[go: up one dir, main page]

WO2024178723A1 - 一种除铜剂及其制备方法、除铜方法 - Google Patents

一种除铜剂及其制备方法、除铜方法 Download PDF

Info

Publication number
WO2024178723A1
WO2024178723A1 PCT/CN2023/079330 CN2023079330W WO2024178723A1 WO 2024178723 A1 WO2024178723 A1 WO 2024178723A1 CN 2023079330 W CN2023079330 W CN 2023079330W WO 2024178723 A1 WO2024178723 A1 WO 2024178723A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
remover
copper removal
preparing
removal agent
Prior art date
Application number
PCT/CN2023/079330
Other languages
English (en)
French (fr)
Inventor
郑宇�
刘勇奇
石泉清
周启
巩勤学
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Priority to CN202380008738.XA priority Critical patent/CN116529401A/zh
Priority to PCT/CN2023/079330 priority patent/WO2024178723A1/zh
Publication of WO2024178723A1 publication Critical patent/WO2024178723A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of wet recovery of waste ternary lithium-ion battery positive electrode materials, in particular to a copper removal agent and a preparation method thereof, and a copper removal method.
  • waste lithium-ion battery power is mainly divided into two types: pyrolysis and hydrolysis.
  • the wet treatment of waste batteries to recover valuable metals has the advantages of environmental friendliness and high recovery rate of valuable metals. It is widely used at home and abroad and is the mainstream waste battery recycling process.
  • the wet treatment process is to leach the metal ions in the cathode material of the waste battery by selecting a suitable acidic or alkaline medium, and then obtain valuable metals such as lithium, cobalt, and manganese through precipitation, organic extraction, separation, and purification.
  • the copper foil in the cathode material of the battery will inevitably dissolve into the leachate, and the removal effect of this part of copper in the leachate directly affects the quality of the product.
  • the ternary cathode material contains Ni element, Ni metal components will also exist in the leachate of the waste battery.
  • the main methods used in China's smelting production are solvent extraction and chemical precipitation.
  • the operation of sulfidation precipitation to remove copper is relatively simple, the cost is relatively low, and the process is more mature.
  • part of the nickel in the leachate will also enter the sulfided slag in the form of nickel sulfide in the final sulfide slag obtained in the copper removal process.
  • the object of the present invention is to overcome the defects in the prior art and provide a copper removal agent, which comprises NiS, NiS2 and CuS and has excellent copper removal efficiency.
  • Another object of the present invention is to provide a method for preparing a copper remover, wherein the copper remover is prepared using sulfide slag produced in the process of recycling waste batteries as a raw material.
  • Another object of the present invention is to provide a copper removal method.
  • the present invention adopts the following technical solution:
  • a copper remover comprises NiS, NiS2 and CuS.
  • the copper remover comprises the following components in weight percentage:
  • the copper remover of the invention is prepared from sulfide slag containing nickel and copper and activated carbon.
  • the copper remover contains a small amount of Cu and C in addition to NiS, NiS2 and CuS components.
  • the average particle size of the copper remover is 40 to 80 ⁇ m.
  • the copper removal agent has a specific surface area of 320 to 500 m 2 /g.
  • the copper remover of the present invention is in granular form, has a small particle diameter and a large specific surface area, a loose crystal structure, and excellent activation performance.
  • the average particle diameter of the copper remover is 40 to 80 ⁇ m, and the specific surface area is 320 to 500 m 2 /g.
  • the present invention also protects a method for preparing the above copper removal agent, comprising the following steps:
  • the activated carbon and the sulfide slag containing nickel and copper are mixed in a mass ratio of 1: (1 to 5) and then ball-milled to obtain a powder;
  • step S2 The powder obtained in step S1 is dispersed into a sulfuric acid solution for pulping to obtain a slurry;
  • step S3 The slurry obtained in step S2 is spray-dried to obtain a spray-dried material
  • step S4 The spray-dried material obtained in step S3 is subjected to roasting treatment under the protection of an inert gas to obtain the copper removal agent.
  • NiS nickel exists in the form of NiS and copper exists in the form of CuS.
  • the copper content in the sulfide slag is 7-15%, and the nickel content is 50-60%.
  • the activated carbon and the sulfide slag are first mechanically activated by ball milling.
  • Mechanical activation can make the sulfide slag particle size finer and effectively expand its specific surface area; On the one hand, it also causes deformation and increase defects in the material's internal lattice, causing various dislocations and amorphization, which increases the material's energy reserve and internal energy, thereby increasing the material's reactivity; in addition, it can also cause redistribution of ions in the anion-cation superlattice.
  • sulfide slag when the crystal size is small enough and the mechanical impact force is large enough, it causes crystal structure distortion, leading to distortion of physical and chemical properties.
  • sulfuric acid solution is used to pulp the powder. Slurrying can fully mix the sulfide slag with carbon powder and sulfuric acid, which is beneficial to the subsequent spray drying and roasting process. In addition, in the presence of sulfuric acid, after subsequent high-temperature reactions, the sulfide slag and carbon powder will form a series of sulfides, which will enhance the activity of sulfur atoms in nickel sulfide, facilitate the activation of nickel sulfide copper precipitation, and reduce the output of metallic copper.
  • the slurry is spray dried to remove most of the solvent.
