酸化膜Ox上の第1の膜FM1及び第2の膜FM2は、そのフッ素成分により、シリコン酸化膜Oxのエッチングを促進する膜として機能しうる。
The first film FM1 and the second film FM2 contain carbon (C) and fluorocarbon ( CF2 ) dissociated from the first gas into the plasma. The first film FM1 and the second film FM2 on the mask MK can function as a protective film that suppresses etching of the mask MK due to the carbon component. The first film FM1 and the second film FM2 on the silicon oxide film Ox can function as a film that promotes etching of the silicon oxide film Ox due to the fluorine component.
図5に示すように、マスクMKの第2の側壁s2及びシリコン酸化膜Oxの第2の側壁ss2に形成される第2の膜FM2の厚さ(t2)は、マスクMKの第1の側壁s1及びシリコン酸化膜Oxの第1の側壁ss1に形成される第1の膜FM1の厚さ(t1)よりも大きい。これは、第2の開口OP2が第1の開口OP1よりも開口寸法が大きく、プラズマ中の活性種がより多く流入することに起因すると考えられる。
As shown in FIG. 5, the thickness (t2) of the second film FM2 formed on the second sidewall s2 of the mask MK and the second sidewall ss2 of the silicon oxide film Ox is greater than the thickness (t1) of the first film FM1 formed on the first sidewall s1 of the mask MK and the first sidewall ss1 of the silicon oxide film Ox. This is believed to be due to the fact that the second opening OP2 has a larger opening dimension than the first opening OP1, allowing more active species in the plasma to flow in.
第1の膜FM1及び第2の膜FM2は、そのフッ素成分により、シリコン酸化膜Oxのエッチングを促進する膜として機能しうる。これによりシリコン酸化膜Oxの第1の側壁ss1及び第2のss2は、工程ST2の進行に伴って水平方向にエッチングされ得る。ここでシリコン酸化膜Oxの第2の側壁ss2に形成される第2の膜FM2の厚さ(t2)は、シリコン酸化膜Oxの第1の側壁ss1に形成される第1の膜FM1の厚さ(t1)よりも大きい。そのため、工程ST2において、シリコン酸化膜Oxの第2の側壁ss2の水平方向のエッチング量は、第1の側壁ss1の水平方向のエッチング量よりも大きくなり得る。
The first film FM1 and the second film FM2 can function as films that promote etching of the silicon oxide film Ox due to their fluorine components. As a result, the first sidewall ss1 and the second sidewall ss2 of the silicon oxide film Ox can be etched in the horizontal direction as process ST2 progresses. Here, the thickness (t2) of the second film FM2 formed on the second sidewall ss2 of the silicon oxide film Ox is greater than the thickness (t1) of the first film FM1 formed on the first sidewall ss1 of the silicon oxide film Ox. Therefore, in process ST2, the amount of etching in the horizontal direction of the second sidewall ss2 of the silicon oxide film Ox can be greater than the amount of etching in the horizontal direction of the first sidewall ss1.
一実施形態においてマスクMKの第1の側壁s1及びシリコン酸化膜Oxの第1の側壁ss1上に形成される第1の膜FM1は、マスクMKの第1の頂部tp1上に形成される第1の膜FM1よりも厚い。一実施形態において、マスクMKの第1の頂部tp1上に形成される第1の膜FM1は、シリコン酸化膜Oxの第1の底部bt1上に形成される第1の膜FM1よりも厚い。
In one embodiment, the first film FM1 formed on the first sidewall s1 of the mask MK and the first sidewall ss1 of the silicon oxide film Ox is thicker than the first film FM1 formed on the first top tp1 of the mask MK. In one embodiment, the first film FM1 formed on the first top tp1 of the mask MK is thicker than the first film FM1 formed on the first bottom bt1 of the silicon oxide film Ox.
一実施形態においてマスクMKの第2の側壁s2及びシリコン酸化膜Oxの第2の側壁ss2上に形成される第2の膜FM2は、マスクMKの第2の頂部tp2上に形成される第2の膜FM2よりも厚い。一実施形態において、マスクMKの第2の頂部tp2上に形成される第2の膜FM2は、シリコン酸化膜Oxの第2の底部bt2上に形成される第2の膜FM2よりも厚い。
In one embodiment, the second film FM2 formed on the second sidewall s2 of the mask MK and the second sidewall ss2 of the silicon oxide film Ox is thicker than the second film FM2 formed on the second top tp2 of the mask MK. In one embodiment, the second film FM2 formed on the second top tp2 of the mask MK is thicker than the second film FM2 formed on the second bottom bt2 of the silicon oxide film Ox.
図6は、工程ST2の処理後の基板Wの断面構造の一例を示す図である。図6に示す例では、工程ST2によるエッチングにより、第1の凹部RC1及び第2の凹部RC2が深さ方向にエッチングされ、双方の底部bt1及びbt2が下地膜UFに到達している。図6に示すように、工程ST2の終了時において、第1の膜FM1及び第2の膜FM2は除去されてよい。
FIG. 6 is a diagram showing an example of the cross-sectional structure of the substrate W after processing in step ST2. In the example shown in FIG. 6, the first recess RC1 and the second recess RC2 are etched in the depth direction by the etching in step ST2, and the bottoms bt1 and bt2 of both recesses reach the base film UF. As shown in FIG. 6, at the end of step ST2, the first film FM1 and the second film FM2 may be removed.
上述したとおり、工程ST2において、シリコン酸化膜Oxの第2の側壁ss2の水平方向のエッチング量は、第1の側壁ss1の水平方向のエッチング量よりも大きくなりうる。そのため第1の領域RE1と第2の領域RE2とのパターン寸法の差(CDローディング)が小さくなり得る。例えば、図4に示す工程ST2前のCDローディングをΔCD1(CD21-CD11)とする。また図6に示す工程ST2後のCDローディングをΔCD2(CD21x-CD11x)とする。この場合、ΔCD2<ΔCD1の関係が成り立つ。本方法によれば、エッチング前後でCDローディングが改善され得る。
As described above, in process ST2, the amount of etching of the second sidewall ss2 of the silicon oxide film Ox in the horizontal direction can be greater than the amount of etching of the first sidewall ss1 in the horizontal direction. This can reduce the difference in pattern dimensions (CD loading) between the first region RE1 and the second region RE2. For example, the CD loading before process ST2 shown in FIG. 4 is ΔCD1 (CD21-CD11). The CD loading after process ST2 shown in FIG. 6 is ΔCD2 (CD21x-CD11x). In this case, the relationship ΔCD2<ΔCD1 holds. According to this method, the CD loading can be improved before and after etching.
工程ST2において、第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである。第1のガスを含む処理ガスから生成されたプラズマを用いることで、シリコン酸化膜Oxのエッチングが促進されうる。これは第1のガスは当該第1のガスを構成する炭素間の単結合にて乖離しやすく、プラズマ中にシリコン酸化膜Oxのエッチャントであるフッ素をより多く提供するためと考えられる。本方法によれば、エッチングの処理時間が短縮され得る。
In step ST2, the first gas is at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas . By using plasma generated from a process gas containing the first gas, etching of the silicon oxide film Ox can be promoted. This is considered to be because the first gas is easily dissociated by single bonds between carbons constituting the first gas, and provides more fluorine, which is an etchant for the silicon oxide film Ox, in the plasma. According to this method, the etching process time can be shortened.
