WO2024180669A1 - Charged particle beam device - Google Patents
Charged particle beam device Download PDFInfo
- Publication number
- WO2024180669A1 WO2024180669A1 PCT/JP2023/007352 JP2023007352W WO2024180669A1 WO 2024180669 A1 WO2024180669 A1 WO 2024180669A1 JP 2023007352 W JP2023007352 W JP 2023007352W WO 2024180669 A1 WO2024180669 A1 WO 2024180669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charged particle
- particle beam
- energy filter
- energy
- signal particles
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/244—Detectors; Associated components or circuits therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
Definitions
- This disclosure relates to charged particle beam devices.
- SEMs scanning electron microscopes
- Patent document 1 describes a method in which holes are created in a reflector plate for electrons to pass through, and a secondary electron deflector installed below the reflector deflects the electrons of the desired component so that they pass through the holes, and after passing through the reflector, they are deflected by another secondary electron deflector to reach a detector.
- Patent Document 1 makes it possible to limit the detection range of electrons by deflecting the electrons emitted from the sample and passing them through holes formed in the reflector.
- electrons escape through the holes in the reflector, so a deflector is needed to change the electrons that have passed through the holes in the reflector, and a detector is needed to detect the electrons that have passed through the holes in the reflector, making the device configuration complicated.
- the present disclosure aims to solve the above problems and provide a charged particle beam device that uses an energy discriminator to improve the visibility of areas that are difficult to observe.
- the charged particle beam device disclosed herein is a charged particle beam device that irradiates a sample with a charged particle beam to obtain an observation image of the sample, and includes a charged particle beam source that emits the charged particle beam, and an energy discriminator that is disposed between the charged particle beam source and the sample and has a first region that discriminates signal particles emitted from the sample irradiated with the charged particle beam according to their energy, and a second region that allows the signal particles to pass.
- an energy discriminator can be used in a charged particle beam device to improve visibility of areas that are difficult to observe.
- FIG. 1 is a diagram showing an overall configuration of a charged particle beam apparatus according to a first embodiment.
- FIG. 2 is a diagram illustrating an energy filter according to the first embodiment.
- FIG. 2 is a diagram illustrating an energy filter according to the first embodiment.
- FIG. 11 is a diagram showing the relationship between the number of signal particles passing through the energy filter of the first embodiment and the negative voltage VEF.
- FIG. 11 is a diagram showing the relationship between the number of signal particles passing through the energy filter of the first embodiment and the negative voltage VEF.
- 1A to 1C are diagrams illustrating the trajectories of electrons emitted from the upper layer and the bottom of the groove of the sample in Example 1.
- 4A and 4B are diagrams for explaining the azimuth angle and elevation angle of electrons emitted from the sample in Example 1.
- FIG. 4 is a diagram illustrating the distribution on the reflector of signal particles that have reached the reflector from the surface layer of the sample in Example 1.
- FIG. 10 is a diagram illustrating the distribution on the reflector of signal particles that have reached the reflector from the bottom of the groove of the sample in Example 1.
- FIG. 1 is a diagram illustrating the detection range of all signal particles that have reached a reflector from a surface layer of a sample in Example 1.
- FIG. 1 is a diagram illustrating the detection range of all signal particles that reach the reflector from the groove bottom of the sample in Example 1.
- FIG. 13 is a diagram showing the visibility of the groove bottom when all signal particles that reach the reflector of Example 1 are detected.
- FIG. 13 is a diagram showing the visibility of the groove bottom when all signal particles that reach the reflector of Example 1 are detected.
- FIG. 1 is a diagram for explaining a detection range including many signal particles from the bottom of a groove among signal particles that reached a reflector from a surface layer of a sample in Example 1.
- FIG. 10 is a diagram for explaining the detection range of signal particles from the bottom of the groove among signal particles that reach the reflector from the bottom of the groove of the sample in Example 1.
- FIG. 13 is a diagram showing the visibility of the groove bottom when only a detection range containing a large number of signal particles from the groove bottom among signal particles that have reached the reflector of Example 1 is detected.
- FIG. 13 is a diagram showing the visibility of the groove bottom in the case where only a region containing a large number of signal particles from the groove bottom among the signal particles that have reached the reflector of Example 1 is detected.
- FIG. 2 is a diagram showing an example of an energy filter capable of azimuth angle discrimination according to the first embodiment
- 13 is a diagram showing a laminated structure of an energy filter capable of azimuth angle discrimination according to a second embodiment of the present invention
- FIG. 13 is a diagram showing the structure of each grid of an energy filter capable of azimuth angle discrimination according to the second embodiment.
- FIG. 13 is a diagram showing a layered structure of an energy filter capable of azimuth angle discrimination according to Modification 1 of the second embodiment.
- 13 is a diagram showing the structure of each grid of an energy filter capable of azimuth angle discrimination according to modified example 1 of the second embodiment;
- FIG. 13 is a diagram showing the structure of each energy filter grid of the second modified example of the second embodiment.
- FIG. 13 is a diagram showing a structure of an energy filter grid according to a third modified example of the second embodiment.
- FIG. 13 is a diagram showing a structure of an energy filter grid according to a third modified example of the second embodiment.
- FIG. 13 is a diagram showing a structure of an energy filter grid according to a third modified example of the second embodiment.
- FIG. 13 is a diagram showing a structure of an energy filter grid according to a third modified example of the second embodiment.
- 1 is a diagram showing a primary electron beam being deflected by an electric field produced by an energy filter.
- FIG. 13 is a diagram showing an energy filter according to a third embodiment in which a center pipe is installed.
- FIG. 13 is a diagram showing signal particles detected by azimuth angle discrimination in the fourth embodiment.
- FIG. 13 is a diagram showing signal particles detected by azimuth angle discrimination in the fourth embodiment.
- FIG. 13 is a diagram showing signal particles detected by energy discrimination in Example 4.
- 13A and 13B are diagrams illustrating a discrimination method in which azimuth angle discrimination and energy discrimination are combined in the fourth embodiment.
- 13A and 13B are diagrams illustrating a discrimination method in which azimuth angle discrimination and energy discrimination are combined in the fourth embodiment.
- FIG. 13 is a diagram showing the positional relationship between a reflector and an energy filter in the fifth embodiment.
- FIG. 1 is a diagram showing the shape of a typical reflector.
- FIG. 13 is a diagram showing the shape of a reflector according to a fifth embodiment.
- 13A and 13B are diagrams illustrating an azimuth angle discrimination method using a reflector according to a fifth embodiment.
- FIG. 13 is a diagram showing a configuration in which a reflector and an energy filter are combined according to a fifth embodiment.
- FIG. 23 is a diagram showing an example of an energy filter capable of azimuth angle discrimination and elevation angle discrimination according to the sixth embodiment.
- FIG. 23 is a diagram showing an example of an energy filter grid capable of elevation angle discrimination according to a modified example of the sixth embodiment.
- FIG. 13 is a diagram showing an example of the structure of a rotatable energy filter grid according to a seventh embodiment.
- FIG. 23 is a diagram showing an example of an energy filter grid in which the voltage of each of a plurality of mesh electrodes of Example 8 can be controlled.
- the charged particle beam device 100 of the first embodiment is an electron microscope.
- the charged particle beam device 100 irradiates a sample 111 with a charged particle beam to obtain an observation image of the sample 111.
- the charged particle beam device 100 includes an electron gun 101, a condenser lens 102, a condenser lens 103, an aperture 104, a reflector 105, an ExB deflector 106, a detector 107, a deflector 108, a deflector 109, an objective lens 110, a sample stage 112, a retarding power supply 113, a display 114, a storage device 115, and a control device 120.
- the control device 120 is a device that controls the operation of each part, and is a computer system having a processor, a memory, and the like.
- the storage device 115 stores a control table 116 that defines control conditions such as voltage and current of each part.
- the control device 120 may read the control table 116 from the storage device 115 and control each part based on the control conditions defined in the control table 116 .
- the electron gun 101 is an electron source that emits electrons.
- the electron gun 101 is an example of a charged particle beam source in this disclosure.
- a negative voltage of, for example, 3000 V is applied to the electron source.
- the condenser lens 102 and the condenser lens 103 are lenses that focus the primary electron beam 121.
- the aperture 104 is a member that determines the aperture angle of the primary electron beam 121 in the objective lens 110, and has an aperture through which the primary electron beam 121 passes.
- the deflectors 108 and 109 deflect the primary electron beam 121 to scan it over the sample 111.
- the objective lens 110 is a lens that focuses the deflected primary electron beam 121, and thins the primary electron beam 121 by a magnetic field generated by a current flowing through an internal coil.
- the sample stage 112 holds the sample 111 and controls the position and attitude of the sample 111. That is, the sample stage 112 moves the sample 111 horizontally or vertically, and rotates it around the vertical axis.
- a retarding power supply 113 for applying a voltage to the sample stage 112 is connected to the sample stage 112.
- an electric field that decelerates the primary electron beam 121 is formed between the sample 111 and the objective lens 110.
- signal particles 122 are emitted from the sample 111.
- signal particles emitted with an energy of 50 eV or less are called secondary electrons
- signal particles emitted with an energy of more than 50 eV and close to the energy of the primary electron beam 121 are called reflected electrons.
- the electric field that slows down the primary electron beam 121 also works to accelerate the signal particles 122 generated on the sample 111.
- tertiary electrons 123 are emitted from the reflector 105.
- the tertiary electrons 123 are deflected by the electric field and magnetic field in the ExB deflector 106 and detected by the detector 107. Note that the electric field and magnetic field in the ExB deflector 106 also act on the primary electron beam 121, but since the effects of the two cancel each other out on the primary electron beam 121, the primary electron beam 121 travels straight toward the sample 111.
- the charged particle beam device 100 further includes an energy filter 200.
- the energy filter 200 is installed directly below the ExB deflector 106, and is capable of discriminating the signal particles 122 according to their energy.
- the energy filter 200 is an example of an energy discriminator of the present disclosure.
- the energy filter 200 is disposed between the electron gun 101 and the sample 111.
- the energy filter 200 has a grounded conductor grid 201, an energy filter grid 202 to which a voltage can be applied, and an energy filter power supply 203 connected to the energy filter grid 202 so as to apply a voltage.
- the conductor grid 201 is disposed above and below the energy filter grid 202.
- the conductor grid 201 and the energy filter grid 202 have mesh electrodes 204 disposed on mesh fixing beams 205.
- the mesh electrodes 204 of both the conductor grid 201 and the energy filter grid 202 are provided with holes 210 through which the primary electron beam 121 passes.
- a potential barrier is formed by applying a negative voltage VEF to the energy filter grid 202 by the energy filter power supply 203.
- VEF negative voltage
- signal particles 122 that enter the energy filter 200 signal particles 124 that have an energy E lower than the potential barrier are bounced off, and only signal particles 122 that have an energy E higher than the potential barrier pass through the energy filter 200 and collide with the reflector 105.
- Tertiary electrons 123 generated by the reflector 105 are then detected by the detector 107.
- Figure 4A shows the trajectory of the signal particles 122 emitted from the groove bottom 401 of the groove pattern 400.
- the signal particles 122 emitted from the groove bottom 401 of the groove pattern 400 those that collide with the wall surface 402 of the groove pattern 400 do not reach the detector 107, so the only signal particles 122 that can be detected from the groove bottom 401 are those emitted in a direction where there are no wall surfaces 402.
- the X-axis and Y-axis are taken in the planar direction
- the Z-axis is taken in the direction of the beam optical axis
- the angle between the emission direction of the signal particle 122 and the Z-axis is defined as the elevation angle 131
- the angle between the emission direction of the signal particle 122 and the X-axis is defined as the azimuth angle 132.
- a discrimination method in which the signal particles 122 are discriminated by the elevation angle 131 and only signal particles 122 emitted near directly above the sample 111 are detected is called elevation angle discrimination
- a discrimination method in which the signal particles 122 are discriminated by the azimuth angle 132 and only signal particles 122 emitted in a specific direction, such as the longitudinal direction of the groove pattern 400, are detected is called azimuth angle discrimination.
- 5A and 5B show the distribution of signal particles 122 emitted from the sample 111 and reaching the reflector 105.
- the signal particles 122 emitted from the surface layer 410 there is no obstacle such as the wall surface 402 on the trajectory to reach the reflector 105, so the signal particles 122 emitted in any direction reach the reflector 105 and are distributed isotropically as shown in FIG. 5A.
