[go: up one dir, main page]

WO2023032753A1 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2023032753A1
WO2023032753A1 PCT/JP2022/031699 JP2022031699W WO2023032753A1 WO 2023032753 A1 WO2023032753 A1 WO 2023032753A1 JP 2022031699 W JP2022031699 W JP 2022031699W WO 2023032753 A1 WO2023032753 A1 WO 2023032753A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
compound
ether
aligning agent
Prior art date
Application number
PCT/JP2022/031699
Other languages
French (fr)
Japanese (ja)
Inventor
政太郎 大田
悟志 南
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023545475A priority Critical patent/JPWO2023032753A1/ja
Priority to CN202280059156.XA priority patent/CN117957488A/en
Publication of WO2023032753A1 publication Critical patent/WO2023032753A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
  • liquid crystal display element As a liquid crystal display element, various driving methods with different electrode structures and physical properties of the liquid crystal molecules used have been developed. ) type, IPS type (In Plane Switching), and FFS (Fringe Field Switching) type. These liquid crystal display elements have a liquid crystal alignment film for aligning liquid crystal molecules.
  • Polyimide precursors such as polyamic acids and polyamic acid esters, and polymers typified by polyimides are known as materials for liquid crystal alignment films.
  • the VA type liquid crystal display element which is one of the driving methods of the liquid crystal display element
  • a photopolymerizable compound is added in advance to the liquid crystal composition, and a vertical alignment film such as a polyimide system is used, and a voltage is applied to the liquid crystal cell.
  • a technique PSA (Polymer Sustained Alignment) type element) (see, for example, Patent Document 1 and Non-Patent Document 1) that increases the response speed of liquid crystal by irradiating ultraviolet rays while the liquid crystal is being irradiated.
  • a photopolymerizable compound is added to a polyimide-based vertical liquid crystal aligning agent, and a liquid crystal cell provided with a liquid crystal aligning film obtained from the liquid crystal aligning agent is irradiated with ultraviolet rays while applying a voltage, thereby improving the response of the liquid crystal.
  • a technique for increasing the speed (SC-PVA method (see, for example, Non-Patent Document 2)) is also known.
  • the liquid crystal alignment agent which is the material for forming the liquid crystal alignment film, has a polymer component dissolved in a solvent, and the liquid crystal alignment film is formed by applying the liquid crystal alignment agent to the substrate and heating it.
  • a solvent for the liquid crystal aligning agent an organic solvent in which the polymer is highly soluble, for example, an aprotic polar solvent such as N-methyl-2-pyrrolidone or ⁇ -butyrolactone is generally used.
  • N-methyl-2-pyrrolidone and ⁇ -butyrolactone are used in many technical fields regardless of the liquid crystal aligning agent, so it is expected that their usage will continue to increase in the future. If it does so, it will be necessary to search for a new solvent component suitable for the liquid crystal aligning agent because there is a possibility that supply will be insufficient in the future.
  • liquid crystal display elements have been used for applications such as smartphones and tablet terminals.
  • a sealant is present at a position close to the edge of the liquid crystal alignment film. Therefore, if the coating properties at the edges of the liquid crystal alignment film are reduced, that is, if the area where the edges of the liquid crystal alignment film are raised (unevenness in film thickness at the edges) is wide, the contrast at the edges of the liquid crystal alignment film fluctuates, degrading the display characteristics of the liquid crystal display element.
  • an object of the present invention is to provide a liquid crystal aligning agent containing a novel solvent component suitable for the liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display device using the same. to do.
  • a further object of the present invention is to provide a liquid crystal display device which can improve the coating properties of the end portion of the liquid crystal alignment film and obtain high display characteristics even when applied to a liquid crystal display device having a large display surface.
  • the present invention is based on such findings, and has the following gist.
  • At least one polymer (P) selected from the group consisting of a polyimide precursor and a polyimide that is an imidized product of the polyimide precursor, and a solvent component containing a compound (a) represented by the following formula (A), Liquid crystal aligning agent containing.
  • Boc represents a tert-butoxycarbonyl group.
  • Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • Carbamate-based protective groups include a tert-butoxycarbonyl group and a 9-fluorenylmethoxycarbonyl group.
  • the compound (a) as at least part of the solvent component of the liquid crystal aligning agent of the present invention, it is possible to improve the coatability of the polyimide precursor and polyimide. More specifically, the uniformity of the film thickness at the edges of the obtained liquid crystal alignment film is improved, and high display characteristics can be obtained even when applied to a liquid crystal display element having a large display surface. In addition to this, the liquid crystal alignment film of the present invention achieves both high film thickness uniformity and high liquid crystal alignment.
  • Compound (a) has a higher boiling point and viscosity than N-methyl-2-pyrrolidone, which is mainly used in liquid crystal aligning agents. Furthermore, since it has a polarized structure, precipitation of polyimide precursors and polyimide is suppressed. Therefore, the liquid crystal aligning agent using the compound (a) does not cause deposition of the polyimide precursor or polyimide during printing, and the coating size is highly controlled, so it is considered that the above effect was obtained.
  • the liquid crystal aligning agent of the present invention contains at least one polymer (P) selected from the group consisting of polyimide precursors and polyimides which are imidized products of the polyimide precursors.
  • the polyimide precursor include polyamic acid and polyamic acid ester.
  • tetracarboxylic acid component for obtaining the polymer (P) not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid dialkyl ester di
  • tetracarboxylic dianhydrides such as halides can also be used.
  • Polyamic acid (P′) which is a polyimide precursor of polymer (P), can be obtained by a polymerization reaction between a diamine component and a tetracarboxylic acid component containing tetracarboxylic dianhydride or its derivative.
  • diamine Various diamines can be used as the diamine component used in the production of the polyamic acid (P′) depending on the purpose.
  • the diamines used in the production of the polyamic acid (P') may be used singly or in combination of two or more.
  • Preferred specific examples of the diamine (hereinafter also referred to as diamine (p)) used for producing the polyamic acid (P′) include the following diamines.
  • diamines having an amide bond such as 4,4′-diaminobenzanilide, 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis Diamines having a urea bond such as (4-aminophenethyl)urea; 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis(4-aminophenyl)silane, bis(3-aminophenyl)silane , dimethyl-bis(4-aminophenyl)silane, dimethyl-bis(3-aminophenyl)silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 3,3′-diaminodiphenyl ether, 3,4′- Diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 2,2-bis[
  • n may be the same or different.
  • A represents a monovalent group in which two primary amino groups are bonded to an aromatic group.
  • aromatic groups include benzene rings, naphthalene rings, and biphenyl structures.
  • X is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CO—N(CH 3 )—, —NH—, —O -, -COO-, -OCO- or -(A 0 ) m0 -((CH 2 ) a1 -A 1 ) m1 -(a1 is an integer of 1 to 15, and A 0 and A 1 are each independently represents an oxygen atom or -COO-, m0 is an integer of 0 or 1, and m1 is an integer of 1 to 2.
  • m1 is 2, a plurality of a1 and A1 are each independently defined above ).
  • J represents a monovalent organic group having at least one group selected from the group consisting of an alicyclic hydrocarbon group having 4 to 40 carbon atoms and an aromatic hydrocarbon group having 6 to 40 carbon atoms.
  • at least one of the hydrogen atoms of the alicyclic hydrocarbon group and the aromatic hydrocarbon group is a halogen atom, a halogen atom-containing alkyl group, a halogen atom-containing alkoxy group, an alkyl group having 3 to 10 carbon atoms, a carbon It is substituted with a substituent (v) which is either an alkoxy group having 3 to 10 carbon atoms or an alkenyl group having 3 to 10 carbon atoms.
  • any carbon-carbon single bond in these substituents (v) may be interrupted by -O-.
  • J is an alicyclic hydrocarbon group that is unsubstituted or substituted with a substituent other than the above substituent (v) and an aromatic It may further have at least one group selected from the group consisting of hydrocarbon groups.
  • halogen atom-containing alkyl groups include halogen atom-containing alkyl groups having 1 to 10 carbon atoms.
  • halogen atom-containing alkoxy groups examples include halogen atom-containing alkoxy groups having 1 to 10 carbon atoms.
  • Examples of the alicyclic hydrocarbon group for J include cyclobutane ring, cyclopentane ring, cyclohexane ring, cyclodecane ring, steroid skeleton (e.g., cholestanyl group, cholesteryl group, lanostanyl group, etc.), and the like.
  • a benzene ring, a naphthalene ring, etc. can be mentioned as a hydrogen group.
  • examples of the group "-XJ" include the following structure (S1), and more preferred structures are the following formulas (S1-1) to (S1-5) can be mentioned.
  • X 1 is a single bond, -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -CO-N(CH 3 )-, -NH-, -O-, - COO—, or —(A 0 ) m0 —((CH 2 ) a1 —A 1 ) m1 — (a1 is an integer of 1 to 15, and A 0 and A 1 are each independently an oxygen atom or —COO -, m0 is an integer of 0 or 1, and m1 is an integer of 1 to 2. When m1 is 2, multiple a1 and A1 each independently have the above definition.) .
  • G 1 represents a divalent cyclic group selected from a phenylene group and a cyclohexylene group.
  • Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • n is an integer of 1-4.
  • X 1 and G 1 each independently have the above definition.
  • R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
  • X 1 and R 1 are synonymous with X 1 and R 1 in formula (S1) above.
  • Specific examples of the aromatic diamine (d) include diamines represented by the following formulas (d-1) and (d-2). More preferred specific examples are the groups of formulas (d-1) to (d-1) to ( diamines represented by d-2), and cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, and 3,5-diaminobenzo diamines having a steroid skeleton such as cholestanyl acid, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy)cholestane.
  • X and J have the same definitions as X and J of the aromatic diamine (d) above, including preferred embodiments. In the above formula (d-2), two X and J may be the same or different.
  • the diamine (p) for example, it is possible to appropriately select and use from the above diamines according to the drive mode of the liquid crystal display element to be manufactured. Specifically, by using the diamine (1), the diamine having the specific nitrogen-containing structure, or the diamine having the urea bond as the diamine (p), an IPS type or FFS type liquid crystal display element can be obtained. A suitable liquid crystal aligning agent can be produced.
  • a liquid crystal aligning agent suitable for TN-type liquid crystal display elements can be produced, and the aromatic diamine (d) is used.
  • a liquid crystal aligning agent suitable for VA type liquid crystal display elements can be produced.
  • a liquid crystal aligning agent suitable for PSA type or SC-PVA type liquid crystal display elements can be produced.
  • the diamine having the photo-orientation group can be used as the diamine (p).
  • the diamine having the carboxy group the diamine having the group "-N(D)-", or -Ar-K-Ar- (Ar represents an unsubstituted or substituted phenylene group; K represents -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -O-, or -CH 2 -; Ar—K—Ar— is formed in the main chain direction of the polymer.)
  • K represents an unsubstituted or substituted phenylene group
  • K represents -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -O-, or -CH 2 -
  • Ar—K—Ar— is formed in the main chain direction of the polymer.
  • diamine (K) examples include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoro Propane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)propane, 2,2 -bis(3-amino-4-methylphenyl)propane, 3,3'-diaminodiphenylmethane,
  • the aromatic diamine (d) is used as the diamine (p), it is preferably 5 to 95 mol%, preferably 10 to 90 mol%, of the total diamine component used to produce the polyamic acid (P'). is more preferred.
  • the diamine (1) the diamine having the specific nitrogen-containing structure, or the diamine having the urea bond is used as the diamine (p)
  • the diamine component used to produce the polyamic acid (P') It is preferably 5 to 95 mol %, more preferably 10 to 90 mol % of the whole.
  • the diamine used for producing the polyamic acid (P') is preferably 5 to 60 mol %, more preferably 10 to 60 mol %, of the entire component.
  • the diamine (p) when using the diamine having the carboxyl group or the diamine having the group "-N(D)-", the total diamine component used for producing the polyamic acid (P'), 5 to 90 mol % is preferred, and 10 to 80 mol % is more preferred.
  • Tetracarboxylic dianhydride Tetracarboxylic dianhydrides that can be used in the synthesis of the polyamic acid (P′) include acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aromatic tetracarboxylic acids. At least one compound selected from the group consisting of dianhydrides is included.
  • a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, and a cyclobutane ring structure and a cyclopentane ring. It is more preferable to contain a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a structure and a cyclohexane ring structure.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
  • An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
  • An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • the tetracarboxylic acid component that can be used for synthesizing the polyamic acid (P') the following tetracarboxylic dianhydrides or derivatives thereof (hereinafter collectively referred to as specific tetracarboxylic acid derivatives) are preferred. .)including.
  • the tetracarboxylic dianhydride or derivative thereof may be used alone or in combination of two or more.
  • Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracar
  • Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3
  • the proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to 1 mol of the total tetracarboxylic acid component used.
  • Synthesis of polyamic acid is carried out by reacting a diamine component containing the diamine and a tetracarboxylic acid component containing the tetracarboxylic dianhydride or its derivative in an organic solvent.
  • the ratio of the tetracarboxylic dianhydride and the diamine used in the synthetic reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.5 to 2 per equivalent of the amino group of the diamine.
  • a ratio that provides equivalents is preferred, and a ratio that provides 0.8 to 1.2 equivalents is more preferred.
  • the closer the equivalent of the acid anhydride group in this tetracarboxylic dianhydride to one equivalent the greater the molecular weight of the resulting polyamic acid.
  • the reaction temperature in the polyamic acid synthesis reaction is preferably -20 to 150°C, more preferably 0 to 100°C. Also, the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • the polyamic acid synthesis reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
  • organic solvent examples include compound (a), cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N -dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used
  • Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
  • a polyimide can be obtained by ring-closing (imidating) a polyimide precursor such as the above polyamic acid or polyamic acid ester.
  • the imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof).
  • the imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose. For example, from the viewpoint of ensuring the solubility of polyimide, the imidization rate may be 30% or more, 40 to 99%, or 50 to 99%.
  • Examples of methods for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and water produced by the imidization reaction is removed from the system. is preferred.
  • Catalytic imidization of the polyimide precursor is carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor, preferably -20 to 250°C, more preferably stirring at 0 to 180°C. can be done.
  • the amount of the basic catalyst is preferably 0.5 to 30 times the molar amount of the amic acid group, more preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is preferably 1 to 50 times the molar amount of the amic acid group. It is preferably 3 to 30 molar times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc.
  • pyridine is preferable because it has appropriate basicity for advancing the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride.
  • acetic anhydride is preferably used because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
  • the reaction solution may be put into a solvent to precipitate.
  • Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated by adding it to the solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • a tetracarboxylic acid component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the diamine, together with an appropriate terminal blocker to end block It is also possible to synthesize a polymer of the type
  • the end-blocking polymer has effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion properties between the sealing agent and the liquid crystal alignment film.
  • Examples of the ends of the polyimide precursors and polyimides in the present invention include amino groups, carboxy groups, acid anhydride groups, and groups derived from end blocking agents described later.
  • An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
  • Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc.
  • Acid anhydrides dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4 -aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n - monoamine compounds such as heptylamine and n-octylamine; ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, or having unsaturated bonds such as 2-acryloyloxyethyl isocyanate and 2-methacryloy
  • the proportion of the end blocking agent used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts in total of the diamine components used.
  • the polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. is.
  • the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the liquid crystal aligning agent of the present invention contains the polymer (P) and the compound (a) represented by the formula (A) as a solvent component.
  • the liquid crystal aligning agent is used for producing a liquid crystal aligning film, and preferably takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the concentration of the polymer in the liquid crystal aligning agent (the total concentration of the polymer components) is preferably 1% by mass or more, and from the viewpoint of the storage stability of the solution, 10% by mass or less is preferable.
  • a particularly preferred polymer concentration is 2 to 8% by weight.
  • the content of compound (a) can be appropriately adjusted depending on the purpose. For example, from the viewpoint of improving printability, it may be 0.1% by mass or more, 1% by mass or more, or 5% by mass or more with respect to the total amount of solvent components contained in the liquid crystal aligning agent. It is good also as 10 mass % or more.
  • the upper limit of the content may be 90% by mass or less, 85% by mass or less, or 80% by mass with respect to the total amount of the solvent component contained in the liquid crystal aligning agent. The following may be used.
  • the compound (a) may contain impurities such as levoglucosan and levoglucosenone.
  • the preferable range of the content ratio of compound (a) is defined as the amount of compound (a) including such impurities.
  • Compound (a) may be a single stereoisomer or a mixture containing multiple stereoisomers. Examples of commercially available products of compound (a) include Cyrene (trademark) manufactured by Merck & Co., Inc.
  • a solvent other than the above compound (a) may be used.
  • the other solvent include lactone solvents such as ⁇ -valerolactone, ⁇ -butyrolactone, ⁇ , ⁇ -dimethyl- ⁇ -butyrolactone; ⁇ -butyrolactam, N-methyl-2-pyrrolidone, N-ethyl-2- pyrrolidone, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n -pentyl)-2-pyrrolidone, N-(3-methoxypropyl)-2-pyrrolidone, N-(2-ethoxyethyl)-2-pyrrolidone, N-(4-methoxybutyl)-2-
  • the liquid crystal aligning agent of the present invention contains, as a solvent component, 4-hydroxy-4-methyl-2-pentanone, n-butyl acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, from the viewpoint of improving the printability of the liquid crystal aligning agent.
  • the solvent component contained in the liquid crystal aligning agent of the present invention may contain a combination of multiple solvents.
  • a solvent component containing the compound (a) and the solvent (1) a solvent component containing the compound (a) and the solvent (2), a compound (a), the solvent (1) and the solvent (2) and a solvent component containing Among them, more preferable specific examples include solvent components including the following aspects.
  • BCS is ethylene glycol monobutyl ether
  • PB propylene glycol monobutyl ether
  • DAA is 4-hydroxy-4-methyl-2-pentanone
  • DIBK is diisobutyl ketone
  • BCA is ethylene glycol monobutyl ether acetate
  • PGME is Propylene glycol monomethyl ether
  • PGMEA for propylene glycol monomethyl ether acetate
  • PGA propylene glycol diacetate
  • DEDE for diethylene glycol diethyl ether
  • DPM dipropylene glycol monomethyl ether
  • NMP for N-methyl-2-pyrrolidone
  • GBL for ⁇ -butyrolactone
  • CHN is cyclohexanone
  • CPN is cyclopentanone
  • 3MDP is 3-methoxy-N,N-dimethylpropanamide
  • 3BDP is 3-butoxy-N,N-dimethylpropanamide
  • DP is N,N-d
  • the liquid crystal aligning agent of the present invention may contain components other than those mentioned above, if necessary.