工程ST2において形成されるマスクMK上の第1の膜FM1及び第2の膜FM2は、その炭素成分により、マスクMKのエッチングを抑制する保護膜として機能し得る。そのため工程ST2においてマスクMKの深さ方向のエッチングが抑制され得る。本方法によれば、マスクMKに対するシリコン酸化膜Oxのエッチングの選択比が向上され得る。
The first film FM1 and the second film FM2 on the mask MK formed in step ST2 can function as a protective film that suppresses etching of the mask MK due to their carbon components. Therefore, etching of the mask MK in the depth direction can be suppressed in step ST2. According to this method, the etching selectivity of the silicon oxide film Ox to the mask MK can be improved.
<実施例>
次に、本処理方法の実施例について説明する。本開示は、以下の実施例によって何ら限定されるものではない。
(実施例1)
実施例1では、図2に示すプラズマ処理装置1を用いて、図3を用いて説明したフローに沿って、図4に示す基板Wと同様の構造を有する基板をエッチングした。マスクMKとしては、シリコン窒化膜を用いた。マスクMKの第1の領域RE1及び第2の領域RE2には、それぞれ、ライン&スペースパターンが形成されていた。第1の領域RE1に形成されたラインの線幅は、26.9nmであり、ピッチは40nmであった。マスクMKの第2の領域RE2に形成されたラインの線幅は、50.8nmであり、ピッチは200nmであった。工程ST2で用いた処理ガスは、C3F6ガスとArガスとを含んでいた。工程ST2によるエッチングは20秒間行った。工程ST2中にプラズマの発光をOES(Optical Emission Spectrometry)装置を用いて分析し、プラズマ中のCF2、C及びFの成分比を測定した。またエッチング後の基板のTEM像からマスクMKの頂部、角部及び側壁並びにシリコン酸化膜Oxの底部に形成された第1の膜FM1及び第2の膜FM2の膜厚を測定した。 <Example>
Next, examples of the present processing method will be described, but the present disclosure is not limited to the following examples.
Example 1
In Example 1, a substrate having a structure similar to that of the substrate W shown in FIG. 4 was etched using theplasma processing apparatus 1 shown in FIG. 2 along the flow described with reference to FIG. 3. A silicon nitride film was used as the mask MK. A line and space pattern was formed in each of the first region RE1 and the second region RE2 of the mask MK. The line width of the line formed in the first region RE1 was 26.9 nm, and the pitch was 40 nm. The line width of the line formed in the second region RE2 of the mask MK was 50.8 nm, and the pitch was 200 nm. The processing gas used in step ST2 contained C 3 F 6 gas and Ar gas. The etching by step ST2 was performed for 20 seconds. During step ST2, the emission of plasma was analyzed using an OES (Optical Emission Spectrometry) device, and the component ratios of CF 2 , C, and F in the plasma were measured. Further, from a TEM image of the substrate after etching, the film thicknesses of the first film FM1 and the second film FM2 formed on the top, corners and sidewalls of the mask MK and on the bottom of the silicon oxide film Ox were measured.
次に、本処理方法の実施例について説明する。本開示は、以下の実施例によって何ら限定されるものではない。
(実施例1)
実施例1では、図2に示すプラズマ処理装置1を用いて、図3を用いて説明したフローに沿って、図4に示す基板Wと同様の構造を有する基板をエッチングした。マスクMKとしては、シリコン窒化膜を用いた。マスクMKの第1の領域RE1及び第2の領域RE2には、それぞれ、ライン&スペースパターンが形成されていた。第1の領域RE1に形成されたラインの線幅は、26.9nmであり、ピッチは40nmであった。マスクMKの第2の領域RE2に形成されたラインの線幅は、50.8nmであり、ピッチは200nmであった。工程ST2で用いた処理ガスは、C3F6ガスとArガスとを含んでいた。工程ST2によるエッチングは20秒間行った。工程ST2中にプラズマの発光をOES(Optical Emission Spectrometry)装置を用いて分析し、プラズマ中のCF2、C及びFの成分比を測定した。またエッチング後の基板のTEM像からマスクMKの頂部、角部及び側壁並びにシリコン酸化膜Oxの底部に形成された第1の膜FM1及び第2の膜FM2の膜厚を測定した。 <Example>
Next, examples of the present processing method will be described, but the present disclosure is not limited to the following examples.
Example 1
In Example 1, a substrate having a structure similar to that of the substrate W shown in FIG. 4 was etched using the
(参考例1)
参考例1では、処理ガスがC4F6ガス及びArガスを含んでいた点を除き、実施例1と同一の条件で、実施例1と同一の構成の基板をエッチングした。実施例1と同様に、工程ST2におけるプラズマ中のF、CF及びCF2の成分比を測定した。またエッチング後の基板のTEM像からマスクMKの頂部、角部及び側壁並びにシリコン酸化膜Oxの底部に形成された、第1の領域RE1の膜DP1及び第2の領域RE2の膜DP2の膜厚を測定した。 (Reference Example 1)
In Reference Example 1, a substrate having the same configuration as that of Example 1 was etched under the same conditions as those of Example 1, except that the processing gas contained C4F6 gas and Ar gas. As in Example 1, the component ratios of F, CF, and CF2 in the plasma in step ST2 were measured. In addition, the film thicknesses of the film DP1 in the first region RE1 and the film DP2 in the second region RE2 formed on the top, corners, and sidewalls of the mask MK and the bottom of the silicon oxide film Ox were measured from the TEM image of the substrate after etching.
参考例1では、処理ガスがC4F6ガス及びArガスを含んでいた点を除き、実施例1と同一の条件で、実施例1と同一の構成の基板をエッチングした。実施例1と同様に、工程ST2におけるプラズマ中のF、CF及びCF2の成分比を測定した。またエッチング後の基板のTEM像からマスクMKの頂部、角部及び側壁並びにシリコン酸化膜Oxの底部に形成された、第1の領域RE1の膜DP1及び第2の領域RE2の膜DP2の膜厚を測定した。 (Reference Example 1)
In Reference Example 1, a substrate having the same configuration as that of Example 1 was etched under the same conditions as those of Example 1, except that the processing gas contained C4F6 gas and Ar gas. As in Example 1, the component ratios of F, CF, and CF2 in the plasma in step ST2 were measured. In addition, the film thicknesses of the film DP1 in the first region RE1 and the film DP2 in the second region RE2 formed on the top, corners, and sidewalls of the mask MK and the bottom of the silicon oxide film Ox were measured from the TEM image of the substrate after etching.