  • spray drying can also make the material construct a double void structure, increase the specific surface area, and form a larger reaction area.
  • the spray drying process is short, which can ensure the activity of sulfide ions and will not destroy the crystal structure.
  • the spray-dried material is roasted under the protection of inert gas.
  • the roasting process can reduce CuS under certain conditions, partially converting it into copper element, and reducing the acid dissolution reaction of copper sulfide in the subsequent copper removal process.
  • the mass ratio of the activated carbon to the sulfided slag is 1:(4-5).
  • the conditions for the ball milling treatment are: the ball-to-material mass ratio is (5-8):1, the ball milling speed is 300-500 r/min, and the ball milling time is 120-180 min.
  • stainless steel balls with diameters of 5 mm and 3 mm may be used.
  • the weight ratio of the 5 mm and 3 mm stainless steel balls is 1:1.
  • the average particle size of the sulfide slag is 90-120 ⁇ m.
  • the sulfide slag is ball-milled to 700-1000 meshes by ball milling.
  • the concentration of the sulfuric acid solution is 50-100 g/L.
  • the mass ratio of the powder to the sulfuric acid solution is 0.8-1.2:1.
  • the spray drying conditions are: inlet air temperature 150-200°C, outlet air temperature 60-100°C, and time 5-20s.
  • the spray drying can be processed by an atomizer (spray gun).
  • atomizer spray gun
  • the slurry is aggregated into mist particles by the atomizer, and directly contacts with hot air for heat exchange, completing the drying of the slurry in a short time.
  • step S4 the calcination treatment is carried out at a temperature of 650 to 850° C. and for a time of 60 to 90 minutes.
  • the present invention also protects a copper removal method, comprising the following steps:
  • the amount of copper remover added is 1.0 to 1.3 times the theoretical amount of copper ions in the solution.
  • the stirring speed is 200 to 500 r/min.
  • the main chemical reactions between copper removers and copper ions include:
  • the solution containing copper ions may be a leachate of a positive electrode material of a battery.
  • the copper ion content in the copper-containing solution is 500-4000 mg/L.
  • the present invention has the following beneficial effects:
  • the present invention develops a copper removal agent and a preparation method and a copper removal method.
  • the copper removal agent is prepared using sulfide slag produced in the process of recycling waste batteries as a raw material.
  • the copper removal agent has a small particle diameter and a large specific surface area, a loose crystal structure, and excellent activation performance.
  • the copper removal agent is used to remove copper from battery recycling leachate, and has an excellent copper removal rate.
  • FIG1 is an XRD diagram of the sulfide slag used in Example 1;
  • FIG2 is a SEM image of the sulfide slag used in Example 1;
  • FIG3 is a SEM image of the copper removal agent prepared in Example 1;
  • FIG4 is a graph showing the change in copper removal rate of the copper removal agent prepared in Example 1 and the sulfide slag used in Example 1 at different addition multiples;
  • FIG5 is a graph showing the change in copper concentration of the copper remover prepared in Example 1 at different addition multiples.
  • the sulfide slag used in the present invention is taken from the hydrometallurgical sulfide copper removal process, with an average particle size of 98 ⁇ m, wherein the copper content is 11.2% and the nickel content is 54.6%.
  • the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the art. Unless otherwise specified, the reagents and materials used in the present invention are commercially available.
  • This embodiment provides a copper removal agent, and the preparation method is as follows:
  • the activated carbon and the sulfide slag were mixed in a mass ratio of 1:5 and then ball-milled to obtain a powder;
  • the conditions for ball milling treatment were as follows: using stainless steel balls with diameters of 5 mm and 3 mm in a weight ratio of 1:1, a ball-to-material mass ratio of 6:1, a ball milling speed of 400 r/min, and a ball milling time of 150 min;
  • step S2 The powder obtained in step S1 is dispersed into a 60 g/L sulfuric acid solution for slurrying, the mass ratio of the powder to the sulfuric acid solution is 1:1, to obtain a slurry;
  • step S3 The slurry obtained in step S2 is spray-dried to obtain a spray-dried material
  • the spray drying conditions were: inlet air temperature 180°C, outlet air temperature 80°C, and time 10s;
  • step S4 The spray-dried material obtained in step S3 is calcined under nitrogen protection at a temperature of 750° C. for 70 min to obtain activated particles, namely, the copper removal agent.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • step S1 activated carbon and sulfide slag are mixed in a mass ratio of 1:4.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • step S1 activated carbon and sulfide slag are mixed in a mass ratio of 1:2.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • step S1 activated carbon and sulfide slag are mixed in a mass ratio of 1:1.
  • This comparative example provides a copper removal agent, and the difference between the preparation method and Example 1 is that:
  • step S1 activated carbon and sulfide slag are mixed in a mass ratio of 1:7.
  • This comparative example provides a copper removal agent, and the difference between the preparation method and Example 1 is that:
  • step S1 activated carbon and sulfide slag are mixed in a mass ratio of 1:0.5.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • the ball milling treatment conditions are: using stainless steel balls with diameters of 5 mm and 3 mm in a weight ratio of 1:1, a ball-to-material mass ratio of 5:1, a ball milling speed of 300 r/min, and a ball milling time of 180 min.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • the ball milling treatment conditions are: using stainless steel balls with diameters of 5 mm and 3 mm in a weight ratio of 1:1, a ball-to-material mass ratio of 8:1, a ball milling speed of 500 r/min, and a ball milling time of 120 min.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • step S2 the concentration of the sulfuric acid solution is 100 g/L, and the mass ratio of the powder to the sulfuric acid solution is 0.8:1;