  • the component include at least one selected from a polymer (Q) other than the polymer (P) described above, an epoxy group, an oxetanyl group, an oxazoline group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group, and an alkoxy group.
  • At least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-1) having one substituent and a crosslinkable compound (c-2) having a polymerizable unsaturated group, and a functional silane compound , metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
  • polysiloxanes examples include polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride) copolymers, poly( isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, polymers selected from the group consisting of poly(meth)acrylates, and the like. .
  • poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like.
  • Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland).
  • the other polymer (Q) may be used alone or in combination of two or more.
  • the content of the other polymer (Q) is preferably 50 parts by mass or less, more preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. Part is more preferred.
  • Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include the following compounds.
  • epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexane.
  • Bisphenol A type epoxy resin bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4.
  • Polymers and oligomers having an oxazoline group such as compounds described in paragraph [0115] of Japanese Patent Application Laid-Open No. 2007-286597;
  • compounds having a cyclocarbonate group N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' -Di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and paragraphs [0025] to [0030] and [0032] of WO2011/155577 compounds, etc.;
  • Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU,
  • compounds having a hydroxy group and an alkoxy group N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2 , 2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3,3- Hexafluoropropane, WO 2015/072554, the compound described in paragraph [0058] of JP 2016-118753, the compound described in JP 2016-200798, WO 2010/074269 compounds described;
  • crosslinkable compounds having a polymerizable unsaturated group glycerin mono(meth)acrylate
  • the content of the crosslinkable group-containing compounds (c-1) and (c-2) contained in the liquid crystal aligning agent of the present invention is It is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, still more preferably 1 to 10 parts by mass.
  • Compounds for adjusting the dielectric constant and electrical resistance include monoamines having nitrogen-containing aromatic heterocycles such as 3-picolylamine.
  • a monoamine having a nitrogen-containing aromatic heterocycle it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 100 parts by mass relative to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. 20 parts by mass.
  • Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane.
  • Silane N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane,
  • the solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is 1 to 10% by mass.
  • a particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably 1.5 to 4.5% by mass.
  • the solid content concentration is particularly preferably 1.5 to 4.5% by mass.
  • the printing method it is particularly preferable to set the solid content concentration to 3 to 9% by mass and thereby the solution viscosity to 12 to 50 mPa ⁇ s.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal alignment film of the present invention can be used as a horizontal alignment type or vertical alignment type liquid crystal alignment film.
  • a liquid crystal alignment film used for a vertical alignment type liquid crystal display element such as a VA system, a PSA system, or an SC-PVA system is preferable.
  • the liquid crystal aligning agent of the present invention can be used as a liquid crystal alignment film for a retardation film, a liquid crystal alignment film for a scanning antenna or a liquid crystal array antenna, a liquid crystal alignment film for a transmission scattering type liquid crystal light control element, or other applications.
  • a protective film for a color filter, a gate insulating film for a flexible display, and a substrate material for example, a protective film for a color filter, a gate insulating film for a flexible display, and a substrate material.
  • the liquid crystal display element of the present invention comprises the liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element manufactured through a process of polymerizing a polymerizable compound by at least one of irradiation with an active energy ray and heating while placing a substance and applying a voltage between electrodes.
  • the liquid crystal display device of the present invention can be manufactured, for example, by performing the following steps (1) to (3) or steps (1) to (4) in this order.
  • the liquid crystal aligning agent of the present invention is coated on one surface of the substrate by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an ink jet method, or the like to prepare a coating film.
  • the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. In addition, in a reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
  • Step of Baking Coating Film After applying the liquid crystal aligning agent, the coating film is baked for the purpose of preventing dripping of the applied aligning agent. Preferably, preheating (prebaking) is performed first.
  • the prebaking temperature is preferably 30 to 200°C, more preferably 40 to 150°C, and particularly preferably 40 to 100°C.
  • the pre-baking time is preferably 0.25-10 minutes, more preferably 0.5-5 minutes.
  • a heating (post-baking) step is preferably performed.
  • the post-bake temperature is preferably 80-300°C, more preferably 120-250°C.
  • the post-bake time is preferably 5-200 minutes, more preferably 10-100 minutes.
  • the thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the coating film formed in the above steps (1) and (2) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment.
  • Alignment imparting treatment includes rubbing treatment in which the coating film is rubbed in a fixed direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, cotton, etc., and photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation. processing and the like.
  • ultraviolet rays and visible rays including light having a wavelength of 150 to 800 nm can be used as the radiation to irradiate the coating film.
  • the radiation When the radiation is polarized, it may be linearly polarized or partially polarized. Further, when the radiation used is linearly polarized or partially polarized, the irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof. When non-polarized radiation is applied, the direction of irradiation is oblique.
  • Step of forming a liquid crystal layer between the pair of substrates to produce a liquid crystal cell (3-1) When manufacturing a VA liquid crystal display element Two substrates having the liquid crystal alignment film of the present invention formed on at least one of them are prepared, and a liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned.
  • the first method is a conventionally known method. First, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other.
  • liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used.
  • a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal
  • a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
  • the above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane,
  • a liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group).
  • the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
  • the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation.
  • additives include photopolymerizable monomers such as compounds having a polymerizable group described below; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
  • Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
  • MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
  • the second method is a method called the ODF (One Drop Fill) method.
  • a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip.
  • the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • the mesogenic structure includes a structure in which two or more aromatic groups or aliphatic groups are linked, such as a biphenyl structure, a terphenyl structure, a naphthalene ring, a group obtained by removing two hydroxy groups from bisphenol A, or any of these A fluorine atom-containing structure in which a part of the hydrogen atoms of the structure are replaced with fluorine atoms can be mentioned.
  • Specific compounds include 4,4'-dimethacryloxybiphenyl or 3-fluoro-1,1'-biphenyl-4,4'-diyl dimethacrylate.
  • a method of manufacturing a liquid crystal display element may be adopted by carrying out the same as the above (3-1) and then performing a step of irradiating ultraviolet rays, which will be described later. According to this method, a liquid crystal display device having an excellent response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device.
  • the compound having a polymerizable group may be a compound having the polymerizable group described above, and the content thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all polymer components.
  • the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction.
  • the polymer obtained is mentioned.
  • Step of irradiating the liquid crystal cell with light The liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (3-2) or (3-3) above.
  • the voltage applied here can be, for example, 5 to 50 V direct current or alternating current.
  • ultraviolet light containing light with a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet light containing light with a wavelength of 300 to 400 nm is preferable.
  • a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used as the light source for the irradiation light.
  • the irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
  • a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell.
  • a polarizing plate As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film” in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself.
  • a polarizing plate consisting of
  • the liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
  • CA-1 to CA-2 compounds represented by the following formulas (CA-1) to (CA-2), respectively
  • (diamine) DA-1 to DA-2 compounds represented by the following formulas (DA-1) to (DA-2), respectively
  • GPC apparatus SSC-7200 (manufactured by Senshu Kagaku), column: GPC KD-803, GPC KD-805 (manufactured by Showa Denko) in series, column temperature: 50 ° C., eluent: N,N-dimethylformamide (addition As agents, lithium bromide monohydrate (LiBr.H 2 O) is 30 mmol/L, phosphoric acid/anhydride crystals (o-phosphoric acid) is 30 mmol/L, and tetrahydrofuran (THF) is 10 mL/L), flow rate: 1.0 mL/min Standard sample for creating a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (man
  • FT-NMR Fourier transform superconducting nuclear magnetic resonance spectrometer
  • (Chemical) imidization rate is determined by protons derived from a structure that does not change before and after imidization as reference protons, and is derived from the peak integrated value of this proton and the NH group of amic acid appearing around 9.5 to 10.0 ppm. It was obtained by the following formula using the proton peak integrated value.
  • x indicates the proton peak integrated value derived from the NH group of the amic acid
  • y indicates the peak integrated value of the reference proton
  • is the amic acid in the case of polyamic acid (imidization rate is 0%). shows the ratio of the number of reference protons to one proton of the NH group of .
  • Imidation rate (%) (1- ⁇ x/y) x 100
  • Cyrene (11.3 g) was added to polyimide (SPI-1) powder (2.00 g) and dissolved by stirring at 70° C. for 15 hours to obtain a polyimide solution.
  • polyimide solution diluted with Cyrene and BCS and stirred at room temperature for 2 hours, the mass ratio of the polymer solid content and each solvent (polymer solid content: Cyrene: BCS) was 6: 54: 40.
  • a liquid crystal aligning agent (AL-2) was obtained.
  • NMP (11.3 g) was added to polyimide (SPI-1) powder (2.00 g) and dissolved by stirring at 70° C. for 15 hours to obtain a polyimide solution.
  • polyimide solution dilute with NMP and BCS and stir at room temperature for 2 hours, so that the mass ratio of the polymer solid content and each solvent (polymer solid content: NMP: BCS) is 6: 54: 40.
  • a liquid crystal aligning agent (AL-3) was obtained.
  • Table 1 shows the specifications of each liquid crystal aligning agent prepared above.
  • Printing is performed under the conditions of a set size of 80 mm ⁇ 80 mm and a printing pressure of 0.2 mm, and the substrate after printing is left on a hot plate at 70 ° C. for 90 seconds to temporarily dry the coating film, and the film state is observed. bottom.
  • the film thickness unevenness at the edges was observed visually and with an optical microscope ("ECLIPSE ME600" manufactured by Nikon Corporation) at a magnification of 50 times.
  • ECLIPSE ME600 manufactured by Nikon Corporation
  • the length of A in FIG. 2 of the polyimide film image obtained by observation was measured. The length of A corresponds to the width of the film thickness unevenness. Table 2 shows the results
  • liquid crystal aligning agent obtained above, a liquid crystal cell was produced in the following procedure.
  • the liquid crystal aligning agent is spin-coated on a glass substrate with ITO electrodes (width 3 cm ⁇ length 4 cm), dried on a hot plate at 70 ° C. for 90 seconds, and then baked in an infrared heating furnace at 230 ° C. for 20 minutes to obtain a film thickness.
  • a liquid crystal alignment film of 100 nm was formed.
  • Two substrates with the liquid crystal alignment film were prepared, and a bead spacer with a diameter of 4 ⁇ m (manufactured by Nikki Shokubai Kasei Co., Ltd., Shinshikyu, SW-D1) was applied onto one of the liquid crystal alignment films, leaving a liquid crystal injection port.
  • a thermosetting sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.) was printed around the periphery.
  • the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell.
  • Liquid crystal MLC-3023 (manufactured by Merck) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell.
  • ultraviolet rays having a wavelength of 325 nm or less and passed through a cut filter were irradiated from the outside of the liquid crystal cell at 10 J/cm 2 .
  • the ultraviolet illuminance was measured using an ultraviolet illuminance meter/photometer UV-M03A manufactured by Oak Manufacturing Co., Ltd.
  • ultraviolet rays (UV lamp: FLR40SUV32/ A-1) was irradiated for 30 minutes.
  • Examples 1 and 2 using a liquid crystal aligning agent containing the compound (a) represented by the formula (A) used a liquid crystal aligning agent containing no compound (a).
  • the printability was good, and no problem was observed in the liquid crystal alignment characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided are: a liquid crystal alignment agent containing a new solvent component that is suitable for liquid crystal alignment agents; a liquid crystal alignment film obtained from the liquid crystal alignment agent; and a liquid crystal display element using same. Also provided is a liquid crystal display element from which superior display characteristics are obtained even when a liquid crystal alignment film is caused to have an improved application property with respect to end portions and is used for a liquid crystal display element having a large display surface. This liquid crystal alignment agent contains: at least one polymer (P) selected from the group consisting of polyimide precursors and polyimides that are imidized products of said polyimide precursors; and a solvent component containing a compound (a) represented by formula (A).

Description

液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
 従来、液晶表示素子としては、電極構造や使用する液晶分子の物性等が異なる種々の駆動方式が開発されており、例えばTN(Twisted Nematic)型やSTN(Super Twisted Nematic)型、VA(Vertical Alignment)型、IPS型(In Plane Switching)、FFS(Fringe Field Switching)型等の各種表示素子が知られている。これら液晶表示素子は、液晶分子を配向させるための液晶配向膜を有する。液晶配向膜の材料としては、例えばポリアミック酸やポリアミック酸エステルなどのポリイミド前駆体、又はポリイミドに代表される重合体が知られている。 Conventionally, as a liquid crystal display element, various driving methods with different electrode structures and physical properties of the liquid crystal molecules used have been developed. ) type, IPS type (In Plane Switching), and FFS (Fringe Field Switching) type. These liquid crystal display elements have a liquid crystal alignment film for aligning liquid crystal molecules. Polyimide precursors such as polyamic acids and polyamic acid esters, and polymers typified by polyimides are known as materials for liquid crystal alignment films.
 液晶表示素子の駆動方式の一つであるVA型の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子)(例えば、特許文献1及び非特許文献1参照。)が知られている。また、光重合性化合物をポリイミド系の垂直液晶配向剤に添加し、該液晶配向剤から得られる液晶配向膜を備えた液晶セルに、電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(SC-PVA 方式(例えば、非特許文献2参照。))も知られている。 In the VA type liquid crystal display element, which is one of the driving methods of the liquid crystal display element, a photopolymerizable compound is added in advance to the liquid crystal composition, and a vertical alignment film such as a polyimide system is used, and a voltage is applied to the liquid crystal cell. There is known a technique (PSA (Polymer Sustained Alignment) type element) (see, for example, Patent Document 1 and Non-Patent Document 1) that increases the response speed of liquid crystal by irradiating ultraviolet rays while the liquid crystal is being irradiated. Further, a photopolymerizable compound is added to a polyimide-based vertical liquid crystal aligning agent, and a liquid crystal cell provided with a liquid crystal aligning film obtained from the liquid crystal aligning agent is irradiated with ultraviolet rays while applying a voltage, thereby improving the response of the liquid crystal. A technique for increasing the speed (SC-PVA method (see, for example, Non-Patent Document 2)) is also known.
 液晶配向膜を形成するための材料である液晶配向剤は、重合体成分が溶媒に溶解されており、液晶配向剤を基板に塗布し加熱することにより液晶配向膜が形成される。ここで、液晶配向剤の溶媒としては、重合体の溶解性が高い有機溶媒、例えばN-メチル-2-ピロリドンやγ-ブチロラクトンなどの非プロトン性極性溶媒が一般に使用される。 The liquid crystal alignment agent, which is the material for forming the liquid crystal alignment film, has a polymer component dissolved in a solvent, and the liquid crystal alignment film is formed by applying the liquid crystal alignment agent to the substrate and heating it. Here, as the solvent for the liquid crystal aligning agent, an organic solvent in which the polymer is highly soluble, for example, an aprotic polar solvent such as N-methyl-2-pyrrolidone or γ-butyrolactone is generally used.
日本特開2003-307720号公報Japanese Patent Application Laid-Open No. 2003-307720
 上記N-メチル-2-ピロリドンやγ-ブチロラクトンは、液晶配向剤に関わらず多くの技術分野で使用されるため、今後も使用量が多くなることが予想される。そうすると、将来的には、供給不足に陥る可能性があることから、液晶配向剤に適した、新たな溶媒成分を探索することが必要となる。 The above N-methyl-2-pyrrolidone and γ-butyrolactone are used in many technical fields regardless of the liquid crystal aligning agent, so it is expected that their usage will continue to increase in the future. If it does so, it will be necessary to search for a new solvent component suitable for the liquid crystal aligning agent because there is a possibility that supply will be insufficient in the future.
 さらに、近年、スマートフォンやタブレット端末などの用途向けに、液晶表示素子が用いられているが、これら用途では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤が、液晶配向膜の端部に近接した位置に存在する。そのため、液晶配向膜の端部の塗布性が低下する場合、すなわち、液晶配向膜の端部が盛り上がっているエリア(膜端部の膜厚ムラ)が広い場合、液晶配向膜端部でのコントラストが変動し、液晶表示素子の表示特性を低下させてしまう。 Furthermore, in recent years, liquid crystal display elements have been used for applications such as smartphones and tablet terminals. A sealant is present at a position close to the edge of the liquid crystal alignment film. Therefore, if the coating properties at the edges of the liquid crystal alignment film are reduced, that is, if the area where the edges of the liquid crystal alignment film are raised (unevenness in film thickness at the edges) is wide, the contrast at the edges of the liquid crystal alignment film fluctuates, degrading the display characteristics of the liquid crystal display element.
 本発明の目的は、上記の事情を鑑み、液晶配向剤に好適な新規な溶媒成分を含有する液晶配向剤、該液晶配向剤から得られる液晶配向膜、及びそれを用いた液晶表示素子を提供することにある。さらに、液晶配向膜の端部の塗布性を向上させ、表示面が大きい液晶表示素子に適用した場合においても、高い表示特性が得られる液晶表示素子を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a liquid crystal aligning agent containing a novel solvent component suitable for the liquid crystal aligning agent, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display device using the same. to do. A further object of the present invention is to provide a liquid crystal display device which can improve the coating properties of the end portion of the liquid crystal alignment film and obtain high display characteristics even when applied to a liquid crystal display device having a large display surface.
 本発明は、かかる知見に基づくものであり、下記を要旨とするものである。 The present invention is based on such findings, and has the following gist.
 ポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)と、下記式(A)で表される化合物(a)を含む溶媒成分と、を含有する、液晶配向剤。 At least one polymer (P) selected from the group consisting of a polyimide precursor and a polyimide that is an imidized product of the polyimide precursor, and a solvent component containing a compound (a) represented by the following formula (A), Liquid crystal aligning agent containing.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 なお、本明細書において、*は、いずれの場合も、結合手を表す。Bocは、tert-ブトキシカルボニル基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。カルバメート系保護基としては、tert-ブトキシカルボニル基、9-フルオレニルメトキシカルボニル基が挙げられる。 In this specification, * represents a bond in any case. Boc represents a tert-butoxycarbonyl group. Halogen atoms include fluorine, chlorine, bromine and iodine atoms. Carbamate-based protective groups include a tert-butoxycarbonyl group and a 9-fluorenylmethoxycarbonyl group.
 本発明の液晶配向剤の溶媒成分の少なくとも一部として化合物(a)を用いることにより、ポリイミド前駆体やポリイミドの塗布性を向上させることができる。より具体的には、得られる液晶配向膜端部の膜厚の均一性を向上させ、表示面が大きい液晶表示素子に適用した場合においても、高い表示特性が得られる。これに加えて、本発明の液晶配向膜は、高い膜厚の均一性と、高い液晶配向性を両立するものである。 By using the compound (a) as at least part of the solvent component of the liquid crystal aligning agent of the present invention, it is possible to improve the coatability of the polyimide precursor and polyimide. More specifically, the uniformity of the film thickness at the edges of the obtained liquid crystal alignment film is improved, and high display characteristics can be obtained even when applied to a liquid crystal display element having a large display surface. In addition to this, the liquid crystal alignment film of the present invention achieves both high film thickness uniformity and high liquid crystal alignment.