図7は、実施例1及び参考例1の結果を示す図である。図7の断面図に示すように、実施例1及び参考例1いずれにおいてもマスクMK及びシリコン酸化膜Ox上に膜(FM1、FM2、DP1、DP2)が形成された。実施例1は、領域R1及び領域R2いずれにおいても、マスクMKの側壁に形成される膜の膜厚(5.6nm/6.3nm)が参考例1における膜厚(2.0nm/3.9nm)よりも十分大きかった。特に実施例1のマスクMKの側壁における第2の膜FM2の膜厚(6.3nm)が大きかった。他方、実施例1は、その他の部分(マスクMKの頂部、角部及び凹部の底部)に形成される膜厚が、領域RE1及び領域RE2いずれにおいても参考例1よりも小さかった。すなわち、実施例1は、参考例1に比べてマスクMKの側壁に膜が形成されやすく、その他の部分の膜が形成されにくかった。以上からすれば、同一条件でエッチングを続ける場合、実施例1は第2領域RE2のマスクMK及びシリコン酸化膜Oxの側壁のエッチングが進みやすく、参考例1よりもCDローディングが改善すると推察される。
FIG. 7 shows the results of Example 1 and Reference Example 1. As shown in the cross-sectional view of FIG. 7, in both Example 1 and Reference Example 1, films (FM1, FM2, DP1, DP2) were formed on the mask MK and the silicon oxide film Ox. In Example 1, the film thickness (5.6 nm/6.3 nm) formed on the sidewall of the mask MK in both regions R1 and R2 was sufficiently larger than the film thickness (2.0 nm/3.9 nm) in Reference Example 1. In particular, the film thickness (6.3 nm) of the second film FM2 on the sidewall of the mask MK in Example 1 was large. On the other hand, in Example 1, the film thickness formed on other parts (the top, corners, and bottom of the recess of the mask MK) was smaller than that of Reference Example 1 in both regions RE1 and RE2. That is, in Example 1, a film was more likely to be formed on the sidewall of the mask MK than in Reference Example 1, and a film was less likely to be formed on other parts. From the above, it is presumed that if etching is continued under the same conditions, etching of the side walls of the mask MK and silicon oxide film Ox in the second region RE2 will proceed more easily in Example 1, resulting in improved CD loading compared to Reference Example 1.
また実施例1は、プラズマ中のCF2及びFの比率が、参考例1に比べて高かった。実施例1は参考例1に比べてプラズマ中のフッ素成分が多いため、同一条件でエッチングを続ける場合、実施例1はシリコン酸化膜Oxのエッチングが参考例1よりも進みやすく、エッチングの処理時間が短縮されると推察される。
Moreover, in Example 1, the ratios of CF2 and F in the plasma were higher than those in Reference Example 1. Since the fluorine component in the plasma is greater in Example 1 than in Reference Example 1, it is presumed that when etching is continued under the same conditions, the etching of the silicon oxide film Ox in Example 1 proceeds more easily than in Reference Example 1, and the etching processing time is shortened.
(実施例2)
実施例2では、図2に示すプラズマ処理装置1を用いて、図3を用いて説明したフローに沿って、実施例1と同様の構造を有する基板をエッチングした。工程ST2で用いた処理ガスは、C3F6ガス、O2ガス及びArガスを含んでいた。工程ST2のエッチングはシリコン酸化膜Oxに形成される凹部の底部が下地膜UFに到達するまで実行し、当該処理時間を測定した。またマスクMKに対するシリコン酸化膜Oxのエッチングの選択比を測定した。エッチング後、第1の領域RE1及び第2の領域RE2のそれぞれのラインの線幅(CD11x及びCD21x)を測定してCDローディング(ΔCD2)を求めた。これによりエッチング前後でのCDローディングの改善率(ΔCD改善率)を算出した。 Example 2
In Example 2, a substrate having the same structure as Example 1 was etched using theplasma processing apparatus 1 shown in FIG. 2 along the flow described with reference to FIG. 3. The processing gas used in step ST2 contained C 3 F 6 gas, O 2 gas, and Ar gas. The etching in step ST2 was performed until the bottom of the recess formed in the silicon oxide film Ox reached the undercoat film UF, and the processing time was measured. The etching selectivity of the silicon oxide film Ox to the mask MK was also measured. After etching, the line widths (CD11x and CD21x) of the lines in the first region RE1 and the second region RE2 were measured to obtain the CD loading (ΔCD2). This allowed the CD loading improvement rate (ΔCD improvement rate) before and after etching to be calculated.
実施例2では、図2に示すプラズマ処理装置1を用いて、図3を用いて説明したフローに沿って、実施例1と同様の構造を有する基板をエッチングした。工程ST2で用いた処理ガスは、C3F6ガス、O2ガス及びArガスを含んでいた。工程ST2のエッチングはシリコン酸化膜Oxに形成される凹部の底部が下地膜UFに到達するまで実行し、当該処理時間を測定した。またマスクMKに対するシリコン酸化膜Oxのエッチングの選択比を測定した。エッチング後、第1の領域RE1及び第2の領域RE2のそれぞれのラインの線幅(CD11x及びCD21x)を測定してCDローディング(ΔCD2)を求めた。これによりエッチング前後でのCDローディングの改善率(ΔCD改善率)を算出した。 Example 2
In Example 2, a substrate having the same structure as Example 1 was etched using the
(参考例2)
参考例2では、処理ガスがC4F6ガス、O2ガス及びArガスを含んでいた点を除き、実施例2と同一の条件で、実施例2(実施例1)と同一の構成の基板をエッチングした。実施例2と同様、エッチングはシリコン酸化膜Oxに形成される凹部の底部が下地膜UFに到達するまで実行し、当該処理時間を測定した。またマスクMKに対するシリコン酸化膜Oxのエッチングの選択比を測定した。またエッチング後、第1の領域RE1及び第2の領域RE2のそれぞれのラインの線幅(CD11x及びCD21x)を測定してCDローディング(ΔCD2)を求めた。これによりエッチング前後でのCDローディングの改善率(ΔCD改善率)を算出した。 (Reference Example 2)
In Reference Example 2, a substrate having the same configuration as that of Example 2 (Example 1) was etched under the same conditions as those of Example 2, except that the processing gas contained C4F6 gas, O2 gas, and Ar gas. As in Example 2, etching was performed until the bottom of the recess formed in the silicon oxide film Ox reached the undercoat film UF, and the processing time was measured. In addition, the etching selectivity of the silicon oxide film Ox to the mask MK was measured. After etching, the line widths (CD11x and CD21x) of the lines in the first region RE1 and the second region RE2 were measured to obtain the CD loading (ΔCD2). This allowed the CD loading improvement rate (ΔCD improvement rate) before and after etching to be calculated.