  • step S3 the spray drying conditions are: inlet air temperature 150°C, outlet air temperature 60°C, and time 20s.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • step S3 the spray drying conditions are: inlet air temperature 200°C, outlet air temperature 100°C, and time 5s.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • step S4 the calcination temperature is 850° C. and the calcination time is 60 min.
  • This embodiment provides a copper remover, and the preparation method is different from that of embodiment 1 in that:
  • step S4 the calcination temperature is 650° C. and the calcination time is 90 min.
  • the components of the copper removers prepared in Examples 1 to 10 of the present invention all satisfy the following requirements: NiS 62.5 to 71.3%, NiS 2 5.5 to 10.3%, CuS 13.2 to 18.4%, Cu 2 to 4.5%, and C 0.5 to 1.8%.
  • This comparative example provides a copper removal agent, and the preparation method is as follows:
  • step S2 The slurry obtained in step S1 is spray-dried to obtain a spray-dried material
  • the spray drying conditions were: inlet air temperature 180°C, outlet air temperature 80°C, and time 10s;
  • step S3 The spray-dried material obtained in step S3 is calcined under nitrogen protection at a temperature of 750° C. for 70 min to obtain a copper removal agent.
  • Example 1 That is, the difference from Example 1 is that after the activated carbon and the sulfide slag are mixed, they are directly pulped without being subjected to ball milling treatment.
  • This comparative example provides a copper removal agent, and the preparation method is as follows:
  • the activated carbon and the sulfide slag were mixed in a mass ratio of 1:5 and then ball-milled to obtain a powder;
  • the conditions for ball milling treatment were as follows: using stainless steel balls with diameters of 5 mm and 3 mm in a weight ratio of 1:1, a ball-to-material mass ratio of 6:1, a ball milling speed of 400 r/min, and a ball milling time of 150 min;
  • step S2 The powder obtained in step S1 is dispersed into a 60 g/L sulfuric acid solution for slurrying, the mass ratio of the powder to the sulfuric acid solution is 1:1, to obtain a slurry;
  • step S3 The slurry obtained in step S2 is placed in an oven and dried at 180 ° C for 2h to obtain a dry material;
  • step S3 The dried material obtained in step S3 is calcined under nitrogen protection at a temperature of 750° C. for 70 min to obtain a copper removal agent.
  • Example 1 That is, the difference from Example 1 is that the spray drying in step S3 is replaced by drying.
  • Example 1 The sulfide slag used in Example 1 and the copper remover prepared were subjected to XRD and/or SEM detection.
  • FIG. 1 is an XRD graph of the sulfide slag used in Example 1 and an SEM graph of the sulfide slag;
  • FIG. 3 is an SEM graph of the copper remover prepared in Example 1.
  • the sulfide slag contains copper sulfide and nickel sulfide.
  • the copper remover prepared by the preparation method of the present invention using the sulfide slag as raw material has a smaller particle size, a larger specific surface area, and a looser crystal structure than the sulfide slag.
  • the average particle size of the copper remover is 40 to 80 ⁇ m, and the specific surface area is 320 to 500 m 2 /g.
  • the main phase of the positive electrode sheet powder is LiCoO 2
  • the positive electrode sheet powder is leached with H 2 SO 4 and H 2 O 2 mixed, and after removing Fe and Al, the concentrations of the components of the leaching solution are shown in Table 1.
  • the leaching solution contains not only the main metals Ni, Co, and Mn but also the impurity Cu component.
  • the copper removal agent prepared in Example 1 was used for copper removal, and the concentrations of the components in the leaching solution after copper removal are shown in Table 2.
  • the mass ratio of activated carbon to sulfide slag is It has a great influence on the copper removal effect of the copper removal agent.
  • the mass ratio of activated carbon to sulfide slag is in the range of 1: (1 to 5)
  • the copper removal rate is above 74%, and the copper removal rates of Example 1 and Example 2 can reach more than 90%.
  • the copper removal rate of the copper removal agent shows a downward trend.
  • the inventors have found that when the proportion of activated carbon is too low, the copper removal effect of the copper removal agent will also be greatly reduced.
  • the copper removal rate of Example 1 is only 52.4%. This is because the proportion of activated carbon is too low, resulting in insufficient roasting reducing atmosphere, which affects the reduction effect of the sulfide slag containing copper and nickel.
  • Example 2 The copper removal agent and sulfide slag prepared in Example 1 were added to the leachate at different addition multiples to remove copper.
  • the reaction temperature was 85° C.
  • the stirring speed was 300 r/min
  • the reaction time was 90 min.
  • the copper content in the leachate after copper removal was detected again, and the copper removal rate was calculated.
  • FIG. 4 is a graph showing the change in copper removal rate of the copper remover and sulfide slag of Example 1 at different addition multiples
  • FIG. 5 is a graph showing the change in copper concentration of the copper remover of Example 1 at different addition multiples.
  • the copper removal efficiency of sulfide slag is very poor, and when the addition multiple is 1.3, the copper removal rate is only 31.6%.
  • the copper removal agent prepared with sulfide slag as raw material greatly improves its copper removal efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明提供了一种除铜剂及其制备方法、除铜方法,属于废旧三元锂离子电池正极材料湿法回收技术领域。本发明的除铜剂以废旧电池回收过程中产生的硫化渣为原料制得,该除铜剂具有较小的颗粒直径和较大的比表面积,晶型结构松散,活化性能优异,使用该除铜剂对电池回收浸出液进行除铜,具有优异的铜去除率。