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、以下の要因が考えられる。化合物(a)は、液晶配向剤で主に用いられるN-メチル-2-ピロリドンより高い沸点および粘度を有する。さらに、分極した構造を有するため、ポリイミド前駆体やポリイミドの析出が抑制される。そのため、化合物(a)を用いた液晶配向剤は、印刷時に上記ポリイミド前駆体やポリイミドの析出が起こらず、塗布寸法が高度に制御されるため、上記効果が得られたと考えられる。 Although the mechanism by which the above effects of the present invention are obtained is not necessarily clear, the following factors are conceivable. Compound (a) has a higher boiling point and viscosity than N-methyl-2-pyrrolidone, which is mainly used in liquid crystal aligning agents. Furthermore, since it has a polarized structure, precipitation of polyimide precursors and polyimide is suppressed. Therefore, the liquid crystal aligning agent using the compound (a) does not cause deposition of the polyimide precursor or polyimide during printing, and the coating size is highly controlled, so it is considered that the above effect was obtained.
Cr蒸着基板に印刷されたポリイミド膜と膜厚ムラを表した図である。It is a figure showing the polyimide film and film thickness nonuniformity printed on the Cr vapor deposition board|substrate. 図1の点線部分を光学顕微鏡で拡大したポリイミド膜縁部分の膜厚ムラを表した図である。It is the figure which showed the film thickness nonuniformity of the polyimide film edge part which expanded the dotted line part of FIG. 1 with the optical microscope.
 以下に、本開示の液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
<重合体(P)>
 本発明の液晶配向剤は、ポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有する。上記ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステル等が挙げられる。また、重合体(P)を得るためのテトラカルボン酸成分としては、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
Below, each component contained in the liquid crystal aligning agent of this indication, and the other component arbitrarily mix|blended as needed are demonstrated.
<Polymer (P)>
The liquid crystal aligning agent of the present invention contains at least one polymer (P) selected from the group consisting of polyimide precursors and polyimides which are imidized products of the polyimide precursors. Examples of the polyimide precursor include polyamic acid and polyamic acid ester. Moreover, as the tetracarboxylic acid component for obtaining the polymer (P), not only tetracarboxylic dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid dialkyl ester di Derivatives of tetracarboxylic dianhydrides such as halides can also be used.
(ポリアミック酸)
 上記重合体(P)のポリイミド前駆体であるポリアミック酸(P’)は、ジアミン成分とテトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分との重合反応により得ることができる。
(polyamic acid)
Polyamic acid (P′), which is a polyimide precursor of polymer (P), can be obtained by a polymerization reaction between a diamine component and a tetracarboxylic acid component containing tetracarboxylic dianhydride or its derivative.
(ジアミン)
 上記ポリアミック酸(P’)の製造に用いられるジアミン成分は、目的に応じて、種々のジアミンを用いることができる。なお、ポリアミック酸(P’)の製造に用いられるジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。ポリアミック酸(P’)の製造に用いられるジアミン(以下、ジアミン(p)ともいう。)の好ましい具体例として、以下のジアミンが挙げられる。
(diamine)
Various diamines can be used as the diamine component used in the production of the polyamic acid (P′) depending on the purpose. Incidentally, the diamines used in the production of the polyamic acid (P') may be used singly or in combination of two or more. Preferred specific examples of the diamine (hereinafter also referred to as diamine (p)) used for producing the polyamic acid (P′) include the following diamines.
 「A-X-J」(A、X、およびJの定義については後述する。)で表される芳香族ジアミン(d)、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノ-2-メチルフェニルオキシ)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカン、3-[2-[2-(4-アミノフェノキシ)エトキシ]エトキシ]ベンゼンアミン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、1,2-ビス(6-アミノ-2-ナフチルオキシ)エタン、1,2-ビス(6-アミノ-2-ナフチル)エタン、6-[2-(4-アミノフェノキシ)エトキシ]-2-ナフチルアミン、4’-[2-(4-アミノフェノキシ)エトキシ]-[1,1’-ビフェニル]-4-アミン、1,4-ビス[2-(4-アミノフェニル)エチル]ブタンジオアート、1,6-ビス[2-(4-アミノフェニル)エチル]ヘキサンジオアート、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート(以下、これらのジアミンを、ジアミン(1)ともいう。);4,4’-ジアミノアゾベンゼン、ジアミノトラン、4,4’-ジアミノカルコン、又は[4-[(E)-3-[2-(2,4-ジアミノフェニル)エトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエート、若しくは[4-[(E)-3-[[5-アミノ-2-[4-アミノ-2-[[(E)-3-[4-[4-(4,4,4-トリフルオロブトキシ)ベンゾイル]オキシフェニル]プロパ-2-エノイル]オキシメチル]フェニル]フェニル]メトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエートに代表されるシンナメート構造を側鎖に有する芳香族ジアミン、などの光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル及び2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル-3,5-ジアミノベンゾエートに代表される、ベンゾイン若しくはそのアルキルエーテル化物、ベンジルケタール類、アセトフェノン類、アシルホスフィンオキサイド類、ベンゾフェノン類、又はアミノベンゾフェノン類などのラジカル重合開始剤機能を発現する基を分子内に有するジアミン(以下、ラジカル開始機能を有するジアミンともいう。);4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン、1,3-ビス(4-アミノフェニル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン;4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(3-アミノ-4-メチルフェニル)プロパン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-(3-(1H-イミダゾール-1-イル)プロピル-3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、1,4-ビス(p-アミノベンジル)ピペラジン、4,4’-[プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、下記式(z-1)~式(z-5)で表されるジアミン、2,5-ビス(4-アミノフェニル)ピロール、4,4’-(1-メチル-1H-ピロール-2,5-ジイル)ビス[ベンゼンアミン]、1,4-ビス-(4-アミノフェニル)-ピペラジン、2-N-(4-アミノフェニル)ピリジン-2,5-ジアミン、2-N-(5-アミノピリジン-2-イル)ピリジン-2,5-ジアミン、2-(4-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-6-アミノベンズイミダゾール、5-(1H-ベンズイミダゾール-2-イル)ベンゼン-1,3-ジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-1,4-ベンゼンジアミン、N,N ’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素含有構造(以下、特定の窒素含有構造ともいう。)を有するジアミン(但し、加熱によって脱離し、水素原子に置き換わる保護基が結合したアミノ基を分子内に有しない。);2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(4-アミノフェニル)エタン-3,3’-ジカルボン酸、及び4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;N,N’-ビス(2-tert-ブトキシカルボニルアミノ-4-アミノフェニル)アジパミド、4-アミノ-N-(2-tert-ブトキシカルボニルアミノ-4-アミノフェニル)ベンズアミド、カルバミン酸,N-[(2,5-ジアミノフェニル)メチル]-,1,1-ジメチルエチルエステル、カルバミン酸,N-[3-(2,5-ジアミノフェニル)プロピル]-,1,1-ジメチルエチルエステル、カルバミン酸,N,N-[(2,5-ジアミノ-1,3-フェニレン)ジ-3,1-プロパンジイル]ビス-,C,C-ビス(1,1-ジメチルエチル)エステル、N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン、安息香酸,4-アミノ-2-tert-ブトキシカルボニルアミノ-,1,1’-[(1,1,3,3-テトラメチル-1,3-ジシロキサンジイル)ジ-4,1-ブタンジイル]エステル、カルバミン酸,N-[2-(4
-アミノフェニル)エチル]-N-[[[2-(4-アミノフェニル)エチル]アミノ]カルボニル]-,1,1-ジメチルエチルエステル、カルバミン酸,N-(4-アミノフェニル)-N-[[1-(4-アミノフェニル)-4-ピぺリジニル]メチル]-,1,1-ジメチルエチルエステルなどの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミン;1-ドデカノキシ-2,4-ジアミノベンゼン、1-テトラデカノキシ-2,4-ジアミノベンゼン、1-ペンタデカノキシ-2,4-ジアミノベンゼン、1-ヘキサデカノキシ-2,4-ジアミノベンゼン、1-オクタデカノキシ-2,4-ジアミノベンゼン、1-ドデカノキシ-2,5-ジアミノベンゼン、1-テトラデカノキシ-2,5-ジアミノベンゼン、1-ペンタデカノキシ-2,5-ジアミノベンゼン、1-ヘキサデカノキシ-2,5-ジアミノベンゼン、1-オクタデカノキシ-2,5-ジアミノベンゼンに代表される炭素数12~20の長鎖アルキル基を有する芳香族ジアミン(tn);1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン、1,3-ビス[3-(p-アミノフェニルカルバモイル)プロピル]テトラメチルジシロキサン等のシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、国際公開第2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミン等
Aromatic diamine (d), p-phenylenediamine, 2,3,5,6-tetramethyl-p represented by "AXJ" (definitions of A, X, and J will be described later) -phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,2'- Dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4 '-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4 '-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2 ,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, bis(4-aminophenoxy)methane, 1,2-bis(4-aminophenyl)ethane, 1,2-bis(4-aminophenoxy)ethane, 1,3-bis(3- aminophenyl)propane, 1,4-bis(4-aminophenyl)butane, 1,4-bis(4-amino-2-methylphenyloxy)butane, 1,4-bis(3-aminophenyl)butane, bis (3,5-diethyl-4-aminophenyl)methane, 1,5-bis(4-aminophenoxy)pentane, 1,5-bis(3-aminophenoxy)pentane, 1,6-bis(4-aminophenoxy) ) hexane, 1,6-bis(3-aminophenoxy)hexane, 1,7-bis(4-aminophenoxy)heptane, 1,7-bis(3-aminophenoxy)heptane, 1,8-bis( 4-aminophenoxy)octane, 1,8-bis(3-aminophenoxy)octane, 1,9-bis(4-aminophenoxy)nonane, 1,9-bis(3-aminophenoxy)nonane, 1,10- Bis(4-aminophenoxy)decane, 1,10-bis(3-aminophenoxy)decane 1,11-bis(4-aminophenoxy)undecane, 1,11-bis(3-aminophenoxy)undecane, 1,12-bis(4-aminophenoxy)dodecane, 1,12-bis(3-amino phenoxy)dodecane, 3-[2-[2-(4-aminophenoxy)ethoxy]ethoxy]benzenamine, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene , 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′-bis(4- aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene, 1,2-bis(6-amino-2-naphthyloxy)ethane, 1,2-bis(6-amino- 2-naphthyl)ethane, 6-[2-(4-aminophenoxy)ethoxy]-2-naphthylamine, 4′-[2-(4-aminophenoxy)ethoxy]-[1,1′-biphenyl]-4- Amine, 1,4-bis[2-(4-aminophenyl)ethyl]butanedioate, 1,6-bis[2-(4-aminophenyl)ethyl]hexanedioate, 1,4-phenylenebis(4 -aminobenzoate), 1,4-phenylenebis(3-aminobenzoate), 1,3-phenylenebis(4-aminobenzoate), 1,3-phenylenebis(3-aminobenzoate), bis(4-aminophenyl ) terephthalate, bis(3-aminophenyl)terephthalate, bis(4-aminophenyl)isophthalate, bis(3-aminophenyl)isophthalate (hereinafter, these diamines are also referred to as diamine (1). ); 4,4′-diaminoazobenzene, diaminotolan, 4,4′-diaminochalcone, or [4-[(E)-3-[2-(2,4-diaminophenyl)ethoxy]-3-oxo- prop-1-enyl]phenyl]4-(4,4,4-trifluorobutoxy)benzoate, or [4-[(E)-3-[[5-amino-2-[4-amino-2-[ [(E)-3-[4-[4-(4,4,4-trifluorobutoxy)benzoyl]oxyphenyl]prop-2-enoyl]oxymethyl]phenyl]phenyl]methoxy]-3-oxo-propa -1-enyl]phenyl]4-(4,4,4-trifluorobutoxy) diamines having a photoalignable group such as aromatic diamines having a cinnamate structure in the side chain typified by benzoate; methacrylic acid 2- (2,4-diaminophenoxy)ethyl and diamines terminated with photopolymerizable groups such as 2,4-diamino-N,N-diallylaniline; 1-(4-(2-(2,4-diaminophenoxy) ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-(4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl-3,5-diaminobenzoate, benzoin or its alkyl Diamines (hereinafter also referred to as diamines having a radical initiation function) having groups in the molecule that exhibit a radical polymerization initiator function, such as etherates, benzyl ketals, acetophenones, acylphosphine oxides, benzophenones, or aminobenzophenones. ); diamines having an amide bond such as 4,4′-diaminobenzanilide, 1,3-bis(4-aminophenyl)urea, 1,3-bis(4-aminobenzyl)urea, 1,3-bis Diamines having a urea bond such as (4-aminophenethyl)urea; 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis(4-aminophenyl)silane, bis(3-aminophenyl)silane , dimethyl-bis(4-aminophenyl)silane, dimethyl-bis(3-aminophenyl)silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 3,3′-diaminodiphenyl ether, 3,4′- Diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy) c)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(3-amino-4- methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)propane, 2,2-bis(3-amino-4-methylphenyl)propane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 4,4′-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis (4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N -methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6 -diaminocarbazole, N-(3-(1H-imidazol-1-yl)propyl-3,5-diaminobenzamide, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4- methyl-2-oxazolyl]-benzenamine, 1,4-bis(p-aminobenzyl)piperazine, 4,4'-[propane-1,3-diylbis(piperidine-1,4-diyl)]dianiline, 4- (4-aminophenoxycarbonyl)-1-(4-aminophenyl)piperidine, diamines represented by the following formulas (z-1) to (z-5), 2,5-bis(4-aminophenyl)pyrrole , 4,4′-(1-methyl-1H-pyrrole-2,5-diyl)bis[benzenamine], 1,4-bis-(4-aminophenyl)-piperazine, 2-N-(4-amino Phenyl)pyridine-2,5-diamine, 2-N-(5-aminopyridin-2-yl)pyridine-2,5-diamine, 2-(4-aminophenyl)-5-aminobenzimidazole, 2-( 4-aminophenyl)-6-aminobenzimidazole, 5-(1H-benzimidazol-2-yl)benzene-1,3-diamine, heterocycle-containing diamines, or 4,4′-diaminodiphenylamine, 4, 4'-Diaminodiphenyl-N-methyl Lamine, N,N'-bis(4-aminophenyl)-1,4-benzenediamine, N,N'-bis(4-aminophenyl)-benzidine, N,N'-bis(4-aminophenyl)- N,N'-dimethylbenzidine or nitrogen-containing diamines having a diphenylamine structure such as N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine At least one nitrogen-containing structure selected from the group consisting of heterocycles, secondary amino groups and tertiary amino groups (hereinafter also referred to as specific nitrogen-containing structure). ) (provided that the molecule does not have an amino group bonded with a protective group that is eliminated by heating and replaced with a hydrogen atom.); 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3, 5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diamino biphenyl-2,4′-dicarboxylic acid, 4,4′-diaminodiphenylmethane-3,3′-dicarboxylic acid, 1,2-bis(4-aminophenyl)ethane-3,3′-dicarboxylic acid, and 4, Diamines having a carboxyl group such as 4'-diaminodiphenyl ether-3,3'-dicarboxylic acid; 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol , 4,6-diaminoresorcinol, 4,4′-diamino-3,3′-dihydroxybiphenyl; 4-(2-(methylamino)ethyl)aniline, 4-(2-aminoethyl)aniline, 1-(4 -aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-6- Amine; N,N'-bis(2-tert-butoxycarbonylamino-4-aminophenyl)adipamide, 4-amino-N-(2-tert-butoxycarbonylamino-4-aminophenyl)benzamide, carbamic acid, N -[(2,5-diaminophenyl)methyl]-,1,1-dimethylethyl ester, carbamic acid, N-[3-(2,5-diaminophenyl)propyl]-,1,1-dimethylethyl ester, carbamic acid, N,N-[(2,5-diamino-1,3-phenylene)di-3,1-propanediyl]bis-,C,C-bis(1,1-dimethylethyl) ester, N- tert-butoxycarbonyl-N-(2-(4-aminophenyl)ethyl)-N-(4-aminobenzyl)amine, benzoic acid, 4-amino-2-tert-butoxycarbonylamino-, 1,1'- [(1,1,3,3-tetramethyl-1,3-di siloxanediyl)di-4,1-butanediyl]ester, carbamic acid, N-[2-(4
-aminophenyl)ethyl]-N-[[[2-(4-aminophenyl)ethyl]amino]carbonyl]-, 1,1-dimethylethyl ester, carbamic acid, N-(4-aminophenyl)-N- Groups such as [[1-(4-aminophenyl)-4-piperidinyl]methyl]-, 1,1-dimethylethyl ester "-N(D)-" (D is eliminated by heating and replaced with a hydrogen atom represents a protecting group, preferably a tert-butoxycarbonyl group.); Diaminobenzene, 1-hexadecanoxy-2,4-diaminobenzene, 1-octadecanoxy-2,4-diaminobenzene, 1-dodecanoxy-2,5-diaminobenzene, 1-tetradecanoxy-2,5-diaminobenzene, 1-pentadecanoxy -Aromatic diamines (tn ); 1,3-bis(3-aminopropyl)-tetramethyldisiloxane, 1,3-bis[3-(p-aminophenylcarbamoyl)propyl]tetramethyldisiloxane and other diamines having a siloxane bond; diamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine) , a diamine in which two amino groups are bonded to a group represented by any of the formulas (Y-1) to (Y-167) described in WO 2018/117239, etc.
Figure JPOXMLDOC01-appb-C000005
(式(z-2)において、mは同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005
(In formula (z-2), m may be the same or different.)
 上記芳香族ジアミン(d)において、Aは2つの第一級アミノ基が芳香族基に結合した1価の基を表す。芳香族基の具体例として、ベンゼン環、ナフタレン環、ビフェニル構造が挙げられる。Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-COO-、-OCO-又は-(Am0-((CHa1-Am1-(a1は1~15の整数であり、A0、は、それぞれ独立して酸素原子又は-COO-を表し、m0は0又は1の整数であり、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。 In the aromatic diamine (d) above, A represents a monovalent group in which two primary amino groups are bonded to an aromatic group. Specific examples of aromatic groups include benzene rings, naphthalene rings, and biphenyl structures. X is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CO—N(CH 3 )—, —NH—, —O -, -COO-, -OCO- or -(A 0 ) m0 -((CH 2 ) a1 -A 1 ) m1 -(a1 is an integer of 1 to 15, and A 0 and A 1 are each independently represents an oxygen atom or -COO-, m0 is an integer of 0 or 1, and m1 is an integer of 1 to 2. When m1 is 2, a plurality of a1 and A1 are each independently defined above ).