参考例2では、処理ガスがC4F6ガス、O2ガス及びArガスを含んでいた点を除き、実施例2と同一の条件で、実施例2(実施例1)と同一の構成の基板をエッチングした。実施例2と同様、エッチングはシリコン酸化膜Oxに形成される凹部の底部が下地膜UFに到達するまで実行し、当該処理時間を測定した。またマスクMKに対するシリコン酸化膜Oxのエッチングの選択比を測定した。またエッチング後、第1の領域RE1及び第2の領域RE2のそれぞれのラインの線幅(CD11x及びCD21x)を測定してCDローディング(ΔCD2)を求めた。これによりエッチング前後でのCDローディングの改善率(ΔCD改善率)を算出した。 (Reference Example 2)
In Reference Example 2, a substrate having the same configuration as that of Example 2 (Example 1) was etched under the same conditions as those of Example 2, except that the processing gas contained C4F6 gas, O2 gas, and Ar gas. As in Example 2, etching was performed until the bottom of the recess formed in the silicon oxide film Ox reached the undercoat film UF, and the processing time was measured. In addition, the etching selectivity of the silicon oxide film Ox to the mask MK was measured. After etching, the line widths (CD11x and CD21x) of the lines in the first region RE1 and the second region RE2 were measured to obtain the CD loading (ΔCD2). This allowed the CD loading improvement rate (ΔCD improvement rate) before and after etching to be calculated.
図8は、実施例2及び参考例2の結果を示す図である。図8に示すように、実施例2は、参考例2に比べて、CDローディングの改善率が高かった。またエッチングの処理時間は、実施例2は63.7(秒)であり、参考例2の90.5(秒)に比べて大幅に短縮された。なお、実施例2と参考例2とでマスクMKの選択比は同一であった。
Figure 8 shows the results of Example 2 and Reference Example 2. As shown in Figure 8, Example 2 had a higher improvement rate in CD loading than Reference Example 2. Furthermore, the etching processing time was 63.7 (seconds) in Example 2, which was significantly shorter than the 90.5 (seconds) in Reference Example 2. The selectivity of the mask MK was the same in Example 2 and Reference Example 2.
(実施例3~5)
実施例3~5では、図2に示すプラズマ処理装置1を用いて、図3を用いて説明したフローに沿って、実施例1と同様の構造を有する基板をエッチングした。工程ST2の処理ガスは、C3F6ガス、C4F6ガス、O2ガス及びArガスを含んでいた。実施例3~5において、C3F6ガスとC4F6ガスの合算流量に対するC3F6ガスの流量比は、それぞれ67体積%、67体積%、33体積%であった。また実施例3~5において、Arガスを除く処理ガスの総流量に対するO2ガスの流量比は、それぞれ40体積%、45体積%、57体積%であった。工程ST2のエッチングはシリコン酸化膜Oxに形成される凹部の底部が下地膜UFに到達するまで実行し、当該処理時間及びエッチング終了時のマスクMKの選択比を測定した。 (Examples 3 to 5)
In Examples 3 to 5, a substrate having the same structure as in Example 1 was etched using theplasma processing apparatus 1 shown in FIG. 2 along the flow described with reference to FIG. 3. The process gas in step ST2 contained C 3 F 6 gas, C 4 F 6 gas, O 2 gas, and Ar gas. In Examples 3 to 5, the flow rate ratio of C 3 F 6 gas to the combined flow rate of C 3 F 6 gas and C 4 F 6 gas was 67 vol%, 67 vol%, and 33 vol%, respectively. In Examples 3 to 5, the flow rate ratio of O 2 gas to the total flow rate of the process gas excluding Ar gas was 40 vol%, 45 vol%, and 57 vol%, respectively. The etching in step ST2 was performed until the bottom of the recess formed in the silicon oxide film Ox reached the undercoat film UF, and the process time and the selectivity of the mask MK at the end of the etching were measured.
実施例3~5では、図2に示すプラズマ処理装置1を用いて、図3を用いて説明したフローに沿って、実施例1と同様の構造を有する基板をエッチングした。工程ST2の処理ガスは、C3F6ガス、C4F6ガス、O2ガス及びArガスを含んでいた。実施例3~5において、C3F6ガスとC4F6ガスの合算流量に対するC3F6ガスの流量比は、それぞれ67体積%、67体積%、33体積%であった。また実施例3~5において、Arガスを除く処理ガスの総流量に対するO2ガスの流量比は、それぞれ40体積%、45体積%、57体積%であった。工程ST2のエッチングはシリコン酸化膜Oxに形成される凹部の底部が下地膜UFに到達するまで実行し、当該処理時間及びエッチング終了時のマスクMKの選択比を測定した。 (Examples 3 to 5)
In Examples 3 to 5, a substrate having the same structure as in Example 1 was etched using the
(参考例3及び4)
参考例3及び4では、処理ガスがC4F6ガス、O2ガス及びArガスを含んでいた点を除き、実施例3~5と同一の条件で、実施例3~5(実施例1)と同一の構成の基板をエッチングした。参考例3及び4において、Arガスを除く処理ガスの総流量に対するO2ガスの流量比は、それぞれ60体積%、80体積%であった。 (Reference Examples 3 and 4)
In Reference Examples 3 and 4, substrates having the same configuration as in Examples 3 to 5 (Example 1) were etched under the same conditions as in Examples 3 to 5, except that the processing gas contained C 4 F 6 gas, O 2 gas, and Ar gas. In Reference Examples 3 and 4, the flow rate ratio of O 2 gas to the total flow rate of the processing gas excluding Ar gas was 60 volume % and 80 volume %, respectively.
参考例3及び4では、処理ガスがC4F6ガス、O2ガス及びArガスを含んでいた点を除き、実施例3~5と同一の条件で、実施例3~5(実施例1)と同一の構成の基板をエッチングした。参考例3及び4において、Arガスを除く処理ガスの総流量に対するO2ガスの流量比は、それぞれ60体積%、80体積%であった。 (Reference Examples 3 and 4)
In Reference Examples 3 and 4, substrates having the same configuration as in Examples 3 to 5 (Example 1) were etched under the same conditions as in Examples 3 to 5, except that the processing gas contained C 4 F 6 gas, O 2 gas, and Ar gas. In Reference Examples 3 and 4, the flow rate ratio of O 2 gas to the total flow rate of the processing gas excluding Ar gas was 60 volume % and 80 volume %, respectively.
図9は、実施例3~5及び参考例3~4の結果を示す図である。図9に示すように、実施例3~5は、参考例3及び4に比べて、マスクMKの選択比が改善するとともに、エッチングの処理時間も大幅に短縮された。
Figure 9 shows the results of Examples 3 to 5 and Reference Examples 3 to 4. As shown in Figure 9, Examples 3 to 5 improved the selectivity of the mask MK compared to Reference Examples 3 and 4, and the etching processing time was also significantly reduced.
本開示の実施形態は、以下の態様をさらに含む。
Embodiments of the present disclosure further include the following aspects:
(付記1)
チャンバを有するプラズマ処理装置において実行されるエッチング方法であって、
(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する工程であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、工程と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする工程であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、工程と、
を含むエッチング方法。 (Appendix 1)
1. An etching method performed in a plasma processing apparatus having a chamber, comprising:
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas;
An etching method comprising:
チャンバを有するプラズマ処理装置において実行されるエッチング方法であって、
(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する工程であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、工程と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする工程であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、工程と、
を含むエッチング方法。 (Appendix 1)
1. An etching method performed in a plasma processing apparatus having a chamber, comprising:
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas;
An etching method comprising:
(付記2)
前記(b)において、
前記第1の開口を規定する前記マスクの第1の側壁に炭素及びフッ素を含有する第1の膜が形成され、かつ、前記第2の開口を規定する前記マスクの第2の側壁に炭素及びフッ素を含有する第2の膜が形成され、
前記第1の膜が形成された前記第1の開口及び前記第2の膜が形成された前記第2の開口を介して、前記エッチング対象膜がエッチングされる、付記1に記載のエッチング方法。 (Appendix 2)
In the above (b),
a first film containing carbon and fluorine is formed on a first sidewall of the mask that defines the first opening, and a second film containing carbon and fluorine is formed on a second sidewall of the mask that defines the second opening;
2. The etching method according toclaim 1, wherein the etching target film is etched through the first opening in which the first film is formed and the second opening in which the second film is formed.
