[go: up one dir, main page]

WO2024157869A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2024157869A1
WO2024157869A1 PCT/JP2024/001238 JP2024001238W WO2024157869A1 WO 2024157869 A1 WO2024157869 A1 WO 2024157869A1 JP 2024001238 W JP2024001238 W JP 2024001238W WO 2024157869 A1 WO2024157869 A1 WO 2024157869A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal alignment
diamine
mol
Prior art date
Application number
PCT/JP2024/001238
Other languages
French (fr)
Japanese (ja)
Inventor
雅倫 尹
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024157869A1 publication Critical patent/WO2024157869A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • Liquid crystal display elements are widely used as display units for personal computers, mobile phones, smartphones, televisions, etc.
  • Liquid crystal display elements include, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, pixel electrodes and a common electrode that apply an electric field to the liquid crystal layer, a liquid crystal alignment film that controls the liquid crystal orientation of the liquid crystal molecules in the liquid crystal layer, and thin film transistors (TFTs) that switch the electrical signals supplied to the pixel electrodes.
  • TFTs thin film transistors
  • Known methods for driving liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and the VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In-Plane Switching) method and the FFS (Fringe Field Switching) method.
  • the horizontal electric field method in which electrodes are formed on only one side of the substrate and an electric field is applied parallel to the substrate, is known as a liquid crystal display element that has a wider viewing angle characteristic and is capable of high-quality display compared to the conventional vertical electric field method, in which a voltage is applied to electrodes formed on the top and bottom substrates to drive the liquid crystal.
  • liquid crystal alignment film in industry is produced by rubbing the surface of a film made of polyamic acid and/or polyimide formed by imidizing polyamic acid on an electrode substrate in one direction with a cloth such as cotton, nylon, or polyester. Rubbing is a simple and highly productive industrially useful method.
  • various problems have become evident, such as scratches on the surface of the alignment film caused by rubbing, dust generation, effects of mechanical force and static electricity, and even non-uniformity within the alignment treatment surface.
  • a photoalignment method is known in which liquid crystal alignment ability is imparted by irradiating polarized radiation.
  • photoalignment methods methods using photoisomerization reactions, photocrosslinking reactions, photodecomposition reactions, etc. have been proposed (see, for example, Non-Patent Document 1 and Patent Documents 1-3).
  • the liquid crystal alignment film used in the liquid crystal display element of the IPS driving method or FFS driving method requires a high alignment control force to suppress the afterimage caused by long-term AC driving (hereinafter, also referred to as AC afterimage).
  • AC afterimage the afterimage caused by long-term AC driving
  • the amount of light irradiation is a factor that affects energy costs and production speed, so it is preferable to be able to perform alignment treatment with a small amount of light irradiation.
  • the inventors have found that it is difficult for conventional liquid crystal alignment films to achieve a high level of both suppression of AC image retention and suppression of variation (non-uniformity) in the twist angle of liquid crystal molecules within the liquid crystal alignment film. This increases the risk of AC image retention occurring when driving the liquid crystal, and also increases the risk that a liquid crystal display element with excellent contrast and high display quality cannot be obtained because the liquid crystal alignment becomes incomplete in part of the liquid crystal alignment film when the liquid crystal display element is enlarged.
  • the object of the present invention is to provide a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film that suppresses AC afterimages even when the amount of light irradiation in the alignment treatment by the photo-alignment method is small, the liquid crystal alignment film, and a liquid crystal display element using the liquid crystal alignment film. It is also to provide a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film that can reduce the variation (non-uniformity) of the twist angle of the liquid crystal molecules within the liquid crystal alignment film plane, the liquid crystal alignment film, and a liquid crystal display element using the liquid crystal alignment film.
  • the present inventors have conducted various studies to achieve the above object, and have found that the use of a specific tetracarboxylic acid component is effective for achieving the above object. They have also found that a liquid crystal aligning agent having the following composition is optimal for achieving the above object, and have completed the present invention.
  • the present invention is based on the above findings and has the following gist.
  • a liquid crystal aligning agent comprising: a diamine component; and at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using the diamine component and a polyimide which is an imidized product of the polyimide precursor.
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above.
  • examples of halogen atoms include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and * represents a bond.
  • Boc represents a tert-butoxycarbonyl group.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film that suppresses AC afterimages can be obtained even when the amount of light irradiation in the alignment treatment by the photoalignment method is small. In addition, a liquid crystal alignment film that can reduce the variation (non-uniformity) of the twist angle of liquid crystal molecules in the liquid crystal alignment film plane can be obtained.
  • the mechanism by which the above-mentioned effects of the present invention are obtained is not entirely clear, but the following is thought to be one of the reasons. First, by introducing a structural unit that is not easily decomposed by light irradiation, the amount of decomposition products generated in the alignment treatment film when irradiated with polarized ultraviolet light is suppressed.
  • the resulting liquid crystal alignment film has improved interaction with the liquid crystal molecules, so that it is possible to obtain a liquid crystal alignment film with small variation (non-uniformity) in the twist angle of the liquid crystal molecules in the liquid crystal alignment film plane and suppressed AC afterimages.
  • the tetracarboxylic dianhydride and its derivatives represented by the above formula (T2-1) have multiple cyclohexane structures in the molecule, and therefore, compared to conventional tetracarboxylic acid derivatives having a cyclooctane structure, thermal imidization proceeds more easily, which is believed to be why the liquid crystal alignment can be improved and the above-mentioned effects are achieved.
  • the tetracarboxylic dianhydrides and derivatives thereof represented by the above formulas (T2-2) and (T2-3) have a larger three-dimensional structure and a stronger interaction with liquid crystal molecules than conventional tetracarboxylic acid derivatives having a cyclohexane structure, which is why the above effects are obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of a lateral electric field type liquid crystal display element of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of a lateral electric field type liquid crystal display element of the present invention.
  • the liquid crystal aligning agent of the present invention contains at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a tetracarboxylic acid component consisting of at least one selected from the group consisting of tetracarboxylic acid dianhydrides represented by the above formula (T1) and derivatives thereof (also referred to as a specific alicyclic tetracarboxylic acid derivative (p1) in the present invention) and at least one selected from the group consisting of tetracarboxylic acid dianhydrides represented by the above formulas (T2-1) to (T2-3) and derivatives thereof (also referred to as a specific alicyclic tetracarboxylic acid derivative (p2) in the present invention), and a diamine component.
  • the polymer (P) may be one or more types.
  • the polyimide precursor is a polymer that can give a polyimide by imidizing a polyamic acid, a polyamic acid ester, or the like.
  • Tetracarboxylic acid component The polyamic acid (P') which is a polyimide precursor of the polymer (P) can be obtained, for example, by a polymerization reaction of a diamine component, a tetracarboxylic acid dianhydride corresponding to the specific alicyclic tetracarboxylic acid derivative (p1) and a tetracarboxylic acid dianhydride corresponding to the specific alicyclic tetracarboxylic acid derivative (p2).
  • the tetracarboxylic acid component to be reacted with the diamine component may be not only a tetracarboxylic acid dianhydride but also a derivative of a tetracarboxylic acid dianhydride such as a tetracarboxylic acid, a tetracarboxylic acid dihalide, a tetracarboxylic acid dialkyl ester, or a tetracarboxylic acid dialkyl ester dihalide.
  • alkyl group having 1 to 6 carbon atoms in R 1 to R 4 in formula (T1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, etc.
  • alkenyl group having 2 to 6 carbon atoms in R 1 to R 4 include a vinyl group, a propenyl group, a butenyl group, etc., which may be linear or branched.
  • alkynyl group having 2 to 6 carbon atoms in R 1 to R 4 in formula (T1) include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, a 2-butynyl group, a 3-butynyl group, etc.
  • Examples of the monovalent organic group containing a fluorine atom and having 1 to 6 carbon atoms in R 1 to R 4 in formula (T1) include a fluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, a pentafluoropropyl group, a trifluoromethoxy group, a 2,2,2-trifluoroethyl group, a 2,2,2-trifluoroethoxy group, etc. From the viewpoint of high photoreactivity, it is more preferable that at least two of R 1 to R 4 in the above formula (T1) represent a group other than a hydrogen atom as defined above.
  • R 1 and R 4 represent a group other than a hydrogen atom
  • R 2 and R 3 represent a hydrogen atom
  • R 1 to R 4 in the above formula (T1) are each independently a hydrogen atom or a methyl group, more preferably at least one of R 1 to R 4 is a methyl group, and even more preferably at least two of R 1 to R 4 are methyl groups.
  • R 1 and R 4 in the above formula (T1) are methyl groups
  • R 2 and R 3 are hydrogen atoms.
  • the proportion of the specific alicyclic tetracarboxylic acid derivative (p1) used is more preferably 50 mol % or more, further preferably 60 mol % or more, and most preferably 70 mol % or more, based on 1 mol of the total tetracarboxylic acid components used in the polymer (P).
  • the proportion of the specific alicyclic tetracarboxylic acid derivative (p1) used is preferably 95 mol % or less, and more preferably 50 to 95 mol %, per mol of the total tetracarboxylic acid components used in the polymer (P).
  • the proportion of the specific alicyclic tetracarboxylic acid derivative (p2) used is preferably 5 mol % or more per mol of the total tetracarboxylic acid components used in the polymer (P).
  • the proportion of the specific alicyclic tetracarboxylic acid derivative (p2) used is preferably 50 mol % or less, more preferably 40 mol % or less, and even more preferably 30 mol % or less, based on 1 mol of the total tetracarboxylic acid components used in the polymer (P).
  • the diamine component used in the production of the polymer (P) is not particularly limited. Examples of diamines are listed below, but are not limited thereto.
  • the diamines may be used alone, in combination of two or more, or in combination of three or more.
  • Phenylenediamines such as p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, and 2,6-diaminotoluene; 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'- diaminobiphenyl compounds such as diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'
  • 1,4-bis(4-aminophenoxy)benzene 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene, and other diamines having a diphenyl ether structure (hereinafter, these are collectively referred to as the first diamine).
  • diamines having a tetracarboxylic diimide structure such as N,N'-bis(4-aminophenyl)-cyclobutane-(1,2,3,4)-tetracarboxylic diimide, N,N'-bis(4-aminophenyl)-1,3-dimethylcyclobutane-(1,2,3,4)-tetracarboxylic diimide, and N,N'-bis(2,2'-bis(trifluoromethyl)-4'-amino-1,1'-biphenyl-4-yl)-cyclobutane-(1,2,3,4)-tetracarboxylic diimide; aromatic diamines having an azobenzene structure such as 4,4'-diaminoazobenzene, and aromatic diamines having a stilbene structure such as 4,4'-diaminostilbene.
  • a tetracarboxylic diimide structure such as N,N'-bis(4-aminophen
  • aromatic diamines having a tolan structure such as diaminotlan; aromatic diamines having a chalcone structure such as 4,4'-diaminochalcone; aromatic diamines having a phenylbenzoate structure such as 1,4-phenylene bis(4-aminobenzoate), 1,4-phenylene bis(3-aminobenzoate), 1,3-phenylene bis(4-aminobenzoate), 1,3-phenylene bis(3-aminobenzoate), bis(4-aminophenyl)terephthalate, bis(3-aminophenyl)terephthalate, bis(4-aminophenyl)isophthalate, and bis(3-aminophenyl)isophthalate; 3-(4-aminophenyl)acrylate, (E)-4-amino-2-methylphenyl 3-(4-aminophenyl)acrylate, (E)-4-aminophenethyl 3-(4-amin
  • the specific nitrogen atom-containing structure is an atomic group other than the two amino groups involved in the polycondensation reaction.) (provided that the molecule does not have an amino group to which a protecting group that is detached by heating and replaced with a hydrogen atom is bonded); 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 1,2-bis(4-aminophenyl)ethane-3-carboxylic acid, 4,4
  • aromatic diamines typified by diamines having a fluorene skeleton, such as bis(4-aminophenyl)fluorene; diamines having a siloxane bond, such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; acyclic aliphatic diamines typified by metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and the like; alicyclic diamines typified by 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), and diamines in which two amino groups are bonded to a group represented by any one of formulas (Y-1) to (Y-167) described in WO2018/117239, and the like.
  • Ar 1 and Ar 1' each represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more hydrogen atoms on the benzene ring, the biphenyl structure, or the naphthalene ring may be substituted with a monovalent group.
  • One or more hydrogen atoms on the benzene ring, biphenyl structure, or naphthalene ring may be substituted with a monovalent group, and examples of the monovalent group include a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a fluoroalkenyl group having 2 to 3 carbon atoms, a fluoroalkoxy group having 1 to 3 carbon atoms, an alkyloxycarbonyl group having 2 to 3 carbon atoms, a cyano group, and a nitro group.
  • m and n are integers of 0 to 3, and satisfy 1 ⁇ m+n ⁇ 4.
  • j is an integer of 0 or 1.
  • X 1 represents -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R 1 represents a monovalent group such as a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkoxyalkyl group having 2 to 10 carbon atoms.
  • X 2 represents —O—, —CH 2 O—, —CH 2 —OCO—, —COO—, or —OCO—, and when there are two of m, n, X 1 and R 1 , each independently has the above definition.
  • nitrogen atom-containing heterocycle examples include pyrrole, imidazole, pyrazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, indole, benzimidazole, purine, quinoline, isoquinoline, naphthyridine, quinoxaline, phthalazine, triazine, carbazole, acridine, piperidine, piperazine, pyrrolidine, and hexamethyleneimine.
  • the diamine is preferably a diamine represented by the formula (d AL ).
  • the content of the diamine represented by the formula (d AL ) is preferably 5 mol% or more, preferably 10 mol% or more, based on 1 mol of the diamine component used in the production of the polymer (P).
  • the content of the diamine represented by the formula (d AL ) may be 90 mol% or less, or 80 mol% or less, based on 1 mol of the diamine component used in the production of the polymer (P).
  • the diamine component used in the production of the polymer (P) may contain, in addition to the diamine represented by the formula (d AL ), another diamine selected from the group consisting of the phenylenediamine, the diaminobiphenyl compound, the diamine having a diphenyl ether structure, the diamine having a tetracarboxylic diimide structure, the diamine having an amide bond, the diamine having a urea bond, and the diamine having a group "-N(D)-".
  • the content of the other diamine is more preferably 10 to 95 mol%, even more preferably 10 to 90 mol%, and even more preferably 20 to 90 mol%, relative to 1 mol of the diamine component used in the production of the polymer (P).
  • the content of each diamine constituting each of the other diamines may be 30 mol% or less.
  • the liquid crystal aligning agent of the present invention is a liquid composition obtained by dispersing or dissolving the polymer (P) and other components used as necessary, preferably in a suitable solvent.
  • the liquid crystal alignment agent of the present invention may contain other polymers in addition to the polymer (P).
  • other polymers include, in addition to the polymer (P), at least one polymer (also referred to as polymer (B) in the present invention) selected from the group consisting of polyimide precursors obtained using a tetracarboxylic acid component that does not contain the specific alicyclic tetracarboxylic acid derivative (p1), polyimide precursors obtained using a tetracarboxylic acid component that does not contain the specific alicyclic tetracarboxylic acid derivative (p2), and polyimides that are imidized products of these polyimide precursors; polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride) copolymers, poly(isobutylene-maleic anhydride) copoly
  • poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley) and GSM301 (manufactured by Gifu Ceramics Manufacturing Co., Ltd.), and a specific example of poly(isobutylene-maleic anhydride) copolymers includes Isoban-600 (manufactured by Kuraray Co., Ltd.).
  • a specific example of poly(vinyl ether-maleic anhydride) copolymers includes Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland Co., Ltd.).
  • polymer (B) is more preferred in terms of reducing residual DC-induced afterimages.
  • the other polymers may be used alone or in combination of two or more.
  • the content of the other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and even more preferably 20 to 80 parts by mass, based on 100 parts by mass of the total of the polymers contained in the liquid crystal alignment agent.
  • Specific examples of the tetracarboxylic acid component used in the production of the polymer (B) include acyclic aliphatic tetracarboxylic acid dianhydrides, alicyclic tetracarboxylic acid dianhydrides, aromatic tetracarboxylic acid dianhydrides, and derivatives thereof.
  • the acyclic aliphatic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure, but does not necessarily have to be composed of a chain hydrocarbon structure alone, and may have an alicyclic structure or an aromatic ring structure as a part thereof.
  • Alicyclic tetracarboxylic dianhydrides are acid dianhydrides obtained by intramolecular dehydration of four carboxy groups, including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to an aromatic ring. In addition, they do not necessarily have to be composed of an alicyclic structure alone, and may have a chain hydrocarbon structure or an aromatic ring structure as part of them.
  • the aromatic tetracarboxylic acid dianhydride is not particularly limited as long as it is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups, including at least one carboxy group bonded to an aromatic ring.
  • the alicyclic tetracarboxylic acid dianhydride or a derivative thereof is preferably a tetracarboxylic acid dianhydride having at least one partial structure selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure, and a cyclohexane ring structure, or a derivative thereof.
  • the aromatic tetracarboxylic dianhydride or a derivative thereof is preferably a tetracarboxylic dianhydride having a benzene ring structure or a derivative thereof from the viewpoint of enhancing the liquid crystal alignment property.
  • tetracarboxylic dianhydrides or derivatives thereof that can be used as the tetracarboxylic acid component of the polymer (B) include the following tetracarboxylic dianhydrides or derivatives thereof.
  • acyclic aliphatic tetracarboxylic dianhydride such as 1,2,3,4-butane tetracarboxylic dianhydride or (Q) 2 -A
  • Q represents a monovalent succinic anhydride structure
  • A represents a divalent organic group in which a part of the -CH 2 - of the alkylene group is replaced by at least one of a phenylene group, -O-, -NR- (R represents a hydrogen atom or a methyl group), -C( ⁇ O)-NR- (R represents a hydrogen atom or a methyl group), -C( ⁇ O)-O-, and -O-C( ⁇ O)-); 1,2,3,4-cyclobutane t
  • the tetracarboxylic acid component used in the production of the polymer (B) more preferably contains a tetracarboxylic acid dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring, or a derivative thereof.
  • Examples of the diamine component for obtaining the polymer (B) include the diamines exemplified for the polymer (P) above.
  • the first diamine a diamine having a urea bond, a diamine having an amide bond, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl) ...
  • the diamine component contains at least one diamine selected from the group consisting of 2,2-bis(3-amino-4-methylphenyl)propane, 4,4'-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene, the diamines having the specific nitrogen atom-containing structure, the diamines having a carboxy group, 4-(2-(methylamino)ethyl)aniline, and 4-(2-aminoethyl)aniline.
  • diamines selected from the group consisting of 2,2-bis(3-amino-4-methylphenyl)propane, 4,4'-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-amino
  • the diamine component one type of diamine may be used alone, or two or more types may be used in combination.
  • the polyamic acid is produced by reacting a diamine component with a tetracarboxylic acid component in an organic solvent.
  • the ratio of the tetracarboxylic acid component and the diamine component used in the reaction for producing the polyamic acid is preferably such that the acid anhydride group of the tetracarboxylic acid component is 0.5 to 2 equivalents, more preferably 0.8 to 1.2 equivalents, per equivalent of the amino group of the diamine component.
  • the closer the equivalent of the acid anhydride group of the tetracarboxylic acid component is to 1 equivalent the higher the molecular weight of the polyamic acid produced.
  • the reaction temperature in the production of polyamic acid is preferably ⁇ 20 to 150° C., more preferably 0 to 100° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • the production of polyamic acid can be carried out at any concentration, but the concentration of polyamic acid is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the reaction can be carried out at a high concentration in the early stage of the reaction, and then a solvent can be added.
  • organic solvent examples include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and 1,3-dimethyl-2-imidazolidinone.
  • a solvent such as methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
  • the polyamic acid ester can be obtained by a known method such as, for example, [I] a method of reacting the polyamic acid obtained by the above-mentioned method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, or [III] a method of reacting a tetracarboxylic acid diester dihalide with a diamine.
  • Polyimide can be obtained by ring-closing (imidizing) a polyimide precursor such as the polyamic acid or polyamic acid ester.
  • the imidization ratio in this specification refers to the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or its derivatives and carboxyl groups (or their derivatives).
  • the imidization ratio does not necessarily need to be 100% and can be adjusted according to the application and purpose.
  • Methods for imidizing a polyimide precursor include thermal imidization, in which a solution of the polyimide precursor is heated as is, and catalytic imidization, in which a catalyst is added to a solution of the polyimide precursor.
  • the temperature is preferably 100 to 400°C, more preferably 120 to 250°C, and it is preferable to carry out the process while removing the water produced by the imidization reaction from the system.