- the signal particles 122 emitted from the groove bottom 401 that collide with the wall surface 402 do not reach the reflector 105, so as shown in FIG. 5B, they are distributed elongated in one direction corresponding to the longitudinal direction of the groove pattern 400 where there are no walls. In the example of FIG. 5A and FIG. 5B, all the signal particles 122 that reach the reflector 105 are detected.
- FIG. 6A shows a detection range 600 of signal particles 122 reaching the reflector 105 from the surface layer 410
- FIG. 6B shows a detection range 600 of signal particles 122 reaching the reflector 105 from the groove bottom 401.
- this detection range 600 as shown in FIG. 6C, there is a large difference in the detection amount between the groove bottom 401 and the surface layer 410. If an SEM image is created in this state, the minute changes in the signal amount at the groove bottom 401 are not displayed on the observation image as differences in gradation values, as shown in FIG. 6D.
- the detection range 700 is limited to only the area containing many signal particles 122 from the groove bottom 401. This makes it possible to reduce the signal particles 122 from the surface layer 410 while maintaining the detection amount of signal particles 122 from the groove bottom 401 as shown in Figure 7C, and the detection amount of signal particles 122 from the groove bottom 401 approaches the detection amount of the surface layer 410.
- minute changes in the signal amount are emphasized as shown in Figure 7D, and the signal amount change at the groove bottom 401 can be confirmed as contrast on the image.
- the mesh electrode 204 installed on the energy filter grid 202 is divided into, for example, four parts in the circumferential direction, and only specific diagonal parts are installed on the mesh fixing beam 205.
- a negative voltage VEF is applied to the energy filter grid 202
- a potential barrier is formed only in the area AR1 (first area) where the mesh electrode 204 is installed.
- Signal particles 122 emitted into the area AR1 where the mesh electrode 204 is installed are repelled by the potential barrier and do not reach the detector 107.
- two divided mesh electrodes 204 are arranged horizontally, and a structure that can observe the groove bottom 401 of a groove pattern 400 that extends vertically is shown as an example.
- the installation position of the mesh electrode 204 can be freely determined, such as vertically or diagonally, depending on the longitudinal direction of the groove pattern 400 that is the observation target.
- the mesh electrode 204 of the conductor grid 201 is not divided.
- Example 2 will be described with reference to Figures 9A to 12D. Note that matters described in Example 1 but not described in Example 2 are also applicable to Example 2 unless there are special circumstances.
- the direction in which the signal particles 122 can be discriminated is fixed to the direction in which the mesh electrode 204 of the energy filter grid 202 is installed, and is limited to one specific direction, such as only the vertical direction. Therefore, in the second embodiment, as shown in FIG. 9A, the energy filter grids 202 are stacked in the optical axis direction. As shown in FIG. 9B, the area AR1 in which the mesh electrode 204 of the energy filter grid 202 is provided limits the azimuth angle range of the signal particles 122, which differ from one another for each energy filter grid 202.
- the area AR1 in which the mesh electrode 204 is installed is, for example, horizontal
- the area AR1 in which the mesh electrode 204 is installed is, for example, vertical.
- an insulating member 206 is installed to insulate the mesh electrodes 204, and a structure is provided in which a negative voltage VEF of any magnitude can be applied to each energy filter grid 202.
- a negative voltage VEF is applied to one of the energy filter grids 202 in accordance with the pattern on the sample 111.
- Modification 1 of Example 2 10A and 10B , in addition to the energy filter grid 202 having the mesh electrodes 204 in the vertical direction and the energy filter grid 202 having the mesh electrodes 204 in the horizontal direction, two types of energy filter grids 202 having mesh electrodes 204 in the diagonal direction may be added, so that a total of four energy filter grids 202 are stacked via insulating members 206. This enables azimuth angle discrimination in the diagonal direction in addition to the vertical and horizontal directions.
- the mesh electrode 204 installed on the energy filter grid 202 may have any shape as long as it is installed so that only the signal particles 122 emitted in a specific direction can be detected. Examples of the installation of the mesh electrode 204 are shown in Figs. 12A to 12D. In the energy filter grid 202 of Fig. 12A, only half of the mesh electrode 204 is installed, and the signal particles 122 emitted to either the left or right or the top or bottom can be discriminated. This makes it possible to observe the side of a pattern with a height in the optical axis direction, for example. In the energy filter grid 202 of Fig.
- the discriminable area can be freely changed according to the pattern, such as half discrimination as in Fig. 12A, not just in the diagonal direction.
- the mesh electrode 204 of Fig. 12B is further divided into eight parts, so that the detection range can be narrowed further.
- the mesh electrodes 204 are not only divided in the circumferential direction but also arranged vertically.
- a plurality of energy filter grids 202 are stacked in the optical axis direction, and the directions in which the mesh electrodes 204 are installed are different for each energy filter grid 202, thereby making it possible to discriminate the azimuth angles of the signal particles 122 in accordance with the pattern, etc., of the sample 111.
- a metallic center pipe 207 is installed at the center of the energy filter 200 as shown in FIG. 14. By installing the center pipe 207, even if a voltage is applied to the energy filter grid 202, the primary electron beam 121 can pass through the energy filter 200 without being affected.
- the diameter of the center pipe 207 is about 1 mm. In FIG. 14, the center pipe 207 is connected to both of the two conductor grids 201 installed, but it can also be connected to only one of them.
- the primary electron beam 121 is not affected by the electric field of the energy filter 200. This eliminates the effect on the beam diameter of the primary electron beam 121, and has the effect of reducing positional deviation and focus blur on the sample 111. Even if the negative voltage VEF applied to the energy filter grid 202 by the energy filter power supply 203 is changed, there is no need to correct the position or focus, and the optimal applied voltage conditions can be smoothly searched for.
- Example 4 will be described with reference to Figures 15A to 16B. Note that matters described in Examples 1 to 3 but not described in Example 4 are also applicable to Example 4 unless there are special circumstances.
- a voltage can be applied to each of the energy filter grids 202, and the voltage applied can be changed arbitrarily for each energy filter grid 202.
- VEF applied voltage
- the azimuth discrimination of the signal particles 122 described above discriminates the signal particles 122 according to their azimuth direction. All signal particles 122 emitted into the detectable area pass through. Furthermore, a conventional energy filter discriminates the energy according to the energy of the signal particles 122, as shown in FIG. 15B. It is configured to pass through all signal particles 122 that have energy equal to or greater than the negative voltage VEF set by the energy filter power supply 203.
- the applied negative voltage Ve is a value smaller than the negative voltage VEF applied to the mesh electrode 204 in the area not to be detected for azimuth angle discrimination. Also, by applying a negative voltage Ve to all the energy filter grids 202, it is possible to perform energy discrimination in the same way as in the conventional case.
- a reflector 105 is installed on the top of the energy filter 200.
- the reflector 105 is an example of a conversion electrode of the present disclosure.
- the signal particles 122 that pass through the energy filter 200 collide with the reflector 105, and the generated tertiary electrons 123 (secondary signal particles) are detected by the detector 107.
- a typical reflector 105 is a circular metal plate with a hole in the center through which the primary electron beam 121 passes, as shown in Figure 18A.
- Example 5 the reflector 105 is divided to perform azimuth discrimination of the signal particles 122.
- the reflector 105 is divided in the circumferential direction as shown in Figure 18B.
- Each of the divided regions 105a to 105h of the reflector 105 is installed so as not to come into contact with each other, and a voltage can be applied to each of them.
- An arbitrary positive voltage Vh is applied to regions other than the region to be detected, and no voltage is applied to the region to be detected.
- Figure 19 shows the trajectories of signal particles 122 that collide with the divided reflector 105 and tertiary electrons 123 generated on the reflector 105.
- the tertiary electrons 125 generated in the area where the positive voltage Vh is applied are pulled back to the reflector 105 by the applied positive voltage Vh and do not reach the detector 107.
- only the tertiary electrons 123 generated by collision with the area where no voltage is applied are detected by the detector 107.
- the signal particles 122 can be discriminated twice.
- the energy filter 200 can also perform energy discrimination, it is possible to discriminate, for example, secondary electrons by the energy filter 200 and reflected electrons by the reflector 105.
- the sixth embodiment will be described with reference to FIG. 21. Note that matters described in the first to fifth embodiments but not described in the sixth embodiment can also be applied to the sixth embodiment unless there are special circumstances.
- elevation angle discrimination which detects signal particles 122 emitted near directly above the sample 111, is also an effective means.
- an energy filter 200 that can perform both azimuth angle discrimination and elevation angle discrimination.
- elevation angle discrimination energy filter grid 208 By combining an elevation angle discrimination energy filter grid 208 having a different size of central area with an energy filter grid 202 on which divided mesh electrodes 204 are installed for azimuth angle discrimination, elevation angle discrimination is possible in addition to azimuth angle discrimination.
- the elevation angle discrimination energy filter grid 208 for elevation angle discrimination limits the range of elevation angle directions of the signal particles 122.
- the elevation angle discrimination energy filter grid 208 (second energy filter grid) has a central area AR3 larger than the central area AR3 of the energy filter grid 202 for azimuth angle discrimination (first energy filter grid).
- the elevation angle discrimination energy filter grid 208 may have a central area AR3 that is an opening near the center, and a mesh electrode 204 may be provided around the entire outer periphery of the central area AR3.
- Example 7 will be explained with reference to FIG. 22. Note that matters described in Examples 1 to 6 but not described in Example 7 are also applicable to Example 7 unless there are special circumstances.
- the energy filter 200 has a structure in which the energy filter grid 202 on which the divided mesh electrodes 204 are installed can be rotated.
- the area in which the mesh electrodes 204 are installed cannot be changed after the energy filter 200 is installed in the electron microscope. Therefore, as shown in FIG. 22, a rotation mechanism 209 is installed on the energy filter grid 202 to provide a mechanism that can rotate the energy filter grid 202.
- the rotation mechanism 209 in Example 7 rotates the energy filter grid 202 to displace the area AR1 in which the mesh electrodes 204 are installed and the area AR2 of the opening, but the areas AR1 and AR2 may be displaced by a mechanism other than the rotation mechanism 209.
- the rotation mechanism 209 is an example of a displacement means of the present disclosure.
- This rotation mechanism 209 may be any mechanism that can change the area in which the mesh electrode 204 is installed after the energy filter 200 is installed.
- the energy filter grid 202 is rotated, but for example, the entire energy filter 200 may be rotated.
- Example 8 will be described with reference to FIG. 23. Note that matters described in Examples 1 to 7 but not described in Example 8 are also applicable to Example 8 unless there are special circumstances.
- the mesh electrodes 204 installed on the energy filter grid 202 are divided into, for example, eight parts in the circumferential direction, and a negative voltage VEF can be applied to each mesh electrode 204.
- a negative voltage VEF is applied to a desired mesh electrode 204
- a potential barrier is formed only in the area where the mesh electrode 204 to which the negative voltage VEF is applied is installed.
- Signal particles 122 emitted in the direction where the mesh electrode 204 is installed are repelled by the potential barrier and do not reach the detector 107, and it becomes possible to detect only the signal particles 122 emitted in the direction where the mesh electrode 204 to which the negative voltage VEF is not applied is installed, thereby achieving azimuth angle discrimination.
- 101 electron source (charged particle beam source), 102: condenser lens, 103: condenser lens, 104: aperture, 105: reflector, 106: ExB deflector, 107: detector, 108: deflector, 109: deflector, 110: objective lens, 111: sample, 112: sample stage, 113: returning power supply, 114: display, 115: storage device, 116: control table, 120: control device, 121: primary electron beam, 122: signal particle, 123: tertiary electron, 124: (bounced by energy filter and not detected) signal particle, 125: (pulled back by split reflector and not detected) tertiary electron, 1 31: elevation angle, 132: azimuth angle, 200: energy filter (energy discriminator), 201: conductor grid, 202: energy filter grid, 203: energy filter power supply, 204: mesh electrode, 205: mesh fixed beam, 206: insulating member, 207: center pipe, 208: elevation angle discrimination energy
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
In the present invention, the visibility of a region which is difficult to observe can be improved. A charged particle beam device 100 irradiates a sample with a charged particle beam 121 to obtain an observation image of the sample. The charged particle beam device 100 comprises: an electron gun 101 that emits a primary electron beam 121; and an energy discriminator 200 disposed between the electron gun 101 and a sample 111, and having a first region for discriminating, in accordance with energy, signal particles 122 emitted from the sample 111 irradiated with the charged particle beam 121, and a second region that allows signal particles 122 to pass therethrough.