前記(b)において、
前記第1の開口を規定する前記マスクの第1の側壁に炭素及びフッ素を含有する第1の膜が形成され、かつ、前記第2の開口を規定する前記マスクの第2の側壁に炭素及びフッ素を含有する第2の膜が形成され、
前記第1の膜が形成された前記第1の開口及び前記第2の膜が形成された前記第2の開口を介して、前記エッチング対象膜がエッチングされる、付記1に記載のエッチング方法。 (Appendix 2)
In the above (b),
a first film containing carbon and fluorine is formed on a first sidewall of the mask that defines the first opening, and a second film containing carbon and fluorine is formed on a second sidewall of the mask that defines the second opening;
2. The etching method according to
(付記3)
前記(b)において、前記マスクの前記第2の側壁に形成される前記第2の膜の厚さは、前記マスクの前記第1の側壁に形成される前記第1の膜の厚さよりも大きい、付記2に記載のエッチング方法。 (Appendix 3)
3. The etching method according toclaim 2, wherein in (b), a thickness of the second film formed on the second sidewall of the mask is greater than a thickness of the first film formed on the first sidewall of the mask.
前記(b)において、前記マスクの前記第2の側壁に形成される前記第2の膜の厚さは、前記マスクの前記第1の側壁に形成される前記第1の膜の厚さよりも大きい、付記2に記載のエッチング方法。 (Appendix 3)
3. The etching method according to
(付記4)
前記(b)において、前記エッチング対象膜に、前記第1の開口に対応する第1の凹部と前記第2の開口に対応する第2の凹部とが形成される、付記2又は付記3に記載のエッチング方法。 (Appendix 4)
4. The etching method according toclaim 2, wherein in (b), a first recess corresponding to the first opening and a second recess corresponding to the second opening are formed in the etching target film.
前記(b)において、前記エッチング対象膜に、前記第1の開口に対応する第1の凹部と前記第2の開口に対応する第2の凹部とが形成される、付記2又は付記3に記載のエッチング方法。 (Appendix 4)
4. The etching method according to
(付記5)
前記(b)において、前記第1の凹部を規定するエッチング対象膜の第1の側壁に前記第1の膜が前記マスクの前記第1の側壁から連続して形成され、前記第2の凹部を規定するエッチング対象膜の第2の側壁に前記第2の膜が前記マスクの前記第2の側壁から連続して形成される、付記4に記載のエッチング方法。 (Appendix 5)
The etching method of claim 4, wherein in (b), the first film is formed continuously from the first sidewall of the mask on a first sidewall of the etching target film that defines the first recess, and the second film is formed continuously from the second sidewall of the mask on a second sidewall of the etching target film that defines the second recess.
前記(b)において、前記第1の凹部を規定するエッチング対象膜の第1の側壁に前記第1の膜が前記マスクの前記第1の側壁から連続して形成され、前記第2の凹部を規定するエッチング対象膜の第2の側壁に前記第2の膜が前記マスクの前記第2の側壁から連続して形成される、付記4に記載のエッチング方法。 (Appendix 5)
The etching method of claim 4, wherein in (b), the first film is formed continuously from the first sidewall of the mask on a first sidewall of the etching target film that defines the first recess, and the second film is formed continuously from the second sidewall of the mask on a second sidewall of the etching target film that defines the second recess.
(付記6)
前記(b)において、前記エッチング対象膜の前記第2の側壁に形成される前記第2の膜の厚さは、前記エッチング対象膜の前記第1の側壁に形成される前記第1の膜の厚さよりも大きい、付記5に記載のエッチング方法。 (Appendix 6)
6. The etching method according to claim 5, wherein in (b), a thickness of the second film formed on the second side wall of the etching target film is greater than a thickness of the first film formed on the first side wall of the etching target film.
前記(b)において、前記エッチング対象膜の前記第2の側壁に形成される前記第2の膜の厚さは、前記エッチング対象膜の前記第1の側壁に形成される前記第1の膜の厚さよりも大きい、付記5に記載のエッチング方法。 (Appendix 6)
6. The etching method according to claim 5, wherein in (b), a thickness of the second film formed on the second side wall of the etching target film is greater than a thickness of the first film formed on the first side wall of the etching target film.
(付記7)
前記(b)において、前記第1の膜及び前記第2の膜中のフッ素成分により、前記エッチング対象膜の前記第1の側壁及び前記第2の側壁が水平方向にエッチングされる、付記5又は付記6に記載のエッチング方法。 (Appendix 7)
7. The etching method according to claim 5, wherein in (b), the first sidewall and the second sidewall of the etching target film are etched in a horizontal direction by fluorine components in the first film and the second film.
前記(b)において、前記第1の膜及び前記第2の膜中のフッ素成分により、前記エッチング対象膜の前記第1の側壁及び前記第2の側壁が水平方向にエッチングされる、付記5又は付記6に記載のエッチング方法。 (Appendix 7)
7. The etching method according to claim 5, wherein in (b), the first sidewall and the second sidewall of the etching target film are etched in a horizontal direction by fluorine components in the first film and the second film.
(付記8)
前記(b)において、前記エッチング対象膜の前記第2の側壁の水平方向のエッチング量は、前記エッチング対象膜の前記第1の側壁の水平方向のエッチング量よりも大きい、付記1から付記7のいずれか1つに記載のエッチング方法。 (Appendix 8)
8. The etching method according toclaim 1, wherein in (b), a horizontal etching amount of the second sidewall of the etching target film is greater than a horizontal etching amount of the first sidewall of the etching target film.
前記(b)において、前記エッチング対象膜の前記第2の側壁の水平方向のエッチング量は、前記エッチング対象膜の前記第1の側壁の水平方向のエッチング量よりも大きい、付記1から付記7のいずれか1つに記載のエッチング方法。 (Appendix 8)
8. The etching method according to
(付記9)
前記処理ガスは酸素含有ガスをさらに含む、付記1から付記8のいずれか1つに記載のエッチング方法。 (Appendix 9)
9. The etching method ofclaim 1, wherein the process gas further comprises an oxygen-containing gas.
前記処理ガスは酸素含有ガスをさらに含む、付記1から付記8のいずれか1つに記載のエッチング方法。 (Appendix 9)
9. The etching method of
(付記10)
前記処理ガスは不活性ガスをさらに含む、付記1から付記9のいずれか1つに記載のエッチング方法。 (Appendix 10)
10. The etching method of any one ofclaims 1 to 9, wherein the process gas further comprises an inert gas.
前記処理ガスは不活性ガスをさらに含む、付記1から付記9のいずれか1つに記載のエッチング方法。 (Appendix 10)
10. The etching method of any one of
(付記11)
不活性ガスを除く前記処理ガスの総流量に対する前記第1のガスの流量の比は、33体積%以上50%体積以下である、付記1から付記10のいずれか1つに記載のエッチング方法。 (Appendix 11)
11. The etching method according toclaim 1, wherein a ratio of a flow rate of the first gas to a total flow rate of the process gas excluding an inert gas is 33 vol.% or more and 50 vol.% or less.