 Jは、炭素数4~40の脂環式炭化水素基及び炭素数6~40の芳香族炭化水素基からなる群から選ばれる少なくとも1種の基を有する1価の有機基を表す。但し、上記脂環式炭化水素基及び芳香族炭化水素基が有する水素原子の少なくとも一つは、ハロゲン原子、ハロゲン原子含有アルキル基、ハロゲン原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、および炭素数3~10のアルケニル基のいずれかである置換基(v)によって置換されている。更にこれらの置換基(v)(但し、ハロゲン原子を除く。)における任意の炭素-炭素単結合は-O-で中断されていても良い。尚、Jは、上記の脂環式炭化水素基及び芳香族炭化水素基以外に、非置換又は上記した置換基(v)以外の置換基で置換されている脂環式炭化水素基及び芳香族炭化水素基からなる群から選ばれる少なくとも1種の基をさらに有してもよい。 J represents a monovalent organic group having at least one group selected from the group consisting of an alicyclic hydrocarbon group having 4 to 40 carbon atoms and an aromatic hydrocarbon group having 6 to 40 carbon atoms. However, at least one of the hydrogen atoms of the alicyclic hydrocarbon group and the aromatic hydrocarbon group is a halogen atom, a halogen atom-containing alkyl group, a halogen atom-containing alkoxy group, an alkyl group having 3 to 10 carbon atoms, a carbon It is substituted with a substituent (v) which is either an alkoxy group having 3 to 10 carbon atoms or an alkenyl group having 3 to 10 carbon atoms. Further, any carbon-carbon single bond in these substituents (v) (excluding halogen atoms) may be interrupted by -O-. In addition to the above alicyclic hydrocarbon group and aromatic hydrocarbon group, J is an alicyclic hydrocarbon group that is unsubstituted or substituted with a substituent other than the above substituent (v) and an aromatic It may further have at least one group selected from the group consisting of hydrocarbon groups.
 ハロゲン原子含有アルキル基としては、例えば、炭素数1~10のハロゲン原子含有アルキル基が挙げられる。 Examples of halogen atom-containing alkyl groups include halogen atom-containing alkyl groups having 1 to 10 carbon atoms.
 ハロゲン原子含有アルコキシ基としては、例えば、炭素数1~10のハロゲン原子含有アルコキシ基が挙げられる。 Examples of halogen atom-containing alkoxy groups include halogen atom-containing alkoxy groups having 1 to 10 carbon atoms.
 Jの脂環式炭化水素基としては、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロデカン環、ステロイド骨格(例として、コレスタニル基、コレステリル基、ラノスタニル基など)などを挙げることができ、芳香族炭化水素基としては、ベンゼン環、ナフタレン環などを挙げることができる。Jがシクロヘキサン環及びベンゼン環の少なくともいずれかを有する場合、基「-X-J」として、例えば、下記の構造(S1)を挙げることができ、より好ましい構造として下記式(S1-1)~(S1-5)を挙げることができる。 Examples of the alicyclic hydrocarbon group for J include cyclobutane ring, cyclopentane ring, cyclohexane ring, cyclodecane ring, steroid skeleton (e.g., cholestanyl group, cholesteryl group, lanostanyl group, etc.), and the like. A benzene ring, a naphthalene ring, etc. can be mentioned as a hydrogen group. When J has at least one of a cyclohexane ring and a benzene ring, examples of the group "-XJ" include the following structure (S1), and more preferred structures are the following formulas (S1-1) to (S1-5) can be mentioned.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-CO-N(CH)-、-NH-、-O-、-COO-、又は-(Am0-((CHa1-Am1-(a1は1~15の整数であり、A、Aは、それぞれ独立して酸素原子又は-COO-を表し、m0は0又は1の整数であり、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。 X 1 is a single bond, -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -CO-N(CH 3 )-, -NH-, -O-, - COO—, or —(A 0 ) m0 —((CH 2 ) a1 —A 1 ) m1 — (a1 is an integer of 1 to 15, and A 0 and A 1 are each independently an oxygen atom or —COO -, m0 is an integer of 0 or 1, and m1 is an integer of 1 to 2. When m1 is 2, multiple a1 and A1 each independently have the above definition.) .
 Gは、フェニレン基、及びシクロヘキシレン基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。 G 1 represents a divalent cyclic group selected from a phenylene group and a cyclohexylene group. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
 mは、1~4の整数である。mが2以上の場合、複数のX、Gは、それぞれ独立して上記定義を有する。 m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
 Rはフッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。 R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10;
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 X、Rは、上記式(S1)のX、Rと同義である。
 上記芳香族ジアミン(d)の具体例としては、下記式(d-1)~(d-2)で表されるジアミンが挙げられる。より好ましい具体例としては、基「-X-J」が、上記の構造(S1)又は上記式(S1-1)~(S1-5)のいずれかである、式(d-1)~(d-2)で表されるジアミン、並びにコレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミンが挙げられる。
X 1 and R 1 are synonymous with X 1 and R 1 in formula (S1) above.
Specific examples of the aromatic diamine (d) include diamines represented by the following formulas (d-1) and (d-2). More preferred specific examples are the groups of formulas (d-1) to (d-1) to ( diamines represented by d-2), and cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, and 3,5-diaminobenzo diamines having a steroid skeleton such as cholestanyl acid, cholestenyl 3,5-diaminobenzoate, lanostanyl 3,5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy)cholestane.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 X、Jは、上記芳香族ジアミン(d)のX、Jと好ましい態様を含めて同義である。前記式(d-2)において、2個のX、Jは、互いに同一であっても異なっていてもよい。
 上記ジアミン(p)としては、例えば、製造する液晶表示素子の駆動モードに応じて上記ジアミンの中から適宜選択して使用することができる。具体的には、上記ジアミン(p)として、上記ジアミン(1)、上記特定の窒素含有構造を有するジアミン、又は上記ウレア結合を有するジアミンを用いることにより、IPS型やFFS型の液晶表示素子用に好適な液晶配向剤を製造することができる。また、上記ジアミン(1)、芳香族ジアミン(tn)を使用することにより、TN型の液晶表示素子用に好適な液晶配向剤を製造することができ、上記芳香族ジアミン(d)を使用することにより、VA型の液晶表示素子用に好適な液晶配向剤を製造することができる。また、上記、ラジカル開始機能を有するジアミン、光重合性基を末端に有するジアミンを使用することにより、PSA方式やSC-PVA方式の液晶表示素子用に好適な液晶配向剤を製造することができる。
 また、ポリアミック酸(P’)に光配向性を付与する場合は、ジアミン(p)として上記光配向性基を有するジアミンを用いることができる。さらに、ポリアミック酸(P’)に溶解性を付与する場合は、上記カルボキシ基を有するジアミン、上記基「-N(D)-」を有するジアミン、又は、分子内に-Ar-K-Ar-(Arは、非置換又は置換フェニレン基を表す。Kは、-C(CH-、-C(CF-、-O-、又は-CH-を表す。また、該-Ar-K-Ar-は、重合体の主鎖方向に形成される。)を有するジアミン(K)を用いることができる。ジアミン(K)の具体例としては、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(3-アミノ-4-メチルフェニル)プロパン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン等が挙げられる。
X and J have the same definitions as X and J of the aromatic diamine (d) above, including preferred embodiments. In the above formula (d-2), two X and J may be the same or different.
As the diamine (p), for example, it is possible to appropriately select and use from the above diamines according to the drive mode of the liquid crystal display element to be manufactured. Specifically, by using the diamine (1), the diamine having the specific nitrogen-containing structure, or the diamine having the urea bond as the diamine (p), an IPS type or FFS type liquid crystal display element can be obtained. A suitable liquid crystal aligning agent can be produced. Further, by using the diamine (1) and the aromatic diamine (tn), a liquid crystal aligning agent suitable for TN-type liquid crystal display elements can be produced, and the aromatic diamine (d) is used. Thereby, a liquid crystal aligning agent suitable for VA type liquid crystal display elements can be produced. Further, by using the diamine having a radical initiation function and the diamine having a photopolymerizable group at the terminal, a liquid crystal aligning agent suitable for PSA type or SC-PVA type liquid crystal display elements can be produced. .
In addition, when imparting photo-orientation to the polyamic acid (P'), the diamine having the photo-orientation group can be used as the diamine (p). Furthermore, when imparting solubility to the polyamic acid (P'), the diamine having the carboxy group, the diamine having the group "-N(D)-", or -Ar-K-Ar- (Ar represents an unsubstituted or substituted phenylene group; K represents -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -O-, or -CH 2 -; Ar—K—Ar— is formed in the main chain direction of the polymer.) can be used. Specific examples of the diamine (K) include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoro Propane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-aminophenyl)propane, 2,2 -bis(3-amino-4-methylphenyl)propane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane and the like.
 上記ジアミン(p)として、上記芳香族ジアミン(d)を使用する場合、ポリアミック酸(P’)を製造するために用いられるジアミン成分全体の、5~95モル%が好ましく、10~90モル%がより好ましい。
 上記ジアミン(p)として、上記ジアミン(1)、上記特定の窒素含有構造を有するジアミン、又は上記ウレア結合を有するジアミンを使用する場合、ポリアミック酸(P’)を製造するために用いられるジアミン成分全体の、5~95モル%が好ましく、10~90モル%がより好ましい。
 上記ジアミン(p)として、光配向性基を有するジアミン、ラジカル開始機能を有するジアミン、光重合性基を末端に有するジアミンを使用する場合、ポリアミック酸(P’)を製造するために用いられるジアミン成分全体の、5~60モル%が好ましく、10~60モル%がより好ましい。
 上記ジアミン(p)として、上記カルボキシ基を有するジアミン、上記基「-N(D)-」を有するジアミンを使用する場合、ポリアミック酸(P’)を製造するために用いられるジアミン成分全体の、5~90モル%が好ましく、10~80モル%がより好ましい。
When the aromatic diamine (d) is used as the diamine (p), it is preferably 5 to 95 mol%, preferably 10 to 90 mol%, of the total diamine component used to produce the polyamic acid (P'). is more preferred.
When the diamine (1), the diamine having the specific nitrogen-containing structure, or the diamine having the urea bond is used as the diamine (p), the diamine component used to produce the polyamic acid (P') It is preferably 5 to 95 mol %, more preferably 10 to 90 mol % of the whole.
As the diamine (p), when using a diamine having a photo-orientation group, a diamine having a radical initiation function, or a diamine having a photopolymerizable group at the end, the diamine used for producing the polyamic acid (P') It is preferably 5 to 60 mol %, more preferably 10 to 60 mol %, of the entire component.
As the diamine (p), when using the diamine having the carboxyl group or the diamine having the group "-N(D)-", the total diamine component used for producing the polyamic acid (P'), 5 to 90 mol % is preferred, and 10 to 80 mol % is more preferred.
(テトラカルボン酸二無水物)
 上記ポリアミック酸(P’)の合成に用いることができるテトラカルボン酸二無水物は、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び芳香族テトラカルボン酸二無水物からなる群から選ばれる少なくとも1種の化合物が挙げられる。中でも、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物を含むことがより好ましく、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物を含むことが更に好ましい。
 なお、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。
 非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 ポリアミック酸(P’)の合成に用いることのできるテトラカルボン酸成分としては、好ましくは、以下のテトラカルボン酸二無水物またはその誘導体(以下、これらを総称して特定のテトラカルボン酸誘導体ともいう。)を含む。
(tetracarboxylic dianhydride)
Tetracarboxylic dianhydrides that can be used in the synthesis of the polyamic acid (P′) include acyclic aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aromatic tetracarboxylic acids. At least one compound selected from the group consisting of dianhydrides is included. Among them, it is more preferable to contain a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, and a cyclobutane ring structure and a cyclopentane ring. It is more preferable to contain a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a structure and a cyclohexane ring structure.
The aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
An acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not need to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure in part thereof.
An alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Moreover, it is not necessary to consist only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
As the tetracarboxylic acid component that can be used for synthesizing the polyamic acid (P'), the following tetracarboxylic dianhydrides or derivatives thereof (hereinafter collectively referred to as specific tetracarboxylic acid derivatives) are preferred. .)including.
 尚、上記テトラカルボン酸二無水物またはその誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The tetracarboxylic dianhydride or derivative thereof may be used alone or in combination of two or more.
 1,2,3,4-ブタンテトラカルボン酸二無水物等の非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジクロロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物等の脂環式テトラカルボン酸二無水物;ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメリテート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-オキシジ(1,4-フェニレン)ビス(フタル酸)二無水物、又は4,4’-メチレンジ(1,4-フェニレン)ビス(フタル酸)二無水物等の芳香族テトラカルボン酸二無水物;そのほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物等。 Acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3 ,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride product, 4-(2,5-dioxotetrahydrofuran-3-yl)tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a, 4, 5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydro naphtho[1,2-c]furan-1,3-dione, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2 .2]octane-2,3,5,6-tetracarboxylic dianhydride, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride alicyclic tetracarboxylic dianhydrides such as products; pyromellitic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfone Tetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-biphenyl ethertetracarboxylic dianhydride, 3,3′,4,4′-perfluoroisopropylidene diphthalic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,2 ',3,3'-biphenyltetracarboxylic dianhydride, 4,4'- Bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, ethylene glycol bis-anhydrotrimellitate, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 4,4'-carbonyldiphthalic acid Fragrances such as anhydride, 4,4'-oxydi(1,4-phenylene)bis(phthalic acid) dianhydride, or 4,4'-methylenedi(1,4-phenylene)bis(phthalic acid) dianhydride group tetracarboxylic dianhydrides; other tetracarboxylic dianhydrides described in JP-A-2010-97188.
 上記特定のテトラカルボン酸誘導体の好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジフルオロ-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ビス(トリフルオロメチル)-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物である。 Preferred examples of the above specific tetracarboxylic acid derivatives include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl- 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-bis(trifluoromethyl)-1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3, 3′,4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 5-(2,5-dioxotetrahydrofuran-3-yl)-3a,4, 5,9b-tetrahydronaphtho[1,2-c]furan-1,3-dione, 5-(2,5-dioxotetrahydrofuran-3-yl)-8-methyl-3a,4,5,9b-tetrahydro naphtho[1,2-c]furan-1,3-dione, 2,4,6,8-tetracarboxybicyclo[3.3.0]octane-2:4,6:8-dianhydride, pyromellit acid dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfonetetracarboxylic dianhydride, 1,4,5,8- naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3′,4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3′,4, 4′-biphenyltetracarboxylic dianhydride and 2,2′,3,3′-biphenyltetracarboxylic dianhydride.
 上記特定のテトラカルボン酸誘導体の使用割合は、使用される全テトラカルボン酸成分1モルに対して、10モル%以上が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましい。 The proportion of the above-mentioned specific tetracarboxylic acid derivative used is preferably 10 mol% or more, more preferably 20 mol% or more, and even more preferably 50 mol% or more, relative to 1 mol of the total tetracarboxylic acid component used.
(ポリアミック酸の合成)
 ポリアミック酸の合成は、上記ジアミンを含むジアミン成分と、上記テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分とを有機溶媒中で反応させることにより行われる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.5~2当量となる割合が好ましく、さらに好ましくは0.8~1.2当量となる割合である。通常の重縮合反応と同様に、このテトラカルボン酸二無水物の酸無水物基の当量が1当量に近いほど、生成するポリアミック酸の分子量は大きくなる。
(Synthesis of polyamic acid)
Synthesis of polyamic acid is carried out by reacting a diamine component containing the diamine and a tetracarboxylic acid component containing the tetracarboxylic dianhydride or its derivative in an organic solvent. The ratio of the tetracarboxylic dianhydride and the diamine used in the synthetic reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.5 to 2 per equivalent of the amino group of the diamine. A ratio that provides equivalents is preferred, and a ratio that provides 0.8 to 1.2 equivalents is more preferred. As in ordinary polycondensation reactions, the closer the equivalent of the acid anhydride group in this tetracarboxylic dianhydride to one equivalent, the greater the molecular weight of the resulting polyamic acid.
 ポリアミック酸の合成反応における反応温度は-20~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。 The reaction temperature in the polyamic acid synthesis reaction is preferably -20 to 150°C, more preferably 0 to 100°C. Also, the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
 ポリアミック酸の合成反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。 The polyamic acid synthesis reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the solvent can be added.
 上記有機溶媒の具体例としては、化合物(a)、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルを用いることができる Specific examples of the organic solvent include compound (a), cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N -dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone. In addition, when the solvent solubility of the polymer is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used
(ポリアミック酸エスエルの合成)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
(Synthesis of Polyamic Acid Ester)
Polyamic acid esters are produced by, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [III] a tetracarboxylic acid It can be obtained by a known method such as a method of reacting a diester dihalide and a diamine.
(ポリイミドの合成)
 また、上記ポリアミック酸又はポリアミック酸エステルなどのポリイミド前駆体を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物またはその誘導体由来のイミド基とカルボキシ基(またはその誘導体)との合計量に占めるイミド基の割合のことである。イミド化率は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。例えば、ポリイミドの溶解性を確保する観点から、そのイミド化率を30%以上としてもよく、40~99%としてもよく、50~99%としてもよい。
(Synthesis of polyimide)
Moreover, a polyimide can be obtained by ring-closing (imidating) a polyimide precursor such as the above polyamic acid or polyamic acid ester. The imidization ratio as used herein means the ratio of imide groups to the total amount of imide groups derived from tetracarboxylic dianhydride or derivatives thereof and carboxy groups (or derivatives thereof). The imidization rate does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose. For example, from the viewpoint of ensuring the solubility of polyimide, the imidization rate may be 30% or more, 40 to 99%, or 50 to 99%.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of methods for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、好ましくは100~400℃であり、より好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 When the polyimide precursor is thermally imidized in the solution, the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and water produced by the imidization reaction is removed from the system. is preferred.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、好ましくは-20~250℃、より好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の好ましくは0.5~30モル倍、より好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の好ましくは1~50モル倍、より好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 Catalytic imidization of the polyimide precursor is carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor, preferably -20 to 250°C, more preferably stirring at 0 to 180°C. can be done. The amount of the basic catalyst is preferably 0.5 to 30 times the molar amount of the amic acid group, more preferably 2 to 20 times the molar amount, and the amount of the acid anhydride is preferably 1 to 50 times the molar amount of the amic acid group. It is preferably 3 to 30 molar times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferably used because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the catalyst amount, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させた重合体は濾過して回収した後、常圧又は減圧下で、常温又は加熱して乾燥することができる。 When recovering the generated polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be put into a solvent to precipitate. Solvents used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated by adding it to the solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
<末端封止剤>
 本発明におけるポリイミド前駆体やポリイミドを合成するに際して、テトラカルボン酸二無水物またはその誘導体を含むテトラカルボン酸成分、及び上記ジアミンを含むジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体を合成することとしてもよい。末端封止型の重合体は、塗膜によって得られる液晶配向膜の膜硬度の向上や、シール剤と液晶配向膜の密着特性の向上という効果を有する。
<Terminal blocking agent>
When synthesizing the polyimide precursor or polyimide in the present invention, a tetracarboxylic acid component containing a tetracarboxylic acid dianhydride or a derivative thereof, and a diamine component containing the diamine, together with an appropriate terminal blocker to end block It is also possible to synthesize a polymer of the type The end-blocking polymer has effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion properties between the sealing agent and the liquid crystal alignment film.