Description
本開示は、荷電粒子ビーム装置に関する。
This disclosure relates to charged particle beam devices.
半導体デバイスの微細化、3Dデバイス化に伴い、深溝パターンの底部等の信号検出が困難な領域が増加し、当該領域の観察ニーズが高まっている。そのため、半導体デバイスの検査・計測に用いられる走査型電子顕微鏡(Scanning Electron Microscope、SEM)は、従来に増して高感度、高精度化が求められている。
As semiconductor devices become more miniaturized and 3D devices are developed, the number of areas where signal detection is difficult, such as the bottom of deep trench patterns, is increasing, and there is a growing need to observe these areas. For this reason, scanning electron microscopes (SEMs) used to inspect and measure semiconductor devices are required to have higher sensitivity and precision than ever before.
溝状パターンの底部の検査・計測のためには、試料から放出される電子の中から、特定の方向に放出される電子のみを選択的に検出することが有効である。そのために、底部以外から放出される電子の検出を抑制し、かつ底部から放出される電子を効率的に検出する構成が求められる。
In order to inspect and measure the bottom of a groove pattern, it is effective to selectively detect only electrons emitted in a specific direction from among the electrons emitted from the sample. To achieve this, a configuration is required that suppresses the detection of electrons emitted from anywhere other than the bottom, while efficiently detecting electrons emitted from the bottom.
特許文献1では、反射板に電子通過用の穴を作成し、所望の成分の電子が前記穴を通るように反射板の下に設置した二次電子偏向器により偏向し、反射板通過後に別の二次電子偏向器で偏向して検出器に到達させる手法が説明されている。
Patent document 1 describes a method in which holes are created in a reflector plate for electrons to pass through, and a secondary electron deflector installed below the reflector deflects the electrons of the desired component so that they pass through the holes, and after passing through the reflector, they are deflected by another secondary electron deflector to reach a detector.
上記した特許文献1の技術により、試料から放出される電子を偏向し、反射板に形成された通過穴を通すことで電子の検出範囲を制限することができるようになった。しかしながら、上記した特許文献1の技術では、反射板の通過穴から電子が抜けてしまうため、反射板の通過穴を通過した電子を変更するための偏向器、及び反射板の通過穴を通過した電子を検出するための検出器が必要であり、装置構成が複雑になっていた。
The technology of Patent Document 1 mentioned above makes it possible to limit the detection range of electrons by deflecting the electrons emitted from the sample and passing them through holes formed in the reflector. However, with the technology of Patent Document 1 mentioned above, electrons escape through the holes in the reflector, so a deflector is needed to change the electrons that have passed through the holes in the reflector, and a detector is needed to detect the electrons that have passed through the holes in the reflector, making the device configuration complicated.
本開示は、以上のような課題を解決するものであり、エネルギー弁別器を用いて、観察が困難な領域の視認性を向上させることが可能な荷電粒子ビーム装置を提供することを目的とする。
The present disclosure aims to solve the above problems and provide a charged particle beam device that uses an energy discriminator to improve the visibility of areas that are difficult to observe.
上記課題を解決するために、本開示の荷電粒子ビーム装置は、試料に荷電粒子ビームを照射し、試料の観察像を得る荷電粒子ビーム装置であって、荷電粒子ビームを放出する荷電粒子ビーム源と、荷電粒子ビーム源と試料との間に配置され、荷電粒子ビームが照射された試料から放出された信号粒子をエネルギーに応じて弁別する第1領域及び信号粒子を通過させる第2領域を有するエネルギー弁別器と、を備える。
In order to solve the above problems, the charged particle beam device disclosed herein is a charged particle beam device that irradiates a sample with a charged particle beam to obtain an observation image of the sample, and includes a charged particle beam source that emits the charged particle beam, and an energy discriminator that is disposed between the charged particle beam source and the sample and has a first region that discriminates signal particles emitted from the sample irradiated with the charged particle beam according to their energy, and a second region that allows the signal particles to pass.
本開示によれば、荷電粒子ビーム装置において、エネルギー弁別器を用いて、観察が困難な領域の視認性を向上させることができる。
According to the present disclosure, an energy discriminator can be used in a charged particle beam device to improve visibility of areas that are difficult to observe.
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Problems, configurations and advantages other than those mentioned above will become clear from the description of the embodiments below.
本開示の実施の形態を図面に基づいて詳細に説明する。以下の実施の形態において、その構成(フローチャートのステップを含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。以下、本開示に好適な実施例について図面を用いて説明する。
The embodiments of the present disclosure will be described in detail with reference to the drawings. It goes without saying that in the following embodiments, the configurations (including the steps of the flow chart) are not necessarily essential unless specifically stated or considered to be obviously essential in principle. Below, preferred examples of the present disclosure will be described with reference to the drawings.
実施例1について、図1~図8を用いて説明する。
The first embodiment will be explained using Figures 1 to 8.
(荷電粒子ビーム装置100)
はじめに、図1を用いて荷電粒子ビーム装置100の全体構成について説明する。実施例1の荷電粒子ビーム装置100は、電子顕微鏡である。荷電粒子ビーム装置100は、試料111に荷電粒子ビームを照射し、試料111の観察像を得る。荷電粒子ビーム装置100は、電子銃101、コンデンサレンズ102、コンデンサレンズ103、絞り104、反射板105、ExB偏向器106、検出器107、偏向器108、偏向器109、対物レンズ110、試料台112、リターティング電源113、ディスプレイ114、記憶装置115、及び制御装置120を備える。制御装置120は、各部の動作等を制御する装置であり、プロセッサやメモリなどを有するコンピュータシステムである。記憶装置115には、各部の電圧、電流等の制御条件を定めた制御テーブル116が格納される。制御装置120は、記憶装置115から制御テーブル116を読み出して、制御テーブル116に定められた制御条件に基づいて各部を制御しても良い。 (Charged particle beam device 100)
First, the overall configuration of a chargedparticle beam device 100 will be described with reference to FIG. 1. The charged particle beam device 100 of the first embodiment is an electron microscope. The charged particle beam device 100 irradiates a sample 111 with a charged particle beam to obtain an observation image of the sample 111. The charged particle beam device 100 includes an electron gun 101, a condenser lens 102, a condenser lens 103, an aperture 104, a reflector 105, an ExB deflector 106, a detector 107, a deflector 108, a deflector 109, an objective lens 110, a sample stage 112, a retarding power supply 113, a display 114, a storage device 115, and a control device 120. The control device 120 is a device that controls the operation of each part, and is a computer system having a processor, a memory, and the like. The storage device 115 stores a control table 116 that defines control conditions such as voltage and current of each part. The control device 120 may read the control table 116 from the storage device 115 and control each part based on the control conditions defined in the control table 116 .
はじめに、図1を用いて荷電粒子ビーム装置100の全体構成について説明する。実施例1の荷電粒子ビーム装置100は、電子顕微鏡である。荷電粒子ビーム装置100は、試料111に荷電粒子ビームを照射し、試料111の観察像を得る。荷電粒子ビーム装置100は、電子銃101、コンデンサレンズ102、コンデンサレンズ103、絞り104、反射板105、ExB偏向器106、検出器107、偏向器108、偏向器109、対物レンズ110、試料台112、リターティング電源113、ディスプレイ114、記憶装置115、及び制御装置120を備える。制御装置120は、各部の動作等を制御する装置であり、プロセッサやメモリなどを有するコンピュータシステムである。記憶装置115には、各部の電圧、電流等の制御条件を定めた制御テーブル116が格納される。制御装置120は、記憶装置115から制御テーブル116を読み出して、制御テーブル116に定められた制御条件に基づいて各部を制御しても良い。 (Charged particle beam device 100)
First, the overall configuration of a charged
電子銃101は、電子を放出する電子源である。電子銃101は、本開示に荷電粒子ビーム源の一例である。電子源には例えば3000Vの負の電圧が印加される。コンデンサレンズ102及びコンデンサレンズ103は、一次電子ビーム121を集束させるレンズである。絞り104は、対物レンズ110における一次電子ビーム121の開き角を定める部材であり、一次電子ビーム121が通過する孔を有する。偏向器108及び偏向器109は、一次電子ビーム121を偏向して試料111の上で走査させる。
The electron gun 101 is an electron source that emits electrons. The electron gun 101 is an example of a charged particle beam source in this disclosure. A negative voltage of, for example, 3000 V is applied to the electron source. The condenser lens 102 and the condenser lens 103 are lenses that focus the primary electron beam 121. The aperture 104 is a member that determines the aperture angle of the primary electron beam 121 in the objective lens 110, and has an aperture through which the primary electron beam 121 passes. The deflectors 108 and 109 deflect the primary electron beam 121 to scan it over the sample 111.
対物レンズ110は、偏向された一次電子ビーム121を集束させるレンズであり、内部のコイルに電流が流れることにより発生する磁場によって一次電子ビーム121を細束化させる。
The objective lens 110 is a lens that focuses the deflected primary electron beam 121, and thins the primary electron beam 121 by a magnetic field generated by a current flowing through an internal coil.
試料台112は、試料111を保持するとともに、試料111の位置や姿勢を制御する。すなわち、試料台112は、試料111を水平方向又は鉛直方向に移動させたり、鉛直方向を回転軸として回転させたりする。試料台112には、試料台112に電圧を印加するためのリターティング電源113が接続されている。試料台112に数kVの負電圧を印加することにより、試料111と対物レンズ110との間に一次電子ビーム121を減速させる電場が形成される。減速された一次電子ビーム121が試料111の上に照射されると、試料111から信号粒子122が放出される。一般に、50eV以下のエネルギーで放出される信号粒子は、二次電子と呼ばれ、50eVより大きく、一次電子ビーム121に近いエネルギーで放出される信号粒子は反射電子と呼ばれる。
The sample stage 112 holds the sample 111 and controls the position and attitude of the sample 111. That is, the sample stage 112 moves the sample 111 horizontally or vertically, and rotates it around the vertical axis. A retarding power supply 113 for applying a voltage to the sample stage 112 is connected to the sample stage 112. By applying a negative voltage of several kV to the sample stage 112, an electric field that decelerates the primary electron beam 121 is formed between the sample 111 and the objective lens 110. When the decelerated primary electron beam 121 is irradiated onto the sample 111, signal particles 122 are emitted from the sample 111. In general, signal particles emitted with an energy of 50 eV or less are called secondary electrons, and signal particles emitted with an energy of more than 50 eV and close to the energy of the primary electron beam 121 are called reflected electrons.
一次電子ビーム121を減速させた電場は、試料111上で発生した信号粒子122を加速させる働きも持つ。上方へと進んだ信号粒子122は、反射板105に衝突する。信号粒子122が反射板105に衝突した際に、反射板105から三次電子123が放出される。三次電子123は、ExB偏向器106内の電場及び磁場によって偏向され、検出器107によって検出される。なお、ExB偏向器106内の電場及び磁場は、一次電子ビーム121にも作用するが、一次電子ビーム121に対しては両者の作用が打ち消し合うため、一次電子ビーム121は、試料111の方向に向かって直進する。
The electric field that slows down the primary electron beam 121 also works to accelerate the signal particles 122 generated on the sample 111. The signal particles 122 that move upward collide with the reflector 105. When the signal particles 122 collide with the reflector 105, tertiary electrons 123 are emitted from the reflector 105. The tertiary electrons 123 are deflected by the electric field and magnetic field in the ExB deflector 106 and detected by the detector 107. Note that the electric field and magnetic field in the ExB deflector 106 also act on the primary electron beam 121, but since the effects of the two cancel each other out on the primary electron beam 121, the primary electron beam 121 travels straight toward the sample 111.
荷電粒子ビーム装置100は、エネルギーフィルタ200をさらに備える。エネルギーフィルタ200は、ExB偏向器106の直下に設置されており、信号粒子122をエネルギーによって弁別することが可能である。
The charged particle beam device 100 further includes an energy filter 200. The energy filter 200 is installed directly below the ExB deflector 106, and is capable of discriminating the signal particles 122 according to their energy.