不活性ガスを除く前記処理ガスの総流量に対する前記第1のガスの流量の比は、33体積%以上50%体積以下である、付記1から付記10のいずれか1つに記載のエッチング方法。 (Appendix 11)
11. The etching method according to
(付記12)
前記処理ガスは、前記第1のガスと異なる第2のガスをさらに含み、前記第2のガスはCF系ガス又はCHF系ガスである、付記1から付記11のいずれか1つに記載のエッチング方法。 (Appendix 12)
12. The etching method according toclaim 1, wherein the process gas further includes a second gas different from the first gas, and the second gas is a CF-based gas or a CHF-based gas.
前記処理ガスは、前記第1のガスと異なる第2のガスをさらに含み、前記第2のガスはCF系ガス又はCHF系ガスである、付記1から付記11のいずれか1つに記載のエッチング方法。 (Appendix 12)
12. The etching method according to
(付記13)
前記第2のガスを構成する炭素間の2重結合の数は、前記第1のガスを構成する炭素間の2重結合の数よりも多い、付記12に記載のエッチング方法。 (Appendix 13)
13. The etching method according toclaim 12, wherein a number of double bonds between carbon atoms constituting the second gas is greater than a number of double bonds between carbon atoms constituting the first gas.
前記第2のガスを構成する炭素間の2重結合の数は、前記第1のガスを構成する炭素間の2重結合の数よりも多い、付記12に記載のエッチング方法。 (Appendix 13)
13. The etching method according to
(付記14)
前記第2のガスは、C4F6ガス、C4F8ガス及びC5F8ガスからなる群から選択される少なくとも1つのガスである、付記12又は付記13に記載のエッチング方法。 (Appendix 14)
14. The etching method according to claim 12 , wherein the second gas is at least one gas selected from the group consisting of C4F6 gas, C4F8 gas, and C5F8 gas .
前記第2のガスは、C4F6ガス、C4F8ガス及びC5F8ガスからなる群から選択される少なくとも1つのガスである、付記12又は付記13に記載のエッチング方法。 (Appendix 14)
14. The etching method according to claim 12 , wherein the second gas is at least one gas selected from the group consisting of C4F6 gas, C4F8 gas, and C5F8 gas .
(付記15)
前記第1のガス及び前記第2のガスの合算流量に対する前記第1のガスの流量の比は、33体積%以上67体積%以下である、付記12から付記14のいずれか1つに記載のエッチング方法。 (Appendix 15)
15. The etching method according toclaim 12, wherein a ratio of a flow rate of the first gas to a combined flow rate of the first gas and the second gas is 33 vol.% or more and 67 vol.% or less.
前記第1のガス及び前記第2のガスの合算流量に対する前記第1のガスの流量の比は、33体積%以上67体積%以下である、付記12から付記14のいずれか1つに記載のエッチング方法。 (Appendix 15)
15. The etching method according to
(付記16)
前記処理ガスは、酸素含有ガスをさらに含む、付記12から付記15のいずれか1つに記載のエッチング方法。 (Appendix 16)
16. The etching method ofclaim 12, wherein the process gas further comprises an oxygen-containing gas.
前記処理ガスは、酸素含有ガスをさらに含む、付記12から付記15のいずれか1つに記載のエッチング方法。 (Appendix 16)
16. The etching method of
(付記17)
前記処理ガスは不活性ガスをさらに含む、付記12から付記16のいずれか1つに記載のエッチング方法。 (Appendix 17)
17. The etching method of any one ofclaims 12 to 16, wherein the process gas further comprises an inert gas.
前記処理ガスは不活性ガスをさらに含む、付記12から付記16のいずれか1つに記載のエッチング方法。 (Appendix 17)
17. The etching method of any one of
(付記18)
前記第1の開口の開口寸法に対する前記第2の開口の開口寸法の比は、1.1以上20以下である、付記1から付記17のいずれか1つに記載のエッチング方法。 (Appendix 18)
18. The etching method ofclaim 1, wherein a ratio of an opening dimension of the second opening to an opening dimension of the first opening is 1.1 or more and 20 or less.
前記第1の開口の開口寸法に対する前記第2の開口の開口寸法の比は、1.1以上20以下である、付記1から付記17のいずれか1つに記載のエッチング方法。 (Appendix 18)
18. The etching method of
(付記19)
前記マスクは、シリコン窒化膜である、付記1から付記18のいずれか1つに記載のエッチング方法。 (Appendix 19)
19. The etching method according toclaim 1, wherein the mask is a silicon nitride film.
前記マスクは、シリコン窒化膜である、付記1から付記18のいずれか1つに記載のエッチング方法。 (Appendix 19)
19. The etching method according to
(付記20)
チャンバと制御部とを有するプラズマ処理装置であって、
前記制御部は、
(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する制御であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、制御と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする制御であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、制御と、
を実行する、プラズマ処理装置。 (Appendix 20)
A plasma processing apparatus having a chamber and a control unit,
The control unit is
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) controlling the etching target film through the first opening and the second opening by using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas , C3F7 gas, C2F6 gas , and C3H2F4 gas ;
The plasma processing apparatus performs the above steps.
チャンバと制御部とを有するプラズマ処理装置であって、
前記制御部は、
(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する制御であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、制御と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする制御であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、制御と、
を実行する、プラズマ処理装置。 (Appendix 20)
A plasma processing apparatus having a chamber and a control unit,
The control unit is
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) controlling the etching target film through the first opening and the second opening by using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas , C3F7 gas, C2F6 gas , and C3H2F4 gas ;
The plasma processing apparatus performs the above steps.
(付記21)
チャンバを有するプラズマ処理装置において実行されるデバイス製造方法であって、
(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する工程であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、工程と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする工程であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、工程と、
を備えるデバイス製造方法。 (Appendix 21)
1. A device manufacturing method carried out in a plasma processing apparatus having a chamber, comprising:
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas;
A device manufacturing method comprising:
チャンバを有するプラズマ処理装置において実行されるデバイス製造方法であって、
(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する工程であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、工程と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする工程であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、工程と、
を備えるデバイス製造方法。 (Appendix 21)
1. A device manufacturing method carried out in a plasma processing apparatus having a chamber, comprising:
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas;
A device manufacturing method comprising:
(付記22)
チャンバと制御部とを有するプラズマ処理装置のコンピュータに、
(a)シリコンと酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する制御であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、制御と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする制御であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、制御と、
を実行させるプログラム。 (Appendix 22)
A computer of a plasma processing apparatus having a chamber and a control unit,
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) controlling the etching target film through the first opening and the second opening by using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas , C3F7 gas, C2F6 gas , and C3H2F4 gas ;
A program that executes the following.