  • Catalytic imidization of polyimide precursors can be carried out by adding a basic catalyst and an acid anhydride to a solution of the polyimide precursor and stirring the solution at preferably -20 to 250°C, more preferably 0 to 180°C.
  • the amount of the basic catalyst is preferably 0.5 to 30 molar times, more preferably 2 to 20 molar times
  • the amount of the acid anhydride is preferably 1 to 50 molar times, more preferably 3 to 30 molar times, the amount of the amic acid group.
  • Examples of basic catalysts include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine, and among these, pyridine is preferred because it has a suitable basicity for promoting the reaction.
  • acid anhydrides examples include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride, and among these, acetic anhydride is preferred because it makes purification after the reaction easy.
  • the imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent to cause precipitation.
  • solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated by pouring into the solvent can be recovered by filtration, and then dried at room temperature or by heating under normal or reduced pressure.
  • the recovered polymer can be redissolved in an organic solvent and the reprecipitation recovery operation repeated 2 to 10 times to reduce the amount of impurities in the polymer.
  • the solvent used in this case include alcohols, ketones, and hydrocarbons. Using three or more solvents selected from these is preferable because it further increases the efficiency of purification.
  • a terminal-capping polymer may be produced using a suitable terminal-capping agent together with a tetracarboxylic acid component containing a tetracarboxylic dianhydride or a derivative thereof, and a diamine component containing a diamine.
  • the terminal-capping polymer has the effect of improving the film hardness of the liquid crystal alignment film obtained by coating, and improving the adhesion properties between the sealant and the liquid crystal alignment film.
  • terminals of the polyimide precursor or polyimide in the present invention include amino groups, carboxy groups, acid anhydride groups, and groups derived from terminal blocking agents described below.
  • the amino groups, carboxy groups, and acid anhydride groups can be obtained by a normal condensation reaction, or by blocking the terminals with the terminal blocking agents described below.
  • end-capping agents include acid anhydrides such as acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-(3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, and 4-ethynylphthalic anhydride; dicarbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride, and nicotinic acid chloride; Examples of the monoamine compounds include aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid
  • the proportion of the end-capping agent used is preferably 0.01 to 20 molar parts, and more preferably 0.01 to 10 molar parts, per 100 molar parts of the total diamine components used.
  • the polystyrene-equivalent weight average molecular weight (Mw) of the polyimide precursor and polyimide measured by gel permeation chromatography (GPC) is preferably 1,000 to 500,000, and more preferably 2,000 to 300,000.
  • the molecular weight distribution (Mw/Mn), which is expressed as the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC, is preferably 15 or less, and more preferably 10 or less. Having the molecular weight within this range ensures good liquid crystal alignment in the liquid crystal display element.
  • the organic solvent contained in the liquid crystal alignment agent according to the present invention is not particularly limited as long as it can uniformly dissolve the polymer (P) and other polymers added as necessary.
  • suitable solvents include N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, and N-cyclohexyl-2-pyrrolidone (collectively referred to as good solvents).
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, and ⁇ -butyrolactone are preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass, of the total solvent contained in the liquid crystal alignment agent.
  • the organic solvent contained in the liquid crystal alignment agent is preferably a mixed solvent that uses, in addition to the above-mentioned solvent, a solvent (also called a poor solvent) that improves the applicability when applying the liquid crystal alignment agent and the surface smoothness of the coating film.
  • a solvent also called a poor solvent
  • Specific examples of poor solvents are listed below, but are not limited to these.
  • the content of the poor solvent is preferably 1 to 80 mass % of the total solvent contained in the liquid crystal alignment agent, more preferably 10 to 80 mass %, and particularly preferably 20 to 70 mass %.
  • the type and content of the poor solvent are appropriately selected depending on the application device, application conditions, application environment, etc. of the liquid crystal alignment agent.
  • Examples of poor solvents include diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl
  • 2-(2-butoxyethoxy)-1-propanol propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy)ethyl acetate, diethylene Examples include glycol acetate, propylene glycol diacetate, n-butyl acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, 4-methyl-2-pentyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, but
  • diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, and diisobutyl ketone are preferred.
  • Preferred combinations of good and poor solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2-pyrrolidone and propylene glycol diacetate, N,N-dimethyl lactamide and diisobutyl ketone, and N-methyl-2-pyrrolidone.
  • N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate
  • N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and dipropylene glycol monomethyl ether N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and propylene glycol monobutyl ether
  • N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether
  • N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether acetate ether N-ethyl-2-pyrrolidone and dipropylene glycol dimethyl ether, N,
  • the liquid crystal aligning agent of the present invention contains the above-mentioned polymer (P), and, if necessary, the above-mentioned other polymers, and the above-mentioned organic solvent.
  • the total content of the polymers contained in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the coating film to be formed, but it is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution.
  • the particularly preferred total content of the polymers is 2 to 8% by mass.
  • the content of the polymer (P) used in the present invention is preferably 1 to 100 mass %, more preferably 10 to 100 mass %, particularly preferably 20 to 100 mass %, based on the total amount of the polymer contained in the liquid crystal alignment agent.
  • the liquid crystal alignment agent of the present invention may contain other components (hereinafter also referred to as additive components) in addition to the above polymer (P), the other polymers, and the organic solvent.
  • additive components include at least one crosslinking compound selected from the group consisting of a crosslinking compound having at least one substituent selected from an oxiranyl group, an oxetanyl group, a blocked isocyanate group, an oxazoline group, a cyclocarbonate group, a hydroxyalkyl group, and an alkoxy group, and a crosslinking compound having a polymerizable unsaturated group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant, a sensitizer, a preservative, and a compound for adjusting the dielectric constant or electrical resistance of the resulting liquid crystal alignment film.
  • a crosslinking compound selected from the group consisting of a crosslinking compound having at least one substituent selected from an oxiranyl group, an oxetanyl group, a blocked isocyanate group, an oxazoline group, a cyclocarbonate group, a hydroxyalky
  • crosslinkable compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, bisphenol A type epoxy resins such as Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), and epoxy resins having a biphenyl ske
  • epoxy resins containing glyceryl ether phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-)cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), triglycidyl isocyanurates such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celloxide 2021P (manufactured by Daicel Corporation), N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N compounds having two or more oxiranyl groups, such as compounds containing a tertiary nitrogen atom, such as N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, and tetrakis
  • the content of the crosslinking compound is preferably 0.1 to 30 parts by mass, and more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
  • the compound for adjusting the dielectric constant and electrical resistance is, for example, a monoamine having a nitrogen atom-containing aromatic heterocycle, such as 3-picolylamine.
  • the content of the monoamine having a nitrogen atom-containing aromatic heterocycle is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
  • Preferred specific examples of the functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane.
  • Examples of the functional silane include 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl methyl diethoxysilane, 3-glycidoxypropyl triethoxysilane, p-styryl trimethoxysilane, 3-methacryloxypropyl methyl dimethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl methyl diethoxysilane, 3-methacryloxypropyl triethoxysilane, 3-acryloxypropyl trimethoxysilane, tris[3-(trimethoxysilyl)propyl]isocyanurate, 3-mercaptopropyl methyl dimethoxysilane, 3-mercaptopropyl trimethoxysilane, and 3-isocyanate propyl triethoxysilane.
  • the content of the functional silane compound is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts
  • the solids concentration in the liquid crystal alignment agent (the ratio of the total mass of the components other than the solvent in the liquid crystal alignment agent to the total mass of the liquid crystal alignment agent) is appropriately selected taking into consideration the viscosity, volatility, etc., but is preferably 1 to 10 mass%.
  • the particularly preferred range of solid content varies depending on the method used to apply the liquid crystal alignment agent to the substrate. For example, when using a spin coating method, it is particularly preferred that the solid content is 1.5 to 4.5% by mass. When using a printing method, it is particularly preferred that the solid content is 3 to 9% by mass, thereby making the solution viscosity 12 to 50 mPa ⁇ s. When using an inkjet method, it is particularly preferred that the solid content is 1 to 5% by mass, thereby making the solution viscosity 3 to 15 mPa ⁇ s.
  • the temperature when preparing the liquid crystal alignment agent is preferably 10 to 50°C, more preferably 20 to 30°C.
  • a liquid crystal alignment film can be produced by using the liquid crystal alignment agent.
  • the liquid crystal display element of the present invention is provided with the liquid crystal alignment film.
  • the operation mode of the liquid crystal display element according to the present invention is not particularly limited, and it can be applied to various operation modes such as the TN mode, STN (Super Twisted Nematic) mode, vertical alignment mode (including VA-MVA mode, VA-PVA mode, etc.), IPS mode, FFS mode, optical compensation bend mode (OCB mode), etc.
  • the liquid crystal alignment film of the present invention is a liquid crystal alignment film suitable for liquid crystal display elements of a horizontal alignment mode such as the IPS mode or FFS mode.
  • the liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (3), a method including steps (1) to (4), a method including steps (1) to (3), (3b), and (4), a method including steps (1) to (2) and (4), a method including steps (1) to (3), (4), and (5), or a method including steps (1) to (3), (4), and (6).
  • Step (1) Step of applying a liquid crystal alignment agent to at least one of the first substrate and the second substrate>
  • Step (1) is a step of applying the liquid crystal aligning agent of the present invention onto a substrate. Specific examples of step (1) are as follows.
  • the liquid crystal alignment agent of the present invention is applied to one side of a substrate on which a patterned transparent conductive film is provided by an appropriate application method such as a roll coater method, a spin coat method, a printing method, or an inkjet method.
  • the substrate is not particularly limited as long as it is a highly transparent substrate, and plastic substrates such as acrylic substrates and polycarbonate substrates can be used in addition to glass substrates and silicon nitride substrates.
  • an opaque material such as a silicon wafer can be used for only one substrate, and in this case, a material that reflects light such as aluminum can be used for the electrode.
  • a substrate on which an electrode made of a transparent conductive film or a metal film patterned into a comb shape is provided and an opposing substrate on which no electrode is provided are used.
  • the transparent conductive film can be formed by a known method using, for example, indium tin oxide (ITO), indium zinc oxide (IZO), or a mixture thereof.
  • Step (2) Step of baking the applied liquid crystal alignment agent>
  • the liquid crystal alignment agent applied on the substrate is baked to form a film. Specific examples of the step (2) are as follows.
  • the solvent can be evaporated or the polyamic acid or polyamic acid ester can be thermally imidized by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven.
  • the drying and baking steps after the application of the liquid crystal alignment agent of the present invention can be performed at any temperature and time, and may be performed multiple times.
  • the temperature at which the solvent of the liquid crystal alignment agent is reduced can be, for example, 40 to 180°C. From the viewpoint of shortening the process, the baking can be performed at 40 to 150°C.
  • the baking time is not particularly limited, but can be 1 to 10 minutes or 1 to 5 minutes.
  • a baking step can be added after the above step, for example, at a temperature range of 150 to 300°C or 150 to 250°C.
  • the baking time is not particularly limited, but can be 5 to 40 minutes or 5 to 30 minutes.
  • the film thickness after firing is too thin, the reliability of the liquid crystal display element may decrease, so it is preferable for the film thickness to be 5 to 300 nm, and more preferably 10 to 200 nm.
  • Step (3) is a step of, in some cases, performing an alignment treatment on the film obtained in step (2). That is, in a horizontal alignment type liquid crystal display element such as an IPS type or FFS type, an alignment ability imparting treatment is performed on the coating film. On the other hand, in a vertical alignment type liquid crystal display element such as a VA type or PSA type, the formed coating film can be used as it is as a liquid crystal alignment film, but the coating film may also be subjected to an alignment ability imparting treatment. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method, and more preferably, a photo-alignment treatment method.
  • the photo-alignment treatment method includes a method in which the surface of the film-like material is irradiated with radiation (more preferably with polarized radiation) to impart liquid crystal alignment properties (also referred to as liquid crystal alignment ability).
  • the radiation may be ultraviolet light or visible light having a wavelength of 100 to 800 nm, preferably ultraviolet light having a wavelength of 100 to 400 nm, more preferably ultraviolet light having a wavelength of 200 to 400 nm.
  • the liquid crystal alignment film of the present invention is more preferably a liquid crystal alignment film obtained by irradiating with polarized ultraviolet light.
  • the rubbing treatment may be carried out by rubbing the coating film in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, or cotton.
  • the radiation when the radiation is polarized, it may be linearly polarized or partially polarized. Furthermore, when the radiation used is linearly polarized or partially polarized, irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination of these. When irradiating with unpolarized radiation, it is preferable that the irradiation direction is oblique.
  • the radiation dose is more preferably 1 to 10,000 mJ/cm 2 , further preferably 100 to 1000 mJ/cm 2 , and most preferably 100 to 500 mJ/cm 2 .
  • the substrate having the film-like material may be irradiated while being heated at, for example, 50 to 250° C.
  • the liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
  • the coating film irradiated with the above-mentioned radiation may be subjected to a heat treatment.
  • the temperature for such heat treatment is preferably 50 to 300° C., more preferably 120 to 250° C.
  • the time for the heat treatment is preferably 1 to 30 minutes.
  • Step (4) is a step of preparing a liquid crystal cell by disposing a liquid crystal layer between the first substrate and the second substrate so as to be adjacent to the alignment-treated film.
  • Step (4) is a step of preparing a liquid crystal cell by disposing a liquid crystal layer between the first substrate and the second substrate so as to be adjacent to the alignment-treated film.
  • the first method first, two substrates are placed facing each other with a gap (cell gap) between them so that their liquid crystal alignment films face each other.
  • the periphery of the two substrates is attached using a sealant, and the liquid crystal composition is injected and filled into the substrate surfaces and the cell gap defined by the sealant so that it comes into contact with the film surface, and then the injection hole is sealed.
  • the second method is called the ODF (One Drop Fill) method.
  • a UV-curable resin composition (hereinafter also referred to as a sealant) is applied to a predetermined location on one of the two substrates on which a liquid crystal alignment film has been formed, and the liquid crystal composition is then dropped onto several predetermined locations on the liquid crystal alignment film surface.
  • the other substrate is then attached so that the liquid crystal alignment film faces the other substrate, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with UV light to cure the sealant.
  • the two substrates are placed facing each other so that the rubbing directions of the coating films are at a predetermined angle to each other, for example, perpendicular or anti-parallel.
  • the sealing agent for example, an epoxy resin containing a hardener and aluminum oxide spheres as spacers can be used.
  • the liquid crystal composition is not particularly limited, and may be any of various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy.
  • a liquid crystal composition having a positive dielectric anisotropy is also called a positive liquid crystal
  • a liquid crystal composition having a negative dielectric anisotropy is also called a negative liquid crystal.
  • the liquid crystal composition may contain a liquid crystal compound having a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., a trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocycle, a cycloalkane, a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring, and may contain a compound having two or more rigid portions (mesogenic skeletons) that exhibit liquid crystallinity within the molecule (e.g., a bimesogenic compound in which two rigid biphenyl structures or terphenyl structures are linked by an alkylene group).
  • a fluorine atom-containing group e.g., a trifluoromethyl group
  • a cyano group e.g., an alky
  • the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
  • the liquid crystal composition may further contain additives from the viewpoint of improving the liquid crystal alignment.
  • additives include photopolymerizable monomers such as compounds having a polymerizable group; optically active compounds (e.g., S-811 manufactured by Merck Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; and polymerization inhibitors.
  • Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck; and PA-1492 manufactured by DIC.
  • Examples of negative type liquid crystals include MLC-6608, MLC-6609, MLC-6610, and MLC-7026-100 manufactured by Merck.
  • liquid crystal containing a compound with a polymerizable group is MLC-3023 manufactured by Merck.
  • the liquid crystal alignment agent of the present invention is also preferably used in a liquid crystal display element (PSA type liquid crystal display element) manufactured through a process (hereinafter, this process is also referred to as process (5)) in which a liquid crystal composition containing a polymerizable compound that is polymerized by at least one of active energy rays and heat is placed between the pair of substrates having a liquid crystal layer and a voltage is applied between the electrodes while the polymerizable compound is polymerized by at least one of irradiation with active energy rays and heating.
  • PSA type liquid crystal display element manufactured through a process (hereinafter, this process is also referred to as process (5)) in which a liquid crystal composition containing a polymerizable compound that is polymerized by at least one of active energy rays and heat is placed between the pair of substrates having a liquid crystal layer and a voltage is applied between the electrodes while the polymerizable compound is polymerized by at least one of irradiation with active energy rays
  • the liquid crystal alignment agent of the present invention is also preferably used in a liquid crystal display element (SC-PVA type liquid crystal display element) that has a liquid crystal layer between a pair of substrates equipped with electrodes, and is manufactured through a process of disposing a liquid crystal alignment film between the pair of substrates that contains a polymerizable group that is polymerized by at least one of active energy rays and heat, and applying a voltage between the electrodes (hereinafter, this process is also referred to as process (6)).
  • SC-PVA type liquid crystal display element that has a liquid crystal layer between a pair of substrates equipped with electrodes, and is manufactured through a process of disposing a liquid crystal alignment film between the pair of substrates that contains a polymerizable group that is polymerized by at least one of active energy rays and heat, and applying a voltage between the electrodes (hereinafter, this process is also referred to as process (6)).
  • a polarizing plate can be attached to the outer surface of the liquid crystal cell to obtain a liquid crystal display element.
  • polarizing plates that can be attached to the outer surface of the liquid crystal cell include a polarizing film called an "H film” made by stretching and aligning polyvinyl alcohol and absorbing iodine, sandwiched between cellulose acetate protective films, and a polarizing plate made of the H film itself.
  • the IPS substrate which is a comb-tooth electrode substrate used in the IPS system, has a base material, a number of linear electrodes formed on the base material and arranged in a comb-tooth pattern, and a liquid crystal alignment film formed on the base material so as to cover the linear electrodes.
  • the FFS substrate which is a comb-tooth electrode substrate used in the FFS method, has a base material, a surface electrode formed on the base material, an insulating film formed on the surface electrode, a plurality of linear electrodes formed on the insulating film and arranged in a comb-tooth shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.
  • FIG. 1 is a schematic cross-sectional view showing an example of a horizontal electric field type liquid crystal display element of the present invention, which is an example of an IPS type liquid crystal display element.
  • liquid crystal 3 is sandwiched between a comb-tooth electrode substrate 2 having a liquid crystal alignment film 2c and a counter substrate 4 having a liquid crystal alignment film 4a.
  • the comb-tooth electrode substrate 2 has a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-tooth shape, and a liquid crystal alignment film 2c formed on the base material 2a so as to cover the linear electrodes 2b.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4c is also a liquid crystal alignment film of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of a horizontal electric field type liquid crystal display element of the present invention, which is an example of an FFS type liquid crystal display element.
  • liquid crystal 3 is sandwiched between a comb-tooth electrode substrate 2 having a liquid crystal alignment film 2h and a counter substrate 4 having a liquid crystal alignment film 4a.
  • the comb-tooth electrode substrate 2 has a base material 2d, a surface electrode 2e formed on the base material 2d, an insulating film 2f formed on the surface electrode 2e, a plurality of linear electrodes 2g formed on the insulating film 2f and arranged in a comb-tooth shape, and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
  • liquid crystal alignment film of the present invention can be applied to various applications other than the above-mentioned applications.
  • it can be used as a liquid crystal alignment film for a retardation film, a liquid crystal alignment film for a scanning antenna or a liquid crystal array antenna, or a liquid crystal alignment film for a transmissive scattering type liquid crystal light control element.
  • the liquid crystal display element of the present invention can be effectively applied to various devices, such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors, liquid crystal televisions, and information displays.
  • CA-1 corresponds to a specific alicyclic tetracarboxylic acid derivative (p1)
  • CA-2 to CA-4 correspond to a specific alicyclic tetracarboxylic acid derivative (p2).
  • (Diamine) DA-1 to DA-4 Compounds represented by the following formulas (DA-1) to (DA-4), respectively.
  • GPC apparatus GPC-101 (Showa Denko K.K.); Column: GPC KD-803, GPC KD-805 (Showa Denko K.K.) in series; Column temperature: 50°C; Eluent: N,N-dimethylformamide (additives: lithium bromide monohydrate (LiBr.H 2 O) 30 mmol/L, phosphoric acid anhydrous crystal (o-phosphoric acid) 30 mmol/L, tetrahydrofuran (THF) 10 mL/L); Flow rate: 1.0 mL/min.
  • Standard sample for creating calibration curve TSK standard polyethylene oxide (molecular weight: about 900,000, about 150,000, about 100,000, and about 30,000) (Tosoh Corporation) and polyethylene glycol (molecular weight: about 12,000, about 4,000, and about 1,000) (Polymer Laboratory Co., Ltd.).
  • This solution was measured for proton NMR at 500 MHz using a Fourier transform superconducting nuclear magnetic resonance (FT-NMR) "AVANCE III" (BRUKER Co., Ltd.).