 本発明におけるポリイミド前駆体やポリイミドの末端の例としては、アミノ基、カルボキシ基、酸無水物基又は後述する末端封止剤に由来する基が挙げられる。アミノ基、カルボキシ基、酸無水物基は通常の縮合反応により得るか、又は以下の末端封止剤を用いて末端を封止することにより得ることができる。 Examples of the ends of the polyimide precursors and polyimides in the present invention include amino groups, carboxy groups, acid anhydride groups, and groups derived from end blocking agents described later. An amino group, a carboxyl group, and an acid anhydride group can be obtained by a normal condensation reaction, or can be obtained by terminal blocking using the following terminal blocking agents.
 末端封止剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、又は、2-アクリロイルオキシエチルイソシアネ-ト及び2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどを挙げることができる。 Terminal blockers include, for example, acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, 3-( 3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride, etc. Acid anhydrides; dicarbonic acid diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4 -aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n - monoamine compounds such as heptylamine and n-octylamine; ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, or having unsaturated bonds such as 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate Isocyanate and the like can be mentioned.
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。 The proportion of the end blocking agent used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, per 100 mol parts in total of the diamine components used.
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。かかる分子量範囲にあることで、液晶表示素子の良好な配向性を確保することができる。 The polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. is. In addition, the molecular weight distribution (Mw/Mn) represented by the ratio of Mw to the polystyrene equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. By having the molecular weight within such a range, it is possible to ensure good orientation of the liquid crystal display element.
(液晶配向剤)
 本発明の液晶配向剤は、重合体(P)、及び溶媒成分として、上記式(A)で表される化合物(a)を含む。
 液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、好ましくは、塗布液の形態をとる。液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点から、液晶配向剤中の重合体の濃度(重合体成分の合計濃度)は、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 化合物(a)の含有量は、目的に応じて、適宜調整することができる。例えば、印刷性を高める観点から、液晶配向剤に含まれる溶媒成分の全体量に対して、0.1質量%以上としてもよく、1質量%以上としてもよく、5質量%以上としてもよく、10質量%以上としてもよい。また、含有量の上限については、印刷性の観点から、液晶配向剤に含まれる溶媒成分の全体量に対して、90質量%以下としてもよく、85質量%以下としてもよく、又は80質量%以下としてもよい。
 なお、化合物(a)には、不純物としてレボグルコサンおよびレボグルコセノンなどが含有されていることがある。かかる場合、上記の化合物(a)の含有比率の好ましい範囲については、こうした不純物を含めた化合物(a)の量を規定するものとする。また、化合物(a)は、単一の立体異性体であっても、又は、複数の立体異性体を含む混合物であってもよい。化合物(a)の市販品としては、例えば、メルク社製のCyrene(商標)が挙げられる。
(Liquid crystal aligning agent)
The liquid crystal aligning agent of the present invention contains the polymer (P) and the compound (a) represented by the formula (A) as a solvent component.
The liquid crystal aligning agent is used for producing a liquid crystal aligning film, and preferably takes the form of a coating liquid from the viewpoint of forming a uniform thin film. The concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the concentration of the polymer in the liquid crystal aligning agent (the total concentration of the polymer components) is preferably 1% by mass or more, and from the viewpoint of the storage stability of the solution, 10% by mass or less is preferable. A particularly preferred polymer concentration is 2 to 8% by weight.
The content of compound (a) can be appropriately adjusted depending on the purpose. For example, from the viewpoint of improving printability, it may be 0.1% by mass or more, 1% by mass or more, or 5% by mass or more with respect to the total amount of solvent components contained in the liquid crystal aligning agent. It is good also as 10 mass % or more. In addition, from the viewpoint of printability, the upper limit of the content may be 90% by mass or less, 85% by mass or less, or 80% by mass with respect to the total amount of the solvent component contained in the liquid crystal aligning agent. The following may be used.
The compound (a) may contain impurities such as levoglucosan and levoglucosenone. In such a case, the preferable range of the content ratio of compound (a) is defined as the amount of compound (a) including such impurities. Compound (a) may be a single stereoisomer or a mixture containing multiple stereoisomers. Examples of commercially available products of compound (a) include Cyrene (trademark) manufactured by Merck & Co., Inc.
 本発明の液晶配向剤の調製に使用される溶媒としては、上記の化合物(a)以外のその他の溶媒を使用してもよい。当該その他の溶媒としては、例えば、γ-バレロラクトン、γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトンなどのラクトン溶媒;γ-ブチロラクタム、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-(3-メトキシプロピル)-2-ピロリドン、N-(2-エトキシエチル)-2-ピロリドン、N-(4-メトキシブチル)-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N-アセチル-ε-カプロラクタム(N-アセチル-2-オキソヘキサメチレンイミン)、N-メチル-ε-カプロラクタムなどのラクタム溶媒;N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルイソブチルアミド(N,N,2-トリメチルプロピオンアミド)、N,N-ジエチルプロピオンアミド、N,N-ジプロピルアセトアミド、N,N-ジイソプロピルアセトアミド、N,N-ジブチルアセトアミド、N,N-ジメチルラクトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどのアミド溶媒;テトラメチル尿素、N,N’-ジメチルプロピレン尿素、N-プロピオニルモルホリン、4-オキソテトラヒドロピラン(テトラヒドロ-4H-ピラン-4-オン)、テトラメチレンスルホキシド、リン酸トリメチル、リン酸トリエチル、ヘキサメチルリン酸トリアミド、3-メチル-2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン(N,N’-ジメチルエチレン尿素)、1,4-ジアセチルピペラジン、シクロヘキサノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸tert-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、酢酸3-メトキシブチル(3-メトキシブチルアセテート)、乳酸イソプロピル、乳酸n-ブチル、乳酸イソブチル、乳酸tert-ブチル、乳酸イソアミル(乳酸イソペンチル)、酢酸2-(2-エトキシエトキシ)エチル(酢酸エチレングリコールモノエチルエーテル)、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、2-ヒドロキシイソ酪酸メチル(メチル 2-ヒドロキシ-2-メチルプロピオネート)、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールn-プロピルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセテート、エチレングリコールジアセタート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエ-テル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルプロピルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート(2-(2-エトキシエトキシ)エチルアセタート、カルビトールアセタート)、ジエチレングリコールモノブチルエーテルアセタート(ブチルカルビトールアセテート)、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、ジイソブチルケトン、イソアミルプロピオネート(プロピオン酸イソアミル)、イソアミルイソブチレート(イソ酪酸イソアミル)、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネートなどを挙げることができる。これらは、2種以上を混合して使用することができる。 As the solvent used for preparing the liquid crystal aligning agent of the present invention, a solvent other than the above compound (a) may be used. Examples of the other solvent include lactone solvents such as γ-valerolactone, γ-butyrolactone, α,α-dimethyl-γ-butyrolactone; γ-butyrolactam, N-methyl-2-pyrrolidone, N-ethyl-2- pyrrolidone, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n -pentyl)-2-pyrrolidone, N-(3-methoxypropyl)-2-pyrrolidone, N-(2-ethoxyethyl)-2-pyrrolidone, N-(4-methoxybutyl)-2-pyrrolidone, N-cyclohexyl -lactam solvents such as 2-pyrrolidone, N-acetyl-ε-caprolactam (N-acetyl-2-oxohexamethyleneimine), N-methyl-ε-caprolactam; N,N-dimethylformamide, N,N-diethylformamide , N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylpropionamide, N,N-dimethylisobutyramide (N,N,2-trimethylpropionamide), N,N-diethylpropionamide, N,N-dipropylacetamide, N,N-diisopropylacetamide, N,N-dibutylacetamide, N,N-dimethyllactamide, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N- Amide solvents such as dimethylpropanamide; tetramethylurea, N,N'-dimethylpropyleneurea, N-propionylmorpholine, 4-oxotetrahydropyran (tetrahydro-4H-pyran-4-one), tetramethylene sulfoxide, trimethyl phosphate , triethyl phosphate, hexamethylphosphoric acid triamide, 3-methyl-2-oxazolidone, 1,3-dimethyl-2-imidazolidinone (N,N'-dimethylethyleneurea), 1,4-diacetylpiperazine, cyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), isopropyl acetate, n-butyl acetate, isobutyl acetate, tert-butyl acetate, propylene glycol acetate monoethyl ether, cyclohexyl acetate, 4-methyl-2-pentyl acetate, 3-methoxybutyl acetate (3-methoxybutyl acetate), isopropyl lactate, n-butyl lactate, iso lactate Butyl, tert-butyl lactate, isoamyl lactate (isopentyl lactate), 2-(2-ethoxyethoxy)ethyl acetate (ethylene glycol monoethyl ether acetate), methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxy ethyl propionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 2-hydroxyisobutyrate (methyl 2-hydroxy-2-methylpropionate), ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol n-propyl ether, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, ethylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol diacetate, propylene glycol monomethyl Ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol diacetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol methyl propyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, diethylene glycol monomethyl ether , diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate (2-(2-ethoxyethoxy) ethyl acetate, carbitol acetate), diethylene glycol monobutyl ether acetate (butyl carbitol acetate) ), dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, 1-(2-butoxyethoxy)-2-propanol, 2-(2-butoxyethoxy)-1-propanol, diisobutylcarbinol ( 2,6-dimethyl-4-heptanol), diisobutyl ketone, isoamyl propionate (isoamyl propionate), isoamyl isobutyrate (isoamyl isobutyrate), diisobutyrate butyl ether, ethylene carbonate, propylene carbonate, and the like. These can be used in combination of two or more.
 本発明の液晶配向剤は、溶媒成分として、重合体(P)の溶解性を高める観点から、γ-バレロラクトン、γ-ブチロラクトン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、上記アミド溶媒、1,3-ジメチル-2-イミダゾリジノン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、シクロヘキサノン、及び、シクロペンタノンからなる群から選ばれる溶媒(以下、これらを総称して「溶媒(1)」ともいう。)を含有してもよい。上記溶媒(1)の含有量は、好ましくは液晶配向剤に含まれる溶媒全体の20~99質量%、より好ましくは20~90質量%であり、特に好ましいのは、30~80質量%である。 In the liquid crystal aligning agent of the present invention, γ-valerolactone, γ-butyrolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl )-2-pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, the above amide solvents, 1,3-dimethyl -2-imidazolidinone, tetramethylurea, hexamethylphosphortriamide, cyclohexanone, and a solvent selected from the group consisting of cyclopentanone (hereinafter collectively referred to as "solvent (1)"). may contain. The content of the solvent (1) is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total solvent contained in the liquid crystal aligning agent. .
 本発明の液晶配向剤は、溶媒成分として、液晶配向剤の印刷性を高める観点から、4-ヒドロキシ-4-メチル-2-ペンタノン、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、乳酸n-ブチル、乳酸イソアミル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールn-プロピルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソブチルカルビノール、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、及びプロピレンカーボネートからなる群から選ばれる溶媒(以下、これらを総称して「溶媒(2)」ともいう。)を含有してもよい。上記溶媒(2)の含有量は、好ましくは液晶配向剤に含まれる溶媒全体の5~70質量%、より好ましくは10~60質量%であり、特に好ましいのは、10~50質量%である。 The liquid crystal aligning agent of the present invention contains, as a solvent component, 4-hydroxy-4-methyl-2-pentanone, n-butyl acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, from the viewpoint of improving the printability of the liquid crystal aligning agent. 4-methyl-2-pentyl acetate, n-butyl lactate, isoamyl lactate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3-methoxypropionic acid Butyl, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol n-propyl ether, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diisobutylcarbinol, a solvent selected from the group consisting of diisobutyl ketone, isoamyl propionate, isoamyl isobutyrate, diisopentyl ether, ethylene carbonate, and propylene carbonate (hereinafter collectively referred to as "solvent (2)"); may contain. The content of the solvent (2) is preferably 5 to 70% by mass, more preferably 10 to 60% by mass, and particularly preferably 10 to 50% by mass of the total solvent contained in the liquid crystal aligning agent. .
 本発明の液晶配向剤に含有される溶媒成分は、複数の溶媒の組み合わせを含んでもよい。例えば、化合物(a)と上記溶媒(1)とを含む溶媒成分、化合物(a)と上記溶媒(2)を含む溶媒成分、化合物(a)と上記溶媒(1)と上記溶媒(2)とを含む溶媒成分が挙げられる。中でも、より好ましい具体例を挙げると、以下の態様を含む溶媒成分が挙げられる。なお、以下の態様において、BCSはエチレングリコールモノブチルエーテル、PBはプロピレングリコールモノブチルエーテル、DAAは4-ヒドロキシ-4-メチル-2-ペンタノン、DIBKはジイソブチルケトン、BCAはエチレングリコールモノブチルエーテルアセテート、PGMEはプロピレングリコールモノメチルエーテル、PGMEAはプロピレングリコールモノメチルエーテルアセテート、PGAはプロピレングリコールジアセテート、DEDEはジエチレングリコールジエチルエーテル、DPMはジプロピレングリコールモノメチルエーテル、NMPはN-メチル-2-ピロリドン、GBLはγ-ブチロラクトン、CHNはシクロヘキサノン、CPNはシクロペンタノン、3MDPは3-メトキシ-N,N-ジメチルプロパンアミド、3BDPは3-ブトキシ-N,N-ジメチルプロパンアミド、DPはN,N-ジメチルプロピオンアミド、TMPはN,N,2-トリメチルプロピオンアミドを表す。 The solvent component contained in the liquid crystal aligning agent of the present invention may contain a combination of multiple solvents. For example, a solvent component containing the compound (a) and the solvent (1), a solvent component containing the compound (a) and the solvent (2), a compound (a), the solvent (1) and the solvent (2) and a solvent component containing Among them, more preferable specific examples include solvent components including the following aspects. In the following embodiments, BCS is ethylene glycol monobutyl ether, PB is propylene glycol monobutyl ether, DAA is 4-hydroxy-4-methyl-2-pentanone, DIBK is diisobutyl ketone, BCA is ethylene glycol monobutyl ether acetate, and PGME is Propylene glycol monomethyl ether, PGMEA for propylene glycol monomethyl ether acetate, PGA for propylene glycol diacetate, DEDE for diethylene glycol diethyl ether, DPM for dipropylene glycol monomethyl ether, NMP for N-methyl-2-pyrrolidone, GBL for γ-butyrolactone, CHN is cyclohexanone, CPN is cyclopentanone, 3MDP is 3-methoxy-N,N-dimethylpropanamide, 3BDP is 3-butoxy-N,N-dimethylpropanamide, DP is N,N-dimethylpropionamide, TMP is represents N,N,2-trimethylpropionamide.