チャンバと制御部とを有するプラズマ処理装置のコンピュータに、
(a)シリコンと酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する制御であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、制御と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする制御であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、制御と、
を実行させるプログラム。 (Appendix 22)
A computer of a plasma processing apparatus having a chamber and a control unit,
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) controlling the etching target film through the first opening and the second opening by using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas , C3F7 gas, C2F6 gas , and C3H2F4 gas ;
A program that executes the following.
(付記23)
付記22に記載のプログラムを格納した、記憶媒体。 (Appendix 23)
A storage medium storing the program according toclaim 22.
付記22に記載のプログラムを格納した、記憶媒体。 (Appendix 23)
A storage medium storing the program according to
以上の各実施形態は、説明の目的で記載されており、本開示の範囲を限定することを意図するものではない。以上の各実施形態は、本開示の範囲及び趣旨から逸脱することなく種々の変形をなし得る。例えば、ある実施形態における一部の構成要素を、他の実施形態に追加することができる。また、ある実施形態における一部の構成要素を、他の実施形態の対応する構成要素と置換することができる。
The above embodiments are described for the purpose of explanation and are not intended to limit the scope of the present disclosure. Various modifications of the above embodiments may be made without departing from the scope and spirit of the present disclosure. For example, some components in one embodiment may be added to another embodiment. Also, some components in one embodiment may be replaced with corresponding components in another embodiment.
1……プラズマ処理装置、2……制御部、10……プラズマ処理チャンバ、10s……プラズマ処理空間、11……基板支持部、13……シャワーヘッド、20……ガス供給部、31a……第1のRF生成部、31b……第2のRF生成部、32a……第1のDC生成部、FM1……第1の膜、FM2……第2の膜、MK……マスク、OP1……第1の開口、OP2……第2の開口、Ox……シリコン酸化膜、RC1……第1の凹部、RC2……第2の凹部、RE1……第1の領域、RE2……第2の領域、UF……下地膜、W……基板
1: Plasma processing apparatus, 2: Control unit, 10: Plasma processing chamber, 10s: Plasma processing space, 11: Substrate support unit, 13: Shower head, 20: Gas supply unit, 31a: First RF generating unit, 31b: Second RF generating unit, 32a: First DC generating unit, FM1: First film, FM2: Second film, MK: Mask, OP1: First opening, OP2: Second opening, Ox: Silicon oxide film, RC1: First recess, RC2: Second recess, RE1: First region, RE2: Second region, UF: Undercoat film, W: Substrate
Claims (20)
- チャンバを有するプラズマ処理装置において実行されるエッチング方法であって、
(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する工程であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、工程と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする工程であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、工程と、
を含むエッチング方法。 1. An etching method performed in a plasma processing apparatus having a chamber, comprising:
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) etching the film to be etched through the first opening and the second opening using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas, C3F7 gas, C2F6 gas , and C3H2F4 gas;
An etching method comprising: - 前記(b)において、
前記第1の開口を規定する前記マスクの第1の側壁に炭素及びフッ素を含有する第1の膜が形成され、かつ、前記第2の開口を規定する前記マスクの第2の側壁に炭素及びフッ素を含有する第2の膜が形成され、
前記第1の膜が形成された前記第1の開口及び前記第2の膜が形成された前記第2の開口を介して、前記エッチング対象膜がエッチングされる、請求項1に記載のエッチング方法。 In the above (b),
a first film containing carbon and fluorine is formed on a first sidewall of the mask that defines the first opening, and a second film containing carbon and fluorine is formed on a second sidewall of the mask that defines the second opening;
2. The etching method according to claim 1, wherein the etching target film is etched through the first opening in which the first film is formed and the second opening in which the second film is formed. - 前記(b)において、前記マスクの前記第2の側壁に形成される前記第2の膜の厚さは、前記マスクの前記第1の側壁に形成される前記第1の膜の厚さよりも大きい、請求項2に記載のエッチング方法。 The etching method according to claim 2, wherein in (b), the thickness of the second film formed on the second sidewall of the mask is greater than the thickness of the first film formed on the first sidewall of the mask.
- 前記(b)において、前記エッチング対象膜に、前記第1の開口に対応する第1の凹部と前記第2の開口に対応する第2の凹部とが形成される、請求項2又は請求項3に記載のエッチング方法。 The etching method according to claim 2 or 3, wherein in (b), a first recess corresponding to the first opening and a second recess corresponding to the second opening are formed in the film to be etched.
- 前記(b)において、前記第1の凹部を規定するエッチング対象膜の第1の側壁に前記第1の膜が前記マスクの前記第1の側壁から連続して形成され、前記第2の凹部を規定するエッチング対象膜の第2の側壁に前記第2の膜が前記マスクの前記第2の側壁から連続して形成される、請求項4に記載のエッチング方法。 The etching method according to claim 4, wherein in (b), the first film is formed continuously from the first sidewall of the mask on a first sidewall of the film to be etched that defines the first recess, and the second film is formed continuously from the second sidewall of the mask on a second sidewall of the film to be etched that defines the second recess.
- 前記(b)において、前記エッチング対象膜の前記第2の側壁に形成される前記第2の膜の厚さは、前記エッチング対象膜の前記第1の側壁に形成される前記第1の膜の厚さよりも大きい、請求項5に記載のエッチング方法。 The etching method according to claim 5, wherein in (b), the thickness of the second film formed on the second sidewall of the film to be etched is greater than the thickness of the first film formed on the first sidewall of the film to be etched.
- 前記(b)において、前記第1の膜及び前記第2の膜中のフッ素成分により、前記エッチング対象膜の前記第1の側壁及び前記第2の側壁が水平方向にエッチングされる、請求項5に記載のエッチング方法。 The etching method according to claim 5, wherein in (b), the first sidewall and the second sidewall of the film to be etched are etched horizontally by fluorine components in the first film and the second film.
- 前記(b)において、前記エッチング対象膜の前記第2の側壁の水平方向のエッチング量は、前記エッチング対象膜の前記第1の側壁の水平方向のエッチング量よりも大きい、請求項5に記載のエッチング方法。 The etching method of claim 5, wherein in (b), the amount of etching of the second sidewall of the film to be etched in the horizontal direction is greater than the amount of etching of the first sidewall of the film to be etched in the horizontal direction.
- 前記処理ガスは酸素含有ガスをさらに含む、請求項1に記載のエッチング方法。 The etching method of claim 1, wherein the process gas further includes an oxygen-containing gas.
- 前記処理ガスは不活性ガスをさらに含む、請求項9に記載のエッチング方法。 The etching method of claim 9, wherein the process gas further includes an inert gas.
- 不活性ガスを除く前記処理ガスの総流量に対する前記第1のガスの流量の比は、33体積%以上50%体積以下である、請求項9又は請求項10に記載のエッチング方法。 The etching method according to claim 9 or 10, wherein the ratio of the flow rate of the first gas to the total flow rate of the processing gas excluding the inert gas is 33% by volume or more and 50% by volume or less.