  • FT-NMR Fourier transform superconducting nuclear magnetic resonance
  • the imidization rate was calculated by the following formula using a proton derived from a structure that does not change before and after imidization as the reference proton, and the peak integrated value of this proton and the proton peak integrated value derived from the NH group of the amic acid that appears around 9.5 to 10.0 ppm.
  • x indicates the proton peak integrated value derived from the NH group of the amic acid
  • y indicates the peak integrated value of the reference proton
  • indicates the ratio of the number of reference protons to one proton of the NH group of the amic acid in the case of polyamic acid (imidization rate 0%).
  • PAA-1 polyamic acid having a solid content concentration of 12% by mass (viscosity: 380 mPa s).
  • the Mn of this polyamic acid was 6,643 and the Mw was 14,885.
  • PAA-3 polyamic acid having a solid content concentration of 12% by mass (viscosity: 380 mPa s).
  • the Mn of this polyamic acid was 6,643 and the Mw was 14,885.
  • PAA-3 solution (30.0 g) was weighed into a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, NMP was added so that the solids concentration was 9 mass%, acetic anhydride (2.27 g) and pyridine (0.590 g) were added, and the mixture was stirred at room temperature for 30 minutes, and then reacted at 55°C for 3 hours.
  • This reaction solution was poured into methanol (300 g), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 80°C to obtain polyimide powder.
  • the imidization rate of this polyimide powder was 70%.
  • NMP was added to the obtained polyimide powder (2.70 g) so that the solid content concentration was 12 mass %, and the mixture was dissolved by stirring at 80° C. for 12 hours to obtain a polyimide solution (SPI-3) (viscosity: 400 mPa s).
  • SPI-3 viscosity: 400 mPa s.
  • the Mn and Mw of this polyimide were 8,414 and 28,143, respectively.
  • PAA-5 polyamic acid having a solids concentration of 12% by mass (viscosity: 420 mPa s).
  • the Mn of this polyamic acid was 6,263 and the Mw was 14,132.
  • PAA-7 polyamic acid having a solids concentration of 12% by mass (viscosity: 370 mPa s).
  • the Mn of this polyamic acid was 11,803 and the Mw was 34,703.
  • Table 1 The specifications of each polymer synthesized above are shown in Table 1.
  • Table 1 the numerical values for the tetracarboxylic acid component and diamine component represent the content (parts by mole) of each tetracarboxylic acid component and diamine component relative to 100 parts by mole of the total amount of the diamine components used in each polymerization step.
  • Example 1 The solution of polyamic acid (PAA-1) obtained in Synthesis Example 1 was diluted with NMP and BCS, and stirred at 25°C for 2 hours to obtain a liquid crystal alignment agent (AL-1) having a polymer solid content of 4 mass% and a content of NMP of 76 mass% and BCS of 20 mass%, respectively, when the total of all components in the liquid crystal alignment agent is 100 mass%.
  • a liquid crystal alignment agent (AL-1) having a polymer solid content of 4 mass% and a content of NMP of 76 mass% and BCS of 20 mass%, respectively, when the total of all components in the liquid crystal alignment agent is 100 mass%.
  • Examples 2 to 5 Comparative Examples 1 to 3>
  • Table 2 except for changing the type of polymer used, the same procedure as in Example 1 was carried out to obtain liquid crystal alignment agents (AL-2) to (AL-5), (AL-R1) to (AL-R3).
  • liquid crystal alignment agents (AL-1) to (AL-5), (AL-R1) to (AL-R3) obtained as described above were confirmed to be homogeneous solutions without abnormalities such as turbidity or precipitation.
  • the liquid crystal alignment agents obtained were used to evaluate the liquid crystal alignment properties.
  • FFS driving liquid crystal cell A liquid crystal cell having the structure of an FFS mode liquid crystal display element was prepared.
  • a substrate with electrodes was prepared.
  • the substrate was a rectangular glass substrate measuring 30 mm x 50 mm and 0.7 mm thick.
  • An ITO electrode with a solid pattern was formed on the substrate as the first layer, which constituted a common electrode.
  • a SiN (silicon nitride) film formed by CVD (chemical vapor deposition) was formed as the second layer on the first common electrode.
  • the thickness of the second SiN film was 300 nm, which was a thickness that functioned as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film was arranged as the third layer on the second SiN film, and two pixels, a first pixel and a second pixel, were formed, each pixel having a size of 10 mm in length and 5 mm in width.
  • This substrate with electrodes had a structure in which the first common electrode and the third pixel electrode were insulated by the second SiN film.
  • the pixel electrode of the third layer has a comb-like shape with a central portion bent at an internal angle of 160° and multiple electrode lines 3 ⁇ m wide arranged in parallel at intervals of 6 ⁇ m.
  • One pixel is formed by multiple electrode lines, and has a first region and a second region separated by a line connecting the bent portions.
  • liquid crystal alignment agents (AL-1) to (AL-5), (AL-R1) to (AL-R3) obtained in the above examples and comparative examples were each filtered through a filter with a pore size of 1.0 ⁇ m, and then applied by spin coating to the above electrode-attached substrate (hereinafter referred to as the electrode substrate) and a glass substrate (hereinafter referred to as the opposing substrate) having a columnar spacer with a height of 4 ⁇ m and an ITO film formed on the back surface. After drying for 2 minutes on a hot plate at 80 ° C., it was baked for 20 minutes in a hot air circulation oven at 230 ° C. to form a coating film with a thickness of 100 nm.
  • This coating surface was irradiated with polarized ultraviolet light through a 254 nm bandpass filter and a polarizer at the exposure doses listed in Tables 3 and 4, and further baked for 30 minutes in an IR oven at 230 ° C. to perform an alignment treatment, thereby obtaining a substrate with a liquid crystal alignment film.
  • the liquid crystal alignment film formed on the electrode substrate was subjected to an alignment treatment so that the direction that divides the inner angle of the pixel bend is parallel to the alignment direction of the liquid crystal, and the alignment film formed on the counter substrate was subjected to an alignment treatment so that the alignment direction of the liquid crystal on the electrode substrate coincides with the alignment direction of the liquid crystal on the counter substrate when the liquid crystal cell was produced.
  • the pixel electrode and the common electrode of the liquid crystal cell were shorted, and the liquid crystal cell was left at room temperature (23°C) for one day.
  • the deviation between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region of the pixel in the non-voltage-applied state was calculated as an angle for the liquid crystal cell that had been subjected to the above treatment.
  • the liquid crystal cell was placed between two polarizing plates arranged so that the polarization axes were perpendicular to each other, the backlight was turned on, and the arrangement angle of the liquid crystal cell was adjusted so that the transmitted light intensity of the first region of the first pixel was minimized.
  • the rotation angle required when the liquid crystal cell was rotated so that the transmitted light intensity of the second region of the first pixel was minimized was calculated as an angle ⁇ .
  • the first region and the second region of the second pixel were compared, and the same angle ⁇ was calculated.
  • the average value of the angles ⁇ of the first pixel and the second pixel was calculated as the rotation angle ⁇ of the liquid crystal cell. It can be said that the stability of the liquid crystal alignment is better as the value of this rotation angle ⁇ is smaller.
  • the evaluation criteria when the rotation angle ⁇ of the liquid crystal cell obtained above was less than 0.08°, it was marked as “ ⁇ ”, and when it was 0.08° or more, it was marked as “ ⁇ ”. The results are shown in Tables 3 and 4.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent using the tetracarboxylic acid component containing the specific alicyclic tetracarboxylic acid derivative (p1) and the specific alicyclic tetracarboxylic acid derivative (p2) had better liquid crystal alignment stability and in-plane contrast uniformity than the liquid crystal alignment film obtained from the liquid crystal alignment agent not falling under the above.
  • the liquid crystal alignment agents (AL-1) to (AL-3) containing a polymer obtained by using (CA-2) as the specific alicyclic tetracarboxylic acid derivative (p2) showed better properties than the conventional liquid crystal alignment agents (AL-R1) to (AL-R2) that did not use (CA-2).
  • liquid crystal alignment agents (AL-4) to (AL-5) containing a polymer obtained by using (CA-3) or (CA-4) as the specific alicyclic tetracarboxylic acid derivative (p2) showed better properties than the conventional liquid crystal alignment agent (AL-R3) that used a tetracarboxylic dianhydride (CA-6) having a cyclohexane structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a liquid crystal alignment film that suppresses the formation of AC afterimages even when the amount of photoirradiation in an alignment treatment by a photoalignment method is small. Also provided is a liquid crystal alignment film in which the amount of fluctuation (nonuniformity) in the twist angle of a liquid crystal molecule in the plane of the liquid crystal alignment film can be reduced. The liquid crystal aligning agent contains at least one polymer (P) selected from the group consisting of a polyimide precursor produced by using a tetracarboxylic acid component and a diamine component and an polyimide that is an imidized product of the polyimide precursor, in which the tetracarboxylic acid component comprises at least one component selected from the group consisting of a tetracarboxylic acid dianhydride represented by formula (T1) and derivatives thereof and at least one component selected from the group consisting of tetracarboxylic acid dianhydrides represented by formulae (T2-1) to (T2-3) and derivatives thereof. (In the formulae, the meaning of each symbol is as defined in the description.)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
 液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ等の表示部として幅広く用いられている。液晶表示素子は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の液晶配向性を制御する液晶配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式等の縦電界方式や、IPS(In-Plane Switching)方式、FFS(Frindge Field Switching)方式等の横電界方式が知られている。基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、また高品位な表示が可能な液晶表示素子として知られている。 Liquid crystal display elements are widely used as display units for personal computers, mobile phones, smartphones, televisions, etc. Liquid crystal display elements include, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, pixel electrodes and a common electrode that apply an electric field to the liquid crystal layer, a liquid crystal alignment film that controls the liquid crystal orientation of the liquid crystal molecules in the liquid crystal layer, and thin film transistors (TFTs) that switch the electrical signals supplied to the pixel electrodes. Known methods for driving liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and the VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In-Plane Switching) method and the FFS (Fringe Field Switching) method. The horizontal electric field method, in which electrodes are formed on only one side of the substrate and an electric field is applied parallel to the substrate, is known as a liquid crystal display element that has a wider viewing angle characteristic and is capable of high-quality display compared to the conventional vertical electric field method, in which a voltage is applied to electrodes formed on the top and bottom substrates to drive the liquid crystal.
 工業的に最も普及している液晶配向膜は、電極基板上に形成された、ポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。ラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化に伴い、ラビング処理で発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性等の種々の問題が明らかとなっている。ラビング処理に代わる配向処理方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したもの等が提案されている(例えば、非特許文献1、特許文献1~3参照)。 The most widely used liquid crystal alignment film in industry is produced by rubbing the surface of a film made of polyamic acid and/or polyimide formed by imidizing polyamic acid on an electrode substrate in one direction with a cloth such as cotton, nylon, or polyester. Rubbing is a simple and highly productive industrially useful method. However, as liquid crystal display elements become more powerful, more precise, and larger, various problems have become evident, such as scratches on the surface of the alignment film caused by rubbing, dust generation, effects of mechanical force and static electricity, and even non-uniformity within the alignment treatment surface. As an alternative alignment treatment method to rubbing, a photoalignment method is known in which liquid crystal alignment ability is imparted by irradiating polarized radiation. As for photoalignment methods, methods using photoisomerization reactions, photocrosslinking reactions, photodecomposition reactions, etc. have been proposed (see, for example, Non-Patent Document 1 and Patent Documents 1-3).
特開平9-297313号公報Japanese Patent Application Publication No. 9-297313 特開2004-206091号公報JP 2004-206091 A WO2018/117240号公報WO2018/117240 publication
 上記IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜には、長期交流駆動によって発生する残像(以下、AC残像ともいう。)を抑制するための高い配向規制力が必要とされる。また、光配向法により配向処理を行う場合、光の照射量はエネルギーコストや生産スピードに影響を与える因子となるので、少ない光照射量で配向処理できることが好ましい。
 しかし、本発明者が検討したところ、従来の液晶配向膜は、AC残像の抑制と、液晶配向膜面内での液晶分子のツイスト角のバラツキ(不均一性)の抑制の両方を、高いレベルで満足することが困難であることが分かった。そのため、液晶駆動によってAC残像が発生するリスクが高くなり、また、液晶表示素子の大画面化を図った際に液晶配向膜の一部で液晶配向が不完全になるため、コントラストに優れた高い表示品位を有する液晶表示素子を得られない虞がある。
The liquid crystal alignment film used in the liquid crystal display element of the IPS driving method or FFS driving method requires a high alignment control force to suppress the afterimage caused by long-term AC driving (hereinafter, also referred to as AC afterimage). In addition, when performing alignment treatment by a photo-alignment method, the amount of light irradiation is a factor that affects energy costs and production speed, so it is preferable to be able to perform alignment treatment with a small amount of light irradiation.
However, the inventors have found that it is difficult for conventional liquid crystal alignment films to achieve a high level of both suppression of AC image retention and suppression of variation (non-uniformity) in the twist angle of liquid crystal molecules within the liquid crystal alignment film. This increases the risk of AC image retention occurring when driving the liquid crystal, and also increases the risk that a liquid crystal display element with excellent contrast and high display quality cannot be obtained because the liquid crystal alignment becomes incomplete in part of the liquid crystal alignment film when the liquid crystal display element is enlarged.
 本発明の目的は、上記事情に鑑み、光配向法による配向処理での光照射量が少ない場合でも、AC残像を抑制する液晶配向膜を得ることのできる液晶配向剤、該液晶配向膜、及び該液晶配向膜を用いた液晶表示素子を提供することにある。また、液晶配向膜面内での液晶分子のツイスト角のバラツキ(不均一性)を小さくできる液晶配向膜を得ることのできる液晶配向剤、該液晶配向膜、及び該液晶配向膜を用いた液晶表示素子を提供することにある。 In view of the above circumstances, the object of the present invention is to provide a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film that suppresses AC afterimages even when the amount of light irradiation in the alignment treatment by the photo-alignment method is small, the liquid crystal alignment film, and a liquid crystal display element using the liquid crystal alignment film. It is also to provide a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film that can reduce the variation (non-uniformity) of the twist angle of the liquid crystal molecules within the liquid crystal alignment film plane, the liquid crystal alignment film, and a liquid crystal display element using the liquid crystal alignment film.
 本発明者は、上記目的達成の為に種々検討を重ねた結果、特定のテトラカルボン酸成分を用いることによって、上記目的達成に有効であることが分かった。そして、下記構成による液晶配向剤が上記目的達成に最適であることを見出し、本発明を完成させた。
 かくして、本発明は、上記の知見に基づくものであり、下記の要旨を有する。
 下記式(T1)で表されるテトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも1種類と、
 下記式(T2-1)~(T2-3)で表されるテトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも1種類と、からなるテトラカルボン酸成分と、
 ジアミン成分と、を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有する液晶配向剤。
The present inventors have conducted various studies to achieve the above object, and have found that the use of a specific tetracarboxylic acid component is effective for achieving the above object. They have also found that a liquid crystal aligning agent having the following composition is optimal for achieving the above object, and have completed the present invention.
Thus, the present invention is based on the above findings and has the following gist.
At least one selected from the group consisting of tetracarboxylic dianhydrides represented by the following formula (T1) and derivatives thereof;
a tetracarboxylic acid component comprising at least one selected from the group consisting of tetracarboxylic acid dianhydrides and derivatives thereof represented by the following formulas (T2-1) to (T2-3);
A liquid crystal aligning agent comprising: a diamine component; and at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using the diamine component and a polyimide which is an imidized product of the polyimide precursor.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、R~Rの少なくとも一つは上記定義中の水素原子以外の基を表す。)
 なお、本明細書全体を通して、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、*は結合手を表す。Bocはtert-ブトキシカルボニル基を表す。
(R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above.)
Throughout the present specification, examples of halogen atoms include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and * represents a bond. Boc represents a tert-butoxycarbonyl group.
 本発明の液晶配向剤を用いることで、光配向法による配向処理での光照射量が少ない場合でも、AC残像を抑制する液晶配向膜が得られる。また、液晶配向膜面内での液晶分子のツイスト角のバラツキ(不均一性)を小さくできる液晶配向膜が得られる。
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、以下に述べることが一因と考えられる。
 一つは、光照射で分解しにくい構造単位を導入することで、偏光紫外線を照射した時に発生する配向処理膜の分解物量が抑制される。したがって、得られる液晶配向膜は、液晶分子との相互作用が向上するため、液晶配向膜面内での液晶分子のツイスト角度のバラツキ(不均一性)が小さく、且つ、AC残像が抑制された液晶配向膜を得ることができる。
 また、上記式(T2-1)で表されるテトラカルボン酸二無水物及びその誘導体は、シクロヘキサン構造を分子内に複数有する。そのため、従来のシクロオクタン構造を有するテトラカルボン酸誘導体に比べて、熱イミド化が進行しやすいため、液晶配向性を高めることが出来、上記効果が得られたと考える。
 さらに、上記式(T2-2)~(T2-3)で表されるテトラカルボン酸二無水物及びその誘導体は、従来のシクロヘキサン構造を有するテトラカルボン酸誘導体に比べて、立体構造が大きく、また液晶分子との相互作用が強くなるため、上記効果が得られたと考える。
By using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film that suppresses AC afterimages can be obtained even when the amount of light irradiation in the alignment treatment by the photoalignment method is small. In addition, a liquid crystal alignment film that can reduce the variation (non-uniformity) of the twist angle of liquid crystal molecules in the liquid crystal alignment film plane can be obtained.
The mechanism by which the above-mentioned effects of the present invention are obtained is not entirely clear, but the following is thought to be one of the reasons.
First, by introducing a structural unit that is not easily decomposed by light irradiation, the amount of decomposition products generated in the alignment treatment film when irradiated with polarized ultraviolet light is suppressed. Therefore, the resulting liquid crystal alignment film has improved interaction with the liquid crystal molecules, so that it is possible to obtain a liquid crystal alignment film with small variation (non-uniformity) in the twist angle of the liquid crystal molecules in the liquid crystal alignment film plane and suppressed AC afterimages.
In addition, the tetracarboxylic dianhydride and its derivatives represented by the above formula (T2-1) have multiple cyclohexane structures in the molecule, and therefore, compared to conventional tetracarboxylic acid derivatives having a cyclooctane structure, thermal imidization proceeds more easily, which is believed to be why the liquid crystal alignment can be improved and the above-mentioned effects are achieved.
Furthermore, it is considered that the tetracarboxylic dianhydrides and derivatives thereof represented by the above formulas (T2-2) and (T2-3) have a larger three-dimensional structure and a stronger interaction with liquid crystal molecules than conventional tetracarboxylic acid derivatives having a cyclohexane structure, which is why the above effects are obtained.
本発明の横電界方式の液晶表示素子の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a lateral electric field type liquid crystal display element of the present invention. 本発明の横電界方式の液晶表示素子の他の例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of a lateral electric field type liquid crystal display element of the present invention.