(エネルギーフィルタ200)
エネルギーフィルタ200の構造について、図2A及び図2Bを用いて説明する。エネルギーフィルタ200は、本開示のエネルギー弁別器の一例である。エネルギーフィルタ200は、電子銃101と試料111との間に配置される。エネルギーフィルタ200は、図2Aに示すように、接地している導体グリッド201と、電圧を印加できるようにしたエネルギーフィルタグリッド202と、エネルギーフィルタグリッド202に電圧を印加できるよう接続されたエネルギーフィルタ電源203と、を有する。導体グリッド201は、エネルギーフィルタグリッド202の上下に設置される。図2Bに示すように、導体グリッド201及びエネルギーフィルタグリッド202には、メッシュ電極204がメッシュ固定梁205に設置されている。導体グリッド201及びエネルギーフィルタグリッド202のいずれのメッシュ電極204にも、一次電子ビーム121が通過する孔210が設けられている。 (Energy Filter 200)
The structure of theenergy filter 200 will be described with reference to FIGS. 2A and 2B. The energy filter 200 is an example of an energy discriminator of the present disclosure. The energy filter 200 is disposed between the electron gun 101 and the sample 111. As shown in FIG. 2A, the energy filter 200 has a grounded conductor grid 201, an energy filter grid 202 to which a voltage can be applied, and an energy filter power supply 203 connected to the energy filter grid 202 so as to apply a voltage. The conductor grid 201 is disposed above and below the energy filter grid 202. As shown in FIG. 2B, the conductor grid 201 and the energy filter grid 202 have mesh electrodes 204 disposed on mesh fixing beams 205. The mesh electrodes 204 of both the conductor grid 201 and the energy filter grid 202 are provided with holes 210 through which the primary electron beam 121 passes.
エネルギーフィルタ200の構造について、図2A及び図2Bを用いて説明する。エネルギーフィルタ200は、本開示のエネルギー弁別器の一例である。エネルギーフィルタ200は、電子銃101と試料111との間に配置される。エネルギーフィルタ200は、図2Aに示すように、接地している導体グリッド201と、電圧を印加できるようにしたエネルギーフィルタグリッド202と、エネルギーフィルタグリッド202に電圧を印加できるよう接続されたエネルギーフィルタ電源203と、を有する。導体グリッド201は、エネルギーフィルタグリッド202の上下に設置される。図2Bに示すように、導体グリッド201及びエネルギーフィルタグリッド202には、メッシュ電極204がメッシュ固定梁205に設置されている。導体グリッド201及びエネルギーフィルタグリッド202のいずれのメッシュ電極204にも、一次電子ビーム121が通過する孔210が設けられている。 (Energy Filter 200)
The structure of the
エネルギーフィルタ電源203によってエネルギーフィルタグリッド202に負電圧VEFを印加することで電位障壁が形成される。エネルギーフィルタ200に入射した信号粒子122のうち電位障壁より低いエネルギーEを持つ信号粒子124は、跳ね返され、電位障壁より高いエネルギーEを持つ信号粒子122のみが、エネルギーフィルタ200を通過し、反射板105に衝突する。そして、反射板105で発生した三次電子123が、検出器107で検出される。
A potential barrier is formed by applying a negative voltage VEF to the energy filter grid 202 by the energy filter power supply 203. Of the signal particles 122 that enter the energy filter 200, signal particles 124 that have an energy E lower than the potential barrier are bounced off, and only signal particles 122 that have an energy E higher than the potential barrier pass through the energy filter 200 and collide with the reflector 105. Tertiary electrons 123 generated by the reflector 105 are then detected by the detector 107.
(エネルギーフィルタ200の印加電圧とエネルギーフィルタ200を通過する信号粒子数との関係)
ここで、図3A及び図3Bを用いて、エネルギーフィルタ200を通過する信号粒子数がエネルギーフィルタ200に印加される負電圧VEFによってどのように変化するかを説明する。図3Aに示すように、エネルギー弁別では、負電圧VEFよりエネルギーが小さい電子はすべて検出せず、負電圧VEFを超えるエネルギーを持つ電子はすべて検出することが理想である。エネルギーフィルタグリッド202が1枚のみの場合は、図3Bに示すように、負電圧VEFよりエネルギーが低い電子も検出され、エネルギー弁別性能が低下してしまう。これを防ぐために、エネルギーフィルタグリッド202は、2枚以上設置するのが好ましい。なお、ここでは、エネルギーフィルタグリッド202は、1枚であってもよいし、複数枚であってもよい。 (Relationship between the voltage applied to theenergy filter 200 and the number of signal particles passing through the energy filter 200)
Here, with reference to Figures 3A and 3B, how the number of signal particles passing through theenergy filter 200 changes depending on the negative voltage VEF applied to the energy filter 200 will be described. As shown in Figure 3A, in energy discrimination, it is ideal to not detect any electrons whose energy is smaller than the negative voltage VEF, and to detect all electrons whose energy exceeds the negative voltage VEF. If there is only one energy filter grid 202, as shown in Figure 3B, electrons whose energy is lower than the negative voltage VEF are also detected, resulting in a decrease in energy discrimination performance. In order to prevent this, it is preferable to install two or more energy filter grids 202. Here, the energy filter grid 202 may be one or more.
ここで、図3A及び図3Bを用いて、エネルギーフィルタ200を通過する信号粒子数がエネルギーフィルタ200に印加される負電圧VEFによってどのように変化するかを説明する。図3Aに示すように、エネルギー弁別では、負電圧VEFよりエネルギーが小さい電子はすべて検出せず、負電圧VEFを超えるエネルギーを持つ電子はすべて検出することが理想である。エネルギーフィルタグリッド202が1枚のみの場合は、図3Bに示すように、負電圧VEFよりエネルギーが低い電子も検出され、エネルギー弁別性能が低下してしまう。これを防ぐために、エネルギーフィルタグリッド202は、2枚以上設置するのが好ましい。なお、ここでは、エネルギーフィルタグリッド202は、1枚であってもよいし、複数枚であってもよい。 (Relationship between the voltage applied to the
Here, with reference to Figures 3A and 3B, how the number of signal particles passing through the
(信号粒子122の検出範囲)
半導体デバイスの観察において、例えば溝状パターンの溝底部等のような信号検出が困難な領域の観察ニーズが高まっている。溝状パターンの溝底部の形状観察や検査に対して、特定の方向に放出された二次電子のみを検出することが有効な手段である。その理由について、図4A~図7Dを用いて説明する。 (Detection range of signal particles 122)
In the observation of semiconductor devices, there is an increasing need to observe areas where signal detection is difficult, such as the bottom of a groove pattern. For shape observation and inspection of the bottom of a groove pattern, it is effective to detect only secondary electrons emitted in a specific direction. The reason for this will be explained using Figures 4A to 7D.
半導体デバイスの観察において、例えば溝状パターンの溝底部等のような信号検出が困難な領域の観察ニーズが高まっている。溝状パターンの溝底部の形状観察や検査に対して、特定の方向に放出された二次電子のみを検出することが有効な手段である。その理由について、図4A~図7Dを用いて説明する。 (Detection range of signal particles 122)
In the observation of semiconductor devices, there is an increasing need to observe areas where signal detection is difficult, such as the bottom of a groove pattern. For shape observation and inspection of the bottom of a groove pattern, it is effective to detect only secondary electrons emitted in a specific direction. The reason for this will be explained using Figures 4A to 7D.
溝状パターン400の溝底部401の観察が困難な要因として、溝底部401から放出される信号粒子122が表層部410から放出される信号粒子122と比べて少ないことが挙げられる。図4Aに、溝状パターン400の溝底部401から放出される信号粒子122の軌道を示す。溝状パターン400の溝底部401から放出される信号粒子122のうち、溝状パターン400の壁面402に衝突した信号粒子122は、検出器107に到達しないため、検出可能な溝底部401からの信号粒子122は、壁面402が存在しない方向に放出されたもののみとなる。
One of the reasons why it is difficult to observe the groove bottom 401 of the groove pattern 400 is that there are fewer signal particles 122 emitted from the groove bottom 401 compared to the signal particles 122 emitted from the surface layer 410. Figure 4A shows the trajectory of the signal particles 122 emitted from the groove bottom 401 of the groove pattern 400. Of the signal particles 122 emitted from the groove bottom 401 of the groove pattern 400, those that collide with the wall surface 402 of the groove pattern 400 do not reach the detector 107, so the only signal particles 122 that can be detected from the groove bottom 401 are those emitted in a direction where there are no wall surfaces 402.
ここで、図4Bのように、平面方向にX軸、Y軸、ビーム光軸方向にZ軸を取り、信号粒子122の放出方向とZ軸との角度を仰角131、信号粒子122の放出方向とX軸との角度を方位角132と定義する。信号粒子122を仰角131によって弁別し、試料111の真上付近に放出された信号粒子122のみ検出する弁別方法を仰角弁別、方位角132によって弁別し、溝状パターン400の長手方向等の特定の一方向に放出された信号粒子122のみ検出する弁別方法を方位角弁別とする。
Here, as shown in FIG. 4B, the X-axis and Y-axis are taken in the planar direction, and the Z-axis is taken in the direction of the beam optical axis, and the angle between the emission direction of the signal particle 122 and the Z-axis is defined as the elevation angle 131, and the angle between the emission direction of the signal particle 122 and the X-axis is defined as the azimuth angle 132. A discrimination method in which the signal particles 122 are discriminated by the elevation angle 131 and only signal particles 122 emitted near directly above the sample 111 are detected is called elevation angle discrimination, and a discrimination method in which the signal particles 122 are discriminated by the azimuth angle 132 and only signal particles 122 emitted in a specific direction, such as the longitudinal direction of the groove pattern 400, are detected is called azimuth angle discrimination.
図5A及び図5Bに試料111から放出され、反射板105に到達した信号粒子122の分布を示す。表層部410から放出された信号粒子122に対しては、反射板105に到達する軌道上に壁面402のような障害物がないため、どの方向に放出された信号粒子122も反射板105に到達して図5Aに示すような等方的な分布となる。一方、溝底部401から放出される信号粒子122は、壁面402に衝突したものは反射板105に到達しないため、図5Bに示すように壁面の存在しない溝状パターン400の長手方向にあたる一方向に長く伸びた分布となる。図5A及び図5Bの例では、反射板105に到達したすべての信号粒子122を検出している。
5A and 5B show the distribution of signal particles 122 emitted from the sample 111 and reaching the reflector 105. For the signal particles 122 emitted from the surface layer 410, there is no obstacle such as the wall surface 402 on the trajectory to reach the reflector 105, so the signal particles 122 emitted in any direction reach the reflector 105 and are distributed isotropically as shown in FIG. 5A. On the other hand, the signal particles 122 emitted from the groove bottom 401 that collide with the wall surface 402 do not reach the reflector 105, so as shown in FIG. 5B, they are distributed elongated in one direction corresponding to the longitudinal direction of the groove pattern 400 where there are no walls. In the example of FIG. 5A and FIG. 5B, all the signal particles 122 that reach the reflector 105 are detected.
図6Aには表層部410から反射板105に到達する信号粒子122の検出範囲600を示し、図6Bには溝底部401から反射板105に到達する信号粒子122の検出範囲600を示す。この検出範囲600では、図6Cに示すように、溝底部401と表層部410との検出量の差が大きい。この状態でSEM画像を作成すると、図6Dに示すように溝底部401の微細な信号量変化が階調値の差として観察像上に表示されない。
FIG. 6A shows a detection range 600 of signal particles 122 reaching the reflector 105 from the surface layer 410, and FIG. 6B shows a detection range 600 of signal particles 122 reaching the reflector 105 from the groove bottom 401. In this detection range 600, as shown in FIG. 6C, there is a large difference in the detection amount between the groove bottom 401 and the surface layer 410. If an SEM image is created in this state, the minute changes in the signal amount at the groove bottom 401 are not displayed on the observation image as differences in gradation values, as shown in FIG. 6D.