- 前記処理ガスは、前記第1のガスと異なる第2のガスをさらに含み、前記第2のガスはCF系ガス又はCHF系ガスである、請求項1に記載のエッチング方法。 The etching method according to claim 1, wherein the process gas further includes a second gas different from the first gas, and the second gas is a CF-based gas or a CHF-based gas.
- 前記第2のガスを構成する炭素間の2重結合の数は、前記第1のガスを構成する炭素間の2重結合の数よりも多い、請求項12に記載のエッチング方法。 The etching method according to claim 12, wherein the number of double bonds between carbon atoms constituting the second gas is greater than the number of double bonds between carbon atoms constituting the first gas.
- 前記第2のガスは、C4F6ガス、C4F8ガス及びC5F8ガスからなる群から選択される少なくとも1つのガスである、請求項12又は請求項13に記載のエッチング方法。 14. The etching method according to claim 12, wherein the second gas is at least one gas selected from the group consisting of C4F6 gas, C4F8 gas, and C5F8 gas .
- 前記第1のガス及び前記第2のガスの合算流量に対する前記第1のガスの流量の比は、33体積%以上67体積%以下である、請求項12又は請求項13に記載のエッチング方法。 The etching method according to claim 12 or 13, wherein the ratio of the flow rate of the first gas to the combined flow rate of the first gas and the second gas is 33 volume % or more and 67 volume % or less.
- 前記処理ガスは、酸素含有ガスをさらに含む、請求項12又は請求項13に記載のエッチング方法。 The etching method according to claim 12 or 13, wherein the processing gas further includes an oxygen-containing gas.
- 前記処理ガスは不活性ガスをさらに含む、請求項12又は請求項13に記載のエッチング方法。 The etching method according to claim 12 or 13, wherein the process gas further includes an inert gas.
- 前記第1の開口の開口寸法に対する前記第2の開口の開口寸法の比は、1.1以上20以下である、請求項1に記載のエッチング方法。 The etching method according to claim 1, wherein the ratio of the opening dimension of the second opening to the opening dimension of the first opening is 1.1 or more and 20 or less.
- 前記マスクは、シリコン窒化膜である、請求項1に記載のエッチング方法。 The etching method according to claim 1, wherein the mask is a silicon nitride film.
- チャンバと制御部とを有するプラズマ処理装置であって、
前記制御部は、
(a)シリコン及び酸素を含むエッチング対象膜と前記エッチング対象膜上のマスクとを有する基板を提供する制御であって、前記マスクは、第1の開口と前記第1の開口よりも開口寸法が大きい第2の開口を有し、かつ、シリコン含有膜及び有機膜の少なくともいずれかを含む、制御と、
(b)第1のガスを含む処理ガスから生成したプラズマを用いて前記第1の開口及び前記第2の開口を介して前記エッチング対象膜をエッチングする制御であって、前記第1のガスは、C3F6ガス、C3F7ガス、C2F6ガス又はC3H2F4ガスからなる群から選択される少なくとも1つのガスである、制御と、
を実行する、プラズマ処理装置。 A plasma processing apparatus having a chamber and a control unit,
The control unit is
(a) providing a substrate having a film to be etched containing silicon and oxygen and a mask on the film to be etched, the mask having a first opening and a second opening having a larger opening dimension than the first opening, and including at least one of a silicon-containing film and an organic film;
(b) controlling the etching target film through the first opening and the second opening by using plasma generated from a process gas containing a first gas, the first gas being at least one gas selected from the group consisting of C3F6 gas , C3F7 gas, C2F6 gas , and C3H2F4 gas ;
The plasma processing apparatus performs the above steps.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-028225 | 2023-02-27 | ||
JP2023028225 | 2023-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024180921A1 true WO2024180921A1 (en) | 2024-09-06 |
Family
ID=92590170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/000466 WO2024180921A1 (en) | 2023-02-27 | 2024-01-11 | Etching method and plasma processing apparatus |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202503888A (en) |
WO (1) | WO2024180921A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07263409A (en) * | 1994-03-17 | 1995-10-13 | Hitachi Ltd | Dry etching method |
JP2021034503A (en) * | 2019-08-22 | 2021-03-01 | 東京エレクトロン株式会社 | Etching method, device manufacturing method and plasma processing device |
JP2022029847A (en) * | 2020-08-05 | 2022-02-18 | 株式会社アルバック | Silicon dry etching method |
-
2024
- 2024-01-11 WO PCT/JP2024/000466 patent/WO2024180921A1/en unknown
- 2024-02-15 TW TW113105209A patent/TW202503888A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07263409A (en) * | 1994-03-17 | 1995-10-13 | Hitachi Ltd | Dry etching method |
JP2021034503A (en) * | 2019-08-22 | 2021-03-01 | 東京エレクトロン株式会社 | Etching method, device manufacturing method and plasma processing device |
JP2022029847A (en) * | 2020-08-05 | 2022-02-18 | 株式会社アルバック | Silicon dry etching method |
Also Published As
Publication number | Publication date |
---|---|
TW202503888A (en) | 2025-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230245898A1 (en) | Plasma processing method and plasma processing system | |
WO2024180921A1 (en) | Etching method and plasma processing apparatus | |
KR20220136136A (en) | Etching method and etching processing apparatus | |
WO2024171666A1 (en) | Etching method and plasma processing apparatus | |
WO2024117212A1 (en) | Etching method and plasma processing apparatus | |
US20230268190A1 (en) | Plasma processing method and plasma processing system | |
WO2024247866A1 (en) | Etching method, method for manufacturing dram capacitor, and plasma processing apparatus | |
WO2025004625A1 (en) | Etching method and plasma treatment device | |
WO2024172109A1 (en) | Plasma treatment device and plasma treatment method | |
WO2025079458A1 (en) | Etching method and etching device | |
JP7641923B2 (en) | Etching method and plasma processing apparatus | |
US20230377851A1 (en) | Etching method and plasma processing apparatus | |
US20240213032A1 (en) | Etching method and plasma processing apparatus | |
WO2024171888A1 (en) | Plasma processing method and plasma processing apparatus | |
WO2024176650A1 (en) | Plasma treatment device, power supply system, and etching method | |
JP2023109497A (en) | Etching method and plasma processing apparatus | |
JP2024064179A (en) | Etching method and plasma processing device | |
JP2025026361A (en) | Etching method and plasma processing apparatus | |
JP2024157071A (en) | Plasma processing method and plasma processing system | |
TW202439445A (en) | Plasma treatment method and plasma treatment device | |
WO2025070523A1 (en) | Etching method and plasma processing apparatus | |
WO2024203479A1 (en) | Etching method and plasma processing apparatus | |
JP2024001464A (en) | Etching method and plasma processing equipment | |
JP2024033846A (en) | Substrate processing method and plasma processing equipment | |
JP2022158811A (en) | Etching method and etching processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24763406 Country of ref document: EP Kind code of ref document: A1 |