<重合体(P)>
 本発明の液晶配向剤は、上記式(T1)で表されるテトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも1種類(本発明では、特定の脂環式テトラカルボン酸誘導体(p1)ともいう。)と、上記式(T2-1)~(T2-3)で表されるテトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも1種類(本発明では、特定の脂環式テトラカルボン酸誘導体(p2)ともいう。)と、からなるテトラカルボン酸成分と、ジアミン成分と、を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有する。重合体(P)は一種あるいは二種以上であってもよい。
 ここにおいて、ポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステルなどのイミド化することによりポリイミドを得ることができる重合体である。
(テトラカルボン酸成分)
 重合体(P)のポリイミド前駆体であるポリアミック酸(P’)は、例えばジアミン成分と、上記特定の脂環式テトラカルボン酸誘導体(p1)に該当するテトラカルボン酸二無水物と、上記特定の脂環式テトラカルボン酸誘導体(p2)に該当するテトラカルボン酸二無水物と、の重合反応により得ることができる。
 重合体(P)を製造する場合、ジアミン成分と反応させるテトラカルボン酸成分は、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
 上記式(T1)におけるR~Rにおける炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。上記R~Rにおける炭素数2~6のアルケニル基の具体例としては、ビニル基、プロペニル基、ブテニル基等が挙げられ、これらは直鎖状でも分岐状でもよい。
 上記式(T1)におけるR~Rにおける炭素数2~6のアルキニル基の具体例としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基等が挙げられる。上記式(T1)におけるR~Rにおける、フッ素原子を含有する炭素数1~6の1価の有機基としては、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロプロピル基、トリフルオロメトキシ基、2,2,2-トリフルオロエチル基、2,2,2-トリフルオロエトキシ基等が挙げられる。
 光反応性が高い観点から、上記式(T1)におけるR~Rの少なくとも2つは上記定義中の水素原子以外の基を表すことがより好ましい。また、光反応性が高い観点から、R及びRが水素原子以外の基を表し、R及びRが水素原子を表す場合がより好ましい。
 光反応性が高い観点から、上記式(T1)におけるR~Rがそれぞれ独立して水素原子又はメチル基であり、R~Rの少なくとも1つがメチル基であることがより好ましく、R~Rの少なくとも2つがメチル基であることが更に好ましい。最も好ましいのは、上記式(T1)におけるR及びRがメチル基であり、R及びRが水素原子である場合である。
 上記特定の脂環式テトラカルボン酸誘導体(p1)の使用割合は、重合体(P)に使用される全テトラカルボン酸成分1モルに対して、50モル%以上がより好ましく、60モル%以上が更に好ましく、70モル%以上が最も好ましい。
 また、上記特定の脂環式テトラカルボン酸誘導体(p1)の使用割合は、重合体(P)に使用される全テトラカルボン酸成分1モルに対して、95モル%以下が好ましく、50~95モル%がより好ましい。
 上記特定の脂環式テトラカルボン酸誘導体(p2)の使用割合は、重合体(P)に使用される全テトラカルボン酸成分1モルに対して、5モル%以上が好ましい。
 また、上記特定の脂環式テトラカルボン酸誘導体(p2)の使用割合は、重合体(P)に使用される全テトラカルボン酸成分1モルに対して、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が更に好ましい。
 上記重合体(P)の製造に用いられるジアミン成分は、特に限定されない。以下にジアミンの例を挙げるが、これらに限定されるものではない。上記ジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよく、三種以上を組み合わせて用いてもよい。
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエンなどのフェニレンジアミン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニルなどのジアミノビフェニル化合物、下記式(dAL)で表されるジアミン(好ましくは、下記式(dAL-1)~(dAL-11)で表されるジアミン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、又は、6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミンである。)、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼンなどのジフェニルエーテル構造を有するジアミン(以下、これらを総称して第一のジアミンともいう。);N,N’-ビス(4-アミノフェニル)-シクロブタン-(1,2,3,4)-テトラカルボン酸ジイミド、N,N’-ビス(4-アミノフェニル)-1,3-ジメチルシクロブタン-(1,2,3,4)-テトラカルボン酸ジイミド、N,N’-ビス(2,2’-ビス(トリフルオロメチル)-4’-アミノ-1,1’-ビフェニル-4-イル)-シクロブタン-(1,2,3,4)-テトラカルボン酸ジイミドなどのテトラカルボン酸ジイミド構造を有するジアミン;4,4’-ジアミノアゾベンゼンなどのアゾベンゼン構造を有する芳香族ジアミン、4,4’-ジアミノスチルベンなどのスチルベン構造を有する芳香族ジアミン、ジアミノトランなどのトラン構造を有する芳香族ジアミン、4,4’-ジアミノカルコンなどのカルコン構造を有する芳香族ジアミン、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレートなどのフェニルベンゾエート構造を有する芳香族ジアミン、又は(E)-4-アミノフェニル 3-(4-アミノフェニル)アクリレート、(E)-4-アミノ-2-メチルフェニル 3-(4-アミノフェニル)アクリレート、(E)-4-アミノフェネチル 3-(4-アミノフェニル)アクリレート、(E,E)-ビス-(4’-アミノフェニル) 1,3-ベンゼンジアクリレート、(E,E)-ビス-(4’-アミノフェニル) 1,4-ベンゼンジアクリレート、若しくは4-アミノフェニル (2E)-3-(4-アミノフェニル)-2-メチル-2-プロペノエートなどのシンナメート構造を有する芳香族ジアミンに代表される光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル 3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン、1,3-ビス(4-アミノフェニル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン;2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-[3-(1H-イミダゾール-1-イル)プロピル] 3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、若しくは下記式(z-1)~式(z-13)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、下記式(z-14)で表されるジアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(以下、特定の窒素原子含有構造ともいう。ただし、特定の窒素原子含有構造は、重縮合反応に関与する2つのアミノ基以外の原子団である。)を有するジアミン(但し、加熱によって脱離し、水素原子に置き換わる保護基が結合したアミノ基を分子内に有しない。);2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、1,2-ビス(4-アミノフェニル)エタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(4-アミノフェニル)エタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;下記式(5-1)~(5-7)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはカルバメート系保護基であり、より好ましくはtert-ブトキシカルボニル基である。)を有するジアミン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン、下記式(V-1)~(V-2)で表されるジアミン;2,7-ジアミノフルオレン、又は9,9-ビス(4-アミノフェニル)フルオレンなどのフルオレン骨格を有するジアミンなどに代表される芳香族ジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどに代表される非環式脂肪族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などに代表される脂環式ジアミンの他、WO2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等。
<Polymer (P)>
The liquid crystal aligning agent of the present invention contains at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a tetracarboxylic acid component consisting of at least one selected from the group consisting of tetracarboxylic acid dianhydrides represented by the above formula (T1) and derivatives thereof (also referred to as a specific alicyclic tetracarboxylic acid derivative (p1) in the present invention) and at least one selected from the group consisting of tetracarboxylic acid dianhydrides represented by the above formulas (T2-1) to (T2-3) and derivatives thereof (also referred to as a specific alicyclic tetracarboxylic acid derivative (p2) in the present invention), and a diamine component. The polymer (P) may be one or more types.
Here, the polyimide precursor is a polymer that can give a polyimide by imidizing a polyamic acid, a polyamic acid ester, or the like.
(Tetracarboxylic acid component)
The polyamic acid (P') which is a polyimide precursor of the polymer (P) can be obtained, for example, by a polymerization reaction of a diamine component, a tetracarboxylic acid dianhydride corresponding to the specific alicyclic tetracarboxylic acid derivative (p1) and a tetracarboxylic acid dianhydride corresponding to the specific alicyclic tetracarboxylic acid derivative (p2).
In producing the polymer (P), the tetracarboxylic acid component to be reacted with the diamine component may be not only a tetracarboxylic acid dianhydride but also a derivative of a tetracarboxylic acid dianhydride such as a tetracarboxylic acid, a tetracarboxylic acid dihalide, a tetracarboxylic acid dialkyl ester, or a tetracarboxylic acid dialkyl ester dihalide.
Specific examples of the alkyl group having 1 to 6 carbon atoms in R 1 to R 4 in formula (T1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, etc. Specific examples of the alkenyl group having 2 to 6 carbon atoms in R 1 to R 4 include a vinyl group, a propenyl group, a butenyl group, etc., which may be linear or branched.
Specific examples of the alkynyl group having 2 to 6 carbon atoms in R 1 to R 4 in formula (T1) include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, a 2-butynyl group, a 3-butynyl group, etc. Examples of the monovalent organic group containing a fluorine atom and having 1 to 6 carbon atoms in R 1 to R 4 in formula (T1) include a fluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, a pentafluoropropyl group, a trifluoromethoxy group, a 2,2,2-trifluoroethyl group, a 2,2,2-trifluoroethoxy group, etc.
From the viewpoint of high photoreactivity, it is more preferable that at least two of R 1 to R 4 in the above formula (T1) represent a group other than a hydrogen atom as defined above. Also, from the viewpoint of high photoreactivity, it is more preferable that R 1 and R 4 represent a group other than a hydrogen atom, and R 2 and R 3 represent a hydrogen atom.
From the viewpoint of high photoreactivity, R 1 to R 4 in the above formula (T1) are each independently a hydrogen atom or a methyl group, more preferably at least one of R 1 to R 4 is a methyl group, and even more preferably at least two of R 1 to R 4 are methyl groups. Most preferably, R 1 and R 4 in the above formula (T1) are methyl groups, and R 2 and R 3 are hydrogen atoms.
The proportion of the specific alicyclic tetracarboxylic acid derivative (p1) used is more preferably 50 mol % or more, further preferably 60 mol % or more, and most preferably 70 mol % or more, based on 1 mol of the total tetracarboxylic acid components used in the polymer (P).
The proportion of the specific alicyclic tetracarboxylic acid derivative (p1) used is preferably 95 mol % or less, and more preferably 50 to 95 mol %, per mol of the total tetracarboxylic acid components used in the polymer (P).
The proportion of the specific alicyclic tetracarboxylic acid derivative (p2) used is preferably 5 mol % or more per mol of the total tetracarboxylic acid components used in the polymer (P).
The proportion of the specific alicyclic tetracarboxylic acid derivative (p2) used is preferably 50 mol % or less, more preferably 40 mol % or less, and even more preferably 30 mol % or less, based on 1 mol of the total tetracarboxylic acid components used in the polymer (P).
The diamine component used in the production of the polymer (P) is not particularly limited. Examples of diamines are listed below, but are not limited thereto. The diamines may be used alone, in combination of two or more, or in combination of three or more.
Phenylenediamines such as p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, and 2,6-diaminotoluene; 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'- diaminobiphenyl compounds such as diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, and 2,3'-diaminobiphenyl; diamines represented by the following formula (d AL ) (preferably, diamines represented by the following formulas (d AL -1) to (d AL 1,7-bis(4-aminophenoxy)heptane, 1,7-bis(3-aminophenoxy)heptane, 1,8-bis(4-aminophenoxy)octane, 1,8-bis(3-aminophenoxy)octane, 1,9-bis(4-aminophenoxy)nonane, 1,9-bis(3-aminophenoxy)nonane, 1,10-bis(4-aminophenoxy)decane, 1,10-bis(3-aminophenoxy)decane, 1,11-bis(4-aminophenoxy)undecane, 1,11-bis(3-aminophenoxy)undecane, 1,12-bis(4-aminophenoxy)dodecane, 1,12-bis(3-aminophenoxy)dodecane, 1,2-bis(6-aminophenoxy)dodecane, 1,2-bis(6-amino-2-naphthyl)ethane, or 6-[2-(4-aminophenoxy)ethoxy]-2-naphthylamine. ), 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene, and other diamines having a diphenyl ether structure (hereinafter, these are collectively referred to as the first diamine). ); diamines having a tetracarboxylic diimide structure such as N,N'-bis(4-aminophenyl)-cyclobutane-(1,2,3,4)-tetracarboxylic diimide, N,N'-bis(4-aminophenyl)-1,3-dimethylcyclobutane-(1,2,3,4)-tetracarboxylic diimide, and N,N'-bis(2,2'-bis(trifluoromethyl)-4'-amino-1,1'-biphenyl-4-yl)-cyclobutane-(1,2,3,4)-tetracarboxylic diimide; aromatic diamines having an azobenzene structure such as 4,4'-diaminoazobenzene, and aromatic diamines having a stilbene structure such as 4,4'-diaminostilbene. aromatic diamines having a tolan structure such as diaminotlan; aromatic diamines having a chalcone structure such as 4,4'-diaminochalcone; aromatic diamines having a phenylbenzoate structure such as 1,4-phenylene bis(4-aminobenzoate), 1,4-phenylene bis(3-aminobenzoate), 1,3-phenylene bis(4-aminobenzoate), 1,3-phenylene bis(3-aminobenzoate), bis(4-aminophenyl)terephthalate, bis(3-aminophenyl)terephthalate, bis(4-aminophenyl)isophthalate, and bis(3-aminophenyl)isophthalate; 3-(4-aminophenyl)acrylate, (E)-4-amino-2-methylphenyl 3-(4-aminophenyl)acrylate, (E)-4-aminophenethyl 3-(4-aminophenyl)acrylate, (E,E)-bis-(4'-aminophenyl) 1,3-benzenediacrylate, (E,E)-bis-(4'-aminophenyl) 1,4-benzenediacrylate, or 4-aminophenyl Diamines having a photoalignment group, such as aromatic diamines having a cinnamate structure, such as (2E)-3-(4-aminophenyl)-2-methyl-2-propenoate; diamines having a photopolymerizable group at the end, such as 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N,N-diallylaniline; 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-(4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl Diamines having a radical polymerization initiator function such as 3,5-diaminobenzoate; diamines having an amide bond such as 4,4'-diaminobenzanilide; diamines having a urea bond such as 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, and 1,3-bis(4-aminophenethyl)urea; 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, phenyl)propane, 2,2-bis(3-aminophenyl)propane, 2,2-bis(3-amino-4-methylphenyl)propane, 4,4'-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N-[3-(1H-imidazol-1-yl)propyl] At least one nitrogen atom-containing structure (hereinafter also referred to as a specific nitrogen atom-containing structure) selected from the group consisting of a nitrogen atom-containing heterocycle, a secondary amino group, and a tertiary amino group, represented by 3,5-diaminobenzamide, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzeneamine, or a diamine represented by the following formula (z-1) to formula (z-13), or a diamine having a diphenylamine structure such as 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenyl-N-methylamine, a diamine represented by the following formula (z-14), N,N'-bis(4-aminophenyl)-benzidine, N,N'-bis(4-aminophenyl)-N,N'-dimethylbenzidine, or N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine. However, the specific nitrogen atom-containing structure is an atomic group other than the two amino groups involved in the polycondensation reaction.) (provided that the molecule does not have an amino group to which a protecting group that is detached by heating and replaced with a hydrogen atom is bonded); 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 1,2-bis(4-aminophenyl)ethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl Diamines having a carboxy group such as phenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 1,2-bis(4-aminophenyl)ethane-3,3'-dicarboxylic acid, and 4,4'-diaminodiphenylether-3,3'-dicarboxylic acid; 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 1-(4-aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine, and 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-inden-6-amine; diamines having a group "-N(D)-" such as the above formulae (5-7) to (5-7) (D represents a protecting group which is eliminated by heating and replaced with a hydrogen atom, preferably a carbamate-based protecting group, more preferably a tert-butoxycarbonyl group); diamines having a steroid skeleton such as cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestanyl 3,5-diaminobenzoate, lanostannyl 3,5-diaminobenzoate, and 3,6-bis(4-aminobenzoyloxy)cholestane; diamines represented by the following formulae (V-1) to (V-2); 2,7-diaminofluorene, or 9,9-bis(4-aminobenzoyloxy)cholestane. aromatic diamines typified by diamines having a fluorene skeleton, such as bis(4-aminophenyl)fluorene; diamines having a siloxane bond, such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane; acyclic aliphatic diamines typified by metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and the like; alicyclic diamines typified by 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), and diamines in which two amino groups are bonded to a group represented by any one of formulas (Y-1) to (Y-167) described in WO2018/117239, and the like.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(Ar、及びAr1’は、それぞれ、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、該ベンゼン環、該ビフェニル構造、又は該ナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよい。L及びL1’は、それぞれ、単結合、-O-、-C(=O)-、又は-O-C(=O)-を表す。Aは、-CH-、炭素数2~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。 (Ar 1 and Ar 1' each represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more hydrogen atoms on the benzene ring, the biphenyl structure, or the naphthalene ring may be substituted with a monovalent group. L 1 and L 1' each represent a single bond, -O-, -C(=O)-, or -O-C(=O)-. A represents -CH 2 -, an alkylene group having 2 to 12 carbon atoms, or a divalent organic group in which at least one of -O-, -C(=O)-O-, and -O-C(=O)- is inserted between the carbon-carbon bonds of the alkylene group. Any hydrogen atom possessed by A may be substituted with a halogen atom.
 上記ベンゼン環、ビフェニル構造、又はナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよく、該1価の基としては、ハロゲン原子、炭素数1~3のアルキル基、炭素数2~3のアルケニル基、炭素数1~3のアルコキシ基、炭素数1~3のフルオロアルキル基、炭素数2~3のフルオロアルケニル基、炭素数1~3のフルオロアルコキシ基、炭素数2~3のアルキルオキシカルボニル基、シアノ基、ニトロ基等が挙げられる。) One or more hydrogen atoms on the benzene ring, biphenyl structure, or naphthalene ring may be substituted with a monovalent group, and examples of the monovalent group include a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a fluoroalkenyl group having 2 to 3 carbon atoms, a fluoroalkoxy group having 1 to 3 carbon atoms, an alkyloxycarbonyl group having 2 to 3 carbon atoms, a cyano group, and a nitro group.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(dAL-2)において、l、m及びnの合計は、1~12である。式(dAL-6)において、m1、m2及びnの合計は、1~12である。式(dAL-8)において、m1、m2及びnの合計は、3~12である。式(dAL-11)において、l、m及びnの合計は、3~12である。) (In formula (d AL -2), the sum of l, m and n is 1 to 12. In formula (d AL -6), the sum of m1, m2 and n is 1 to 12. In formula (d AL -8), the sum of m1, m2 and n is 3 to 12. In formula (d AL -11), the sum of l, m and n is 3 to 12.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(V-1)中、m、nは0~3の整数であり、1≦m+n≦4を満たす。jは0又は1の整数である。Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、及び炭素数2~10のアルコキシアルキル基などの1価の基を表す。上記式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。m、n、X、Rが2つ存在する場合、それぞれ独立して上記定義を有する。 In the above formula (V-1), m and n are integers of 0 to 3, and satisfy 1≦m+n≦4. j is an integer of 0 or 1. X 1 represents -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-. R 1 represents a monovalent group such as a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkoxyalkyl group having 2 to 10 carbon atoms. In the above formula (V-2), X 2 represents —O—, —CH 2 O—, —CH 2 —OCO—, —COO—, or —OCO—, and when there are two of m, n, X 1 and R 1 , each independently has the above definition.
 上記特定の窒素原子含有構造を有するジアミンが有してもよい窒素原子含有複素環としては、例えば、ピロール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、インドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、ナフチリジン、キノキサリン、フタラジン、トリアジン、カルバゾール、アクリジン、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミンが挙げられる。これらのなかでも、ピリジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、キノリン、カルバゾール又はアクリジンが好ましい。
 上記ジアミンは、本発明の効果を好適に得る観点から、上記式(dAL)で表されるジアミンが好ましい。上記式(dAL)で表されるジアミンの含有量は、重合体(P)の製造に使用されるジアミン成分1モルに対して、5モル%以上が好ましく、10モル%以上が好ましい。また、上記式(dAL)で表されるジアミンの含有量は、重合体(P)の製造に使用されるジアミン成分1モルに対して、90モル%以下であってもよく、80モル%以下であってもよい。
Examples of the nitrogen atom-containing heterocycle that may be contained in the diamine having the specific nitrogen atom-containing structure include pyrrole, imidazole, pyrazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, indole, benzimidazole, purine, quinoline, isoquinoline, naphthyridine, quinoxaline, phthalazine, triazine, carbazole, acridine, piperidine, piperazine, pyrrolidine, and hexamethyleneimine. Among these, pyridine, pyrimidine, pyrazine, piperidine, piperazine, quinoline, carbazole, and acridine are preferred.
From the viewpoint of obtaining the effects of the present invention, the diamine is preferably a diamine represented by the formula (d AL ). The content of the diamine represented by the formula (d AL ) is preferably 5 mol% or more, preferably 10 mol% or more, based on 1 mol of the diamine component used in the production of the polymer (P). The content of the diamine represented by the formula (d AL ) may be 90 mol% or less, or 80 mol% or less, based on 1 mol of the diamine component used in the production of the polymer (P).
 また、上記重合体(P)の製造に用いられるジアミン成分は、上記式(dAL)で表されるジアミンと共に、上記フェニレンジアミン、上記ジアミノビフェニル化合物、上記ジフェニルエーテル構造を有するジアミン、上記テトラカルボン酸ジイミド構造を有するジアミン、上記アミド結合を有するジアミン、上記ウレア結合を有するジアミン、及び基「-N(D)-」を有するジアミンからなる群から選ばれるその他のジアミンを含有してもよい。
 上記その他のジアミンの含有量は、重合体(P)の製造に使用されるジアミン成分1モルに対して、10~95モル%がより好ましく、10~90モル%が更に好ましく、20~90モル%がより一層好ましい。また、その他のジアミンを二種又は三種以上含む場合、各その他のジアミンを構成する各ジアミンの含有量は、30モル%以下であってもよい。
(液晶配向剤)
 本発明の液晶配向剤は、重合体(P)、及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物である。
The diamine component used in the production of the polymer (P) may contain, in addition to the diamine represented by the formula (d AL ), another diamine selected from the group consisting of the phenylenediamine, the diaminobiphenyl compound, the diamine having a diphenyl ether structure, the diamine having a tetracarboxylic diimide structure, the diamine having an amide bond, the diamine having a urea bond, and the diamine having a group "-N(D)-".
The content of the other diamine is more preferably 10 to 95 mol%, even more preferably 10 to 90 mol%, and even more preferably 20 to 90 mol%, relative to 1 mol of the diamine component used in the production of the polymer (P). When two or more kinds of other diamines are contained, the content of each diamine constituting each of the other diamines may be 30 mol% or less.