そこで、図7A及び図7Bに示すように、検出範囲700を溝底部401からの信号粒子122を多く含む領域のみに制限する。これにより、図7Cのように溝底部401からの信号粒子122の検出量は保ったまま表層部410からの信号粒子122を減らすことができ、溝底部401からの信号粒子122の検出量が表層部410の検出量に近づく。この状態でSEM画像を作成すると、図7Dに示すように、微細な信号量変化が強調され、溝底部401の信号量変化を画像上でコントラストとして確認することができる。
Therefore, as shown in Figures 7A and 7B, the detection range 700 is limited to only the area containing many signal particles 122 from the groove bottom 401. This makes it possible to reduce the signal particles 122 from the surface layer 410 while maintaining the detection amount of signal particles 122 from the groove bottom 401 as shown in Figure 7C, and the detection amount of signal particles 122 from the groove bottom 401 approaches the detection amount of the surface layer 410. When an SEM image is created in this state, minute changes in the signal amount are emphasized as shown in Figure 7D, and the signal amount change at the groove bottom 401 can be confirmed as contrast on the image.
仰角によって検出範囲を制限し、試料111の真上付近に放出された信号粒子122のみ検出することも効果的だが、溝状パターン400等の長手方向に壁面がない場合は、図7A及びBのように一方向に長く検出範囲を制限することによって、相対的に溝底部401から多くの信号粒子122を検出でき、より効果が見込める。
It is effective to limit the detection range by the elevation angle and detect only the signal particles 122 emitted near the area directly above the sample 111, but if there are no walls in the longitudinal direction of the groove pattern 400, etc., it is more effective to limit the detection range to a long distance in one direction as shown in Figures 7A and B, which allows a relatively large number of signal particles 122 to be detected from the groove bottom 401.
(エネルギーフィルタ200による方位角弁別)
実施例1では、溝状パターン400の長手方向にあたる、長く伸びた特定の一方向に放出された信号粒子122のみを検出するために、エネルギーフィルタ200を用いる手法を提案する。この手法について図8を用いて説明する。 (Azimuth Angle Discrimination by Energy Filter 200)
In the first embodiment, a method is proposed in which anenergy filter 200 is used to detect only signal particles 122 emitted in a specific elongated direction that corresponds to the longitudinal direction of a groove pattern 400. This method will be described with reference to FIG.
実施例1では、溝状パターン400の長手方向にあたる、長く伸びた特定の一方向に放出された信号粒子122のみを検出するために、エネルギーフィルタ200を用いる手法を提案する。この手法について図8を用いて説明する。 (Azimuth Angle Discrimination by Energy Filter 200)
In the first embodiment, a method is proposed in which an
図8に示すように、エネルギーフィルタグリッド202に設置されたメッシュ電極204を円周方向に、例えば4分割し、特定の対角方向部分のみメッシュ固定梁205に設置する。エネルギーフィルタグリッド202に負電圧VEFを印加すると、メッシュ電極204を設置した領域AR1(第1領域)にのみ電位障壁が形成される。メッシュ電極204が設置してある領域AR1に放出された信号粒子122は、電位障壁によって跳ね返されて検出器107に到達しない。また、メッシュ電極204を設置していない領域AR2(第2領域)に放出された信号粒子122のみ検出することが可能となり、方位角弁別が達成できる。
As shown in FIG. 8, the mesh electrode 204 installed on the energy filter grid 202 is divided into, for example, four parts in the circumferential direction, and only specific diagonal parts are installed on the mesh fixing beam 205. When a negative voltage VEF is applied to the energy filter grid 202, a potential barrier is formed only in the area AR1 (first area) where the mesh electrode 204 is installed. Signal particles 122 emitted into the area AR1 where the mesh electrode 204 is installed are repelled by the potential barrier and do not reach the detector 107. In addition, it becomes possible to detect only the signal particles 122 emitted into the area AR2 (second area) where the mesh electrode 204 is not installed, and azimuth angle discrimination can be achieved.
図8では、分割したメッシュ電極204を横方向に2枚設置し、縦方向に長く延びた溝状パターン400の溝底部401の観察に対応できるような構造を例として挙げている。なお、メッシュ電極204の設置位置は、観察ターゲットとなる溝状パターン400の長手方向に応じて縦方向、斜め方向等自由に決定することができる。なお、導体グリッド201のメッシュ電極204は、分割されていない。
In FIG. 8, two divided mesh electrodes 204 are arranged horizontally, and a structure that can observe the groove bottom 401 of a groove pattern 400 that extends vertically is shown as an example. The installation position of the mesh electrode 204 can be freely determined, such as vertically or diagonally, depending on the longitudinal direction of the groove pattern 400 that is the observation target. The mesh electrode 204 of the conductor grid 201 is not divided.
(実施例1の効果)
図8に示すように、エネルギーフィルタグリッド202に信号粒子122をエネルギーに応じて弁別する領域AR1及び信号粒子122を通過させる領域AR2を設けることによって、領域AR2に対応する部分(例えば、溝底部401)からの信号粒子122の検出量を保ったまま、領域AR1に対応する部分(例えば、表層部410)からの信号粒子122を減らすことができる。これにより、領域AR2に対応する部分からの信号粒子122の検出量が、領域AR1に対応する部分からの信号粒子122の検出量に近づく。この状態でSEM画像を作成すると、図7Dに示すように、微細な信号量変化が強調され、領域AR2に対応する部分の信号量変化を画像上でコントラストとして確認することができる。 (Effects of Example 1)
As shown in Fig. 8, by providing an area AR1 for discriminating thesignal particles 122 according to their energy and an area AR2 for passing the signal particles 122 in the energy filter grid 202, it is possible to reduce the signal particles 122 from the area corresponding to the area AR1 (e.g., the surface layer 410) while maintaining the detection amount of the signal particles 122 from the area corresponding to the area AR2 (e.g., the groove bottom 401). As a result, the detection amount of the signal particles 122 from the area corresponding to the area AR2 approaches the detection amount of the signal particles 122 from the area corresponding to the area AR1. When an SEM image is created in this state, as shown in Fig. 7D, minute changes in the signal amount are emphasized, and the signal amount changes in the area corresponding to the area AR2 can be confirmed as contrast on the image.
図8に示すように、エネルギーフィルタグリッド202に信号粒子122をエネルギーに応じて弁別する領域AR1及び信号粒子122を通過させる領域AR2を設けることによって、領域AR2に対応する部分(例えば、溝底部401)からの信号粒子122の検出量を保ったまま、領域AR1に対応する部分(例えば、表層部410)からの信号粒子122を減らすことができる。これにより、領域AR2に対応する部分からの信号粒子122の検出量が、領域AR1に対応する部分からの信号粒子122の検出量に近づく。この状態でSEM画像を作成すると、図7Dに示すように、微細な信号量変化が強調され、領域AR2に対応する部分の信号量変化を画像上でコントラストとして確認することができる。 (Effects of Example 1)
As shown in Fig. 8, by providing an area AR1 for discriminating the
次に、実施例2について、図9A~図12Dを用いて説明する。なお、実施例1に記載され且つ実施例2に未記載の事項は、特段の事情がない限り、実施例2にも適用可能である。
Next, Example 2 will be described with reference to Figures 9A to 12D. Note that matters described in Example 1 but not described in Example 2 are also applicable to Example 2 unless there are special circumstances.
実施例1に示したエネルギーフィルタ200では、信号粒子122を弁別できる方向は、エネルギーフィルタグリッド202のメッシュ電極204を設置した方向に固定され、例えば縦方向のみ等、特定の一方向に限られる。そこで、実施例2では、図9Aに示すように、エネルギーフィルタグリッド202を光軸方向に積層する。図9Bのように、エネルギーフィルタグリッド202のメッシュ電極204が設けられる領域AR1は、エネルギーフィルタグリッド202毎に互いに異なる信号粒子122の方位角方向の範囲を制限する。具体的には、1枚目のエネルギーフィルタグリッド202では、メッシュ電極204が設置されている領域AR1が例えば横方向であり、2枚目のエネルギーフィルタグリッド202では、メッシュ電極204が設置されている領域AR1が例えば縦方向である。各エネルギーフィルタグリッド202の間には、メッシュ電極204間を絶縁する絶縁部材206を設置し、各エネルギーフィルタグリッド202に任意の大きさの負電圧VEFを印加できる構造とする。信号粒子122の方位角弁別の際には、試料111上のパターンに合わせて、どちらか一方のエネルギーフィルタグリッド202に負電圧VEFを印加する。
In the energy filter 200 shown in the first embodiment, the direction in which the signal particles 122 can be discriminated is fixed to the direction in which the mesh electrode 204 of the energy filter grid 202 is installed, and is limited to one specific direction, such as only the vertical direction. Therefore, in the second embodiment, as shown in FIG. 9A, the energy filter grids 202 are stacked in the optical axis direction. As shown in FIG. 9B, the area AR1 in which the mesh electrode 204 of the energy filter grid 202 is provided limits the azimuth angle range of the signal particles 122, which differ from one another for each energy filter grid 202. Specifically, in the first energy filter grid 202, the area AR1 in which the mesh electrode 204 is installed is, for example, horizontal, and in the second energy filter grid 202, the area AR1 in which the mesh electrode 204 is installed is, for example, vertical. Between each energy filter grid 202, an insulating member 206 is installed to insulate the mesh electrodes 204, and a structure is provided in which a negative voltage VEF of any magnitude can be applied to each energy filter grid 202. When discriminating the azimuth angle of the signal particle 122, a negative voltage VEF is applied to one of the energy filter grids 202 in accordance with the pattern on the sample 111.
(実施例2の変形例1)
図10A及び図10Bのように、上記した縦方向のメッシュ電極204を有するエネルギーフィルタグリッド202及び横方向のメッシュ電極204を有するエネルギーフィルタグリッド202に加えて、斜め方向のメッシュ電極204を有するエネルギーフィルタグリッド202を2種類追加し、計4枚のエネルギーフィルタグリッド202を、絶縁部材206を介して積層してもよい。これにより、縦方向及び横方向に加えて、斜め方向についても方位角弁別が可能となる。 (Modification 1 of Example 2)
10A and 10B , in addition to theenergy filter grid 202 having the mesh electrodes 204 in the vertical direction and the energy filter grid 202 having the mesh electrodes 204 in the horizontal direction, two types of energy filter grids 202 having mesh electrodes 204 in the diagonal direction may be added, so that a total of four energy filter grids 202 are stacked via insulating members 206. This enables azimuth angle discrimination in the diagonal direction in addition to the vertical and horizontal directions.
図10A及び図10Bのように、上記した縦方向のメッシュ電極204を有するエネルギーフィルタグリッド202及び横方向のメッシュ電極204を有するエネルギーフィルタグリッド202に加えて、斜め方向のメッシュ電極204を有するエネルギーフィルタグリッド202を2種類追加し、計4枚のエネルギーフィルタグリッド202を、絶縁部材206を介して積層してもよい。これにより、縦方向及び横方向に加えて、斜め方向についても方位角弁別が可能となる。 (
10A and 10B , in addition to the
(実施例2の変形例2)
また、メッシュ電極204は、これまで4分割して対向する2枚を設置する例を挙げているが、図11に示すように、4分割以上に細かく分割しても良い。図11の場合、検出したい領域にメッシュ電極204が設置されているエネルギーフィルタグリッド202のみ電圧を印加せず、他のエネルギーフィルタグリッド202に負電圧VEFを印加することで、方位角弁別を達成することができる。 (Modification 2 of Example 2)
In addition, while themesh electrode 204 has been divided into four and two opposing pieces have been provided in the above examples, it may be divided into more than four pieces as shown in Fig. 11. In the case of Fig. 11, no voltage is applied to only the energy filter grid 202 in which the mesh electrode 204 is installed in the area to be detected, and a negative voltage VEF is applied to the other energy filter grids 202, thereby achieving azimuth angle discrimination.