 化合物(a)とBCS、化合物(a)とGBLとBCS、化合物(a)とリン酸トリメチルとBCS、化合物(a)とリン酸トリエチルとBCS、化合物(a)とPB、化合物(a)とGBLとPB、化合物(a)とNMPとPB、化合物(a)とDAA、化合物(a)とGBLとDAA、化合物(a)とDAAとBCS、化合物(a)とN,N-ジメチルイソブチルアミドとDAA、化合物(a)とNMPとDAA、化合物(a)とN-エチル-2-ピロリドンとDAA、化合物(a)とN,N-ジメチルラクトアミドとDAA、化合物(a)とリン酸トリメチルとDAA、化合物(a)とリン酸トリエチルとDAA、化合物(a)とDAAと3MDP、化合物(a)とDAAと3BDP、化合物(a)とDIBK、化合物(a)とGBLとDIBK、化合物(a)とγ-バレロラクトンとDIBK、化合物(a)とDIBKと3MDP、化合物(a)とDIBKと3BDP、化合物(a)とDIBKとDAA、化合物(a)とDIBKとPB、化合物(a)とDEDE、化合物(a)とGBLとDEDE、化合物(a)と1,3-ジメチル-2-イミダゾリジノンとDEDE、化合物(a)とNMPとDEDE、化合物(a)とN-ブチル-2-ピロリドンとDEDE、化合物(a)とDEDEとDAA、化合物(a)とDEDEとDIBK、化合物(a)とDEDEとBCS、化合物(a)とDEDEと乳酸ブチル、化合物(a)とNMPとGBLとPBとDIBK、化合物(a)とDPM、化合物(a)とDPMとDAA、化合物(a)とPBとDPM、化合物(a)とPGA、化合物(a)とPGAとDAA、化合物(a)とPGAとPB、化合物(a)とジイソプロピルエーテル、化合物(a)とPBとジイソプロピルエーテル、化合物(a)とジイソペンチルエーテル、化合物(a)とNMPとジイソペンチルエーテル、化合物(a)とN-エチル-2-ピロリドンとジイソペンチルエーテル、化合物(a)とN-ブチル-2-ピロリドンとジイソペンチルエーテル、化合物(a)とジイソブチルカルビノール、化合物(a)とジイソブチルカルビノールとDIBK、化合物(a)とジイソブチルカルビノールとPB、化合物(a)とジプロピレングリコールジメチルエーテル、化合物(a)とジプロピレングリコールジメチルエーテルとPB、化合物(a)とジエチレングリコールエチルメチルエーテル、化合物(a)とジエチレングリコールエチルメチルエーテルとDIBK、化合物(a)とジエチレングリコールエチルメチルエーテルとPB、化合物(a)とジエチレングリコールエチルプロピルエーテル、化合物(a)とジエチレングリコールブチルエチルエーテル、化合物(a)とCPNとPGME、化合物(a)とCPNとPB、化合物(a)とCPNとジエチレングリコールモノエチルエーテル、化合物(a)とCPNとPGA、化合物(a)とCPNとDIBK、化合物(a)とCPNと酢酸n-ブチル、化合物(a)とCHNと酢酸n-ブチル、化合物(a)とCHNとBCS、化合物(a)とCHNとPGME、化合物(a)とテトラメチル尿素とPGMEA、化合物(a)とCHNとPB、化合物(a)とCHNとジエチレングリコールモノエチルエーテル、化合物(a)とCHNとDIBK、化合物(a)とメチルイソブチルケトンとPB、化合物(a)とメチルエチルケトンとPB、化合物(a)とCPNとDAA、化合物(a)とCPNとDEDE、化合物(a)とCHNとDAA、化合物(a)とCHNとDEDE、化合物(a)とCHNとPGA、化合物(a)とテトラメチル尿素とPGME、化合物(a)とテトラメチル尿素とPGA、化合物(a)とテトラメチル尿素とPB、化合物(a)とテトラメチル尿素とCHNとPGME、化合物(a)とDPとPGME、化合物(a)とDPとPGMEA、化合物(a)とDPとPB、化合物(a)とDPとBCS、化合物(a)とDPとDEDE、化合物(a)とN,N-ジエチルホルムアミドとPGME、化合物(a)とN,N-ジエチルホルムアミドとDAA、化合物(a)とN,N-ジエチルプロピオンアミドとPGME、化合物(a)とTMPとPGME、化合物(a)とTMPとPGMEA、化合物(a)とTMPとPB、化合物(a)とTMPとBCS、化合物(a)とTMPとDEDE、化合物(a)とBCA、化合物(a)とBCSとBCA、化合物(a)と3-エトキシプロピオン酸エチル、化合物(a)とGBLと3-エトキシプロピオン酸エチル、化合物(a)とCHNと3-エトキシプロピオン酸エチル、化合物(a)とプロピレンカーボネートと3-エトキシプロピオン酸エチル、化合物(a)とDPと3-エトキシプロピオン酸エチル、化合物(a)とテトラメチル尿素と3-エトキシプロピオン酸エチル、及び化合物(a)とリン酸トリメチルと3-エトキシプロピオン酸エチルなど。 Compound (a) and BCS, Compound (a) and GBL and BCS, Compound (a) and trimethyl phosphate and BCS, Compound (a) and triethyl phosphate and BCS, Compound (a) and PB, Compound (a) and GBL and PB, compound (a) and NMP and PB, compound (a) and DAA, compound (a) and GBL and DAA, compound (a) and DAA and BCS, compound (a) and N,N-dimethylisobutyramide and DAA, compound (a) and NMP and DAA, compound (a) and N-ethyl-2-pyrrolidone and DAA, compound (a) and N,N-dimethyllactamide and DAA, compound (a) and trimethyl phosphate and DAA, compound (a) and triethyl phosphate and DAA, compound (a) and DAA and 3MDP, compound (a) and DAA and 3BDP, compound (a) and DIBK, compound (a) and GBL and DIBK, compound ( a) and γ-valerolactone and DIBK, compound (a) and DIBK and 3MDP, compound (a) and DIBK and 3BDP, compound (a) and DIBK and DAA, compound (a) and DIBK and PB, compound (a) and DEDE, compound (a) and GBL and DEDE, compound (a) and 1,3-dimethyl-2-imidazolidinone and DEDE, compound (a) and NMP and DEDE, compound (a) and N-butyl-2 -pyrrolidone and DEDE, compound (a) and DEDE and DAA, compound (a) and DEDE and DIBK, compound (a) and DEDE and BCS, compound (a) and DEDE and butyl lactate, compound (a) and NMP and GBL and PB and DIBK, compound (a) and DPM, compound (a) and DPM and DAA, compound (a) and PB and DPM, compound (a) and PGA, compound (a) and PGA and DAA, compound (a) and PGA and PB, compound (a) and diisopropyl ether, compound (a) and PB and diisopropyl ether, compound (a) and diisopentyl ether, compound (a) and NMP and diisopentyl ether, compound (a) and N-ethyl-2-pyrrolidone and diisopentyl ether, compound (a) and N-butyl-2-pyrrolidone and diisopentyl ether, compound (a) and diisobutylcarbinol, compound (a) and diisobutylcarbinol and DIBK , compound (a) and diisobutylcarbinol and PB, compound (a) and dipropylene glycol dimethyl ether, compound (a) and dipropylene glycol dimethyl ether and PB, compound (a) and diethylene glycol ethyl methyl ether , compound (a) and diethylene glycol ethyl methyl ether and DIBK, compound (a) and diethylene glycol ethyl methyl ether and PB, compound (a) and diethylene glycol ethyl propyl ether, compound (a) and diethylene glycol butyl ethyl ether, compound (a) and CPN and PGME, compound (a) and CPN and PB, compound (a) and CPN and diethylene glycol monoethyl ether, compound (a) and CPN and PGA, compound (a) and CPN and DIBK, compound (a) and CPN and n-butyl acetate, compound (a) and CHN and n-butyl acetate, compound (a) and CHN and BCS, compound (a) and CHN and PGME, compound (a) and tetramethylurea and PGMEA, compound (a) and CHN and PB, compound (a) and CHN and diethylene glycol monoethyl ether, compound (a) and CHN and DIBK, compound (a) and methyl isobutyl ketone and PB, compound (a) and methyl ethyl ketone and PB, compound (a) and CPN and DAA, compound (a) and CPN and DEDE, compound (a) and CHN and DAA, compound (a) and CHN and DEDE, compound (a) and CHN and PGA, compound (a) and tetramethylurea and PGME, compound (a) and tetramethylurea and PGA, compound (a) and tetramethylurea and PB, compound (a) and tetramethylurea and CHN and PGME, compound (a) and DP and PGME, compound (a) and DP and PGMEA, compound (a) and DP and PB, compound (a) and DP and BCS, compound (a) and DP and DEDE, compound (a) and N,N-diethylformamide and PGME, compound (a) and N,N-diethylformamide and DAA, compound (a) and N,N-diethylpropionamide and PGME, compound (a) and TMP and PGME, compound (a) and TMP and PGMEA, compound (a) and TMP and PB, compound (a) and TMP and BCS, compound (a) and TMP and DEDE, compound (a) and BCA, compound (a) and BCS and BCA, compound (a) and ethyl 3-ethoxypropionate, compound ( a) and GBL and ethyl 3-ethoxypropionate, compound (a) and CHN and ethyl 3-ethoxypropionate, compound (a) and propylene carbonate and ethyl 3-ethoxypropionate, compound (a) and DP and 3- ethyl ethoxypropionate, compound (a) and tetramethylurea and ethyl 3-ethoxypropionate, and and compound (a) with trimethyl phosphate and ethyl 3-ethoxypropionate.
 本発明の液晶配向剤は、その他、必要に応じて上記以外の成分を含有していてもよい。当該成分としては、例えば、上記した重合体(P)以外のその他の重合体(Q)、エポキシ基、オキセタニル基、オキサゾリン基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、液晶配向膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。 In addition, the liquid crystal aligning agent of the present invention may contain components other than those mentioned above, if necessary. Examples of the component include at least one selected from a polymer (Q) other than the polymer (P) described above, an epoxy group, an oxetanyl group, an oxazoline group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group, and an alkoxy group. At least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-1) having one substituent and a crosslinkable compound (c-2) having a polymerizable unsaturated group, and a functional silane compound , metal chelate compounds, curing accelerators, surfactants, antioxidants, sensitizers, preservatives, and compounds for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
 その他の重合体(Q)の具体例を挙げると、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、SMA2000、SMA3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられ、ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。 Specific examples of other polymers (Q) include polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride) copolymers, poly( isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, polymers selected from the group consisting of poly(meth)acrylates, and the like. . Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Shellac Manufacturing Co., Ltd.) and the like. Anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin, manufactured by Ashland).
 その他の重合体(Q)は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体(Q)の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、50質量部以下が好ましく、1~50質量部がより好ましく、5~40質量部が更に好ましい。
 上記架橋性化合物(c-1)、(c-2)の好ましい具体例としては、以下の化合物が挙げられる。
The other polymer (Q) may be used alone or in combination of two or more. The content of the other polymer (Q) is preferably 50 parts by mass or less, more preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass with respect to the total 100 parts by mass of the polymer contained in the liquid crystal aligning agent. Part is more preferred.
Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include the following compounds.
 エポキシ基を有する化合物として、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、テトラキス(グリシジルオキシメチル)メタン、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの第三級窒素原子が芳香族炭素原子と結合する化合物;N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼンなどの第三級窒素原子が脂肪族炭素原子と結合する化合物、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレートなどのイソシアヌレート化合物、日本特開平10-338880号公報の段落[0037]に記載の化合物や、国際公開2017/170483号に記載の化合物等;
 オキセタニル基を有する化合物として、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(アロンオキセタンOXT-121(XDO))、ジ[2-(3-オキセタニル)ブチル]エーテル(アロンオキセタンOXT-221(DOX))、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、国際公開2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等;
 オキサゾリン基を有する化合物として、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)等の化合物、エポクロス(商品名、株式会社日本触媒製)のようなオキサゾリン基を有するポリマーやオリゴマー、日本特開2007-286597号公報の段落[0115]に記載の化合物等;
 シクロカーボネート基を有する化合物として、N,N,N’,N’-テトラ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-4,4’-ジアミノジフェニルメタン、N,N’-ジ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-1,3-フェニレンジアミンや、WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載の化合物等;
 ブロックイソシアネート基を有する化合物として、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)、日本特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等;
 ヒドロキシ基及びアルコキシ基を有する化合物として、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、国際公開2015/072554号や、日本特開2016-118753号公報の段落[0058]に記載の化合物、日本特開2016-200798号公報に記載の化合物、国際公開2010/074269号に記載の化合物等;
 重合性不飽和基を有する架橋性化合物として、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート等。
Examples of epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexane. Diol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), etc. Bisphenol A type epoxy resin, bisphenol F type epoxy resin such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resin such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) and the like biphenyl skeleton-containing epoxy resins, phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4. 4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy)phenyl]propane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane compounds in which a tertiary nitrogen atom is bound to an aromatic carbon atom such as; 1,3-diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,4-diaminocyclohexane, bis(N,N-diglycidyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl- 2-methyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-3-methyl-4-aminocyclohexyl)methane, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,4 -bis(N,N-diglycidylaminomethyl)cyclohexane, 1,3-bis(N,N-diglycidylaminomethyl)benzene, 1,4-bis(N,N-diglycidylaminomethyl) Tertiary nitrogen such as lysidylaminomethyl)benzene, 1,3,5-tris(N,N-diglycidylaminomethyl)cyclohexane, 1,3,5-tris(N,N-diglycidylaminomethyl)benzene Compounds whose atoms are bonded to aliphatic carbon atoms, isocyanurate compounds such as triglycidyl isocyanurate such as TEPIC (manufactured by Nissan Chemical Co., Ltd.), compounds described in paragraph [0037] of JP-A-10-338880, and international compounds described in Publication No. 2017/170483;
As compounds having an oxetanyl group, 1,4-bis{[(3-ethyl-3-oxetanyl)methoxy]methyl}benzene (aron oxetane OXT-121 (XDO)), di[2-(3-oxetanyl)butyl] Ether (aron oxetane OXT-221 (DOX)), 1,4-bis[(3-ethyloxetan-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyloxetan-3-yl ) methoxy]benzene (RSOX), 1,2-bis[(3-ethyloxetan-3-yl)methoxy]benzene (CTOX), described in paragraphs [0170] to [0175] of WO 2011/132751 compounds having two or more oxetanyl groups;
Compounds having an oxazoline group include compounds such as 2,2'-bis(2-oxazoline) and 2,2'-bis(4-methyl-2-oxazoline), and Epocross (trade name, manufactured by Nippon Shokubai Co., Ltd.). Polymers and oligomers having an oxazoline group, such as compounds described in paragraph [0115] of Japanese Patent Application Laid-Open No. 2007-286597;
As compounds having a cyclocarbonate group, N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' -Di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and paragraphs [0025] to [0030] and [0032] of WO2011/155577 compounds, etc.;
Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (manufactured by Mitsui Chemicals, Inc.), two pieces described in paragraphs [0046] to [0047] of Japanese Patent Application Laid-Open No. 2014-224978 compounds having the above protected isocyanate groups, compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120] of WO2015/141598;
As compounds having a hydroxy group and an alkoxy group, N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2 , 2-bis(4-hydroxy-3,5-dimethoxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3,3- Hexafluoropropane, WO 2015/072554, the compound described in paragraph [0058] of JP 2016-118753, the compound described in JP 2016-200798, WO 2010/074269 compounds described;
As crosslinkable compounds having a polymerizable unsaturated group, glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3 - diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate ) acrylate, hexaethylene glycol mono(meth)acrylate and the like.
 本発明の液晶配向剤に含有される架橋性基含有化合物(c-1)、(c-2)の含有量は、液晶配向剤に含有される重合体成分の合計100質量部に対して、0.1~30質量部が好ましく、より好ましくは0.1~20質量部、さらに好ましくは1~10質量部である。 The content of the crosslinkable group-containing compounds (c-1) and (c-2) contained in the liquid crystal aligning agent of the present invention is It is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, still more preferably 1 to 10 parts by mass.
 誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素含有芳香族複素環を有するモノアミンが挙げられる。窒素含有芳香族複素環を有するモノアミンを使用する場合は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Compounds for adjusting the dielectric constant and electrical resistance include monoamines having nitrogen-containing aromatic heterocycles such as 3-picolylamine. When using a monoamine having a nitrogen-containing aromatic heterocycle, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 100 parts by mass relative to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. 20 parts by mass.
 官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス[3-(トリメトキシシリル)プロピル]イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物を使用する場合は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of functional silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane. Silane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy silane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilane sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, Ethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris[3-(trimethoxysilyl)propyl]isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane , 3-isocyanatopropyltriethoxysilane and the like. When using a functional silane compound, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. .
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%である。特に好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンコート法を用いる場合には、固形分濃度が1.5~4.5質量%であることが特に好ましい。印刷法による場合には、固形分濃度を3~9質量%とし、それにより溶液粘度を12~50mPa・sとすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%とし、それにより、溶液粘度を3~15mPa・sとすることが特に好ましい。 The solid content concentration in the liquid crystal aligning agent (ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc., but preferably It is 1 to 10% by mass. A particularly preferable solid content concentration range varies depending on the method used when applying the liquid crystal aligning agent to the substrate. For example, when a spin coating method is used, the solid content concentration is particularly preferably 1.5 to 4.5% by mass. When the printing method is used, it is particularly preferable to set the solid content concentration to 3 to 9% by mass and thereby the solution viscosity to 12 to 50 mPa·s. In the case of the inkjet method, it is particularly preferable to set the solid content concentration to 1 to 5% by mass and thereby the solution viscosity to 3 to 15 mPa·s.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向膜は、水平配向型若しくは垂直配向型の液晶配向膜に用いることができる。垂直配向型の液晶配向膜として、中でも、VA方式、PSA方式、又はSC-PVA方式等の垂直配向型の液晶表示素子に用いる液晶配向膜が好ましい。また、本発明の液晶配向剤は、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用の液晶配向膜、或いはこれら以外の用途、例えばカラーフィルタの保護膜、フレキシブルディスプレイのゲート絶縁膜、基板材料にも用いることができる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent. The liquid crystal alignment film of the present invention can be used as a horizontal alignment type or vertical alignment type liquid crystal alignment film. As the vertical alignment type liquid crystal alignment film, a liquid crystal alignment film used for a vertical alignment type liquid crystal display element such as a VA system, a PSA system, or an SC-PVA system is preferable. Further, the liquid crystal aligning agent of the present invention can be used as a liquid crystal alignment film for a retardation film, a liquid crystal alignment film for a scanning antenna or a liquid crystal array antenna, a liquid crystal alignment film for a transmission scattering type liquid crystal light control element, or other applications. , for example, a protective film for a color filter, a gate insulating film for a flexible display, and a substrate material.
<液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向膜を具備するものである。本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。
<Liquid crystal display element>
The liquid crystal display element of the present invention comprises the liquid crystal alignment film. The liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal composition containing a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element manufactured through a process of polymerizing a polymerizable compound by at least one of irradiation with an active energy ray and heating while placing a substance and applying a voltage between electrodes.
 本発明の液晶表示素子は、例えば以下の工程(1)~(3)又は工程(1)~(4)をこの順に行う方法により製造することができる。
(1)液晶配向剤を、導電膜を有する一対の基板の少なくとも一方の基板上に塗布して塗膜を形成する工程
 パターニングされた透明導電膜が設けられている基板一対の基板の少なくとも一方の基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布して塗膜を作製する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
(2)塗膜を焼成する工程
 液晶配向剤塗布後、塗布した配向剤の液垂れ防止等の目的で、上記塗膜を焼成する。好ましくは先ず予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、より好ましくは40~150℃であり、特に好ましくは40~100℃である。プレベーク時間は好ましくは0.25~10分であり、より好ましくは0.5~5分である。そして、加熱(ポストベーク)工程が実施されることが好ましい。このポストベーク温度は好ましくは80~300℃であり、より好ましくは120~250℃である。ポストベーク時間は好ましくは5~200分であり、より好ましくは10~100分である。このようにして形成される膜の膜厚は、5~300nmが好ましく、10~200nmがより好ましい。
The liquid crystal display device of the present invention can be manufactured, for example, by performing the following steps (1) to (3) or steps (1) to (4) in this order.
(1) A step of applying a liquid crystal aligning agent on at least one of a pair of substrates having a conductive film to form a coating film. A substrate provided with a patterned transparent conductive film. The liquid crystal aligning agent of the present invention is coated on one surface of the substrate by an appropriate coating method such as a roll coater method, a spin coat method, a printing method, an ink jet method, or the like to prepare a coating film. Here, the substrate is not particularly limited as long as it is highly transparent, and in addition to a glass substrate and a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. In addition, in a reflective liquid crystal display element, if only one substrate is used, an opaque material such as a silicon wafer can be used, and in this case, a light-reflecting material such as aluminum can be used for the electrodes.
(2) Step of Baking Coating Film After applying the liquid crystal aligning agent, the coating film is baked for the purpose of preventing dripping of the applied aligning agent. Preferably, preheating (prebaking) is performed first. The prebaking temperature is preferably 30 to 200°C, more preferably 40 to 150°C, and particularly preferably 40 to 100°C. The pre-baking time is preferably 0.25-10 minutes, more preferably 0.5-5 minutes. Then, a heating (post-baking) step is preferably performed. The post-bake temperature is preferably 80-300°C, more preferably 120-250°C. The post-bake time is preferably 5-200 minutes, more preferably 10-100 minutes. The thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
 上記工程(1)および(2)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。 The coating film formed in the above steps (1) and (2) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment. Alignment imparting treatment includes rubbing treatment in which the coating film is rubbed in a fixed direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, cotton, etc., and photo-alignment treatment in which the coating film is irradiated with polarized or non-polarized radiation. processing and the like.