(Liquid crystal alignment agent)
The liquid crystal aligning agent of the present invention is a liquid composition obtained by dispersing or dissolving the polymer (P) and other components used as necessary, preferably in a suitable solvent.
 本発明の液晶配向剤は、重合体(P)以外のその他の重合体を含有してもよい。その他の重合体の具体例を挙げると、上記重合体(P)に加えて、上記特定の脂環式テトラカルボン酸誘導体(p1)を含まないテトラカルボン酸成分を用いて得られるポリイミド前駆体、上記特定の脂環式テトラカルボン酸誘導体(p2)を含まないテトラカルボン酸成分を用いて得られるポリイミド前駆体、及びこれらのポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(本発明では重合体(B)ともいう。)、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。 The liquid crystal alignment agent of the present invention may contain other polymers in addition to the polymer (P). Specific examples of other polymers include, in addition to the polymer (P), at least one polymer (also referred to as polymer (B) in the present invention) selected from the group consisting of polyimide precursors obtained using a tetracarboxylic acid component that does not contain the specific alicyclic tetracarboxylic acid derivative (p1), polyimide precursors obtained using a tetracarboxylic acid component that does not contain the specific alicyclic tetracarboxylic acid derivative (p2), and polyimides that are imidized products of these polyimide precursors; polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride) copolymers, poly(isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, and polymers selected from the group consisting of poly(meth)acrylates.
 ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、SMA2000、SMA3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられる。ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。なかでも、残留DC由来の残像を少なくする点から、重合体(B)がより好ましい。 Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley) and GSM301 (manufactured by Gifu Ceramics Manufacturing Co., Ltd.), and a specific example of poly(isobutylene-maleic anhydride) copolymers includes Isoban-600 (manufactured by Kuraray Co., Ltd.). A specific example of poly(vinyl ether-maleic anhydride) copolymers includes Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland Co., Ltd.). Among these, polymer (B) is more preferred in terms of reducing residual DC-induced afterimages.
 上記その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
(重合体(B))
 上記重合体(B)の製造に用いられるテトラカルボン酸成分の具体例は、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。
 ここで、非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
The other polymers may be used alone or in combination of two or more. The content of the other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and even more preferably 20 to 80 parts by mass, based on 100 parts by mass of the total of the polymers contained in the liquid crystal alignment agent.
(Polymer (B))
Specific examples of the tetracarboxylic acid component used in the production of the polymer (B) include acyclic aliphatic tetracarboxylic acid dianhydrides, alicyclic tetracarboxylic acid dianhydrides, aromatic tetracarboxylic acid dianhydrides, and derivatives thereof.
Here, the acyclic aliphatic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure, but does not necessarily have to be composed of a chain hydrocarbon structure alone, and may have an alicyclic structure or an aromatic ring structure as a part thereof.
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物であれば特に限定されない。
 上記脂環式テトラカルボン酸二無水物、又はその誘導体は、中でも液晶配向性を高める高い観点から、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体であることが好ましい。
 上記芳香族テトラカルボン酸二無水物、又はその誘導体は、中でも液晶配向性を高める観点から、ベンゼン環構造を有するテトラカルボン酸二無水物又はこれらの誘導体であることが好ましい。
 上記重合体(B)のテトラカルボン酸成分に用いることのできるテトラカルボン酸二無水物又はその誘導体の具体例として、以下のテトラカルボン酸二無水物又はその誘導体が挙げられる。
 1,2,3,4-ブタンテトラカルボン酸二無水物、又は(Q)-A(Qは1価の無水コハク酸構造を表し、Aは、-CH-、炭素数2~18のアルキレン基、又は該アルキレン基が有する-CH-の一部が、フェニレン基、-O-、-NR-(Rは水素原子又はメチル基を表す。)、-C(=O)-NR-(Rは水素原子又はメチル基を表す。)、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基で置き換えてなる2価の有機基を表す。)等の非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、又は上記式(T2-1)~(T2-3)で表されるテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)-2,2-ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメリテート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-(1,4-フェニレンジオキシ)ビス(フタル酸無水物)、又は4,4’-(1,4-フェニレンジメチレン)ビス(フタル酸無水物)等の芳香族テトラカルボン酸二無水物;そのほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物等。
 重合体(B)の製造に用いられるテトラカルボン酸成分は、より好ましくは、ベンゼン環、シクロブタン環、シクロペンタン環及びシクロヘキサン環よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましい。
Alicyclic tetracarboxylic dianhydrides are acid dianhydrides obtained by intramolecular dehydration of four carboxy groups, including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to an aromatic ring. In addition, they do not necessarily have to be composed of an alicyclic structure alone, and may have a chain hydrocarbon structure or an aromatic ring structure as part of them.
The aromatic tetracarboxylic acid dianhydride is not particularly limited as long as it is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups, including at least one carboxy group bonded to an aromatic ring.
From the viewpoint of enhancing liquid crystal alignment, the alicyclic tetracarboxylic acid dianhydride or a derivative thereof is preferably a tetracarboxylic acid dianhydride having at least one partial structure selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure, and a cyclohexane ring structure, or a derivative thereof.
The aromatic tetracarboxylic dianhydride or a derivative thereof is preferably a tetracarboxylic dianhydride having a benzene ring structure or a derivative thereof from the viewpoint of enhancing the liquid crystal alignment property.
Specific examples of tetracarboxylic dianhydrides or derivatives thereof that can be used as the tetracarboxylic acid component of the polymer (B) include the following tetracarboxylic dianhydrides or derivatives thereof.
acyclic aliphatic tetracarboxylic dianhydride such as 1,2,3,4-butane tetracarboxylic dianhydride or (Q) 2 -A (Q represents a monovalent succinic anhydride structure, and A represents a divalent organic group in which a part of the -CH 2 - of the alkylene group is replaced by at least one of a phenylene group, -O-, -NR- (R represents a hydrogen atom or a methyl group), -C(═O)-NR- (R represents a hydrogen atom or a methyl group), -C(═O)-O-, and -O-C(═O)-); 1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-cyclopentane tetracarboxylic dianhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, and 3,3',4,4'-dicyclohexyl tetracarboxylic dianhydride; , 2,3,5-tricarboxycyclopentylacetic dianhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)tetrahydronaphthalene-1,2-dicarboxylic anhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8- dianhydride, or alicyclic tetracarboxylic dianhydrides such as the tetracarboxylic dianhydrides represented by the above formulas (T2-1) to (T2-3); pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-biphenyl tetracarboxylic dianhydride, 2,2',3,3'-biphenyl tetracarboxylic dianhydride, Aromatic tetracarboxylic dianhydrides such as phenyltetracarboxylic dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)-2,2-diphenylpropane dianhydride, ethylene glycol bisanhydrotrimellitate, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, 4,4'-(1,4-phenylenedioxy)bis(phthalic anhydride), or 4,4'-(1,4-phenylenedimethylene)bis(phthalic anhydride); and tetracarboxylic dianhydrides as described in JP-A-2010-97188.
The tetracarboxylic acid component used in the production of the polymer (B) more preferably contains a tetracarboxylic acid dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring, or a derivative thereof.
 重合体(B)を得るためのジアミン成分としては、例えば、上記重合体(P)で例示したジアミンが挙げられる。中でも、上記第一のジアミン、ウレア結合を有するジアミン、アミド結合を有するジアミン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、上記特定の窒素原子含有構造を有するジアミン、上記カルボキシ基を有するジアミン、4-(2-(メチルアミノ)エチル)アニリン、及び4-(2-アミノエチル)アニリンからなる群から選ばれる少なくとも1種のジアミンを含むことが好ましい。上記ジアミン成分は、一種のジアミンを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
(ポリアミック酸の製造)
 ポリアミック酸の製造は、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させることにより行われる。ポリアミック酸の製造反応に供されるテトラカルボン酸成分とジアミン成分との使用割合は、ジアミン成分のアミノ基1当量に対して、テトラカルボン酸成分の酸無水物基が0.5~2当量となる割合が好ましく、さらに好ましくは0.8~1.2当量である。通常の重縮合反応と同様に、このテトラカルボン酸成分の酸無水物基の当量が1当量に近いほど、生成するポリアミック酸の分子量は大きくなる。
Examples of the diamine component for obtaining the polymer (B) include the diamines exemplified for the polymer (P) above. Among them, the first diamine, a diamine having a urea bond, a diamine having an amide bond, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl) ... Preferably, the diamine component contains at least one diamine selected from the group consisting of 2,2-bis(3-amino-4-methylphenyl)propane, 4,4'-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene, the diamines having the specific nitrogen atom-containing structure, the diamines having a carboxy group, 4-(2-(methylamino)ethyl)aniline, and 4-(2-aminoethyl)aniline. As the diamine component, one type of diamine may be used alone, or two or more types may be used in combination.
(Production of polyamic acid)
The polyamic acid is produced by reacting a diamine component with a tetracarboxylic acid component in an organic solvent. The ratio of the tetracarboxylic acid component and the diamine component used in the reaction for producing the polyamic acid is preferably such that the acid anhydride group of the tetracarboxylic acid component is 0.5 to 2 equivalents, more preferably 0.8 to 1.2 equivalents, per equivalent of the amino group of the diamine component. As in the case of a normal polycondensation reaction, the closer the equivalent of the acid anhydride group of the tetracarboxylic acid component is to 1 equivalent, the higher the molecular weight of the polyamic acid produced.
 ポリアミック酸の製造における反応温度は-20~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。ポリアミック酸の製造は任意の濃度で行うことができるがポリアミック酸の濃度は好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
 上記有機溶媒の具体例としては、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルなどの溶媒を用いることができる。
(ポリアミック酸エスエルの製造)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
(ポリイミドの製造)
 ポリイミドは、上記ポリアミック酸又はポリアミック酸エステルなどのポリイミド前駆体を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物又はその誘導体由来のイミド基とカルボキシ基(又はその誘導体)との合計量に占めるイミド基の割合のことである。イミド化率は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
The reaction temperature in the production of polyamic acid is preferably −20 to 150° C., more preferably 0 to 100° C. The reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours. The production of polyamic acid can be carried out at any concentration, but the concentration of polyamic acid is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The reaction can be carried out at a high concentration in the early stage of the reaction, and then a solvent can be added.
Specific examples of the organic solvent include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and 1,3-dimethyl-2-imidazolidinone. In addition, when the polymer has high solubility in the solvent, a solvent such as methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used.
(Production of polyamic acid ester)
The polyamic acid ester can be obtained by a known method such as, for example, [I] a method of reacting the polyamic acid obtained by the above-mentioned method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, or [III] a method of reacting a tetracarboxylic acid diester dihalide with a diamine.
(Production of Polyimide)
Polyimide can be obtained by ring-closing (imidizing) a polyimide precursor such as the polyamic acid or polyamic acid ester. The imidization ratio in this specification refers to the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or its derivatives and carboxyl groups (or their derivatives). The imidization ratio does not necessarily need to be 100% and can be adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Methods for imidizing a polyimide precursor include thermal imidization, in which a solution of the polyimide precursor is heated as is, and catalytic imidization, in which a catalyst is added to a solution of the polyimide precursor.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、好ましくは100~400℃であり、より好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 When thermally imidizing the polyimide precursor in a solution, the temperature is preferably 100 to 400°C, more preferably 120 to 250°C, and it is preferable to carry out the process while removing the water produced by the imidization reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、好ましくは-20~250℃、より好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の好ましくは0.5~30モル倍、より好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の好ましくは1~50モル倍、より好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 Catalytic imidization of polyimide precursors can be carried out by adding a basic catalyst and an acid anhydride to a solution of the polyimide precursor and stirring the solution at preferably -20 to 250°C, more preferably 0 to 180°C. The amount of the basic catalyst is preferably 0.5 to 30 molar times, more preferably 2 to 20 molar times, the amount of the acid anhydride is preferably 1 to 50 molar times, more preferably 3 to 30 molar times, the amount of the amic acid group. Examples of basic catalysts include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine, and among these, pyridine is preferred because it has a suitable basicity for promoting the reaction. Examples of acid anhydrides include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride, and among these, acetic anhydride is preferred because it makes purification after the reaction easy. The imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させた重合体は濾過して回収した後、常圧又は減圧下で、常温又は加熱して乾燥することができる。また、回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール、ケトン又は炭化水素などが挙げられ、これらのうちから選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the polyimide precursor or polyimide produced from a reaction solution of a polyimide precursor or polyimide, the reaction solution may be poured into a solvent to cause precipitation. Examples of solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated by pouring into the solvent can be recovered by filtration, and then dried at room temperature or by heating under normal or reduced pressure. The recovered polymer can be redissolved in an organic solvent and the reprecipitation recovery operation repeated 2 to 10 times to reduce the amount of impurities in the polymer. Examples of the solvent used in this case include alcohols, ketones, and hydrocarbons. Using three or more solvents selected from these is preferable because it further increases the efficiency of purification.
 本発明におけるポリイミド前駆体やポリイミドを製造するに際して、テトラカルボン酸二無水物又はその誘導体を含むテトラカルボン酸成分、及びジアミンを含むジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体を製造してもよい。末端封止型の重合体は、塗膜によって得られる液晶配向膜の膜硬度の向上や、シール剤と液晶配向膜の密着特性の向上という効果を有する。 When producing the polyimide precursor or polyimide of the present invention, a terminal-capping polymer may be produced using a suitable terminal-capping agent together with a tetracarboxylic acid component containing a tetracarboxylic dianhydride or a derivative thereof, and a diamine component containing a diamine. The terminal-capping polymer has the effect of improving the film hardness of the liquid crystal alignment film obtained by coating, and improving the adhesion properties between the sealant and the liquid crystal alignment film.
 本発明におけるポリイミド前駆体やポリイミドの末端の例としては、アミノ基、カルボキシ基、酸無水物基又は後述する末端封止剤に由来する基が挙げられる。アミノ基、カルボキシ基、酸無水物基は通常の縮合反応により得るか、又は以下の末端封止剤を用いて末端を封止することにより得ることができる。 Examples of the terminals of the polyimide precursor or polyimide in the present invention include amino groups, carboxy groups, acid anhydride groups, and groups derived from terminal blocking agents described below. The amino groups, carboxy groups, and acid anhydride groups can be obtained by a normal condensation reaction, or by blocking the terminals with the terminal blocking agents described below.
 末端封止剤としては、例えば、無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、1,2-シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、又は、2-アクリロイルオキシエチルイソシアネ-ト、2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどを挙げることができる。 Examples of end-capping agents include acid anhydrides such as acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-(3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, and 4-ethynylphthalic anhydride; dicarbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride, and nicotinic acid chloride; Examples of the monoamine compounds include aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, and n-octylamine; and isocyanates having unsaturated bonds such as ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, or 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate.
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。 The proportion of the end-capping agent used is preferably 0.01 to 20 molar parts, and more preferably 0.01 to 10 molar parts, per 100 molar parts of the total diamine components used.
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。かかる分子量範囲にあることで、液晶表示素子の良好な液晶配向性を確保することができる。 The polystyrene-equivalent weight average molecular weight (Mw) of the polyimide precursor and polyimide measured by gel permeation chromatography (GPC) is preferably 1,000 to 500,000, and more preferably 2,000 to 300,000. The molecular weight distribution (Mw/Mn), which is expressed as the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC, is preferably 15 or less, and more preferably 10 or less. Having the molecular weight within this range ensures good liquid crystal alignment in the liquid crystal display element.
 本発明に係る液晶配向剤に含有される有機溶媒は、重合体(P)や必要に応じて添加されるその他の重合体が均一に溶解するものであれば特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N,N-ジメチルプロピオンアミド、テトラメチル尿素、N,N-ジエチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して、良溶媒ともいう)などが挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。 The organic solvent contained in the liquid crystal alignment agent according to the present invention is not particularly limited as long as it can uniformly dissolve the polymer (P) and other polymers added as necessary. For example, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N,N-dimethylpropionamide, tetramethylurea, N,N-diethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropaneamide, dimethylsulfon ... Examples of suitable solvents include N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, and N-cyclohexyl-2-pyrrolidone (collectively referred to as good solvents). Among these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, and γ-butyrolactone are preferred. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass, of the total solvent contained in the liquid crystal alignment agent.
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。貧溶媒の具体例を下記するが、これらに限定されない。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 The organic solvent contained in the liquid crystal alignment agent is preferably a mixed solvent that uses, in addition to the above-mentioned solvent, a solvent (also called a poor solvent) that improves the applicability when applying the liquid crystal alignment agent and the surface smoothness of the coating film. Specific examples of poor solvents are listed below, but are not limited to these. The content of the poor solvent is preferably 1 to 80 mass % of the total solvent contained in the liquid crystal alignment agent, more preferably 10 to 80 mass %, and particularly preferably 20 to 70 mass %. The type and content of the poor solvent are appropriately selected depending on the application device, application conditions, application environment, etc. of the liquid crystal alignment agent.
 貧溶媒としては、例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセタート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などが挙げられる。 Examples of poor solvents include diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, 1-(2-butoxyethoxy)-2-propanol. , 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy)ethyl acetate, diethylene Examples include glycol acetate, propylene glycol diacetate, n-butyl acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, 4-methyl-2-pentyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, n-butyl lactate, isoamyl lactate, diethylene glycol monoethyl ether, and diisobutyl ketone (2,6-dimethyl-4-heptanone).
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセタート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。 Among these, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, and diisobutyl ketone are preferred.
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセタート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチルとジエチレングリコールモノプロピルエーテル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセタート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールモノエチルエーテルとブチルセロソルブアセタート、N-メチル-2-ピロリドンとジエチレングリコールモノメチルエーテルとブチルセロソルブアセタート、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセタート、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールジメチルエーテル、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセタート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセタート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルとエチレングリコールモノブチルエーテルアセタート、γ-ブチロラクトンとエチレングリコールモノブチルエーテルアセタートとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタートとプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンと酢酸4-メチル-2-ペンチルとエチレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと酢酸シクロヘキシルと4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノンとプロピレングリコールモノメチルエーテル、シクロペンタノンとプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンとシクロヘキサノンとプロピレングリコールモノメチルエーテルなどを挙げることができる。
(液晶配向剤)
 本発明の液晶配向剤は、上記重合体(P)、必要に応じて上記その他の重合体、および上記有機溶媒を含有する。
 本発明の液晶配向剤に含まれる重合体の合計含有量は、形成させようとする塗膜の厚みの設定によっても適宜変更できるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の合計含有量は、2~8質量%である。
Preferred combinations of good and poor solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2-pyrrolidone and propylene glycol diacetate, N,N-dimethyl lactamide and diisobutyl ketone, and N-methyl-2-pyrrolidone. and ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether, N-ethyl-2-pyrrolidone and ethyl 3-ethoxypropionate and diethylene glycol monopropyl ether, N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether acetate ether, N-ethyl-2-pyrrolidone and dipropylene glycol dimethyl ether, N,N-dimethyl lactamide and ethylene glycol monobutyl ether, N,N-dimethyl lactamide and propylene glycol diacetate, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and diethylene glycol monoethyl ether and butyl cellosolve acetate, N-methyl-2-pyrrolidone and diethylene glycol monomethyl ether and butyl cellosolve acetate, N,N-dimethyl lactamide and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone and γ-butyro Lactone and 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and diisobutyl ketone, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and dipropylene glycol monomethyl ether N-methyl-2-pyrrolidone, 4-hydroxy-4-methyl-2-pentanone, and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, 4-hydroxy-4-methyl-2-pentanone, and propylene glycol diacetate, N-ethyl-2-pyrrolidone, 4-hydroxy-4-methyl-2-pentanone, and dipropylene glycol dimethyl ether, γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone, and diisobutyl ketone, γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone, and propylene glycol diacetate, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, and diisobutyl ketone, N-methyl- 2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, and diisopropyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, and diisobutyl carbinol, N-methyl-2-pyrrolidone, γ-butyrolactone, and dipropylene glycol dimethyl ether, N-methyl-2-pyrrolidone, propylene glycol monobutyl ether, and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone, propylene glycol monobutyl ether, and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone, diethylene glycol diethyl ether, ethyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone, propylene glycol monobutyl ether and propylene glycol diacetate, N-ethyl-2-pyrrolidone, propylene glycol monobutyl ether and diisobutyl ketone, N-ethyl-2-pyrrolidone, γ-butyrolactone and diisobutyl ketone, N-ethyl-2-pyrrolidone, N,N-dimethyl lactamide and diisobutyl ketone, N-methyl-2-pyrrolidone, ethylene glycol monobutyl ether and ethylene glycol monobutyl ether acetate, γ-butyrolactone and ethylene glycol monobutyl ether acetate and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone, ethylene glycol monobutyl ether acetate, and propylene glycol dimethyl ether, N-methyl-2-pyrrolidone, 4-methyl-2-pentyl acetate, and ethylene glycol monobutyl ether, N-ethyl-2-pyrrolidone, cyclohexyl acetate, and 4-hydroxy-4-methyl-2-pentanone, cyclohexanone, propylene glycol monomethyl ether, cyclopentanone, and propylene glycol monomethyl ether, and N-methyl-2-pyrrolidone, cyclohexanone, and propylene glycol monomethyl ether.