また、メッシュ電極204は、これまで4分割して対向する2枚を設置する例を挙げているが、図11に示すように、4分割以上に細かく分割しても良い。図11の場合、検出したい領域にメッシュ電極204が設置されているエネルギーフィルタグリッド202のみ電圧を印加せず、他のエネルギーフィルタグリッド202に負電圧VEFを印加することで、方位角弁別を達成することができる。 (
In addition, while the
(実施例2の変形例3)
エネルギーフィルタグリッド202に設置するメッシュ電極204は、特定の方向に放出された信号粒子122のみ検出できるように設置されていれば、どのような形でも良い。図12A~図12Dにメッシュ電極204の設置例を示す。図12Aのエネルギーフィルタグリッド202では、メッシュ電極204を半分のみ設置し、左右または上下のどちらかに放出された信号粒子122を弁別できる。これにより、例えば、光軸方向に高さのあるパターンの側面の観察を行うことができる。図12Bのエネルギーフィルタグリッド202では、分割したメッシュ電極204をエネルギーフィルタグリッド202毎に設置することで、弁別可能な領域が対角方向だけでなく図12Aのような半分の弁別などパターンに応じて弁別条件を自由に変更することができる。図12Cのエネルギーフィルタグリッド202では、図12Bのメッシュ電極204をさらに分割し8分割とすることで、検出範囲をより狭くすることができる。図12Dのエネルギーフィルタグリッド202では、溝底部401から放出される信号粒子122の細長い分布に合わせて、円周方向への分割だけでなく、縦型にメッシュ電極204を設置する。 (Modification 3 of Example 2)
Themesh electrode 204 installed on the energy filter grid 202 may have any shape as long as it is installed so that only the signal particles 122 emitted in a specific direction can be detected. Examples of the installation of the mesh electrode 204 are shown in Figs. 12A to 12D. In the energy filter grid 202 of Fig. 12A, only half of the mesh electrode 204 is installed, and the signal particles 122 emitted to either the left or right or the top or bottom can be discriminated. This makes it possible to observe the side of a pattern with a height in the optical axis direction, for example. In the energy filter grid 202 of Fig. 12B, by installing a divided mesh electrode 204 for each energy filter grid 202, the discriminable area can be freely changed according to the pattern, such as half discrimination as in Fig. 12A, not just in the diagonal direction. In the energy filter grid 202 of Fig. 12C, the mesh electrode 204 of Fig. 12B is further divided into eight parts, so that the detection range can be narrowed further. In the energy filter grid 202 of FIG. 12D, in accordance with the elongated distribution of the signal particles 122 emitted from the groove bottom 401, the mesh electrodes 204 are not only divided in the circumferential direction but also arranged vertically.
エネルギーフィルタグリッド202に設置するメッシュ電極204は、特定の方向に放出された信号粒子122のみ検出できるように設置されていれば、どのような形でも良い。図12A~図12Dにメッシュ電極204の設置例を示す。図12Aのエネルギーフィルタグリッド202では、メッシュ電極204を半分のみ設置し、左右または上下のどちらかに放出された信号粒子122を弁別できる。これにより、例えば、光軸方向に高さのあるパターンの側面の観察を行うことができる。図12Bのエネルギーフィルタグリッド202では、分割したメッシュ電極204をエネルギーフィルタグリッド202毎に設置することで、弁別可能な領域が対角方向だけでなく図12Aのような半分の弁別などパターンに応じて弁別条件を自由に変更することができる。図12Cのエネルギーフィルタグリッド202では、図12Bのメッシュ電極204をさらに分割し8分割とすることで、検出範囲をより狭くすることができる。図12Dのエネルギーフィルタグリッド202では、溝底部401から放出される信号粒子122の細長い分布に合わせて、円周方向への分割だけでなく、縦型にメッシュ電極204を設置する。 (Modification 3 of Example 2)
The
(実施例2の効果)
実施例2では、複数枚のエネルギーフィルタグリッド202を光軸方向に積層し、メッシュ電極204が設置されている方向を、エネルギーフィルタグリッド202毎に互いに異なる方向にすることによって、試料111のパターン等に合わせて信号粒子122の方位角弁別が可能となる。 (Effects of Example 2)
In the second embodiment, a plurality ofenergy filter grids 202 are stacked in the optical axis direction, and the directions in which the mesh electrodes 204 are installed are different for each energy filter grid 202, thereby making it possible to discriminate the azimuth angles of the signal particles 122 in accordance with the pattern, etc., of the sample 111.
実施例2では、複数枚のエネルギーフィルタグリッド202を光軸方向に積層し、メッシュ電極204が設置されている方向を、エネルギーフィルタグリッド202毎に互いに異なる方向にすることによって、試料111のパターン等に合わせて信号粒子122の方位角弁別が可能となる。 (Effects of Example 2)
In the second embodiment, a plurality of
実施例3について、図13及び図14を用いて説明する。なお、実施例1、実施例2に記載され且つ実施例3に未記載の事項は、特段の事情がない限り、実施例3にも適用可能である。
The third embodiment will be described with reference to Figs. 13 and 14. Note that matters described in the first and second embodiments but not described in the third embodiment can also be applied to the third embodiment unless there are special circumstances.
エネルギーフィルタグリッド202には、数kVの負電圧VEFを印加するため、前述したエネルギーフィルタ200の構成では、図13のように一次電子ビーム121がエネルギーフィルタ200の中心を通過する際に、エネルギーフィルタグリッド202の電界の影響を受けて偏向してしまう。そこで、実施例3では、図14に示すようにエネルギーフィルタ200の中心に金属製のセンターパイプ207を設置する。センターパイプ207を設置することで、エネルギーフィルタグリッド202に電圧を印加しても、一次電子ビーム121が影響を受けることなくエネルギーフィルタ200を通過することができる。また、センターパイプ207の直径は、1mm程度である。センターパイプ207は、図14では2枚設置されている導体グリッド201の両方に連結されているが、どちらか一方にのみ連結することもできる。
Since a negative voltage VEF of several kV is applied to the energy filter grid 202, in the configuration of the energy filter 200 described above, when the primary electron beam 121 passes through the center of the energy filter 200 as shown in FIG. 13, it is deflected by the effect of the electric field of the energy filter grid 202. Therefore, in the third embodiment, a metallic center pipe 207 is installed at the center of the energy filter 200 as shown in FIG. 14. By installing the center pipe 207, even if a voltage is applied to the energy filter grid 202, the primary electron beam 121 can pass through the energy filter 200 without being affected. The diameter of the center pipe 207 is about 1 mm. In FIG. 14, the center pipe 207 is connected to both of the two conductor grids 201 installed, but it can also be connected to only one of them.
(実施例3の効果)
センターパイプ207を設置することにより、一次電子ビーム121がエネルギーフィルタ200の電界の影響を受けなくなる。これにより、一次電子ビーム121のビーム径に影響がなくなり、試料111上での位置ずれやフォーカスのぼけが小さくなる効果が得られる。エネルギーフィルタ電源203によりエネルギーフィルタグリッド202に印加する負電圧VEFを変更しても位置やフォーカスの補正をする必要がなくなり、最適な印加電圧条件をスムーズに探索することができる。 (Effects of Example 3)
By providing thecenter pipe 207, the primary electron beam 121 is not affected by the electric field of the energy filter 200. This eliminates the effect on the beam diameter of the primary electron beam 121, and has the effect of reducing positional deviation and focus blur on the sample 111. Even if the negative voltage VEF applied to the energy filter grid 202 by the energy filter power supply 203 is changed, there is no need to correct the position or focus, and the optimal applied voltage conditions can be smoothly searched for.
センターパイプ207を設置することにより、一次電子ビーム121がエネルギーフィルタ200の電界の影響を受けなくなる。これにより、一次電子ビーム121のビーム径に影響がなくなり、試料111上での位置ずれやフォーカスのぼけが小さくなる効果が得られる。エネルギーフィルタ電源203によりエネルギーフィルタグリッド202に印加する負電圧VEFを変更しても位置やフォーカスの補正をする必要がなくなり、最適な印加電圧条件をスムーズに探索することができる。 (Effects of Example 3)
By providing the
実施例4について、図15A~図16Bを用いて説明する。なお、実施例1~実施例3に記載され且つ実施例4に未記載の事項は、特段の事情がない限り、実施例4にも適用可能である。
Example 4 will be described with reference to Figures 15A to 16B. Note that matters described in Examples 1 to 3 but not described in Example 4 are also applicable to Example 4 unless there are special circumstances.
実施例2にて記載した通り、複数のエネルギーフィルタグリッド202は、個々に電圧が印加可能であり、印加する電圧は、それぞれのエネルギーフィルタグリッド202毎に任意に変更可能である。この印加電圧VEFを変更することで、信号粒子122の放出方向による弁別に加えて、従来のようなエネルギー弁別を行うことが可能である。
As described in Example 2, a voltage can be applied to each of the energy filter grids 202, and the voltage applied can be changed arbitrarily for each energy filter grid 202. By changing this applied voltage VEF, in addition to discrimination based on the emission direction of the signal particles 122, it is possible to perform energy discrimination as in the conventional method.
図15Aに示すように、前述した信号粒子122の方位角弁別は、信号粒子122の方位角方向によって弁別する。検出可能な領域に放出された信号粒子122はすべて通過する。また、従来のエネルギーフィルタは、図15Bに示すように、信号粒子122のエネルギーによってエネルギーを弁別する。エネルギーフィルタ電源203によって設定した負電圧VEF以上のエネルギーを持つ信号粒子122をすべて通過する構成である。
As shown in FIG. 15A, the azimuth discrimination of the signal particles 122 described above discriminates the signal particles 122 according to their azimuth direction. All signal particles 122 emitted into the detectable area pass through. Furthermore, a conventional energy filter discriminates the energy according to the energy of the signal particles 122, as shown in FIG. 15B. It is configured to pass through all signal particles 122 that have energy equal to or greater than the negative voltage VEF set by the energy filter power supply 203.
図16Aに示すように、信号粒子122の放出方向による弁別とエネルギーの大きさによる弁別とを組み合わせることにより、特定の方向に放出され且つエネルギーの高い信号粒子122、例えば反射電子のみを検出できる。上記した実施例での方位角弁別では、検出したい領域のメッシュ電極204には電圧を印加しなかったが、この実施例4では、エネルギーフィルタグリッド202の検出したい領域のメッシュ電極204に負電圧Veを印加することにより、印加した負電圧Ve以上のエネルギーを持つ信号粒子122のみを通過させることができる。このとき、印加する負電圧Veは、方位角弁別のために検出したくない領域のメッシュ電極204に印加する負電圧VEFより小さい値となる。また、全てのエネルギーフィルタグリッド202に負電圧Veを印加することで、従来と同じようにエネルギー弁別を行うことが可能である。
As shown in FIG. 16A, by combining discrimination based on the emission direction of the signal particles 122 and discrimination based on the magnitude of energy, it is possible to detect only signal particles 122 that are emitted in a specific direction and have high energy, such as backscattered electrons. In the azimuth angle discrimination in the above-mentioned embodiment, no voltage was applied to the mesh electrode 204 in the area to be detected. In this embodiment 4, however, by applying a negative voltage Ve to the mesh electrode 204 in the area to be detected of the energy filter grid 202, it is possible to pass only signal particles 122 that have energy equal to or greater than the applied negative voltage Ve. At this time, the applied negative voltage Ve is a value smaller than the negative voltage VEF applied to the mesh electrode 204 in the area not to be detected for azimuth angle discrimination. Also, by applying a negative voltage Ve to all the energy filter grids 202, it is possible to perform energy discrimination in the same way as in the conventional case.
また、あるエネルギーフィルタグリッド202は電圧を印加せず、残りのエネルギーフィルタグリッド202のうち1枚には負電圧Veを印加し、その他のエネルギーフィルタグリッド202には負電圧VEFを印加することにより、図16Bに示すように、電圧を印加しないエネルギーフィルタグリッド202の方向の信号粒子122はすべて検出し、負電圧Veを印加したエネルギーフィルタグリッド202の方向はVe以上のエネルギーを持つ信号粒子122のみ検出、その他の信号粒子122は検出しない、といった弁別が可能となる。
Furthermore, by applying no voltage to one energy filter grid 202, applying a negative voltage Ve to one of the remaining energy filter grids 202, and applying a negative voltage VEF to the other energy filter grids 202, as shown in FIG. 16B, it becomes possible to distinguish such that all signal particles 122 in the direction of the energy filter grid 202 to which no voltage is applied are detected, and only signal particles 122 having energy equal to or greater than Ve are detected in the direction of the energy filter grid 202 to which the negative voltage Ve is applied, while other signal particles 122 are not detected.
(実施例4の効果)
実施例4では、メッシュ電極204に印加する電圧を制御することによって、信号粒子122の放出方向による方位角弁別に加えて、従来のようなエネルギー弁別を行うことが可能となる。 (Effects of Example 4)
In the fourth embodiment, by controlling the voltage applied to themesh electrode 204, it becomes possible to perform energy discrimination as in the conventional case, in addition to azimuth angle discrimination based on the emission direction of the signal particles 122.