Description

一种除铜剂及其制备方法、除铜方法 技术领域
本发明涉及废旧三元锂离子电池正极材料湿法回收技术领域,尤其是一种除铜剂及其制备方法、除铜方法。
背景技术
近年来,锂电池动力汽车在我国的销量攀升,受限于使用寿命,报废的动力电池数量将越来越大。据预测,2027年三元正极材料和磷酸铁锂正极材料的报废量将达到69万吨和26.54万吨,因此,对于废旧锂离子电池动力的回收格外值得关注。
目前,对于废旧锂离子电池动力中有价金属的回收主要分为火法处理和湿法处理两种,湿法处理废旧电池回收有价金属具有环境友好、有价金属回收率高的优点,在国内外应用广泛,是主流的废旧电池回收工艺。
湿法处理工艺是通过选择合适的酸性或碱性介质将废旧电池正极材料中的金属离子浸出,再通过沉淀、有机物萃取、分离、提纯等方法,得到锂、钴、锰等有价金属。在浸出工艺过程中,电池正极材料中的铜箔会不可避免的溶解进入到浸出液当中,对浸出液中这部分铜的去除效果,直接影响着产物的质量。此外,由于三元正极材料中含有Ni元素,在废旧电池浸出液中,还会同时存在有Ni金属成分。
对于浸出液中Cu的分离净化,在我国冶炼生产中的主要方法有溶剂萃取法和化学沉淀法。其中采用硫化法沉淀除铜的操作相对简单、成本相对较低,工艺更为成熟。通常,电池回收企业除铜工序,是采用添加过量硫化钠来进行,主要化学反应如下:Cu2++Na2S==CuS+2Na+。该除铜工序最终得到的硫化渣中,除了包含CuS以外,浸出液中部分的镍也会以硫化镍的形式进入到硫化渣中。
随着废旧电池回收量越来越大,硫化渣在生产过程中的产生量巨大,在不加以回收利用的情况下,其中含有的有价金属形成了较大的资源浪费。
发明内容
本发明的目的在于,克服现有技术中的缺陷,提供一种除铜剂,除铜剂包括NiS、NiS2和CuS,具有优异的除铜效率。
本发明的另一目的在于提供一种除铜剂的制备方法,除铜剂以废旧电池回收过程中产生的硫化渣为原料制得。
本发明的另一目的在于提供一种除铜方法。
为实现上述目的,本发明采用如下技术方案:
一种除铜剂,包括NiS、NiS2和CuS。
NiS和CuS的溶度积如下:Ksp(CuS)=9*10-35、Ksp(NiS)=2.8*10-18。因此,Cu相较于Ni表现出更强的亲硫性,因此可利用除铜剂中这一部分NiS进行沉淀铜,实现良好的除铜效果。
优选地,所述除铜剂包括如下重量百分比的组分:
NiS 62.5~71.3%,NiS25.5~10.3%,CuS 13.2~18.4%,Cu 2~4.5%,C 0.5~1.8%。
本发明的除铜剂由含有镍和铜的硫化渣和活性炭制备得到,除铜剂中除了NiS、NiS2和CuS组分外,还含有少量的Cu和C。
优选地,所述除铜剂的平均粒径为40~80μm。
优选地,所述除铜剂的比表面积为320~500m2/g。
本发明所述除铜剂为颗粒状,具有较小的颗粒直径和较大的比表面积,晶型结构松散,活化性能优异。除铜剂的平均粒径为40~80μm,比表面积为320~500m2/g。
本发明还保护上述除铜剂的制备方法,包括如下步骤:
S1.将活性炭与含有镍和铜的硫化渣按照质量比1:(1~5)混合后进行球磨处理,得到粉料;
S2.将步骤S1得到的粉料分散至硫酸溶液中进行制浆,得到浆料;
S3.将步骤S2得到的浆料进行喷雾干燥,得到喷雾干燥料;
S4.将步骤S3得到喷雾干燥料在惰性气体保护下,进行焙烧处理,得到所述除铜剂。
在含有镍和铜的硫化渣中,镍以NiS的形式存在,铜以CuS的形式存在。
优选地,所述硫化渣中铜含量为7~15%,镍含量为50~60%。
在本发明的除铜剂的制备方法中,先通过球磨对活性炭与硫化渣进行机械活化。机械活化一方面可以使得硫化渣粒度变细,有效扩大其比表面积;另一 方面还使物质内部品格变形和缺陷增加,引起各种位错,并出现非晶化现象,使物质的能储量增加,内能增大,从而提高物质的反应活性;此外还能够引起离子在阴阳离子超晶格中的再分布,对硫化渣来说,在晶体尺寸足够小而机械冲击力足够大时,引起晶体结构畸变,导致理化性质畸变。
在机械活化的基础上,采用硫酸溶液对粉料进行制浆,制浆可使硫化渣与碳粉、硫酸充分混合,有利于后续的喷雾干燥和焙烧工艺。此外,在硫酸的存在下,经过后续的高温反应,硫化渣和碳粉会形成一系列硫化物,增强硫化镍中硫原子活性,便于活化硫化镍沉铜,同时还原产出金属铜单质。
浆料通过喷雾干燥去除大部分的溶剂,同时,喷雾干燥还可以使物料构造二重空隙结构,增大比表面积,形成较大反应面积。喷雾干燥的处理时间较短,可保证硫离子活性,不会破坏晶体结构。
喷雾干燥料在惰性气体保护下进行焙烧。焙烧工艺可在一定条件下还原CuS,部分转化为铜单质,减少后续除铜过程的硫化铜酸溶反应。
优选地,步骤S1中,所述活性炭与硫化渣的质量比为1:(4~5)。
优选地,步骤S1中,所述球磨处理的条件为:球料质量比为(5~8)∶1,球磨转速为300~500r/min,球磨时间为120~180min。
在球磨过程中,可以采用直径5mm和3mm的不锈钢球。可选地,所述5mm和3mm的不锈钢球的重量比为1:1。
优选地,所述硫化渣的平均粒径为90~120μm。通过球磨处理,将硫化渣球磨至700~1000目。