 光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板表面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。
(3)上記一対の基板の間に液晶層を形成して液晶セルを作製する工程
(3-1)VA方式の液晶表示素子を製造する場合
 上記のようにして、2枚の基板のうちの少なくとも一方に本発明の液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部にシール剤を塗布して貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
 上記液晶組成物としては、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、誘電率異方性が正または負の各種の液晶組成物を用いることができる。なお、以下では、誘電率異方性が正の液晶組成物を、ポジ型液晶ともいい、誘電率異方性が負の液晶組成物を、ネガ型液晶ともいう。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例:トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物など)を含んでもよい。液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、下記する重合性基を有する化合物などの光重合性モノマー;光学活性な化合物(例:メルク(株)社製のS-811など);酸化防止剤;紫外線吸収剤;色素;消泡剤;重合開始剤;又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-6882、MLC-6886、MLC-7026、MLC-7026-000、MLC-7026-100、又はMLC-7029などが挙げられる。
 また、PSAモードでは、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
In the photo-alignment treatment, ultraviolet rays and visible rays including light having a wavelength of 150 to 800 nm can be used as the radiation to irradiate the coating film. When the radiation is polarized, it may be linearly polarized or partially polarized. Further, when the radiation used is linearly polarized or partially polarized, the irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof. When non-polarized radiation is applied, the direction of irradiation is oblique.
(3) Step of forming a liquid crystal layer between the pair of substrates to produce a liquid crystal cell (3-1) When manufacturing a VA liquid crystal display element Two substrates having the liquid crystal alignment film of the present invention formed on at least one of them are prepared, and a liquid crystal is arranged between the two substrates facing each other. Specifically, the following two methods are mentioned. The first method is a conventionally known method. First, two substrates are arranged to face each other with a gap (cell gap) interposed therebetween so that the respective liquid crystal alignment films face each other. Next, a sealant is applied to the periphery of the two substrates and attached to each other, and a liquid crystal composition is injected and filled into the cell gap defined by the substrate surface and the sealant to contact the film surface, and then the injection hole is opened. Seal.
The liquid crystal composition is not particularly limited, and various liquid crystal compositions containing at least one liquid crystal compound (liquid crystal molecule) and having positive or negative dielectric anisotropy can be used. In the following description, a liquid crystal composition with a positive dielectric anisotropy is also referred to as a positive liquid crystal, and a liquid crystal composition with a negative dielectric anisotropy is also referred to as a negative liquid crystal.
The above liquid crystal composition contains a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocyclic ring, a cycloalkane, A liquid crystal compound having a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring may be included, and a compound having two or more rigid sites (mesogenic skeleton) exhibiting liquid crystallinity in the molecule (for example, two rigid biphenyl structure, or a bimesogenic compound in which a terphenyl structure is linked by an alkyl group). The liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
In addition, the liquid crystal composition may further contain an additive from the viewpoint of improving liquid crystal orientation. Such additives include photopolymerizable monomers such as compounds having a polymerizable group described below; optically active compounds (eg, S-811 manufactured by Merck Co., Ltd.); antioxidants; UV absorbers; dyes; antifoaming agents; polymerization initiators; or polymerization inhibitors.
Positive liquid crystals include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019 and MLC-7081 manufactured by Merck.
As the negative liquid crystal, for example, MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000, MLC-7026-100, or MLC- 7029 and the like.
In addition, in the PSA mode, MLC-3023 manufactured by Merck Co., Ltd. can be used as a liquid crystal containing a compound having a polymerizable group.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。 The second method is a method called the ODF (One Drop Fill) method. A predetermined place on one of the two substrates on which the liquid crystal alignment film is formed is coated with, for example, an ultraviolet light-curing sealant, and a liquid crystal composition is applied to several predetermined places on the surface of the liquid crystal alignment film. drip. Thereafter, the other substrate is attached so that the liquid crystal alignment films face each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
 いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。(3-2)PSA方式の液晶表示素子を製造する場合
 重合性基を有する化合物を含有する液晶組成物を注入又は滴下する点以外は上記(3-1)と同様にする。重合性基を有する化合物としては、例えば、メソゲン構造と2つ以上の光重合性基又は熱重合性基を有する化合物を挙げることができる。メソゲン構造としては、2つ以上の芳香族基または脂肪族基が連結された構造が挙げられ、ビフェニル構造、ターフェニル構造、ナフタレン環、ビスフェノールAから2つのヒドロキシ基を除いた基、或いはこれらの構造が有する水素原子の一部がフッ素原子で置き換えられたフッ素原子含有構造が挙げられる。具体的な化合物として、4,4’-ジメタクリルオキシビフェニル、又は3-フルオロ-1,1’-ビフェニル-4,4’-ジイルジメタクリレートが挙げられる。
(3-3)重合性基を有する化合物を含む液晶配向剤を用いて基板上に塗膜を形成した場合(SC-PVA方式)
 上記(3-1)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、上記PSA方式の液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記した重合性基を有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、上記重合性基は液晶配向剤に用いる重合体が有していてもよく、このような重合体としては、例えば上記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
(4)液晶セルに光を照射する工程
 上記(3-2)又は(3-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
In any method, it is desirable to remove the flow orientation at the time of liquid crystal filling by heating the liquid crystal composition to a temperature at which the used liquid crystal composition assumes an isotropic phase and then slowly cooling to room temperature. (3-2) Production of PSA type liquid crystal display device The procedure of (3-1) above is repeated except that the liquid crystal composition containing a compound having a polymerizable group is injected or dropped. Examples of compounds having a polymerizable group include compounds having a mesogenic structure and two or more photopolymerizable groups or thermally polymerizable groups. The mesogenic structure includes a structure in which two or more aromatic groups or aliphatic groups are linked, such as a biphenyl structure, a terphenyl structure, a naphthalene ring, a group obtained by removing two hydroxy groups from bisphenol A, or any of these A fluorine atom-containing structure in which a part of the hydrogen atoms of the structure are replaced with fluorine atoms can be mentioned. Specific compounds include 4,4'-dimethacryloxybiphenyl or 3-fluoro-1,1'-biphenyl-4,4'-diyl dimethacrylate.
(3-3) When a coating film is formed on a substrate using a liquid crystal aligning agent containing a compound having a polymerizable group (SC-PVA method)
A method of manufacturing a liquid crystal display element may be adopted by carrying out the same as the above (3-1) and then performing a step of irradiating ultraviolet rays, which will be described later. According to this method, a liquid crystal display device having an excellent response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display device. The compound having a polymerizable group may be a compound having the polymerizable group described above, and the content thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all polymer components. , more preferably 1 to 20 parts by mass. Further, the polymerizable group may be present in the polymer used for the liquid crystal alignment agent, and such a polymer includes, for example, a diamine component containing a diamine having a photopolymerizable group at the end thereof, which is used in the reaction. The polymer obtained is mentioned.
(4) Step of irradiating the liquid crystal cell with light The liquid crystal cell is irradiated with light while a voltage is applied between the conductive films of the pair of substrates obtained in (3-2) or (3-3) above. The voltage applied here can be, for example, 5 to 50 V direct current or alternating current. As the light for irradiation, for example, ultraviolet light containing light with a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet light containing light with a wavelength of 300 to 400 nm is preferable. A low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used as the light source for the irradiation light. The irradiation amount of light is preferably 1,000 to 200,000 J/m 2 , more preferably 1,000 to 100,000 J/m 2 .
 そして、液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外側表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by bonding a polarizing plate to the outer surface of the liquid crystal cell. As the polarizing plate to be attached to the outer surface of the liquid crystal cell, a polarizing film called "H film" in which polyvinyl alcohol is stretched and oriented while absorbing iodine is sandwiched between cellulose acetate protective films, or the H film itself. A polarizing plate consisting of
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。 The liquid crystal display device of the present invention can be effectively applied to various devices such as watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smart phones, It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
 以下、実施例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。使用した化合物の略号及び各物性の測定方法は、以下の通りである。
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
 Cyrene:(1S,5R)-6,8-ジオキサビシクロ[3.2.1]オクタン-4-オン(化合物(a)に該当)
The present invention will be described in more detail based on examples below, but the present invention is not limited to these examples. The abbreviations of the compounds used and methods for measuring physical properties are as follows.
(solvent)
NMP: N-methyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether Cyrene: (1S,5R)-6,8-dioxabicyclo[3.2.1]octan-4-one (corresponding to compound (a))
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(テトラカルボン酸二無水物)
 CA-1~CA-2:それぞれ、下記式(CA-1)~(CA-2)で表される化合物
(tetracarboxylic dianhydride)
CA-1 to CA-2: compounds represented by the following formulas (CA-1) to (CA-2), respectively
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(ジアミン)
 DA-1~DA-2:それぞれ、下記式(DA-1)~(DA-2)で表される化合物
(diamine)
DA-1 to DA-2: compounds represented by the following formulas (DA-1) to (DA-2), respectively
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
<分子量の測定>
 下記の常温GPC(ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキサイド換算値としてMn及びMwを算出した。GPC装置:SSC-7200(センシュー科学社製)、カラム:GPC KD-803、GPC KD-805(昭和電工社製)の直列、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
<Measurement of molecular weight>
Measurement was performed using the following normal temperature GPC (gel permeation chromatography) apparatus, and Mn and Mw were calculated as values converted to polyethylene glycol and polyethylene oxide. GPC apparatus: SSC-7200 (manufactured by Senshu Kagaku), column: GPC KD-803, GPC KD-805 (manufactured by Showa Denko) in series, column temperature: 50 ° C., eluent: N,N-dimethylformamide (addition As agents, lithium bromide monohydrate (LiBr.H 2 O) is 30 mmol/L, phosphoric acid/anhydride crystals (o-phosphoric acid) is 30 mmol/L, and tetrahydrofuran (THF) is 10 mL/L), flow rate: 1.0 mL/min Standard sample for creating a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; 000, 4,000 and 1,000) (manufactured by Polymer Laboratories).
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド([D]-DMSO、0.05%テトラメチルシラン(TMS)混合品)1.0mLを添加し、超音波をかけて完全に溶解させた。この溶液をフーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER社製)にて500MHzのプロトンNMRを測定した。
<Measurement of imidization rate>
20 mg of polyimide powder was placed in an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku Co., Ltd.)) and deuterated dimethyl sulfoxide ([D 6 ]-DMSO, 0.05% tetramethylsilane (TMS) mixture). 1.0 mL was added and sonicated to completely dissolve. This solution was subjected to proton NMR at 500 MHz using a Fourier transform superconducting nuclear magnetic resonance spectrometer (FT-NMR) "AVANCE III" (manufactured by BRUKER).
 (化学)イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い下記式によって求めた。なお、下記式において、xはアミック酸のNH基由来のプロトンピーク積算値を示し、yは基準プロトンのピーク積算値を示し、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合を示す。 (Chemical) imidization rate is determined by protons derived from a structure that does not change before and after imidization as reference protons, and is derived from the peak integrated value of this proton and the NH group of amic acid appearing around 9.5 to 10.0 ppm. It was obtained by the following formula using the proton peak integrated value. In the following formula, x indicates the proton peak integrated value derived from the NH group of the amic acid, y indicates the peak integrated value of the reference proton, and α is the amic acid in the case of polyamic acid (imidization rate is 0%). shows the ratio of the number of reference protons to one proton of the NH group of .
    イミド化率(%)=(1-α・x/y)×100     Imidation rate (%) = (1-α x/y) x 100
[重合体の合成]
<合成例1>
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1(5.09g、11.7mmol)、DA-2(4.15g、27.3mmol)、CA-2(7.32g、29.3mmol)及びNMP(66.2g)を加えて、窒素を送りながら80℃で3時間撹拌した。その後、室温に冷却した後、CA-1(1.87g、9.54mmol)及びNMP(7.49g)を加えて、40℃で18時間撹拌することで、ポリアミック酸溶液を得た。
 上記で得られたポリアミック酸溶液(50.0g)に、NMP(103g)、無水酢酸(10.8g)及びピリジン(3.34g)を加え、室温で30分撹拌した後、80℃で5時間反応させた。この反応溶液をメタノール(587g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、ポリイミド(SPI-1)の粉末を得た。このポリイミド粉末のイミド化率は81%であり、Mnは12,502、Mwは36,348であった。
[Synthesis of polymer]
<Synthesis Example 1>
DA-1 (5.09 g, 11.7 mmol), DA-2 (4.15 g, 27.3 mmol), CA-2 (7.32 g, 29.3 mmol) and NMP (66.2 g) were added, and the mixture was stirred at 80°C for 3 hours while purging with nitrogen. Then, after cooling to room temperature, CA-1 (1.87 g, 9.54 mmol) and NMP (7.49 g) were added and stirred at 40° C. for 18 hours to obtain a polyamic acid solution.
NMP (103 g), acetic anhydride (10.8 g) and pyridine (3.34 g) were added to the polyamic acid solution (50.0 g) obtained above, and the mixture was stirred at room temperature for 30 minutes and then at 80°C for 5 hours. reacted. This reaction solution was poured into methanol (587 g), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 60° C. to obtain polyimide (SPI-1) powder. The imidization rate of this polyimide powder was 81%, Mn was 12,502, and Mw was 36,348.
[液晶配向剤の調製]
<実施例1>
 ポリイミド(SPI-1)の粉末(2.00g)にNMP(8.00g)を加え、70℃で15時間撹拌し溶解させ、ポリイミド溶液を得た。上記ポリイミド溶液を用いて、Cyrene及びBCSにより希釈し、室温で2時間撹拌することで、重合体固形分と各溶媒の質量比(重合体固形分:Cyrene:NMP:BCS)が6:30:24:40となる液晶配向剤(AL-1)を得た。
[Preparation of Liquid Crystal Aligning Agent]
<Example 1>
NMP (8.00 g) was added to polyimide (SPI-1) powder (2.00 g) and dissolved by stirring at 70° C. for 15 hours to obtain a polyimide solution. Using the polyimide solution, diluted with Cyrene and BCS and stirred at room temperature for 2 hours, the mass ratio of the polymer solid content and each solvent (polymer solid content: Cyrene: NMP: BCS) was 6:30: A liquid crystal aligning agent (AL-1) with a ratio of 24:40 was obtained.
<実施例2>
 ポリイミド(SPI-1)の粉末(2.00g)にCyrene(11.3g)を加え、70℃で15時間撹拌し溶解させ、ポリイミド溶液を得た。
 上記ポリイミド溶液を用いて、Cyrene及びBCSにより希釈し、室温で2時間撹拌することで、重合体固形分と各溶媒の質量比(重合体固形分:Cyrene:BCS)が6:54:40となる液晶配向剤(AL-2)を得た。
<Example 2>
Cyrene (11.3 g) was added to polyimide (SPI-1) powder (2.00 g) and dissolved by stirring at 70° C. for 15 hours to obtain a polyimide solution.
Using the polyimide solution, diluted with Cyrene and BCS and stirred at room temperature for 2 hours, the mass ratio of the polymer solid content and each solvent (polymer solid content: Cyrene: BCS) was 6: 54: 40. A liquid crystal aligning agent (AL-2) was obtained.
<比較例1>
 ポリイミド(SPI-1)の粉末(2.00g)にNMP(11.3g)を加え、70℃で15時間撹拌し溶解させ、ポリイミド溶液を得た。上記ポリイミド溶液を用いて、NMP及びBCSにより希釈し、室温で2時間撹拌することで、重合体固形分と各溶媒の質量比(重合体固形分:NMP:BCS)が6:54:40となる液晶配向剤(AL-3)を得た。
<Comparative Example 1>
NMP (11.3 g) was added to polyimide (SPI-1) powder (2.00 g) and dissolved by stirring at 70° C. for 15 hours to obtain a polyimide solution. Using the above polyimide solution, dilute with NMP and BCS and stir at room temperature for 2 hours, so that the mass ratio of the polymer solid content and each solvent (polymer solid content: NMP: BCS) is 6: 54: 40. A liquid crystal aligning agent (AL-3) was obtained.
 表1に、上記で調製した各液晶配向剤の仕様を示す。 Table 1 shows the specifications of each liquid crystal aligning agent prepared above.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[印刷性の評価]
 上記実施例1~2及び比較例1で得られた液晶配向剤AL-1~AL-3をそれぞれ孔径1.0μmのフィルターで濾過した後、洗浄したCr蒸着基板上に配向膜印刷機(日本写真印刷社製「オングストローマー」)を用いてフレキソ印刷を行うことにより、印刷性試験を行った。
 具体的には、アニロックスロールに約1.0mLの液晶配向剤を滴下し、空運転を5回実施した後、Cr蒸着基板(縦100mm×横100mm,厚さ1.0mm)1枚に、印刷設定寸法が80mm×80mm、印圧が0.2mmの条件で印刷を行い、印刷後の基板を70℃のホットプレート上に90秒間放置して、塗膜の仮乾燥を行い、膜状態を観察した。目視と、光学顕微鏡(ニコン社製「ECLIPSE ME600」)での倍率50倍とで、エッジ部の膜厚ムラを観察した。評価基準として、印刷塗膜縁部分で膜厚ムラのサイズが最も大きい箇所を選択し、この最も大きい膜厚ムラの幅が1.5mm以下の場合を「○」とし、それより広い場合を「×」とした。より具体的には、Cr蒸着基板に印刷されたポリイミド膜(図1)において、膜厚ムラのサイズが最も大きい箇所(図1の点線部分)を選択し、光学顕微鏡の倍率が50倍の状態で観察して得られたポリイミド膜画像の図2中のAの長さを測定した。このAの長さが、上記の膜厚ムラの幅に該当する。結果を表2に示す。
[Evaluation of printability]
After filtering the liquid crystal aligning agents AL-1 to AL-3 obtained in Examples 1 to 2 and Comparative Example 1 with a filter having a pore size of 1.0 μm, an alignment film printer (Japan A printability test was performed by performing flexographic printing using "Angstromer" manufactured by Photo Printing Co., Ltd.).