実施例4では、メッシュ電極204に印加する電圧を制御することによって、信号粒子122の放出方向による方位角弁別に加えて、従来のようなエネルギー弁別を行うことが可能となる。 (Effects of Example 4)
In the fourth embodiment, by controlling the voltage applied to the
実施例5について、図17~図20を用いて説明する。なお、実施例1~実施例4に記載され且つ実施例5に未記載の事項は、特段の事情がない限り、実施例5にも適用可能である。
The fifth embodiment will be described with reference to Figures 17 to 20. Note that matters described in the first to fourth embodiments but not described in the fifth embodiment can also be applied to the fifth embodiment unless there are special circumstances.
図17に示すように、エネルギーフィルタ200上部には、反射板105が設置されている。反射板105は、本開示の変換電極の一例である。エネルギーフィルタ200を通過した信号粒子122は、反射板105に衝突し、発生した三次電子123(二次信号粒子)が検出器107によって検出される。
As shown in FIG. 17, a reflector 105 is installed on the top of the energy filter 200. The reflector 105 is an example of a conversion electrode of the present disclosure. The signal particles 122 that pass through the energy filter 200 collide with the reflector 105, and the generated tertiary electrons 123 (secondary signal particles) are detected by the detector 107.
一般的な反射板105は、図18Aに示すように、中心に一次電子ビーム121が通過する穴が設けられている円形状の金属板である。
A typical reflector 105 is a circular metal plate with a hole in the center through which the primary electron beam 121 passes, as shown in Figure 18A.
実施例5では、反射板105を分割して、信号粒子122の方位角弁別を行う。まず、図18Bのように反射板105を円周方向に分割する。分割した反射板105の各領域105a~105hは互いに接触しないように設置し、それぞれに電圧印加可能な構成とする。検出したい領域以外の領域には、任意の正電圧Vhを印加し、検出したい領域には、電圧を印加しない。
In Example 5, the reflector 105 is divided to perform azimuth discrimination of the signal particles 122. First, the reflector 105 is divided in the circumferential direction as shown in Figure 18B. Each of the divided regions 105a to 105h of the reflector 105 is installed so as not to come into contact with each other, and a voltage can be applied to each of them. An arbitrary positive voltage Vh is applied to regions other than the region to be detected, and no voltage is applied to the region to be detected.
図19に、分割した反射板105に衝突した信号粒子122と反射板105上で発生した三次電子123の軌道を示す。正電圧Vhを印加した領域で発生した三次電子125は、印加した正電圧Vhにより反射板105に引き戻されて検出器107に到達しない。一方で、電圧を印加しない領域に衝突して発生した三次電子123のみが検出器107によって検出される。
Figure 19 shows the trajectories of signal particles 122 that collide with the divided reflector 105 and tertiary electrons 123 generated on the reflector 105. The tertiary electrons 125 generated in the area where the positive voltage Vh is applied are pulled back to the reflector 105 by the applied positive voltage Vh and do not reach the detector 107. On the other hand, only the tertiary electrons 123 generated by collision with the area where no voltage is applied are detected by the detector 107.
(実施例5の効果)
図20に示すように、上記した反射板105とエネルギーフィルタ200とを併用することによって、信号粒子122の弁別を2回行うことができる。実施例4で説明したように、エネルギーフィルタ200はエネルギー弁別を行うことも可能なため、例えばエネルギーフィルタ200で二次電子、反射板105で反射電子の弁別を行うことが可能である。 (Effects of Example 5)
20, by using thereflector 105 and the energy filter 200 together, the signal particles 122 can be discriminated twice. As described in the fourth embodiment, since the energy filter 200 can also perform energy discrimination, it is possible to discriminate, for example, secondary electrons by the energy filter 200 and reflected electrons by the reflector 105.
図20に示すように、上記した反射板105とエネルギーフィルタ200とを併用することによって、信号粒子122の弁別を2回行うことができる。実施例4で説明したように、エネルギーフィルタ200はエネルギー弁別を行うことも可能なため、例えばエネルギーフィルタ200で二次電子、反射板105で反射電子の弁別を行うことが可能である。 (Effects of Example 5)
20, by using the
実施例6について、図21を用いて説明する。なお、実施例1~実施例5に記載され且つ実施例6に未記載の事項は、特段の事情がない限り、実施例6にも適用可能である。
The sixth embodiment will be described with reference to FIG. 21. Note that matters described in the first to fifth embodiments but not described in the sixth embodiment can also be applied to the sixth embodiment unless there are special circumstances.
溝状パターンの観察では、方位角弁別に加え、試料111の真上付近に放出された信号粒子122を検出する仰角弁別も有効な手段である。図21を用いて、方位角弁別及び仰角弁別のどちらも行うことができるエネルギーフィルタ200について説明する。
In observing groove patterns, in addition to azimuth angle discrimination, elevation angle discrimination, which detects signal particles 122 emitted near directly above the sample 111, is also an effective means. Using Figure 21, we will explain an energy filter 200 that can perform both azimuth angle discrimination and elevation angle discrimination.
方位角弁別のために分割したメッシュ電極204が設置されたエネルギーフィルタグリッド202に加え、中心領域の大きさが異なる仰角弁別エネルギーフィルタグリッド208を組み合わせることで、方位角弁別に加え、仰角弁別が可能である。仰角弁別のための仰角弁別エネルギーフィルタグリッド208は、信号粒子122の仰角方向の範囲を制限する。仰角弁別エネルギーフィルタグリッド208(第2のエネルギーフィルタグリッド)は、方位角弁別のためのエネルギーフィルタグリッド202(第1のエネルギーフィルタグリッド)の中心領域AR3より大きい中心領域AR3を有する。
By combining an elevation angle discrimination energy filter grid 208 having a different size of central area with an energy filter grid 202 on which divided mesh electrodes 204 are installed for azimuth angle discrimination, elevation angle discrimination is possible in addition to azimuth angle discrimination. The elevation angle discrimination energy filter grid 208 for elevation angle discrimination limits the range of elevation angle directions of the signal particles 122. The elevation angle discrimination energy filter grid 208 (second energy filter grid) has a central area AR3 larger than the central area AR3 of the energy filter grid 202 for azimuth angle discrimination (first energy filter grid).
なお、仰角弁別エネルギーフィルタグリッド208は、図21Bに示すように、中心付近に開口である中心領域AR3が設けられ、中心領域AR3の外周全体にメッシュ電極204を設けてもよい。
In addition, as shown in FIG. 21B, the elevation angle discrimination energy filter grid 208 may have a central area AR3 that is an opening near the center, and a mesh electrode 204 may be provided around the entire outer periphery of the central area AR3.
(実施例6の効果)
仰角弁別を行う場合、中心領域AR3が大きい仰角弁別エネルギーフィルタグリッド208に負電圧VEFを印加し、信号粒子124を跳ね返すことで、仰角弁別エネルギーフィルタグリッド208とセンターパイプ207との間を通過する、中心付近に放出された信号粒子122のみ検出することができる。 (Effects of Example 6)
When performing elevation angle discrimination, a negative voltage VEF is applied to the elevation angle discriminationenergy filter grid 208, which has a large central area AR3, to bounce back the signal particles 124, making it possible to detect only the signal particles 122 emitted near the center that pass between the elevation angle discrimination energy filter grid 208 and the center pipe 207.
仰角弁別を行う場合、中心領域AR3が大きい仰角弁別エネルギーフィルタグリッド208に負電圧VEFを印加し、信号粒子124を跳ね返すことで、仰角弁別エネルギーフィルタグリッド208とセンターパイプ207との間を通過する、中心付近に放出された信号粒子122のみ検出することができる。 (Effects of Example 6)
When performing elevation angle discrimination, a negative voltage VEF is applied to the elevation angle discrimination
方位角弁別と仰角弁別とを組み合わせることで、特定の方向に放出された狭い仰角範囲の信号粒子を検出することができる。また、実施例4で説明したように、エネルギーフィルタグリッド202の印加電圧VEFを変更することによってエネルギー弁別も可能であり、例えば特定の仰角範囲の反射電子のみ検出することが可能である。
By combining azimuth angle discrimination and elevation angle discrimination, it is possible to detect signal particles emitted in a specific direction within a narrow elevation angle range. In addition, as explained in Example 4, energy discrimination is also possible by changing the applied voltage VEF of the energy filter grid 202, making it possible to detect, for example, only reflected electrons within a specific elevation angle range.
実施例7について、図22を用いて説明する。なお、実施例1~実施例6に記載され且つ実施例7に未記載の事項は、特段の事情がない限り、実施例7にも適用可能である。
Example 7 will be explained with reference to FIG. 22. Note that matters described in Examples 1 to 6 but not described in Example 7 are also applicable to Example 7 unless there are special circumstances.
エネルギーフィルタ200は、分割したメッシュ電極204を設置したエネルギーフィルタグリッド202が回転可能な構造である。実施例6までに記載の構造では、電子顕微鏡内にエネルギーフィルタ200を設置した後にメッシュ電極204が設置してある領域を変更することはできない。そこで、図22に示すように、回転機構209をエネルギーフィルタグリッド202に設置し、エネルギーフィルタグリッド202を回転できるような機構とする。実施例7の回転機構209は、エネルギーフィルタグリッド202を回転することによって、メッシュ電極204が設けられる領域AR1及び開口の領域AR2を変位させたが、回転機構209以外の機構で領域AR1及び領域AR2を変位させてもよい。回転機構209は、本開示の変位手段の一例である。
The energy filter 200 has a structure in which the energy filter grid 202 on which the divided mesh electrodes 204 are installed can be rotated. In the structures described up to Example 6, the area in which the mesh electrodes 204 are installed cannot be changed after the energy filter 200 is installed in the electron microscope. Therefore, as shown in FIG. 22, a rotation mechanism 209 is installed on the energy filter grid 202 to provide a mechanism that can rotate the energy filter grid 202. The rotation mechanism 209 in Example 7 rotates the energy filter grid 202 to displace the area AR1 in which the mesh electrodes 204 are installed and the area AR2 of the opening, but the areas AR1 and AR2 may be displaced by a mechanism other than the rotation mechanism 209. The rotation mechanism 209 is an example of a displacement means of the present disclosure.
(実施例7の効果)
この回転機構209を使用することで、メッシュ電極204が設置された領域が移動し、エネルギーフィルタ200を電子顕微鏡に組み込んだ後でも弁別領域を変更できる。また、この回転機構209により、試料111のパターンに合わせて弁別領域を細かく調整することができる。 (Effects of Example 7)
By using thisrotation mechanism 209, the region where the mesh electrode 204 is installed can be moved, and the discrimination region can be changed even after the energy filter 200 is incorporated into the electron microscope. In addition, by using this rotation mechanism 209, the discrimination region can be finely adjusted to match the pattern of the sample 111.
この回転機構209を使用することで、メッシュ電極204が設置された領域が移動し、エネルギーフィルタ200を電子顕微鏡に組み込んだ後でも弁別領域を変更できる。また、この回転機構209により、試料111のパターンに合わせて弁別領域を細かく調整することができる。 (Effects of Example 7)
By using this
この回転機構209は、エネルギーフィルタ200設置後にメッシュ電極204が設置されている領域を変更できる機構であればどのようなものでも良い。図22ではエネルギーフィルタグリッド202を回転させているが、例えば、エネルギーフィルタ200ごと回転させてもよい。
This rotation mechanism 209 may be any mechanism that can change the area in which the mesh electrode 204 is installed after the energy filter 200 is installed. In FIG. 22, the energy filter grid 202 is rotated, but for example, the entire energy filter 200 may be rotated.
実施例8について、図23を用いて説明する。なお、実施例1~実施例7に記載され且つ実施例8に未記載の事項は、特段の事情がない限り、実施例8にも適用可能である。
Example 8 will be described with reference to FIG. 23. Note that matters described in Examples 1 to 7 but not described in Example 8 are also applicable to Example 8 unless there are special circumstances.
図23に示すように、エネルギーフィルタグリッド202に設置されたメッシュ電極204を円周方向に、例えば8分割し、各メッシュ電極204に負電圧VEFを印加可能に構成する。所望のメッシュ電極204に負電圧VEFを印加すると、負電圧VEFが印加されたメッシュ電極204を設置した領域にのみ電位障壁が形成される。メッシュ電極204が設置してある方向に放出された信号粒子122は、電位障壁によって跳ね返されて検出器107に到達せず、負電圧VEFが印加されていないメッシュ電極204が設置してある方向に放出された信号粒子122のみ検出することが可能となり、方位角弁別が達成できる。
As shown in FIG. 23, the mesh electrodes 204 installed on the energy filter grid 202 are divided into, for example, eight parts in the circumferential direction, and a negative voltage VEF can be applied to each mesh electrode 204. When a negative voltage VEF is applied to a desired mesh electrode 204, a potential barrier is formed only in the area where the mesh electrode 204 to which the negative voltage VEF is applied is installed. Signal particles 122 emitted in the direction where the mesh electrode 204 is installed are repelled by the potential barrier and do not reach the detector 107, and it becomes possible to detect only the signal particles 122 emitted in the direction where the mesh electrode 204 to which the negative voltage VEF is not applied is installed, thereby achieving azimuth angle discrimination.