优选地,步骤S2中,所述硫酸溶液的浓度为50~100g/L。
优选地,步骤S2中,所述粉料与硫酸溶液的质量比为0.8~1.2:1。
优选地,步骤S3中,所述喷雾干燥的条件为:进风温度150~200℃,出风温度60~100℃,时间5~20s。
可选地,所述喷雾干燥可以采用雾化器(喷枪)进行处理。在喷雾干燥过程中,浆料通过雾化器聚化成雾状微粒,与热空气直接接触进行热交换,短时间完成浆料的干燥。
优选地,步骤S4中,所述焙烧处理的温度为650~850℃,时间为60~90min。
本发明还保护一种除铜方法,包括如下步骤:
将上述除铜剂加至含铜离子的溶液中,在70~90℃下搅拌60~120min,进行 除铜;
其中,根据溶液中铜离子的浓度,除铜剂的添加量为还原所述溶液中铜离子的理论量的1.0~1.3倍。
可选地,在除铜方法中,所述搅拌的转速为200~500r/min。
除铜剂与铜离子主要发生的化学反应包括:
Cu2++NiS=CuS+Ni2+;2Cu++NiS=Cu2S+Ni2+;Cu2++NiS2=CuS2+Ni2+
所述含铜离子的溶液可以为电池正极材料的浸出液。
可选地,所述含铜的溶液中铜离子含量为500~4000mg/L。
与现有技术相比,本发明的有益效果是:
本发明开发了一种除铜剂及其制备方法和除铜方法。除铜剂以废旧电池回收过程中产生的硫化渣为原料制得,该除铜剂具有较小的颗粒直径和较大的比表面积,晶型结构松散,活化性能优异,使用该除铜剂对电池回收浸出液进行除铜,具有优异的铜去除率。
附图说明
图1为实施例1使用的硫化渣的XRD图;
图2为实施例1使用的硫化渣的SEM图;
图3为实施例1制得的除铜剂的SEM图;
图4为实施例1制得的除铜剂、实施例1使用的硫化渣在不同加入倍数下的铜去除率变化图;
图5为实施例1制得的除铜剂在不同加入倍数下的铜浓度变化图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例和附图来进一步说明本发明,但实施例并不对本发明做任何形式的限定。
本发明中采用的硫化渣取自湿法冶炼硫化除铜工序,平均粒径为98μm,其中铜含量为11.2%,镍含量为54.6%。
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,本发明所用试剂和材料均为市购。
实施例1
本实施例提供一种除铜剂,制备方法如下:
S1.将活性炭与硫化渣按照质量比1:5混合后进行球磨处理,得到粉料;
球磨处理的条件为:采用重量比为1:1的直径5mm和3mm的不锈钢球,球料质量比为6∶1,球磨转速为400r/min,球磨时间为150min;
S2.将步骤S1得到的粉料分散至60g/L硫酸溶液中进行制浆,粉料与硫酸溶液的质量比为1:1,得到浆料;
S3.将步骤S2得到的浆料进行喷雾干燥,得到喷雾干燥料;
喷雾干燥的条件为:进风温度180℃,出风温度80℃,时间10s;
S4.将步骤S3得到喷雾干燥料在氮气保护下,进行焙烧处理,焙烧温度为750℃,时间为70min,得到活化颗粒,即为除铜剂。
实施例2
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S1中,活性炭与硫化渣按照质量比1:4进行混合。
实施例3
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S1中,活性炭与硫化渣按照质量比1:2进行混合。
实施例4
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S1中,活性炭与硫化渣按照质量比1:1进行混合。
对比例1
本对比例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S1中,活性炭与硫化渣按照质量比1:7进行混合。
对比例2
本对比例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S1中,活性炭与硫化渣按照质量比1:0.5进行混合。
实施例5
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S1中,球磨处理的条件为:采用重量比为1:1的直径5mm和3mm的不锈钢球,球料质量比为5∶1,球磨转速为300r/min,球磨时间为180min。
实施例6
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S1中,球磨处理的条件为:采用重量比为1:1的直径5mm和3mm的不锈钢球,球料质量比为8∶1,球磨转速为500r/min,球磨时间为120min。
实施例7
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S2中,硫酸溶液的浓度为100g/L,粉料与硫酸溶液的质量比为0.8:1;
步骤S3中,喷雾干燥的条件为:进风温度150℃,出风温度60℃,时间20s。
实施例8