Specifically, about 1.0 mL of liquid crystal aligning agent was dropped on an anilox roll, and after performing idle operation five times, printing was performed on one Cr vapor deposition substrate (length 100 mm × width 100 mm, thickness 1.0 mm). Printing is performed under the conditions of a set size of 80 mm × 80 mm and a printing pressure of 0.2 mm, and the substrate after printing is left on a hot plate at 70 ° C. for 90 seconds to temporarily dry the coating film, and the film state is observed. bottom. The film thickness unevenness at the edges was observed visually and with an optical microscope ("ECLIPSE ME600" manufactured by Nikon Corporation) at a magnification of 50 times. As an evaluation criterion, select the portion where the size of the film thickness unevenness is the largest at the edge of the printed coating film. ×”. More specifically, in the polyimide film (Fig. 1) printed on the Cr-deposited substrate, the portion where the size of the film thickness unevenness is the largest (dotted line portion in Fig. 1) is selected, and the magnification of the optical microscope is 50 times. The length of A in FIG. 2 of the polyimide film image obtained by observation was measured. The length of A corresponds to the width of the film thickness unevenness. Table 2 shows the results.
[液晶セルの作製]
 上記で得られた液晶配向剤を用いて下記に示すような手順で液晶セルの作製を行った。液晶配向剤をITO電極付きガラス基板(幅3cm×長さ4cm)にスピンコートし、70℃のホットプレート上で90秒間乾燥した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布し、液晶注入口を残して周囲に熱硬化性シール剤(三井化学社製、XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに液晶MLC-3023(メルク社製)を減圧注入法によって注入し、液晶セルを作製した。次に、この液晶セルに15Vの直流電圧を印加した状態で、液晶セルの外側から波長325nm以下のカットフィルターを通した紫外線を10J/cm照射した。なお、紫外線の照度は、オーク製作所社製の紫外線照度計・光量計UV-M03Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いて紫外線(UVランプ:FLR40SUV32/A-1)を30分間照射した。
[Production of liquid crystal cell]
Using the liquid crystal aligning agent obtained above, a liquid crystal cell was produced in the following procedure. The liquid crystal aligning agent is spin-coated on a glass substrate with ITO electrodes (width 3 cm × length 4 cm), dried on a hot plate at 70 ° C. for 90 seconds, and then baked in an infrared heating furnace at 230 ° C. for 20 minutes to obtain a film thickness. A liquid crystal alignment film of 100 nm was formed. Two substrates with the liquid crystal alignment film were prepared, and a bead spacer with a diameter of 4 μm (manufactured by Nikki Shokubai Kasei Co., Ltd., Shinshikyu, SW-D1) was applied onto one of the liquid crystal alignment films, leaving a liquid crystal injection port. A thermosetting sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.) was printed around the periphery. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after bonding with the previous substrate, the sealant was cured to prepare an empty cell. Liquid crystal MLC-3023 (manufactured by Merck) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell. Next, while a DC voltage of 15 V was applied to the liquid crystal cell, ultraviolet rays having a wavelength of 325 nm or less and passed through a cut filter were irradiated from the outside of the liquid crystal cell at 10 J/cm 2 . The ultraviolet illuminance was measured using an ultraviolet illuminance meter/photometer UV-M03A manufactured by Oak Manufacturing Co., Ltd. Thereafter, for the purpose of deactivating the unreacted polymerizable compound remaining in the liquid crystal cell, ultraviolet rays (UV lamp: FLR40SUV32/ A-1) was irradiated for 30 minutes.
[液晶配向性の評価]
 液晶表示素子の液晶配向性は、偏光顕微鏡(ニコン社製「ECLIPSE E600WPOL」)で観察し、液晶が垂直に配向しているかどうかを確認した。評価基準として、液晶の流動による不良や配向欠陥による輝点が見られなかった場合を「○」とし、液晶の流動による不良や配向欠陥による輝点が見られた場合を「×」とした。評価結果を表2に示す。
[Evaluation of liquid crystal orientation]
The liquid crystal orientation of the liquid crystal display device was observed with a polarizing microscope ("ECLIPSE E600WPOL" manufactured by Nikon Corporation) to confirm whether or not the liquid crystal was vertically aligned. As the evaluation criteria, the case where no defects due to liquid crystal flow or bright spots due to orientation defects were observed was rated as "Good", and the case where defects due to liquid crystal flow or bright spots due to alignment defects were observed was rated as "Poor". Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2で示されるように、上記式(A)で表される化合物(a)を含有する液晶配向剤を用いた実施例1~2は、化合物(a)を含有しない液晶配向剤を用いた比較例1に比べ、印刷性が良好であり、且つ液晶配向特性に問題はみられなかった。 As shown in Table 2, Examples 1 and 2 using a liquid crystal aligning agent containing the compound (a) represented by the formula (A) used a liquid crystal aligning agent containing no compound (a). As compared with Comparative Example 1, the printability was good, and no problem was observed in the liquid crystal alignment characteristics.
 なお、2021年9月1日に出願された日本特許出願2021-142711号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-142711 filed on September 1, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.

Claims (15)

  1.  ポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)と、下記式(A)で表される化合物(a)を含む溶媒成分と、を含有する、液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    At least one polymer (P) selected from the group consisting of a polyimide precursor and a polyimide that is an imidized product of the polyimide precursor, and a solvent component containing a compound (a) represented by the following formula (A), Liquid crystal aligning agent containing.
    Figure JPOXMLDOC01-appb-C000001
  2.  化合物(a)の含有量が、液晶配向剤に含まれる溶媒成分の全体量に対して、5質量%以上である、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the content of the compound (a) is 5% by mass or more with respect to the total amount of solvent components contained in the liquid crystal aligning agent.
  3.  前記重合体(P)が、ジアミン成分とテトラカルボン酸二無水物を含むテトラカルボン酸成分との重合反応により得られる重合体である、請求項1又は2に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1 or 2, wherein the polymer (P) is a polymer obtained by a polymerization reaction of a diamine component and a tetracarboxylic acid component containing tetracarboxylic dianhydride.
  4.  前記重合体(P)が、ジアミン成分とテトラカルボン酸二無水物を含むテトラカルボン酸成分との重合反応により得られ、該テトラカルボン酸二無水物が、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び芳香族テトラカルボン酸二無水物から選ばれる少なくとも1種の化合物である、請求項1~3のいずれか一項に記載の液晶配向剤。 The polymer (P) is obtained by a polymerization reaction of a diamine component and a tetracarboxylic acid component containing a tetracarboxylic dianhydride, and the tetracarboxylic dianhydride is an acyclic aliphatic tetracarboxylic dianhydride. 4. The liquid crystal aligning agent according to any one of claims 1 to 3, which is at least one compound selected from a compound, an alicyclic tetracarboxylic dianhydride, and an aromatic tetracarboxylic dianhydride.
  5.  前記テトラカルボン酸成分が、ベンゼン環、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物を含む、請求項3または4に記載の液晶配向剤。 Claim 3 or 4, wherein the tetracarboxylic acid component contains a tetracarboxylic dianhydride having at least one partial structure selected from the group consisting of a benzene ring, a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure. The liquid crystal aligning agent described.
  6.  前記溶媒成分が、さらに、γ-バレロラクトン、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-(3-メトキシプロピル)-2-ピロリドン、N-(2-エトキシエチル)-2-ピロリドン、N-(4-メトキシブチル)-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジメチルイソブチルアミド(N,N,2-トリメチルプロピオンアミド)、N,N-ジエチルプロピオンアミド、N,N-ジプロピルアセトアミド、N,N-ジイソプロピルアセトアミド、N,N-ジブチルアセトアミド、N,N-ジメチルラクトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、テトラメチル尿素、ヘキサメチルホスホルトリアミド、シクロヘキサノン、及び、シクロペンタノンからなる群から選ばれる溶媒を含む、請求項1~5のいずれか一項に記載の液晶配向剤。 The solvent component further includes γ-valerolactone, γ-butyrolactone, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-(n-propyl )-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-(3-methoxypropyl)-2-pyrrolidone, N-(2-ethoxyethyl)-2-pyrrolidone, N-(4-methoxybutyl)-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N - dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylpropionamide, N,N-dimethylisobutyramide (N,N,2-trimethylpropionamide ), N,N-diethylpropionamide, N,N-dipropylacetamide, N,N-diisopropylacetamide, N,N-dibutylacetamide, N,N-dimethyllactamide, 3-methoxy-N,N-dimethylpropane Amide, 3-butoxy-N,N-dimethylpropanamide, tetramethylurea, hexamethylphosphortriamide, cyclohexanone, and a solvent selected from the group consisting of cyclopentanone, any one of claims 1 to 5 The liquid crystal aligning agent according to the item.
  7.  前記溶媒成分が、さらに、4-ヒドロキシ-4-メチル-2-ペンタノン、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、酢酸シクロヘキシル、酢酸4-メチル-2-ペンチル、乳酸n-ブチル、乳酸イソアミル(乳酸イソペンチル)、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールn-プロピルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソブチルカルビノール、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、及びプロピレンカーボネートからなる群から選ばれる溶媒を含む、請求項1~6のいずれか一項に記載の液晶配向剤。 The solvent component further includes 4-hydroxy-4-methyl-2-pentanone, n-butyl acetate, propylene glycol monoethyl ether acetate, cyclohexyl acetate, 4-methyl-2-pentyl acetate, n-butyl lactate, and isoamyl lactate. (isopentyl lactate), methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether , ethylene glycol n-propyl ether, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol dimethyl ether, diethylene glycol Diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, diisobutyl carbinol, diisobutyl ketone, isoamyl propionate, isoamyl isobutyrate , diisopentyl ether, ethylene carbonate, and a liquid crystal aligning agent according to any one of claims 1 to 6, comprising a solvent selected from the group consisting of propylene carbonate.
  8.  前記ジアミン成分として、「A-X-J」で表される芳香族ジアミン(d)を含有する、請求項3~7のいずれか一項に記載の液晶配向剤。
    (Aは2つの第一級アミノ基が芳香族基に結合した1価の基を表す。Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-COO-、-OCO-又は-(Am0-((CHa1-Am1-(a1は1~15の整数であり、A0、はそれぞれ独立して酸素原子又は-COO-を表し、m0は0又は1の整数であり、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。
     Jは、炭素数4~40の脂環式炭化水素基及び炭素数6~40の芳香族炭化水素基からなる群から選ばれる少なくとも1種の基を有する1価の有機基を表す。但し、上記脂環式炭化水素基及び芳香族炭化水素基が有する水素原子の少なくとも一つは、ハロゲン原子、ハロゲン原子含有アルキル基、ハロゲン原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、および炭素数3~10のアルケニル基のいずれかである置換基(v)によって置換されている。更にこれらの置換基(v)(但し、ハロゲン原子を除く。)における任意の炭素-炭素単結合は-O-で中断されていても良い。尚、Jは、前記の脂環式炭化水素基及び芳香族炭化水素基以外に、非置換又は前記した置換基(v)以外の置換基で置換されている脂環式炭化水素基及び芳香族炭化水素基からなる群から選ばれる少なくとも1種の基をさらに有してもよい。)
    The liquid crystal aligning agent according to any one of claims 3 to 7, containing an aromatic diamine (d) represented by "AXJ" as the diamine component.
    (A represents a monovalent group in which two primary amino groups are bonded to an aromatic group. X is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -COO-, -OCO- or -(A 0 ) m0 -((CH 2 ) a1 -A 1 ) m1- (a1 is an integer of 1 to 15, A 0 and A 1 each independently represent an oxygen atom or —COO—, m0 is an integer of 0 or 1, m1 is an integer of 1 to 2 When m1 is 2, a1 and A1 each independently have the above definition).
    J represents a monovalent organic group having at least one group selected from the group consisting of an alicyclic hydrocarbon group having 4 to 40 carbon atoms and an aromatic hydrocarbon group having 6 to 40 carbon atoms. However, at least one of the hydrogen atoms of the alicyclic hydrocarbon group and the aromatic hydrocarbon group is a halogen atom, a halogen atom-containing alkyl group, a halogen atom-containing alkoxy group, an alkyl group having 3 to 10 carbon atoms, a carbon It is substituted with a substituent (v) which is either an alkoxy group having 3 to 10 carbon atoms or an alkenyl group having 3 to 10 carbon atoms. Further, any carbon-carbon single bond in these substituents (v) (excluding halogen atoms) may be interrupted by -O-. In addition to the above alicyclic hydrocarbon group and aromatic hydrocarbon group, J is an alicyclic hydrocarbon group that is unsubstituted or substituted with a substituent other than the above substituent (v) and an aromatic It may further have at least one group selected from the group consisting of hydrocarbon groups. )
  9.  上記芳香族ジアミン(d)において、基「-X-J」が、下記の構造(S1)である、請求項8に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (Xは、単結合、-(CH-(aは1~15の整数である。)、-CONH-、-CO-N(CH)-、-NH-、-O-、-COO-、又は-(Am0-((CHa1-Am1-(a1は1~15の整数であり、A0、は、それぞれ独立して酸素原子又は-COO-を表し、m0は0又は1の整数であり、m1は1~2の整数である。m1が2の場合、複数のa1及びAは、それぞれ独立して上記定義を有する。)を表す。
     Gは、フェニレン基、及びシクロヘキシレン基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
     mは、1~4の整数である。mが2以上の場合、複数のX、Gは、それぞれ独立して上記定義を有する。
     Rはフッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。)
    9. The liquid crystal aligning agent according to claim 8, wherein in the aromatic diamine (d), the group "-XJ" has the following structure (S1).
    Figure JPOXMLDOC01-appb-C000002
    (X 1 is a single bond, —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —CO—N(CH 3 )—, —NH—, —O—, -COO- or -(A 0 ) m0 -((CH 2 ) a1 -A 1 ) m1 - (a1 is an integer of 1 to 15, and A 0 and A 1 are each independently an oxygen atom or - represents COO-, m0 is an integer of 0 or 1, and m1 is an integer of 1 to 2. When m1 is 2, multiple a1 and A1 each independently have the above definition. show.
    G 1 represents a divalent cyclic group selected from a phenylene group and a cyclohexylene group. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
    m is an integer of 1-4. When m is 2 or more, multiple X 1 and G 1 each independently have the above definition.
    R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or carbon represents an alkoxyalkyl group of numbers 3 to 10; )
  10.  上記芳香族ジアミン(d)が、下記式(d-1)~(d-2)で表されるジアミンである、請求項8または9に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (X、Jは、請求項8の定義と同じである。前記式(d-2)において、2個のX、Jは、互いに同一であっても異なっていてもよい。)
    10. The liquid crystal aligning agent according to claim 8, wherein the aromatic diamine (d) is a diamine represented by the following formulas (d-1) to (d-2).
    Figure JPOXMLDOC01-appb-C000003
    (X and J are the same as defined in claim 8. In the formula (d-2), two X and J may be the same or different.)
  11.  水平配向型若しくは垂直配向型の液晶配向膜、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用の液晶配向膜の形成に用いられる、請求項1~10のいずれか一項に記載の液晶配向剤。 Used for forming horizontal or vertical alignment type liquid crystal alignment films, liquid crystal alignment films for retardation films, liquid crystal alignment films for scanning antennas and liquid crystal array antennas, and liquid crystal alignment films for transmission scattering type liquid crystal light control elements. The liquid crystal aligning agent according to any one of claims 1 to 10.
  12.  請求項1~11のいずれか一項に記載の液晶配向剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 11.
  13.  請求項12に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 12.
  14.  以下の工程(1)~(3)をこの順に行うことを含む、液晶表示素子の製造方法。
     工程(1):請求項1~11のいずれか1項に記載の液晶配向剤を、導電膜を有する一対の基板の少なくとも一方の基板上に塗布して塗膜を形成する工程
     工程(2):前記塗膜を焼成する工程
     工程(3):前記一対の基板の間に液晶層を形成して液晶セルを作製する工程
    A method for manufacturing a liquid crystal display device, comprising performing the following steps (1) to (3) in this order.
    Step (1): A step of applying the liquid crystal aligning agent according to any one of claims 1 to 11 onto at least one of a pair of substrates having a conductive film to form a coating film. Step (2). : Step of baking the coating film Step (3): Step of forming a liquid crystal layer between the pair of substrates to produce a liquid crystal cell
  15.  工程(1)~(3)の後に、以下の工程(4)をさらに行うことを含む、請求項14に記載の液晶表示素子の製造方法。
     工程(4):前記液晶セルに光を照射する工程
    15. The method of manufacturing a liquid crystal display element according to claim 14, further comprising performing the following step (4) after steps (1) to (3).
    Step (4): Step of irradiating the liquid crystal cell with light
PCT/JP2022/031699 2021-09-01 2022-08-23 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element WO2023032753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023545475A JPWO2023032753A1 (en) 2021-09-01 2022-08-23
CN202280059156.XA CN117957488A (en) 2021-09-01 2022-08-23 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142711 2021-09-01
JP2021-142711 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032753A1 true WO2023032753A1 (en) 2023-03-09

Family

ID=85412267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031699 WO2023032753A1 (en) 2021-09-01 2022-08-23 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (4)

Country Link
JP (1) JPWO2023032753A1 (en)
CN (1) CN117957488A (en)
TW (1) TW202317741A (en)
WO (1) WO2023032753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025047132A1 (en) * 2023-08-29 2025-03-06 東レ株式会社 Resin composition, cured film, electronic component, and organic el display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119504659B (en) * 2024-11-14 2025-07-18 波米科技有限公司 Epoxy group-containing compound and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129506A1 (en) * 2015-02-12 2016-08-18 日産化学工業株式会社 Liquid crystal orientation agent
JP2017052877A (en) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 Polyimide precursor composition, manufacturing method of polyimide precursor composition and manufacturing method of polyimide molded body
US20210125741A1 (en) * 2014-03-20 2021-04-29 Nanotek Instruments, Inc. Graphene Oxide-Filled Polyimide Films and Process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210125741A1 (en) * 2014-03-20 2021-04-29 Nanotek Instruments, Inc. Graphene Oxide-Filled Polyimide Films and Process
WO2016129506A1 (en) * 2015-02-12 2016-08-18 日産化学工業株式会社 Liquid crystal orientation agent
JP2017052877A (en) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 Polyimide precursor composition, manufacturing method of polyimide precursor composition and manufacturing method of polyimide molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025047132A1 (en) * 2023-08-29 2025-03-06 東レ株式会社 Resin composition, cured film, electronic component, and organic el display device

Also Published As

Publication number Publication date
TW202317741A (en) 2023-05-01
CN117957488A (en) 2024-04-30
JPWO2023032753A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2023032753A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023013622A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024157869A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2024105348A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023008071A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022239658A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
WO2023219112A1 (en) Novel diamine compound, polymer obtained using diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
TWI830451B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023032784A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US20250145888A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022250007A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
WO2024142964A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023068084A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2023074569A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023074390A1 (en) Liquid crystal aligning agent, liquid crystal aligned film, liquid crystal display element, and compound
KR20250112777A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2024122359A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2025121249A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TW202449123A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20250006072A (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545475

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280059156.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864337

Country of ref document: EP

Kind code of ref document: A1