(Liquid crystal alignment agent)
The liquid crystal aligning agent of the present invention contains the above-mentioned polymer (P), and, if necessary, the above-mentioned other polymers, and the above-mentioned organic solvent.
The total content of the polymers contained in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the thickness of the coating film to be formed, but it is preferably 1% by mass or more from the viewpoint of forming a uniform and defect-free coating film, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution. The particularly preferred total content of the polymers is 2 to 8% by mass.
 本発明に用いられる重合体(P)の含有量は、液晶配向剤に含有される重合体の合計に対し、1~100質量%が好ましく、10~100質量%がより好ましく、20~100質量%が特に好ましい。
 本発明の液晶配向剤は、上記重合体(P)、上記その他の重合体、及び上記有機溶媒に加えて、それ以外の成分(以下、添加剤成分ともいう。)を含有してもよい。かかる添加剤成分としては、例えば、オキシラニル基、オキセタニル基、ブロックイソシアネート基、オキサゾリン基、シクロカーボネート基、ヒドロキシアルキル基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、得られる液晶配向膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。上記架橋性化合物の好ましい具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレート、セロキサイド2021P(ダイセル社製)などの脂環式エポキシ樹脂、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、又はN,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンに代表される第三級窒素原子を含有する化合物、テトラキス(グリシジルオキシメチル)メタンなどのオキシラニル基を2つ以上有する化合物;WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を2つ以上有する化合物;コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)等のブロックイソシアネート基を有する化合物;2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(5-メチル-2-オキサゾリン)、1,2,4-トリス(2-オキサゾリニル)-ベンゼン、エポクロス(日本触媒社製)のようなオキサゾリン基を有する化合物;WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載のシクロカーボネート基を有する化合物;N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンなどのヒドロキシ基やアルコキシ基を有する化合物;グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセリン1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレートで示される化合物が挙げられる。
The content of the polymer (P) used in the present invention is preferably 1 to 100 mass %, more preferably 10 to 100 mass %, particularly preferably 20 to 100 mass %, based on the total amount of the polymer contained in the liquid crystal alignment agent.
The liquid crystal alignment agent of the present invention may contain other components (hereinafter also referred to as additive components) in addition to the above polymer (P), the other polymers, and the organic solvent. Examples of such additive components include at least one crosslinking compound selected from the group consisting of a crosslinking compound having at least one substituent selected from an oxiranyl group, an oxetanyl group, a blocked isocyanate group, an oxazoline group, a cyclocarbonate group, a hydroxyalkyl group, and an alkoxy group, and a crosslinking compound having a polymerizable unsaturated group, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, an antioxidant, a sensitizer, a preservative, and a compound for adjusting the dielectric constant or electrical resistance of the resulting liquid crystal alignment film. Specific preferred examples of the crosslinkable compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, bisphenol A type epoxy resins such as Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), and epoxy resins having a biphenyl skeleton such as YX6954BH30 (manufactured by Mitsubishi Chemical Corporation). epoxy resins containing glyceryl ether, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-)cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), triglycidyl isocyanurates such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.), alicyclic epoxy resins such as Celloxide 2021P (manufactured by Daicel Corporation), N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N compounds having two or more oxiranyl groups, such as compounds containing a tertiary nitrogen atom, such as N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, and tetrakis(glycidyloxymethyl)methane; compounds having two or more oxetanyl groups, such as those described in paragraphs [0170] to [0175] of WO2011/132751; Compounds having a blocked isocyanate group, such as Table M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (all manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (all manufactured by Mitsui Chemicals, Inc.); 2,2'-bis(2-oxazoline), 2,2'-bis(4-methyl-2-oxazoline), 2 ,2'-bis(5-methyl-2-oxazoline), 1,2,4-tris(2-oxazolinyl)-benzene, and compounds having an oxazoline group such as EPOCROS (manufactured by Nippon Shokubai Co., Ltd.); compounds having a cyclocarbonate group described in paragraphs [0025] to [0030] and [0032] of WO2011/155577; N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5- hydroxyl or alkoxyl group-containing compounds such as 2,2-bis(4-hydroxy-3,5-dimethoxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3,3-hexafluoropropane; and compounds represented by glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-mixture), glycerin tris(meth)acrylate, glycerin 1,3-diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate, and hexaethylene glycol mono(meth)acrylate.
 架橋性化合物の含有量は液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 The content of the crosslinking compound is preferably 0.1 to 30 parts by mass, and more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
 上記誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素原子含有芳香族複素環を有するモノアミンが挙げられる。窒素原子含有芳香族複素環を有するモノアミンの含有量は液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 The compound for adjusting the dielectric constant and electrical resistance is, for example, a monoamine having a nitrogen atom-containing aromatic heterocycle, such as 3-picolylamine. The content of the monoamine having a nitrogen atom-containing aromatic heterocycle is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
 上記官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス[3-(トリメトキシシリル)プロピル]イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of the functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane. Examples of the functional silane include 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl methyl diethoxysilane, 3-glycidoxypropyl triethoxysilane, p-styryl trimethoxysilane, 3-methacryloxypropyl methyl dimethoxysilane, 3-methacryloxypropyl trimethoxysilane, 3-methacryloxypropyl methyl diethoxysilane, 3-methacryloxypropyl triethoxysilane, 3-acryloxypropyl trimethoxysilane, tris[3-(trimethoxysilyl)propyl]isocyanurate, 3-mercaptopropyl methyl dimethoxysilane, 3-mercaptopropyl trimethoxysilane, and 3-isocyanate propyl triethoxysilane. The content of the functional silane compound is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%である。 The solids concentration in the liquid crystal alignment agent (the ratio of the total mass of the components other than the solvent in the liquid crystal alignment agent to the total mass of the liquid crystal alignment agent) is appropriately selected taking into consideration the viscosity, volatility, etc., but is preferably 1 to 10 mass%.
 特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンコート法を用いる場合には、固形分濃度が1.5~4.5質量%であることが特に好ましい。印刷法による場合には、固形分濃度を3~9質量%とし、それにより溶液粘度を12~50mPa・sとすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%とし、それにより、溶液粘度を3~15mPa・sとすることが特に好ましい。液晶配向剤を調製する際の温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。
<液晶配向膜・液晶表示素子>
 上記液晶配向剤を用いることにより、液晶配向膜を製造することができる。本発明の液晶表示素子は、上記液晶配向膜を具備するものである。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN方式、STN(Super Twisted Nematic)方式、垂直配向方式(VA-MVA方式、VA-PVA方式などを含む。)、IPS方式、FFS方式、光学補償ベンド方式(OCB方式)など種々の動作モードに適用することができる。本発明の液晶配向膜は、中でもIPS方式又はFFS方式等の水平配向方式の液晶表示素子に好適な液晶配向膜である。
 本発明の液晶表示素子は、例えば以下の工程(1)~(3)を含む方法、工程(1)~(4)を含む方法、工程(1)~(3)、(3b)及び(4)を含む方法、工程(1)~(2)及び(4)を含む方法、工程(1)~(3)、(4)及び(5)を含む方法、又は工程(1)~(3)、(4)及び(6)を含む方法により製造することができる。
<工程(1):第1基板及び第2基板のうち少なくとも一方に液晶配向剤を塗布する工程>
 工程(1)は、本発明の液晶配向剤を基板上に塗布する工程である。工程(1)の具体例は以下のとおりである。
The particularly preferred range of solid content varies depending on the method used to apply the liquid crystal alignment agent to the substrate. For example, when using a spin coating method, it is particularly preferred that the solid content is 1.5 to 4.5% by mass. When using a printing method, it is particularly preferred that the solid content is 3 to 9% by mass, thereby making the solution viscosity 12 to 50 mPa·s. When using an inkjet method, it is particularly preferred that the solid content is 1 to 5% by mass, thereby making the solution viscosity 3 to 15 mPa·s. The temperature when preparing the liquid crystal alignment agent is preferably 10 to 50°C, more preferably 20 to 30°C.
<Liquid crystal alignment film/Liquid crystal display element>
A liquid crystal alignment film can be produced by using the liquid crystal alignment agent. The liquid crystal display element of the present invention is provided with the liquid crystal alignment film. The operation mode of the liquid crystal display element according to the present invention is not particularly limited, and it can be applied to various operation modes such as the TN mode, STN (Super Twisted Nematic) mode, vertical alignment mode (including VA-MVA mode, VA-PVA mode, etc.), IPS mode, FFS mode, optical compensation bend mode (OCB mode), etc. The liquid crystal alignment film of the present invention is a liquid crystal alignment film suitable for liquid crystal display elements of a horizontal alignment mode such as the IPS mode or FFS mode.
The liquid crystal display element of the present invention can be produced, for example, by a method including the following steps (1) to (3), a method including steps (1) to (4), a method including steps (1) to (3), (3b), and (4), a method including steps (1) to (2) and (4), a method including steps (1) to (3), (4), and (5), or a method including steps (1) to (3), (4), and (6).
<Step (1): Step of applying a liquid crystal alignment agent to at least one of the first substrate and the second substrate>
Step (1) is a step of applying the liquid crystal aligning agent of the present invention onto a substrate. Specific examples of step (1) are as follows.
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。さらに、IPS方式又はFFS方式の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。透明導電膜は、例えば、インジウム錫酸化物(ITO、Indium Tin Oxide)、インジウム亜鉛酸化物(IZO、Indium Zinc Oxide)、またはこれらの混合物を用いて公知の方法で形成され得る。 The liquid crystal alignment agent of the present invention is applied to one side of a substrate on which a patterned transparent conductive film is provided by an appropriate application method such as a roll coater method, a spin coat method, a printing method, or an inkjet method. The substrate is not particularly limited as long as it is a highly transparent substrate, and plastic substrates such as acrylic substrates and polycarbonate substrates can be used in addition to glass substrates and silicon nitride substrates. In addition, in a reflective liquid crystal display element, an opaque material such as a silicon wafer can be used for only one substrate, and in this case, a material that reflects light such as aluminum can be used for the electrode. Furthermore, when manufacturing an IPS or FFS liquid crystal display element, a substrate on which an electrode made of a transparent conductive film or a metal film patterned into a comb shape is provided and an opposing substrate on which no electrode is provided are used. The transparent conductive film can be formed by a known method using, for example, indium tin oxide (ITO), indium zinc oxide (IZO), or a mixture thereof.
 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法等が挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。
<工程(2):塗布した液晶配向剤を焼成する工程>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。工程(2)の具体例は以下のとおりである。
Examples of the method for applying the liquid crystal alignment agent to a substrate and forming a film include screen printing, offset printing, flexographic printing, an inkjet method, a spray method, etc. Among these, the application and film formation method by the inkjet method is preferably used.
<Step (2): Step of baking the applied liquid crystal alignment agent>
In the step (2), the liquid crystal alignment agent applied on the substrate is baked to form a film. Specific examples of the step (2) are as follows.
 工程(1)において液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、ポリアミック酸又はポリアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤の溶媒を低減する温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。ポリアミック酸又はポリアミック酸エステルの熱イミド化を行う場合には、上記工程の後、例えば150~300℃、又は150~250℃の温度範囲で焼成する工程を追加してもよい。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。 After the liquid crystal alignment agent is applied to the substrate in step (1), the solvent can be evaporated or the polyamic acid or polyamic acid ester can be thermally imidized by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven. The drying and baking steps after the application of the liquid crystal alignment agent of the present invention can be performed at any temperature and time, and may be performed multiple times. The temperature at which the solvent of the liquid crystal alignment agent is reduced can be, for example, 40 to 180°C. From the viewpoint of shortening the process, the baking can be performed at 40 to 150°C. The baking time is not particularly limited, but can be 1 to 10 minutes or 1 to 5 minutes. When thermally imidizing the polyamic acid or polyamic acid ester, a baking step can be added after the above step, for example, at a temperature range of 150 to 300°C or 150 to 250°C. The baking time is not particularly limited, but can be 5 to 40 minutes or 5 to 30 minutes.
 焼成後の膜状物の膜厚は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。 If the film thickness after firing is too thin, the reliability of the liquid crystal display element may decrease, so it is preferable for the film thickness to be 5 to 300 nm, and more preferably 10 to 200 nm.
<工程(3):工程(2)で得られた膜に配向処理する工程>
 工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、IPS方式又はFFS方式等の水平配向方式の液晶表示素子では該塗膜に対し配向能付与処理を行う。一方、VA方式又はPSA方式等の垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング処理法、光配向処理法が挙げられ、より好ましくは、光配向処理法である。
 光配向処理法としては、上記膜状物の表面に、放射線(より好ましくは偏光状態の放射線)を照射し、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。
 放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
 本発明の液晶配向膜は、中でも、偏光紫外線を照射して得られる液晶配向膜である事がより好ましい。
 上記ラビング処理法としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦る処理が挙げられる。
<Step (3): Step of subjecting the film obtained in step (2) to an alignment treatment>
Step (3) is a step of, in some cases, performing an alignment treatment on the film obtained in step (2). That is, in a horizontal alignment type liquid crystal display element such as an IPS type or FFS type, an alignment ability imparting treatment is performed on the coating film. On the other hand, in a vertical alignment type liquid crystal display element such as a VA type or PSA type, the formed coating film can be used as it is as a liquid crystal alignment film, but the coating film may also be subjected to an alignment ability imparting treatment. Examples of the alignment treatment method for the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method, and more preferably, a photo-alignment treatment method.
The photo-alignment treatment method includes a method in which the surface of the film-like material is irradiated with radiation (more preferably with polarized radiation) to impart liquid crystal alignment properties (also referred to as liquid crystal alignment ability).
The radiation may be ultraviolet light or visible light having a wavelength of 100 to 800 nm, preferably ultraviolet light having a wavelength of 100 to 400 nm, more preferably ultraviolet light having a wavelength of 200 to 400 nm.
The liquid crystal alignment film of the present invention is more preferably a liquid crystal alignment film obtained by irradiating with polarized ultraviolet light.
The rubbing treatment may be carried out by rubbing the coating film in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, or cotton.
 上記光配向処理法において、放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光状態の放射線を照射する場合には、照射の方向は斜め方向とすることが好ましい。 In the above photo-alignment treatment method, when the radiation is polarized, it may be linearly polarized or partially polarized. Furthermore, when the radiation used is linearly polarized or partially polarized, irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination of these. When irradiating with unpolarized radiation, it is preferable that the irradiation direction is oblique.
 上記放射線の照射量は、1~10,000mJ/cmがより好ましく、100~1000mJ/cmが更に好ましく、100~500mJ/cmが最も好ましい。 The radiation dose is more preferably 1 to 10,000 mJ/cm 2 , further preferably 100 to 1000 mJ/cm 2 , and most preferably 100 to 500 mJ/cm 2 .
 また、上記光配向処理法において放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、例えば、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
<工程(3b):加熱処理を行う工程>
 上記の放射線を照射した塗膜に対して加熱処理を行ってもよい。かかる加熱処理の温度は、50~300℃が好ましく、120~250℃がより好ましい。加熱処理の時間としては、それぞれ1~30分とすることが好ましい。
<工程(4):第1基板と第2基板との間に、前記配向処理された膜に隣接するように液晶層を配置して液晶セルを作製する工程>
 工程(4)は、第1基板と第2基板との間に、前記配向処理された膜に隣接するように液晶層を配置して液晶セルを作製する工程である。尚、以下では、第一基板と第二基板のそれぞれに液晶配向膜を形成した場合を例示する。具体的には以下の2つの方法が挙げられる。
When radiation is applied in the photo-alignment treatment, in order to improve the liquid crystal alignment, the substrate having the film-like material may be irradiated while being heated at, for example, 50 to 250° C. The liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
<Step (3b): Step of performing heat treatment>
The coating film irradiated with the above-mentioned radiation may be subjected to a heat treatment. The temperature for such heat treatment is preferably 50 to 300° C., more preferably 120 to 250° C. The time for the heat treatment is preferably 1 to 30 minutes.
<Step (4): A step of disposing a liquid crystal layer between a first substrate and a second substrate so as to be adjacent to the alignment-treated film to prepare a liquid crystal cell>
Step (4) is a step of preparing a liquid crystal cell by disposing a liquid crystal layer between the first substrate and the second substrate so as to be adjacent to the alignment-treated film. In the following, a case where a liquid crystal alignment film is formed on each of the first substrate and the second substrate is exemplified. Specifically, the following two methods are given.
 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。 In the first method, first, two substrates are placed facing each other with a gap (cell gap) between them so that their liquid crystal alignment films face each other. Next, the periphery of the two substrates is attached using a sealant, and the liquid crystal composition is injected and filled into the substrate surfaces and the cell gap defined by the sealant so that it comes into contact with the film surface, and then the injection hole is sealed.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外線硬化性の樹脂組成物(以下、シール剤ともいう。)を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。 The second method is called the ODF (One Drop Fill) method. For example, a UV-curable resin composition (hereinafter also referred to as a sealant) is applied to a predetermined location on one of the two substrates on which a liquid crystal alignment film has been formed, and the liquid crystal composition is then dropped onto several predetermined locations on the liquid crystal alignment film surface. The other substrate is then attached so that the liquid crystal alignment film faces the other substrate, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with UV light to cure the sealant. In either method, it is desirable to further heat the substrate to a temperature at which the liquid crystal composition used assumes an isotropic phase, and then slowly cool it to room temperature to remove the flow alignment that occurs during liquid crystal filling.
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。 When a rubbing treatment is performed on the coating film, the two substrates are placed facing each other so that the rubbing directions of the coating films are at a predetermined angle to each other, for example, perpendicular or anti-parallel.
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。
 上記液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電率異方性が負の液晶組成物を、ネガ型液晶ともいう。
As the sealing agent, for example, an epoxy resin containing a hardener and aluminum oxide spheres as spacers can be used.
The liquid crystal composition is not particularly limited, and may be any of various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy. In the following description, a liquid crystal composition having a positive dielectric anisotropy is also called a positive liquid crystal, and a liquid crystal composition having a negative dielectric anisotropy is also called a negative liquid crystal.
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例えば、トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキレン基で連結されたバイメソゲン化合物)を含んでもよい。 The liquid crystal composition may contain a liquid crystal compound having a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., a trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocycle, a cycloalkane, a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring, and may contain a compound having two or more rigid portions (mesogenic skeletons) that exhibit liquid crystallinity within the molecule (e.g., a bimesogenic compound in which two rigid biphenyl structures or terphenyl structures are linked by an alkylene group).
 液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。 The liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに含有してもよい。このような添加物は、重合性基を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。 The liquid crystal composition may further contain additives from the viewpoint of improving the liquid crystal alignment. Such additives include photopolymerizable monomers such as compounds having a polymerizable group; optically active compounds (e.g., S-811 manufactured by Merck Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; and polymerization inhibitors.
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019、又はMLC-7081など;DIC社製のPA-1492が挙げられる。 Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck; and PA-1492 manufactured by DIC.
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、又はMLC-7026-100などが挙げられる。 Examples of negative type liquid crystals include MLC-6608, MLC-6609, MLC-6610, and MLC-7026-100 manufactured by Merck.
 また、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。 Another example of a liquid crystal containing a compound with a polymerizable group is MLC-3023 manufactured by Merck.
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程(以下、本工程を工程(5)ともいう。)を経て製造される液晶表示素子(PSA方式の液晶表示素子)にも好ましく用いられる。 The liquid crystal alignment agent of the present invention is also preferably used in a liquid crystal display element (PSA type liquid crystal display element) manufactured through a process (hereinafter, this process is also referred to as process (5)) in which a liquid crystal composition containing a polymerizable compound that is polymerized by at least one of active energy rays and heat is placed between the pair of substrates having a liquid crystal layer and a voltage is applied between the electrodes while the polymerizable compound is polymerized by at least one of irradiation with active energy rays and heating.
 また、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程(以下、本工程を工程(6)ともいう。)を経て製造される液晶表示素子(SC-PVA方式の液晶表示素子)にも好ましく用いられる。 The liquid crystal alignment agent of the present invention is also preferably used in a liquid crystal display element (SC-PVA type liquid crystal display element) that has a liquid crystal layer between a pair of substrates equipped with electrodes, and is manufactured through a process of disposing a liquid crystal alignment film between the pair of substrates that contains a polymerizable group that is polymerized by at least one of active energy rays and heat, and applying a voltage between the electrodes (hereinafter, this process is also referred to as process (6)).