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S3中,喷雾干燥的条件为:进风温度200℃,出风温度100℃,时间5s。
实施例9
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S4中,焙烧温度为850℃,时间为60min。
实施例10
本实施例提供一种除铜剂,制备方法与实施例1的区别在于:
步骤S4中,焙烧温度为650℃,时间为90min。
本发明实施例1~10制得的除铜剂的组分含量均满足:NiS 62.5~71.3%,NiS2 5.5~10.3%,CuS 13.2~18.4%,Cu 2~4.5%,C 0.5~1.8%。
对比例3
本对比例提供一种除铜剂,制备方法如下:
S1.将活性炭与硫化渣按照质量比1:5混合后,分散至60g/L硫酸溶液中 进行制浆,粉料与硫酸溶液的质量比为1:1,得到浆料;
S2.将步骤S1得到的浆料进行喷雾干燥,得到喷雾干燥料;
喷雾干燥的条件为:进风温度180℃,出风温度80℃,时间10s;
S3.将步骤S3得到喷雾干燥料在氮气保护下,进行焙烧处理,焙烧温度为750℃,时间为70min,得到除铜剂。
即与实施例1的区别在于,活性炭与硫化渣混合后不经过球磨处理,直接进行制浆。
对比例4
本对比例提供一种除铜剂,制备方法如下:
S1.将活性炭与硫化渣按照质量比1:5混合后进行球磨处理,得到粉料;
球磨处理的条件为:采用重量比为1:1的直径5mm和3mm的不锈钢球,球料质量比为6∶1,球磨转速为400r/min,球磨时间为150min;
S2.将步骤S1得到的粉料分散至60g/L硫酸溶液中进行制浆,粉料与硫酸溶液的质量比为1:1,得到浆料;
S3.将步骤S2得到的浆料放置于烘箱中,在180℃进行烘干2h,得到干燥料;
S4.将步骤S3得到干燥料在氮气保护下,进行焙烧处理,焙烧温度为750℃,时间为70min,得到除铜剂。
即与实施例1的区别在于,将步骤S3的喷雾干燥替换为烘干。
性能测试
(1)对实施例1使用的硫化渣和制得的除铜剂进行XRD和/或SEM检测,图1为实施例1使用的硫化渣的XRD图,硫化渣的SEM图;图3为实施例1制得的除铜剂的SEM图。
可以看出,硫化渣中含有硫化铜和硫化镍。以硫化渣为原料,经过本发明的制备方法,制得的除铜剂相比于硫化渣具有更小的粒径,更大的比表面积,更松散的晶型结构。除铜剂的平均粒径为40~80μm,比表面积为320~500m2/g。
(2)对上述实施例和对比例得到的除铜剂的除铜性能进行表征,具体测试项目及测试方法和结果如下:
取湖南某废旧电池回收企业的正极极片粉,该正极极片粉的主要物相为 LiCoO2,对该正极极片粉采用H2SO4和H2O2混合浸出,并去除Fe、Al后,其浸出液的各组分浓度如表1所示,浸出液除含有主金属Ni、Co、Mn外还含有杂质Cu成分。
表1浸出液主要成分表(g/L)
(2.1)分别取实施例1~10及对比例1~4制得的除铜剂,按照4g/L加至浸出液中,进行除铜,反应温度85℃、搅拌转速300r/min、反应时间90min,再次检测除铜后的浸出液中各组分浓度。
其中,采用实施例1制得的除铜剂进行除铜,除铜后的浸出液中各组分浓度见表2。
表2除铜后的浸出液主要成分表(g/L)
可以看出,使用实施例1的除铜剂对浸出液进行除铜后,Cu含量由1600mg/L将至3.2mg/L,铜去除率99.8%。
实施例1~10及对比例1~4的除铜剂的铜去除率见表3。
表3实施例1~10及对比例1~4的除铜剂的铜去除率
由表3的测试结果可以看出,采用各实施例所制备的除铜剂对浸出液进行除铜,铜去除率高,部分实施例的铜去除率达到90%以上。
根据实施例1~4以及对比例1、2,步骤S1中,活性炭与硫化渣的质量比对 于除铜剂的除铜效果具有较大影响。当活性炭与硫化渣的质量比在1:(1~5)范围内时,铜去除率在74%以上,实施例1、实施例2的铜去除率可以达到90%以上。随着活性炭的含量相对增加、硫化渣的含量相对降低,除铜剂的铜去除率呈下降趋势。然而,发明人研究发现,当活性炭占比过低时,也会造成除铜剂的除铜效果大幅下降,对比例1的铜去除率仅为52.4%。这是由于活性炭比例过低,导致焙烧还原气氛不充分,从而影响含铜、镍的硫化渣的还原效果。
(2.2)取实施例1制得的的除铜剂和硫化渣,按照不同加入倍数分别加至浸出液中,进行除铜,反应温度85℃、搅拌转速300r/min、反应时间90min,再次检测除铜后的浸出液中铜含量,并计算铜去除率;
其中,加入倍数是指:根据浸出液中铜离子的浓度,计算还原该浸出液中铜离子所需除铜剂的理论量,加入倍数=实际添加量/理论量。
图4为实施例1的除铜剂和硫化渣在不同加入倍数下的铜去除率变化图;图5为实施例1的除铜剂在不同加入倍数下的铜浓度变化图。
可以看出,硫化渣的除铜效率很差,在加入倍数为1.3时,铜去除率也仅为31.6%。通过本发明的制备方法,以硫化渣为原料制得的除铜剂,极大地提高了其除铜效率。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (13)