(実施例8の効果)
実施例8のエネルギーフィルタグリッド202を用いれば、複数のメッシュ電極204への負電圧VEFの印加を制御することによって、1枚のエネルギーフィルタグリッド202で種々の電位障壁を有するエネルギーフィルタ(例えば、図11や図12A~12C)を実現することができる。 (Effects of Example 8)
By using theenergy filter grid 202 of Example 8, it is possible to realize an energy filter having various potential barriers (e.g., FIG. 11 and FIGS. 12A to 12C) with a single energy filter grid 202 by controlling the application of a negative voltage VEF to the multiple mesh electrodes 204.
実施例8のエネルギーフィルタグリッド202を用いれば、複数のメッシュ電極204への負電圧VEFの印加を制御することによって、1枚のエネルギーフィルタグリッド202で種々の電位障壁を有するエネルギーフィルタ(例えば、図11や図12A~12C)を実現することができる。 (Effects of Example 8)
By using the
なお、本開示は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を有するものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
Note that this disclosure is not limited to the above examples, and includes various modified examples. The above examples have been described in detail to clearly explain this disclosure, and are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of one example with the configuration of another example, and it is also possible to add the configuration of another example to the configuration of one example. It is also possible to add, delete, or replace part of the configuration of each example with other configurations.
101:電子源(荷電粒子ビーム源)、102:コンデンサレンズ、103:コンデンサレンズ、104:絞り、105:反射板、106:ExB偏向器、107:検出器、108:偏向器、109:偏向器、110:対物レンズ、111:試料、112:試料台、113:リターティング電源、114:ディスプレイ、115:記憶装置、116:制御テーブル、120:制御装置、121:一次電子ビーム、122:信号粒子、123:三次電子、124:(エネルギーフィルタにより跳ね返されて検出されない)信号粒子、125:(分割反射板により引き戻されて検出されない)三次電子、131:仰角、132:方位角、200:エネルギーフィルタ(エネルギー弁別器)、201:導体グリッド、202:エネルギーフィルタグリッド、203:エネルギーフィルタ電源、204:メッシュ電極、205:メッシュ固定梁、206:絶縁部材、207:センターパイプ、208:仰角弁別エネルギーフィルタグリッド、209:回転機構(変位手段)、210:孔、400:溝状パターン、401:溝底部、402:壁面、410:表層部、600:検出範囲、700:(方位角方向の範囲を制限した)検出範囲、AR1:領域(第1領域)、AR2:領域(第2領域)、AR3:中心領域
101: electron source (charged particle beam source), 102: condenser lens, 103: condenser lens, 104: aperture, 105: reflector, 106: ExB deflector, 107: detector, 108: deflector, 109: deflector, 110: objective lens, 111: sample, 112: sample stage, 113: returning power supply, 114: display, 115: storage device, 116: control table, 120: control device, 121: primary electron beam, 122: signal particle, 123: tertiary electron, 124: (bounced by energy filter and not detected) signal particle, 125: (pulled back by split reflector and not detected) tertiary electron, 1 31: elevation angle, 132: azimuth angle, 200: energy filter (energy discriminator), 201: conductor grid, 202: energy filter grid, 203: energy filter power supply, 204: mesh electrode, 205: mesh fixed beam, 206: insulating member, 207: center pipe, 208: elevation angle discrimination energy filter grid, 209: rotation mechanism (displacement means), 210: hole, 400: groove pattern, 401: groove bottom, 402: wall surface, 410: surface layer, 600: detection range, 700: detection range (limited to the azimuth angle range), AR1: area (first area), AR2: area (second area), AR3: central area
Claims (10)
- 試料に荷電粒子ビームを照射し、前記試料の観察像を得る荷電粒子ビーム装置であって、
前記荷電粒子ビームを放出する荷電粒子ビーム源と、
前記荷電粒子ビーム源と前記試料との間に配置され、前記荷電粒子ビームが照射された前記試料から放出された信号粒子をエネルギーに応じて弁別する第1領域及び前記信号粒子を通過させる第2領域を有するエネルギー弁別器と、
を備える荷電粒子ビーム装置。 1. A charged particle beam apparatus for irradiating a sample with a charged particle beam and obtaining an observation image of the sample, comprising:
a charged particle beam source that emits the charged particle beam;
an energy discriminator disposed between the charged particle beam source and the sample, the energy discriminator having a first region for discriminating signal particles emitted from the sample irradiated with the charged particle beam according to energy and a second region for passing the signal particles;
A charged particle beam device comprising: - 前記エネルギー弁別器は、
前記第1領域に設けられたメッシュ電極と、
前記メッシュ電極に電圧を印加する電源と、を有する
ことを特徴とする請求項1に記載の荷電粒子ビーム装置。 The energy discriminator comprises:
A mesh electrode provided in the first region;
2. The charged particle beam device according to claim 1, further comprising: a power supply for applying a voltage to the mesh electrode. - 前記第2領域は、前記荷電粒子ビームを通過させる開口である
ことを特徴とする請求項2に記載の荷電粒子ビーム装置。 The charged particle beam device according to claim 2 , wherein the second region is an opening through which the charged particle beam passes. - 前記第1領域は、前記試料の溝状パターンの方向に対応して設けられ、前記信号粒子の方位角方向の範囲を制限する
ことを特徴とする請求項1に記載の荷電粒子ビーム装置。 2. The charged particle beam device according to claim 1, wherein the first region is provided in correspondence with a direction of a groove pattern of the sample, and limits a range of an azimuthal angle direction of the signal particles. - 前記エネルギー弁別器は、前記第1領域及び前記第2領域を有する複数枚のエネルギーフィルタグリッドを有し、
前記複数枚のエネルギーフィルタグリッドは、前記荷電粒子ビームの光軸方向に積層され、
前記エネルギーフィルタグリッドの前記第1領域は、前記エネルギーフィルタグリッド毎に互いに異なる前記信号粒子の方位角方向の範囲を制限する
ことを特徴とする請求項1に記載の荷電粒子ビーム装置。 the energy discriminator includes a plurality of energy filter grids having the first region and the second region;
The plurality of energy filter grids are stacked in the optical axis direction of the charged particle beam,
2. The charged particle beam device according to claim 1, wherein the first regions of the energy filter grids limit azimuthal ranges of the signal particles that differ from one another for each of the energy filter grids. - 前記複数枚の前記エネルギーフィルタグリッドは、前記メッシュ電極間を絶縁する絶縁部材を介して積層される
ことを特徴とする請求項5に記載の荷電粒子ビーム装置。 6. The charged particle beam device according to claim 5, wherein the plurality of energy filter grids are stacked with an insulating member interposed between the mesh electrodes. - 前記エネルギー弁別器は、前記荷電粒子ビーム源から前記試料に向かう前記荷電粒子ビームを通過させる金属製のパイプを有する
ことを特徴とする請求項1に記載の荷電粒子ビーム装置。 2. The charged particle beam device according to claim 1, wherein the energy discriminator comprises a metal pipe through which the charged particle beam passes from the charged particle beam source toward the sample. - 前記エネルギー弁別器を通過した前記信号粒子が衝突し、二次信号粒子を発生させる変換電極と、
前記二次信号粒子を検出する検出器と、をさらに備える
ことを特徴とする請求項1に記載の荷電粒子ビーム装置。 a conversion electrode with which the signal particles passing through the energy discriminator collide to generate secondary signal particles;
The charged particle beam device according to claim 1 , further comprising: a detector for detecting the secondary signal particles. - 前記エネルギー弁別器は、前記第1領域及び前記第2領域を有する第1のエネルギーフィルタグリッドと、前記荷電粒子ビームの仰角方向の範囲を制限する第2のエネルギーフィルタグリッドと、を有する
ことを特徴とする請求項1に記載の荷電粒子ビーム装置。 2. The charged particle beam device according to claim 1, wherein the energy discriminator comprises a first energy filter grid having the first region and the second region, and a second energy filter grid that limits a range in an elevation angle direction of the charged particle beam. - 前記第1領域及び前記第2領域を変位させる変位手段、をさらに備える
ことを特徴とする請求項1に記載の荷電粒子ビーム装置。 The charged particle beam device according to claim 1 , further comprising: a displacement unit for displacing the first region and the second region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/007352 WO2024180669A1 (en) | 2023-02-28 | 2023-02-28 | Charged particle beam device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/007352 WO2024180669A1 (en) | 2023-02-28 | 2023-02-28 | Charged particle beam device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024180669A1 true WO2024180669A1 (en) | 2024-09-06 |
Family
ID=92589577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/007352 WO2024180669A1 (en) | 2023-02-28 | 2023-02-28 | Charged particle beam device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024180669A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016120971A1 (en) * | 2015-01-26 | 2016-08-04 | 株式会社日立製作所 | Charged particle beam device |
JP2018509741A (en) * | 2015-03-24 | 2018-04-05 | ケーエルエー−テンカー コーポレイション | Charged particle microscopy system and method with improved image beam stabilization and discrimination |
JP2019169406A (en) * | 2018-03-26 | 2019-10-03 | 株式会社日立ハイテクノロジーズ | Charged particle beam equipment |
-
2023
- 2023-02-28 WO PCT/JP2023/007352 patent/WO2024180669A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016120971A1 (en) * | 2015-01-26 | 2016-08-04 | 株式会社日立製作所 | Charged particle beam device |
JP2018509741A (en) * | 2015-03-24 | 2018-04-05 | ケーエルエー−テンカー コーポレイション | Charged particle microscopy system and method with improved image beam stabilization and discrimination |
JP2019169406A (en) * | 2018-03-26 | 2019-10-03 | 株式会社日立ハイテクノロジーズ | Charged particle beam equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49784E1 (en) | Apparatus of plural charged-particle beams | |
US11075056B2 (en) | Scanning electron microscope objective lens system and method for specimen observation | |
US10056228B2 (en) | Charged particle beam specimen inspection system and method for operation thereof | |
US6218664B1 (en) | SEM provided with an electrostatic objective and an electrical scanning device | |
JP6177817B2 (en) | Charged particle beam apparatus and scanning electron microscope | |
US8785879B1 (en) | Electron beam wafer inspection system and method of operation thereof | |
US8530837B2 (en) | Arrangement and method for the contrast improvement in a charged particle beam device for inspecting a specimen | |
WO2013129147A1 (en) | Scanning electron microscope | |
US9437395B2 (en) | Method and compound system for inspecting and reviewing defects | |
US8759761B2 (en) | Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus | |
US7034297B2 (en) | Method and system for use in the monitoring of samples with a charged particle beam | |
JP6845900B2 (en) | Charged particle beam devices, multi-beam blankers for charged particle beam devices, and methods for operating charged particle beam devices | |
JP2014220241A5 (en) | ||
WO2004097890A2 (en) | Objective lens arrangement for use in a charged particle beam column | |
EP0290620B1 (en) | Apparatus for observation using charged particle beams and method of surface observation using charged particle beams | |
WO2011108368A1 (en) | Scanning electron microscope and inspection method using same | |
WO2024180669A1 (en) | Charged particle beam device | |
JP5478683B2 (en) | Charged particle beam irradiation method and charged particle beam apparatus | |
US7233008B1 (en) | Multiple electrode lens arrangement and a method for inspecting an object | |
JP6204388B2 (en) | Charged particle beam apparatus and scanning electron microscope | |
US11961704B2 (en) | Charged particle beam system | |
JP6462729B2 (en) | Charged particle beam apparatus and scanning electron microscope | |
US20250046564A1 (en) | Charged particle beam apparatus | |
WO2025069195A1 (en) | Charged particle beam device | |
JP2006308460A (en) | Substrate inspection apparatus, substrate inspection method, and semiconductor device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23925226 Country of ref document: EP Kind code of ref document: A1 |