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, if necessary, a polarizing plate can be attached to the outer surface of the liquid crystal cell to obtain a liquid crystal display element. Examples of polarizing plates that can be attached to the outer surface of the liquid crystal cell include a polarizing film called an "H film" made by stretching and aligning polyvinyl alcohol and absorbing iodine, sandwiched between cellulose acetate protective films, and a polarizing plate made of the H film itself.
 IPS方式において使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。 The IPS substrate, which is a comb-tooth electrode substrate used in the IPS system, has a base material, a number of linear electrodes formed on the base material and arranged in a comb-tooth pattern, and a liquid crystal alignment film formed on the base material so as to cover the linear electrodes.
 なお、FFS方式において使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。 The FFS substrate, which is a comb-tooth electrode substrate used in the FFS method, has a base material, a surface electrode formed on the base material, an insulating film formed on the surface electrode, a plurality of linear electrodes formed on the insulating film and arranged in a comb-tooth shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.
 図1は、本発明の横電界方式の液晶表示素子の一例を示す概略断面図であり、IPS方式の液晶表示素子の例である。 FIG. 1 is a schematic cross-sectional view showing an example of a horizontal electric field type liquid crystal display element of the present invention, which is an example of an IPS type liquid crystal display element.
 図1に例示する横電界方式の液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、例えば、本発明の液晶配向膜である。液晶配向膜4cも同様に本発明の液晶配向膜である。 In the in-plane switching type liquid crystal display element 1 illustrated in FIG. 1, liquid crystal 3 is sandwiched between a comb-tooth electrode substrate 2 having a liquid crystal alignment film 2c and a counter substrate 4 having a liquid crystal alignment film 4a. The comb-tooth electrode substrate 2 has a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-tooth shape, and a liquid crystal alignment film 2c formed on the base material 2a so as to cover the linear electrodes 2b. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4c is also a liquid crystal alignment film of the present invention.
 この横電界方式の液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。 In this in-plane switching type liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by the electric field lines L.
 図2は、本発明の横電界方式の液晶表示素子の他の例を示す概略断面図であり、FFS方式の液晶表示素子の例である。 FIG. 2 is a schematic cross-sectional view showing another example of a horizontal electric field type liquid crystal display element of the present invention, which is an example of an FFS type liquid crystal display element.
 図2に例示する横電界方式の液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、例えば、本発明の液晶配向膜である。液晶配向膜4aも同様に本発明の液晶配向膜である。 In the in-plane switching type liquid crystal display element 1 illustrated in FIG. 2, liquid crystal 3 is sandwiched between a comb-tooth electrode substrate 2 having a liquid crystal alignment film 2h and a counter substrate 4 having a liquid crystal alignment film 4a. The comb-tooth electrode substrate 2 has a base material 2d, a surface electrode 2e formed on the base material 2d, an insulating film 2f formed on the surface electrode 2e, a plurality of linear electrodes 2g formed on the insulating film 2f and arranged in a comb-tooth shape, and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
 この横電界方式の液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
 本発明の液晶配向膜は、上記用途の液晶配向膜以外に、種々の用途に適用することができ、例えば、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用としての液晶配向膜に用いることもできる。
In this IPS mode liquid crystal display element 1, when a voltage is applied to the plane electrodes 2e and the linear electrodes 2g, an electric field is generated between the plane electrodes 2e and the linear electrodes 2g as indicated by electric field lines L.
The liquid crystal alignment film of the present invention can be applied to various applications other than the above-mentioned applications. For example, it can be used as a liquid crystal alignment film for a retardation film, a liquid crystal alignment film for a scanning antenna or a liquid crystal array antenna, or a liquid crystal alignment film for a transmissive scattering type liquid crystal light control element.
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。 The liquid crystal display element of the present invention can be effectively applied to various devices, such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors, liquid crystal televisions, and information displays.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略号及び各物性の測定方法は、以下の通りである。
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:エチレングリコールモノブチルエーテル
(テトラカルボン酸二無水物)
CA-1~CA-6:それぞれ、下記式(CA-1)~(CA-6)で表される化合物
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. The abbreviations of the compounds used and the methods for measuring the respective physical properties are as follows.
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Ethylene glycol monobutyl ether (tetracarboxylic dianhydride)
CA-1 to CA-6: Compounds represented by the following formulas (CA-1) to (CA-6), respectively.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記テトラカルボン酸二無水物のうち、CA-1は特定の脂環式テトラカルボン酸誘導体(p1)に該当し、CA-2~CA-4は特定の脂環式テトラカルボン酸誘導体(p2)に該当する。
(ジアミン)
DA-1~DA-4:それぞれ、下記式(DA-1)~(DA-4)で表される化合物
Of the above tetracarboxylic dianhydrides, CA-1 corresponds to a specific alicyclic tetracarboxylic acid derivative (p1), and CA-2 to CA-4 correspond to a specific alicyclic tetracarboxylic acid derivative (p2).
(Diamine)
DA-1 to DA-4: Compounds represented by the following formulas (DA-1) to (DA-4), respectively.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
<粘度の測定>
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)を用いて、温度25℃で測定した。
<分子量の測定>
 下記の常温GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキサイド換算値としてMn及びMwを算出した。
<Measurement of Viscosity>
The measurement was performed at 25° C. using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL and a cone rotor TE-1 (1°34′, R24).
<Measurement of molecular weight>
Measurements were carried out using the following room temperature GPC (gel permeation chromatography) device, and Mn and Mw were calculated as values calculated in terms of polyethylene glycol and polyethylene oxide.
 GPC装置:GPC-101(昭和電工社製)、カラム:GPC KD-803、GPC KD-805(昭和電工社製)の直列、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、約150,000、約100,000及び約30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、約4,000及び約1,000)(ポリマーラボラトリー社製)。
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド([D]-DMSO、0.05%テトラメチルシラン(TMS)混合品)1.0mLを添加し、超音波をかけて完全に溶解させた。この溶液をフーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER社製)にて500MHzのプロトンNMRを測定した。
GPC apparatus: GPC-101 (Showa Denko K.K.); Column: GPC KD-803, GPC KD-805 (Showa Denko K.K.) in series; Column temperature: 50°C; Eluent: N,N-dimethylformamide (additives: lithium bromide monohydrate (LiBr.H 2 O) 30 mmol/L, phosphoric acid anhydrous crystal (o-phosphoric acid) 30 mmol/L, tetrahydrofuran (THF) 10 mL/L); Flow rate: 1.0 mL/min. Standard sample for creating calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, about 150,000, about 100,000, and about 30,000) (Tosoh Corporation) and polyethylene glycol (molecular weight: about 12,000, about 4,000, and about 1,000) (Polymer Laboratory Co., Ltd.).
<Measurement of imidization rate>
20 mg of polyimide powder was placed in an NMR sample tube (NMR sampling tube standard, φ5 (Kusano Scientific Co., Ltd.)), 1.0 mL of deuterated dimethyl sulfoxide ([D 6 ]-DMSO, 0.05% tetramethylsilane (TMS) mixture) was added, and the mixture was sonicated to completely dissolve. This solution was measured for proton NMR at 500 MHz using a Fourier transform superconducting nuclear magnetic resonance (FT-NMR) "AVANCE III" (BRUKER Co., Ltd.).
 (化学)イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い下記式によって求めた。なお、下記式において、xはアミック酸のNH基由来のプロトンピーク積算値を示し、yは基準プロトンのピーク積算値を示し、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合を示す。 (Chemical) The imidization rate was calculated by the following formula using a proton derived from a structure that does not change before and after imidization as the reference proton, and the peak integrated value of this proton and the proton peak integrated value derived from the NH group of the amic acid that appears around 9.5 to 10.0 ppm. In the formula below, x indicates the proton peak integrated value derived from the NH group of the amic acid, y indicates the peak integrated value of the reference proton, and α indicates the ratio of the number of reference protons to one proton of the NH group of the amic acid in the case of polyamic acid (imidization rate 0%).
    イミド化率(%)=(1-α・x/y)×100
[重合体の合成]
<合成例1>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、CA-1(4.20g、18.7mmol)、CA-2(1.09g、3.60mmol)、DA-1(0.780g、7.21mmol)、DA-2(1.76g、7.20mmol)、DA-3(1.91g、4.80mmol)、DA-4(1.54g、4.80mmol)及びNMP(82.7g)を加えて、40℃で30時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-1)の溶液(粘度:380mPa・s)を得た。このポリアミック酸のMnは6,643、Mwは14,885であった。
<合成例2>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、CA-1(3.85g、17.2mmol)、CA-2(1.42g、4.70mmol)、DA-1(0.762g、7.05mmol)、DA-2(1.72g、7.05mmol)、DA-3(1.87g、4.70mmol)、DA-4(1.51g、4.70mmol)及びNMP(81.6g)を加えて、40℃で30時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-2)の溶液(粘度:300mPa・s)を得た。このポリアミック酸のMnは6,283、Mwは13,669であった。
<合成例3>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、CA-1(4.20g、18.7mmol)、CA-2(1.09g、3.60mmol)、DA-1(0.780g、7.21mmol)、DA-2(1.76g、7.20mmol)、DA-3(1.91g、4.80mmol)、DA-4(1.54g、4.80mmol)及びNMP(82.7g)を加えて、40℃で30時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-3)の溶液(粘度:380mPa・s)を得た。このポリアミック酸のMnは6,643、Mwは14,885であった。
Imidization rate (%)=(1−α·x/y)×100
[Polymer synthesis]
<Synthesis Example 1>
CA-1 (4.20 g, 18.7 mmol), CA-2 (1.09 g, 3.60 mmol), DA-1 (0.780 g, 7.21 mmol), DA-2 (1.76 g, 7.20 mmol), DA-3 (1.91 g, 4.80 mmol), DA-4 (1.54 g, 4.80 mmol) and NMP (82.7 g) were added to a 100 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 40 ° C. for 30 hours to obtain a solution of polyamic acid (PAA-1) having a solid content concentration of 12% by mass (viscosity: 380 mPa s). The Mn of this polyamic acid was 6,643 and the Mw was 14,885.
<Synthesis Example 2>
CA-1 (3.85 g, 17.2 mmol), CA-2 (1.42 g, 4.70 mmol), DA-1 (0.762 g, 7.05 mmol), DA-2 (1.72 g, 7.05 mmol), DA-3 (1.87 g, 4.70 mmol), DA-4 (1.51 g, 4.70 mmol) and NMP (81.6 g) were added to a 100 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 40 ° C. for 30 hours to obtain a solution of polyamic acid (PAA-2) having a solid content concentration of 12 mass% (viscosity: 300 mPa s). The Mn of this polyamic acid was 6,283 and the Mw was 13,669.
<Synthesis Example 3>
CA-1 (4.20 g, 18.7 mmol), CA-2 (1.09 g, 3.60 mmol), DA-1 (0.780 g, 7.21 mmol), DA-2 (1.76 g, 7.20 mmol), DA-3 (1.91 g, 4.80 mmol), DA-4 (1.54 g, 4.80 mmol) and NMP (82.7 g) were added to a 100 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 40 ° C. for 30 hours to obtain a solution of polyamic acid (PAA-3) having a solid content concentration of 12% by mass (viscosity: 380 mPa s). The Mn of this polyamic acid was 6,643 and the Mw was 14,885.
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、得られた上記ポリアミック酸(PAA-3)の溶液(30.0g)を量り取り、NMPを固形分濃度が9質量%となるように加え、無水酢酸(2.27g)及びピリジン(0.590g)を加え、室温で30分撹拌した後、55℃で3時間反応させた。この反応溶液をメタノール(300g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、80℃で減圧乾燥し、ポリイミドの粉末を得た。このポリイミド粉末のイミド化率は70%であった。 The above-obtained polyamic acid (PAA-3) solution (30.0 g) was weighed into a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, NMP was added so that the solids concentration was 9 mass%, acetic anhydride (2.27 g) and pyridine (0.590 g) were added, and the mixture was stirred at room temperature for 30 minutes, and then reacted at 55°C for 3 hours. This reaction solution was poured into methanol (300 g), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 80°C to obtain polyimide powder. The imidization rate of this polyimide powder was 70%.
 得られた上記ポリイミド粉末(2.70g)に、固形分濃度が12質量%となるようにNMPを加え、80℃で12時間撹拌し溶解させ、ポリイミドの溶液(SPI-3)(粘度:400mPa・s)を得た。このポリイミドのMnは8,414、Mwは28,143であった。
<合成例4>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、CA-1(4.02g、17.9mmol)、CA-3(0.856g、3.45mmol)、DA-1(0.746g、6.90mmol)、DA-2(1.69g、6.90mmol)、DA-3(1.83g、4.60mmol)、DA-4(1.47g、4.60mmol)及びNMP(77.8g)を加えて、40℃で30時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-4)の溶液(粘度:110mPa・s)を得た。このポリアミック酸のMnは4,958、Mwは10,531であった。
<合成例5>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、CA-1(4.02g、17.9mmol)、CA-4(0.863g、3.45mmol)、DA-1(0.746g、6.90mmol)、DA-2(1.69g、6.90mmol)、DA-3(1.83g、4.60mmol)、DA-4(1.47g、4.60mmol)及びNMP(77.9g)を加えて、40℃で30時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-5)の溶液(粘度:420mPa・s)を得た。このポリアミック酸のMnは6,263、Mwは14,132であった。
<合成例6>
 撹拌装置付き及び窒素導入管付きの200mL四つ口フラスコに、CA-1(10.2g、45.4mmol)、DA-1(1.56g、14.4mmol)、DA-2(3.52g、14.4mmol)、DA-3(3.83g、9.60mmol)、DA-4(3.08g、9.60mmol)及びNMP(162g)を加えて、40℃で30時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-6)の溶液(粘度:400mPa・s)を得た。このポリアミック酸のMnは11,050、Mwは28,671であった。
<合成例7>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、CA-1(4.43g、19.7mmol)、CA-5(0.937g、3.75mmol)、DA-1(0.811g、7.50mmol)、DA-2(1.83g、7.50mmol)、DA-3(1.99g、5.00mmol)、DA-4(1.60g、5.00mmol)及びNMP(84.4g)を加えて、40℃で30時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-7)の溶液(粘度:370mPa・s)を得た。このポリアミック酸のMnは11,803、Mwは34,703であった。
<合成例8>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、CA-1(4.48g、20.0mmol)、CA-6(0.841g、3.75mmol)、DA-1(0.811g、7.50mmol)、DA-2(1.83g、7.50mmol)、DA-3(1.99g、5.00mmol)、DA-4(1.60g、5.00mmol)及びNMP(84.8g)を加えて、40℃で30時間撹拌することで、固形分濃度12質量%のポリアミック酸(PAA-8)の溶液(粘度:390mPa・s)を得た。このポリアミック酸のMnは13,037、Mwは31,731であった。
NMP was added to the obtained polyimide powder (2.70 g) so that the solid content concentration was 12 mass %, and the mixture was dissolved by stirring at 80° C. for 12 hours to obtain a polyimide solution (SPI-3) (viscosity: 400 mPa s). The Mn and Mw of this polyimide were 8,414 and 28,143, respectively.
<Synthesis Example 4>
CA-1 (4.02 g, 17.9 mmol), CA-3 (0.856 g, 3.45 mmol), DA-1 (0.746 g, 6.90 mmol), DA-2 (1.69 g, 6.90 mmol), DA-3 (1.83 g, 4.60 mmol), DA-4 (1.47 g, 4.60 mmol) and NMP (77.8 g) were added to a 100 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 40 ° C. for 30 hours to obtain a solution of polyamic acid (PAA-4) having a solids concentration of 12 mass% (viscosity: 110 mPa s). The Mn of this polyamic acid was 4,958 and the Mw was 10,531.
<Synthesis Example 5>
CA-1 (4.02 g, 17.9 mmol), CA-4 (0.863 g, 3.45 mmol), DA-1 (0.746 g, 6.90 mmol), DA-2 (1.69 g, 6.90 mmol), DA-3 (1.83 g, 4.60 mmol), DA-4 (1.47 g, 4.60 mmol) and NMP (77.9 g) were added to a 100 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 40 ° C. for 30 hours to obtain a solution of polyamic acid (PAA-5) having a solids concentration of 12% by mass (viscosity: 420 mPa s). The Mn of this polyamic acid was 6,263 and the Mw was 14,132.
<Synthesis Example 6>
CA-1 (10.2 g, 45.4 mmol), DA-1 (1.56 g, 14.4 mmol), DA-2 (3.52 g, 14.4 mmol), DA-3 (3.83 g, 9.60 mmol), DA-4 (3.08 g, 9.60 mmol) and NMP (162 g) were added to a 200 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 40° C. for 30 hours to obtain a solution of polyamic acid (PAA-6) having a solids concentration of 12% by mass (viscosity: 400 mPa·s). The Mn of this polyamic acid was 11,050 and the Mw was 28,671.
<Synthesis Example 7>
CA-1 (4.43 g, 19.7 mmol), CA-5 (0.937 g, 3.75 mmol), DA-1 (0.811 g, 7.50 mmol), DA-2 (1.83 g, 7.50 mmol), DA-3 (1.99 g, 5.00 mmol), DA-4 (1.60 g, 5.00 mmol) and NMP (84.4 g) were added to a 100 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 40 ° C. for 30 hours to obtain a solution of polyamic acid (PAA-7) having a solids concentration of 12% by mass (viscosity: 370 mPa s). The Mn of this polyamic acid was 11,803 and the Mw was 34,703.
<Synthesis Example 8>
CA-1 (4.48 g, 20.0 mmol), CA-6 (0.841 g, 3.75 mmol), DA-1 (0.811 g, 7.50 mmol), DA-2 (1.83 g, 7.50 mmol), DA-3 (1.99 g, 5.00 mmol), DA-4 (1.60 g, 5.00 mmol) and NMP (84.8 g) were added to a 50 mL four-neck flask equipped with a stirrer and a nitrogen inlet tube, and the mixture was stirred at 40 ° C. for 30 hours to obtain a solution of polyamic acid (PAA-8) having a solids concentration of 12% by mass (viscosity: 390 mPa s). The Mn of this polyamic acid was 13,037 and the Mw was 31,731.
 上記で合成した各重合体の仕様を表1に示す。表1において、テトラカルボン酸成分及びジアミン成分の数値は、各重合工程において使用したジアミン成分の合計量100モル部に対する、各テトラカルボン酸成分及びジアミン成分の含有量(モル部)を表す。 The specifications of each polymer synthesized above are shown in Table 1. In Table 1, the numerical values for the tetracarboxylic acid component and diamine component represent the content (parts by mole) of each tetracarboxylic acid component and diamine component relative to 100 parts by mole of the total amount of the diamine components used in each polymerization step.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[液晶配向剤の調製]
<実施例1>
 上記合成例1で得られたポリアミック酸(PAA-1)の溶液を用いて、NMP及びBCSにより希釈し、25℃で2時間撹拌することで、液晶配向剤中の全ての成分の合計を100質量%した場合の各成分の含有量が、NMPが76質量%、BCSが20質量%であり、重合体固形分濃度が4質量%となる液晶配向剤(AL-1)を得た。
<実施例2~5、比較例1~3>
 表2に示すように、使用する重合体の種類を変更した点を除いては、実施例1と同様に実施することで、液晶配向剤(AL-2)~(AL-5)、(AL-R1)~(AL-R3)を得た。
[Preparation of liquid crystal alignment agent]
Example 1
The solution of polyamic acid (PAA-1) obtained in Synthesis Example 1 was diluted with NMP and BCS, and stirred at 25°C for 2 hours to obtain a liquid crystal alignment agent (AL-1) having a polymer solid content of 4 mass% and a content of NMP of 76 mass% and BCS of 20 mass%, respectively, when the total of all components in the liquid crystal alignment agent is 100 mass%.
<Examples 2 to 5, Comparative Examples 1 to 3>
As shown in Table 2, except for changing the type of polymer used, the same procedure as in Example 1 was carried out to obtain liquid crystal alignment agents (AL-2) to (AL-5), (AL-R1) to (AL-R3).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記の通り得られた液晶配向剤(AL-1)~(AL-5)、(AL-R1)~(AL-R3)には、濁りや析出などの異常は見られず、均一な溶液であることが確認された。得られた液晶配向剤を用いて液晶配向性の評価を行った。
[FFS駆動液晶セルの作製]
 FFSモード液晶表示素子の構成を備えた液晶セルを作製した。
The liquid crystal alignment agents (AL-1) to (AL-5), (AL-R1) to (AL-R3) obtained as described above were confirmed to be homogeneous solutions without abnormalities such as turbidity or precipitation. The liquid crystal alignment agents obtained were used to evaluate the liquid crystal alignment properties.