  1. 一种除铜剂,其特征在于,包括NiS、NiS2和CuS。
  2. 根据权利要求1所述除铜剂,其特征在于,包括如下重量百分比的组分:
    NiS 62.5~71.3%,NiS25.5~10.3%,CuS 13.2~18.4%,Cu 2~4.5%,C 0.5~1.8%。
  3. 根据权利要求1所述除铜剂,其特征在于,所述除铜剂的平均粒径为40~80μm。
  4. 根据权利要求1所述除铜剂,其特征在于,所述除铜剂的比表面积为320~500m2/g。
  5. 权利要求1~4任一项所述除铜剂的制备方法,其特征在于,包括如下步骤:
    S1.将活性炭与含有镍和铜的硫化渣按照质量比1:(1~5)混合后进行球磨处理,得到粉料;
    S2.将步骤S1得到的粉料分散至硫酸溶液中进行制浆,得到浆料;
    S3.将步骤S2得到的浆料进行喷雾干燥,得到喷雾干燥料;
    S4.将步骤S3得到喷雾干燥料在惰性气体保护下,进行焙烧处理,得到所述除铜剂。
  6. 根据权利要求5所述除铜剂的制备方法,其特征在于,步骤S1中,所述活性炭与含有镍和铜的硫化渣的质量比为1:(4~5)。
  7. 根据权利要求5所述除铜剂的制备方法,其特征在于,步骤S1中,所述球磨处理的条件为:球料质量比为(5~8)∶1,球磨转速为300~500r/min,球磨时间为120~180min。
  8. 根据权利要求5所述除铜剂的制备方法,其特征在于,步骤S2中,所述硫酸溶液的浓度为50~100g/L。
  9. 根据权利要求5所述除铜剂的制备方法,其特征在于,步骤S2中,所述粉料与硫酸溶液的质量比为0.8~1.2:1。
  10. 根据权利要求5所述除铜剂的制备方法,其特征在于,步骤S3中,所述喷雾干燥的条件为:进风温度150~200℃,出风温度60~100℃,时间5~20s。
  11. 根据权利要求5所述除铜剂的制备方法,其特征在于,步骤S4中,所述焙烧处理的温度为650~850℃,时间为60~90min。
  12. 根据权利要求5所述除铜剂的制备方法,其特征在于,所述硫化渣的平均粒径为90~120μm。
  13. 一种除铜方法,其特征在于,包括如下步骤:
    将除铜剂加至含铜离子的溶液中,在70~90℃下搅拌60~120min,进行除铜;其中,根据溶液中铜离子的浓度,除铜剂的添加量为还原所述溶液中铜离子的理论量的1.0~1.3倍;
    所述除铜剂为权利要求1~4任一项所述除铜剂。
PCT/CN2023/079330 2023-03-02 2023-03-02 一种除铜剂及其制备方法、除铜方法 WO2024178723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380008738.XA CN116529401A (zh) 2023-03-02 2023-03-02 一种除铜剂及其制备方法、除铜方法
PCT/CN2023/079330 WO2024178723A1 (zh) 2023-03-02 2023-03-02 一种除铜剂及其制备方法、除铜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/079330 WO2024178723A1 (zh) 2023-03-02 2023-03-02 一种除铜剂及其制备方法、除铜方法