[Preparation of FFS driving liquid crystal cell]
A liquid crystal cell having the structure of an FFS mode liquid crystal display element was prepared.
 始めに、電極付きの基板を準備した。基板は、30mm×50mmの長方形で、厚みが0.7mmのガラス基板を用いた。基板上には第1層目として共通電極を構成する、ベタ状のパターンを備えたITO電極が形成されていた。第1層目の共通電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜の膜厚は300nmであり、層間絶縁膜として機能する膜厚であった。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素が形成されており、各画素のサイズは、縦10mm、横5mmであった。本電極付き基板は、第1層目の共通電極と第3層目の画素電極が、第2層目のSiN膜にて絶縁された構造を有していた。 First, a substrate with electrodes was prepared. The substrate was a rectangular glass substrate measuring 30 mm x 50 mm and 0.7 mm thick. An ITO electrode with a solid pattern was formed on the substrate as the first layer, which constituted a common electrode. A SiN (silicon nitride) film formed by CVD (chemical vapor deposition) was formed as the second layer on the first common electrode. The thickness of the second SiN film was 300 nm, which was a thickness that functioned as an interlayer insulating film. A comb-shaped pixel electrode formed by patterning an ITO film was arranged as the third layer on the second SiN film, and two pixels, a first pixel and a second pixel, were formed, each pixel having a size of 10 mm in length and 5 mm in width. This substrate with electrodes had a structure in which the first common electrode and the third pixel electrode were insulated by the second SiN film.
 第3層目の画素電極は、中央部分が内角160°で屈曲し、幅が3μmの電極線が6μmの間隔で平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極線によって形成されており、屈曲部を結ぶ線を境に第1領域と第2領域を有していた。 The pixel electrode of the third layer has a comb-like shape with a central portion bent at an internal angle of 160° and multiple electrode lines 3 μm wide arranged in parallel at intervals of 6 μm. One pixel is formed by multiple electrode lines, and has a first region and a second region separated by a line connecting the bent portions.
 次に、上記実施例および比較例で得られた液晶配向剤(AL-1)~(AL-5)、(AL-R1)~(AL-R3)をそれぞれ孔径1.0μmのフィルターで濾過した後、上記電極付き基板(以後、電極基板と呼ぶ)と、裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板(以後、対向基板と呼ぶ)に、スピンコート法にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に、254nmバンドパスフィルターと偏光子を介した偏光紫外線を表3及び4に記載の露光量で照射し、さらに230℃のIRオーブンで30分間焼成を行って配向処理を施し、液晶配向膜付き基板を得た。なお、上記電極基板に形成された液晶配向膜は、画素屈曲部の内角を等分する方向と、液晶の配向方向とが平行になるように配向処理が施されており、対向基板に形成された配向膜は、液晶セルを作製する際に電極基板上の液晶の配向方向と、対向基板上の液晶の配向方向とが一致するように配向処理が施されていた。上記2枚の基板を一組とし、基板上にシール剤(三井化学社製 XN-1500T)をディスペンサーにて印刷し、もう1枚の基板を、それぞれの液晶配向膜の配向方向が0°になって向かい合うようにして張り合わせた。その後、張り合わせた基板を圧着し、150℃の熱風循環式オーブンで60分間加熱しシール剤を硬化させ、空セルを作製した。この空セルに減圧注入法によって、ポジ型液晶PA-1492(DIC社製)を注入し、注入口を封止することによりFFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから評価に使用した。
[液晶配向の安定性の評価]
 本評価は、長期交流駆動において液晶配向膜の配向性能が低下することによって生ずる残像(AC残像ともいう。)を評価するものである。
Next, the liquid crystal alignment agents (AL-1) to (AL-5), (AL-R1) to (AL-R3) obtained in the above examples and comparative examples were each filtered through a filter with a pore size of 1.0 μm, and then applied by spin coating to the above electrode-attached substrate (hereinafter referred to as the electrode substrate) and a glass substrate (hereinafter referred to as the opposing substrate) having a columnar spacer with a height of 4 μm and an ITO film formed on the back surface. After drying for 2 minutes on a hot plate at 80 ° C., it was baked for 20 minutes in a hot air circulation oven at 230 ° C. to form a coating film with a thickness of 100 nm. This coating surface was irradiated with polarized ultraviolet light through a 254 nm bandpass filter and a polarizer at the exposure doses listed in Tables 3 and 4, and further baked for 30 minutes in an IR oven at 230 ° C. to perform an alignment treatment, thereby obtaining a substrate with a liquid crystal alignment film. The liquid crystal alignment film formed on the electrode substrate was subjected to an alignment treatment so that the direction that divides the inner angle of the pixel bend is parallel to the alignment direction of the liquid crystal, and the alignment film formed on the counter substrate was subjected to an alignment treatment so that the alignment direction of the liquid crystal on the electrode substrate coincides with the alignment direction of the liquid crystal on the counter substrate when the liquid crystal cell was produced. The above two substrates were combined into a set, and a sealant (Mitsui Chemicals XN-1500T) was printed on the substrate using a dispenser, and another substrate was attached to the set so that the alignment directions of the liquid crystal alignment films were 0° and faced each other. The attached substrates were then pressed together and heated for 60 minutes in a hot air circulation oven at 150°C to harden the sealant, producing an empty cell. Positive liquid crystal PA-1492 (DIC) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. The obtained liquid crystal cell was then heated at 120°C for 1 hour and left overnight at 23°C before being used for evaluation.
[Evaluation of Liquid Crystal Alignment Stability]
This evaluation is for evaluating image retention (also called AC image retention) that occurs due to deterioration of the alignment performance of a liquid crystal alignment film during long-term AC driving.
 上記で作製したFFS駆動液晶セルに対し、表面温度が40℃の高輝度バックライト(光源:LED、輝度:20000cd/m)の上で、±4.2Vの交流電圧を周波数60Hzで120時間印加した。 An AC voltage of ±4.2 V at a frequency of 60 Hz was applied to the FFS driving liquid crystal cell prepared above on a high-luminance backlight (light source: LED, luminance: 20,000 cd/m 2 ) with a surface temperature of 40° C. for 120 hours.
 その後、液晶セルの画素電極と共通電極との間をショートさせた状態にし、室温(23℃)下で一日放置した。上記の処理を行った液晶セルについて、電圧無印加状態における、画素の第1領域の液晶の配向方向と、画素の第2領域の液晶の配向方向とのずれを角度として算出した。具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、バックライトを点灯させ、第1画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に第1画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度を角度Δとして算出した。第2画素でも同様に、第1領域と第2領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δの平均値を液晶セルの回転角度Δとして算出した。液晶配向の安定性は、この回転角度Δの値が小さいほど良好であると言える。評価基準として、上記で得られた液晶セルの回転角度Δの値が、それぞれ、0.08°未満の場合を「○」、0.08°以上の場合を「×」とした。結果を表3、4に示す。
[コントラストの面内均一性の評価]
 AXOMETRICS社製AxoStepを用いて液晶セルのツイスト角のばらつきの評価を行った。上記で作製した液晶セルを測定ステージに設置し、電圧無印加の状態で、画素面内のCircular Retardanceの分布を測定して標準偏差σの3倍である3σを算出した。面内均一性は、この3σの値が小さいほど良好であると言える。評価基準として、上記3σ値が、それぞれ、1.70未満の場合を「○」、1.70以上の場合を「×」とした。結果を表3、4に示す。
Thereafter, the pixel electrode and the common electrode of the liquid crystal cell were shorted, and the liquid crystal cell was left at room temperature (23°C) for one day. The deviation between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region of the pixel in the non-voltage-applied state was calculated as an angle for the liquid crystal cell that had been subjected to the above treatment. Specifically, the liquid crystal cell was placed between two polarizing plates arranged so that the polarization axes were perpendicular to each other, the backlight was turned on, and the arrangement angle of the liquid crystal cell was adjusted so that the transmitted light intensity of the first region of the first pixel was minimized. The rotation angle required when the liquid crystal cell was rotated so that the transmitted light intensity of the second region of the first pixel was minimized was calculated as an angle Δ. Similarly, the first region and the second region of the second pixel were compared, and the same angle Δ was calculated. Then, the average value of the angles Δ of the first pixel and the second pixel was calculated as the rotation angle Δ of the liquid crystal cell. It can be said that the stability of the liquid crystal alignment is better as the value of this rotation angle Δ is smaller. As the evaluation criteria, when the rotation angle Δ of the liquid crystal cell obtained above was less than 0.08°, it was marked as “◯”, and when it was 0.08° or more, it was marked as “×”. The results are shown in Tables 3 and 4.
[Evaluation of in-plane uniformity of contrast]
The variation in the twist angle of the liquid crystal cell was evaluated using AxoStep manufactured by AXOMETRICS. The liquid crystal cell prepared above was placed on a measurement stage, and the distribution of circular retardance in the pixel plane was measured without applying voltage to calculate 3σ, which is three times the standard deviation σ. It can be said that the smaller the 3σ value, the better the in-plane uniformity. As an evaluation criterion, when the 3σ value was less than 1.70, it was marked as "○", and when it was 1.70 or more, it was marked as "×". The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表3、4に示されるように、特定の脂環式テトラカルボン酸誘導体(p1)及び特定の脂環式テトラカルボン酸誘導体(p2)を含有するテトラカルボン酸成分を用いた液晶配向剤から得られる液晶配向膜は、上記に該当しない液晶配向剤から得られる液晶配向膜に比べて、液晶配向の安定性及びコントラストの面内均一性が良好であった。
 より具体的には、特定の脂環式テトラカルボン酸誘導体(p2)として(CA-2)を用いて得られる重合体を含む液晶配向剤(AL-1)~(AL-3)は、(CA-2)を用いない従来の液晶配向剤(AL-R1)~(AL-R2)に比べて、良好な特性を示した。また、特定の脂環式テトラカルボン酸誘導体(p2)として(CA-3)又は(CA-4)を用いて得られる重合体を含む液晶配向剤(AL-4)~(AL-5)は、シクロヘキサン構造を有するテトラカルボン酸二無水物(CA-6)を用いた従来の液晶配向剤(AL-R3)に比べて、良好な特性を示した。
As shown in Tables 3 and 4, the liquid crystal alignment film obtained from the liquid crystal alignment agent using the tetracarboxylic acid component containing the specific alicyclic tetracarboxylic acid derivative (p1) and the specific alicyclic tetracarboxylic acid derivative (p2) had better liquid crystal alignment stability and in-plane contrast uniformity than the liquid crystal alignment film obtained from the liquid crystal alignment agent not falling under the above.
More specifically, the liquid crystal alignment agents (AL-1) to (AL-3) containing a polymer obtained by using (CA-2) as the specific alicyclic tetracarboxylic acid derivative (p2) showed better properties than the conventional liquid crystal alignment agents (AL-R1) to (AL-R2) that did not use (CA-2). Also, the liquid crystal alignment agents (AL-4) to (AL-5) containing a polymer obtained by using (CA-3) or (CA-4) as the specific alicyclic tetracarboxylic acid derivative (p2) showed better properties than the conventional liquid crystal alignment agent (AL-R3) that used a tetracarboxylic dianhydride (CA-6) having a cyclohexane structure.
 1:横電界方式の液晶表示素子、2:櫛歯電極基板、2a:基材、2b:線状電極、2c:液晶配向膜、2d:基材、2e:面電極、2f:絶縁膜、2g:線状電極、2h:液晶配向膜、3:液晶、4:対向基板、4a:液晶配向膜、4b:基材、L:電気力線 1: In-plane electric field type liquid crystal display element, 2: Comb electrode substrate, 2a: Base material, 2b: Linear electrode, 2c: Liquid crystal alignment film, 2d: Base material, 2e: Planar electrode, 2f: Insulating film, 2g: Linear electrode, 2h: Liquid crystal alignment film, 3: Liquid crystal, 4: Counter substrate, 4a: Liquid crystal alignment film, 4b: Base material, L: Electric field line
 なお、2023年1月23日に出願された日本特許出願2023-8329号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2023-8329, filed on January 23, 2023, are hereby incorporated by reference as the disclosure of the specification of the present invention.

Claims (14)

  1.  下記式(T1)で表されるテトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも1種類と、
     下記式(T2-1)~(T2-3)で表されるテトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも1種類と、からなるテトラカルボン酸成分と、
     ジアミン成分と、を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、R~Rの少なくとも一つは上記定義中の水素原子以外の基を表す。)
    At least one selected from the group consisting of tetracarboxylic dianhydrides represented by the following formula (T1) and derivatives thereof;
    a tetracarboxylic acid component comprising at least one selected from the group consisting of tetracarboxylic acid dianhydrides and derivatives thereof represented by the following formulas (T2-1) to (T2-3);
    A liquid crystal aligning agent comprising: a diamine component; and at least one polymer (P) selected from the group consisting of a polyimide precursor obtained using the diamine component and a polyimide which is an imidized product of the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000001
    (R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above.)
  2.  前記ジアミン成分が、下記式(dAL)で表されるジアミンを含有する、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (Ar、及びAr1’は、それぞれ、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、該ベンゼン環、該ビフェニル構造、又は該ナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよい。L及びL1’は、それぞれ、単結合、-O-、-C(=O)-、又は-O-C(=O)-を表す。Aは、-CH-、炭素数2~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。)
    The liquid crystal aligning agent according to claim 1 , wherein the diamine component contains a diamine represented by the following formula (d AL ):
    Figure JPOXMLDOC01-appb-C000002
    (Ar 1 and Ar 1' each represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more hydrogen atoms on the benzene ring, the biphenyl structure, or the naphthalene ring may be substituted with a monovalent group. L 1 and L 1' each represent a single bond, -O-, -C(=O)-, or -O-C(=O)-. A represents -CH 2 -, an alkylene group having 2 to 12 carbon atoms, or a divalent organic group in which at least one of -O-, -C(=O)-O-, and -O-C(=O)- is inserted between the carbon-carbon bonds of the alkylene group. Any hydrogen atom possessed by A may be substituted with a halogen atom.)
  3.  前記式(T2-1)~(T2-3)で表されるテトラカルボン酸二無水物及びその誘導体の含有量が、重合体(P)の製造に使用されるテトラカルボン酸成分1モルに対して、5~50モル%である、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the content of the tetracarboxylic dianhydrides and their derivatives represented by the formulas (T2-1) to (T2-3) is 5 to 50 mol % relative to 1 mol of the tetracarboxylic acid component used in the production of the polymer (P).
  4.  前記式(1)におけるR~Rの少なくとも2つが、前記定義中の水素原子以外の基を表す、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein at least two of R 1 to R 4 in said formula (1) represent a group other than a hydrogen atom in said definitions.
  5.  前記式(T1)で表されるテトラカルボン酸二無水物及びその誘導体の含有量が、重合体(P)の製造に使用されるテトラカルボン酸成分1モルに対して、50~95モル%である、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the content of the tetracarboxylic dianhydride represented by the formula (T1) and its derivatives is 50 to 95 mol % relative to 1 mol of the tetracarboxylic acid component used in the production of the polymer (P).
  6.  前記ジアミン成分が、更にフェニレンジアミン、ジアミノビフェニル化合物、ジフェニルエーテル構造を有するジアミン、テトラカルボン酸ジイミド構造を有するジアミン、アミド結合を有するジアミン、ウレア結合を有するジアミン、及び基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)を有するジアミンからなる群から選ばれる少なくとも一つのその他のジアミンを含有する、請求項1に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 1, wherein the diamine component further contains at least one other diamine selected from the group consisting of phenylenediamine, diaminobiphenyl compound, diamine having a diphenyl ether structure, diamine having a tetracarboxylic diimide structure, diamine having an amide bond, diamine having a urea bond, and diamine having the group "-N(D)-" (D represents a protective group which is eliminated by heating and is replaced by a hydrogen atom).
  7.  前記式(dAL)で表されるジアミンの含有量が、重合体(P)の製造に使用されるジアミン成分1モルに対して、5モル%以上である、請求項2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 2, wherein the content of the diamine represented by the formula (d AL ) is 5 mol % or more relative to 1 mol of the diamine component used in the production of the polymer (P).
  8.  前記式(dAL)で表されるジアミンの含有量が、重合体(P)の製造に使用されるジアミン成分1モルに対して、90モル%以下であり、
     前記その他のジアミンの含有量が、重合体(P)の製造に使用されるジアミン成分1モルに対して、10~95モル%である、請求項6に記載の液晶配向剤。
    The content of the diamine represented by the formula (d AL ) is 90 mol % or less based on 1 mol of the diamine component used in the production of the polymer (P);
    The liquid crystal aligning agent according to claim 6, wherein the content of the other diamine is 10 to 95 mol % relative to 1 mol of the diamine component used in the production of the polymer (P).
  9.  請求項1~8のいずれか一項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 8.
  10.  前記液晶配向膜が、偏光紫外線を照射して得られる、請求項9に記載の液晶配向膜。 The liquid crystal alignment film according to claim 9, which is obtained by irradiating the liquid crystal alignment film with polarized ultraviolet light.
  11.  請求項9の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film of claim 9.
  12.  下記の工程(1)~(4)を含む、液晶表示素子の製造方法。
     工程(1):第1基板及び第2基板のうち少なくとも一方に請求項1~8のいずれか一項に記載の液晶配向剤を塗布する工程
     工程(2):塗布した前記液晶配向剤を焼成し、膜を得る工程
     工程(3):工程(2)で得られた前記膜に光配向処理する工程
     工程(4):前記第1基板と前記第2基板との間に、前記光配向処理された膜に隣接するように液晶層を配置して液晶セルを作製する工程
    A method for manufacturing a liquid crystal display element, comprising the following steps (1) to (4):
    Step (1): A step of applying the liquid crystal alignment agent according to any one of claims 1 to 8 to at least one of a first substrate and a second substrate; Step (2): A step of baking the applied liquid crystal alignment agent to obtain a film; Step (3): A step of subjecting the film obtained in step (2) to a photo-alignment treatment; Step (4): A step of disposing a liquid crystal layer between the first substrate and the second substrate so as to be adjacent to the photo-aligned film to prepare a liquid crystal cell.
  13.  工程(3)と工程(4)の間に、更に加熱処理を行う工程(3b)を含む、請求項12に記載の液晶表示素子の製造方法。 The method for producing a liquid crystal display element according to claim 12, further comprising a step (3b) of performing a heat treatment between steps (3) and (4).
  14.  前記液晶表示素子が、IPS方式又はFFS方式の液晶表示素子である請求項13に記載の液晶表示素子の製造方法。 The method for manufacturing a liquid crystal display element according to claim 13, wherein the liquid crystal display element is an IPS type or FFS type liquid crystal display element.
PCT/JP2024/001238 2023-01-23 2024-01-18 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2024157869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023008329 2023-01-23
JP2023-008329 2023-01-23

Publications (1)

Publication Number Publication Date
WO2024157869A1 true WO2024157869A1 (en) 2024-08-02

Family

ID=91970526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001238 WO2024157869A1 (en) 2023-01-23 2024-01-18 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (2)

Country Link
TW (1) TW202436600A (en)
WO (1) WO2024157869A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651316A (en) * 1992-07-30 1994-02-25 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JPH08169954A (en) * 1994-12-16 1996-07-02 Japan Synthetic Rubber Co Ltd Liquid-crystal aligning agent
JP2022162467A (en) * 2021-04-12 2022-10-24 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and compound
WO2022270287A1 (en) * 2021-06-24 2022-12-29 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651316A (en) * 1992-07-30 1994-02-25 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JPH08169954A (en) * 1994-12-16 1996-07-02 Japan Synthetic Rubber Co Ltd Liquid-crystal aligning agent
JP2022162467A (en) * 2021-04-12 2022-10-24 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and compound
WO2022270287A1 (en) * 2021-06-24 2022-12-29 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
TW202436600A (en) 2024-09-16

Similar Documents

Publication Publication Date Title
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2023286735A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20250009419A (en) Novel diamine compound, polymer obtained by using the diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024157869A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024122359A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7497782B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024162336A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024142964A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7505643B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024111498A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2025079520A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2024154728A1 (en) Liquid crystal display element and method for manufacturing same
WO2025079517A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2025079518A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2025079519A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20250043437A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
CN118401888A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
JP2024007369A (en) Manufacturing method of liquid crystal orientation film, manufacturing method of liquid crystal display element, liquid crystal orientation film and liquid crystal display element
TW202442861A (en) Liquid crystal alignment agent for photo-alignment, liquid crystal alignment film and liquid crystal display element
WO2024204521A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and methods for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24747198

Country of ref document: EP

Kind code of ref document: A1