Publications (1)

Publication Number Publication Date
WO2024178723A1 true WO2024178723A1 (zh) 2024-09-06

Family

ID=87396277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079330 WO2024178723A1 (zh) 2023-03-02 2023-03-02 一种除铜剂及其制备方法、除铜方法

Country Status (2)

Country Link
CN (1) CN116529401A (zh)
WO (1) WO2024178723A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100153A (zh) * 1994-06-29 1995-03-15 北京有色冶金设计研究总院 镍电解阳极液的除铜方法
CN101063210A (zh) * 2006-04-25 2007-10-31 襄樊化通化工有限责任公司 以含镍废料再生为原料制造高活性镍饼工艺
JP2013067841A (ja) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd 塩化ニッケル水溶液中の銅イオン除去方法及び電気ニッケルの製造方法
CN108611493A (zh) * 2018-05-15 2018-10-02 湖南邦普循环科技有限公司 一种硫化渣的综合回收方法
CN109207725A (zh) * 2018-09-19 2019-01-15 中国科学院青海盐湖研究所 一种从废旧锰酸锂电池中回收锂和锰的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100153A (zh) * 1994-06-29 1995-03-15 北京有色冶金设计研究总院 镍电解阳极液的除铜方法
CN101063210A (zh) * 2006-04-25 2007-10-31 襄樊化通化工有限责任公司 以含镍废料再生为原料制造高活性镍饼工艺
JP2013067841A (ja) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd 塩化ニッケル水溶液中の銅イオン除去方法及び電気ニッケルの製造方法
CN108611493A (zh) * 2018-05-15 2018-10-02 湖南邦普循环科技有限公司 一种硫化渣的综合回收方法
CN109207725A (zh) * 2018-09-19 2019-01-15 中国科学院青海盐湖研究所 一种从废旧锰酸锂电池中回收锂和锰的方法及系统

Also Published As

Publication number Publication date
CN116529401A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
Xiao et al. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives
CN110828926B (zh) 废旧锂离子电池正负极材料协同回收金属及石墨的方法
CN110835682B (zh) 废旧锂离子电池正、负极活性材料协同处理的方法
CN111825110A (zh) 废旧锂离子电池正极材料的回收利用方法
JP7546789B2 (ja) 使用済みリチウムイオン電池からの有価金属の回収方法
CN111733328A (zh) 一种回收废旧锂离子电池中有价金属的方法
CN108486376A (zh) 一种浸出废旧锂离子电池正极材料中金属的方法
CN106829907A (zh) 一种含镍生铁制备硫酸镍溶液和电池级磷酸铁的方法
Wang et al. Ammonia leaching of valuable metals from spent lithium ion batteries in NH3-(NH4) 2SO4-Na2SO3 system
CN109437253B (zh) 一种从废弃锂离子电池中直接再生高纯度碳酸锂的方法
WO2016141875A1 (zh) 一种废旧电池的回收处理方法
CN114335781A (zh) 一种从废旧锂电池中提取贵金属的方法
CN115304059A (zh) 一种退役电池炭渣的资源化处理方法
WO2025000270A1 (zh) 一种全链条一体化处理废旧三元锂电池的方法
JP6314730B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
CN119265412A (zh) 一种利用硫酸钙硫化焙烧回收正极中金属的方法
US8974754B2 (en) Method for producing nickel-containing acid solution
WO2024178723A1 (zh) 一种除铜剂及其制备方法、除铜方法
CN118561254A (zh) 一种从废旧锂离子电池中回收锂盐并制备磷酸锰铁锂正极材料的方法
CN114950361B (zh) 一种通过废旧锂电池制备复合吸附剂的方法
CN117136245A (zh) 一种红土镍矿湿法冶金生产镍钴锰新能源原料的绿色方法
CN116411182A (zh) 一种从锂电池中选择性回收锂的方法
CN115275415A (zh) 一种从退役锂电池中回收锂并再生正极材料的方法
JP6201905B2 (ja) 廃ニッケル水素電池からの有価金属の回収方法
CN218069960U (zh) 一种直接回收废旧锂电池中正极材料的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23924691

Country of ref document: EP

Kind code of ref document: A1