WO2024126965A1 - Procede de fabrication d'objets frittes a rugosite amelioree - Google Patents
Procede de fabrication d'objets frittes a rugosite amelioree Download PDFInfo
- Publication number
- WO2024126965A1 WO2024126965A1 PCT/FR2023/052024 FR2023052024W WO2024126965A1 WO 2024126965 A1 WO2024126965 A1 WO 2024126965A1 FR 2023052024 W FR2023052024 W FR 2023052024W WO 2024126965 A1 WO2024126965 A1 WO 2024126965A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamide
- powder
- composition
- inherent viscosity
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/357—Recycling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Definitions
- the present patent application relates to a process for manufacturing sintered objects with improved roughness by 3D printing, such sintered objects as well as a composition useful for their manufacture.
- thermoplastic polymer powder bed SLS, MJF, HSS, etc.
- the powders must be able to form a powder bed with the properties required in the additive manufacturing process.
- the powders must both be able to be spread in a thin layer of uniform thickness and form a cohesive powder bed capable of supporting the weight of the parts being constructed.
- polymer powders are also important in order to obtain objects without defects, particularly with low roughness.
- printed parts often present a surface roughness which is not suitable for certain applications, such as applications requiring parts with precise dimensions such as bearing cages, seals, turbines, pistons, rings, compressor valves or engine parts.
- This problem arises in particular in the context of the recycling of the residual powder recovered at the end of each print which is necessary for economic reasons.
- the recycling of such powders does not ensure the manufacture of quality parts and in particular constant roughness.
- Application US 2011/0237731 discloses a powder for 3D printing by laser sintering comprising 10 to 30% by weight of a polyamide 12 powder that is not very scalable in terms of viscosity under the effect of heat mixed with a more scalable polyamide 12 powder.
- some of these mixtures have components with very different properties, which can cause inhomogeneities in the manufactured article and affect its mechanical properties.
- Patent application US 2018/094103 proposes polyamide powders for 3D printing by sintering with a viscosity in solution according to ISO 307 of 1.55 to 1.75, this viscosity varying from 10 to 40% after 24 hours under nitrogen at a temperature 10°C below its melting point. 3D printing with these powders does not always make it possible to obtain parts with satisfactory roughness for applications requiring parts with precise dimensions such as bearing cages, seals, turbines, pistons, rings, compressor valves or parts of engine.
- the invention therefore aims to propose a composition of polyamide powders for 3D printing by laser sintering, in particular partially recycled, which allows the manufacture of parts with good surface quality, in particular low roughness.
- the present invention is based on the observation that a mixture of polyamide powders specifically selected and having in particular a difference in inherent viscosity of less than 0.6 allows the manufacture of articles having good surface quality, and in particular a low roughness.
- the invention relates to a composition of polyamide powders comprising:
- the polyamide A powder and the polyamide B powder are chosen respectively from PA 6, PA 66, PA613, PA1010, PA 1012, PA 11, PA 12, PA 11/10T and their copolymers.
- the polyamide B powder comes from the polyamide A powder.
- the polyamide A and/or B powder has an inherent viscosity of between 0.90 and 1.50.
- the difference between the inherent viscosity of the polyamide A powder and the polyamide B powder does not exceed in absolute value 0.5, preferably 0.4 and very particularly 0.3.
- the composition of polyamide powders comprises 20 to 80%, preferably 30 to 70% and very particularly 40 to 60% by weight of polyamide A powder.
- the composition of polyamide powders comprises 20 to 80%, preferably 30 to 70% and very particularly 40 to 60% by weight of polyamide B powder.
- the invention relates to a process for manufacturing said powder composition, by mixing:
- a polyamide B powder both have an inherent viscosity, calculated as indicated above, of 0.8 to 2.8, and having a span of between 0.4 and 1.40, said powder B having been used in 3D printing by laser sintering beforehand; as well as
- the invention relates to a method of manufacturing a sintered object by 3D printing by Laser sintering, comprising the steps consisting of:
- the polyamide A powder and the polyamide B powder are chosen respectively from PA 6, PA 66, PA613, PA1010, PA 1012, PA 11, PA 12, PA 11/10T and their copolymers.
- the polyamide B powder comes from the polyamide A powder.
- the difference between the inherent viscosity of the polyamide A powder and the polyamide B powder does not exceed in absolute value 0.5, preferably 0.4 and very particularly 0.3.
- the polyamide A and/or B powder has an inherent viscosity of between 0.9 and 1.5.
- the invention aims at a sintered object comprising particles of polyamide powder composition as defined above, assembled by partial fusion, characterized in that it has a surface roughness, as measured in the conditions explained in the examples, characterized by an Rz ⁇ 50 pm and a Ra ⁇ 10 pm.
- PA X represents the number of carbon atoms of the polyamide units resulting from the condensation of an amino acid or lactam.
- PA XY notation designating a polyamide resulting from the condensation of a diamine with a dicarboxylic acid or an acid derivative having di-functionality
- X represents the number of carbon atoms of the diamine
- Y represents the number of carbon atoms of the dicarboxylic acid or acid derivative.
- PA X/Y refers to copolyamides in which X and Y are two distinct monomers.
- powder bed additive manufacturing is understood to designate processes in which a layer of polymer powder, the powder bed, is irradiated by electromagnetic radiation (for example laser beam, infrared radiation, UV radiation), so to selectively melt powder particles impacted by radiation. The molten particles coalesce and solidify to lead to the formation of a solid mass. This process can produce articles by repeated irradiation of a succession of freshly applied powder layers.
- electromagnetic radiation for example laser beam, infrared radiation, UV radiation
- volume average diameter or "Dv” is also understood to mean the volume average diameter of a powdery material, as measured by Laser diffraction according to the ISO 13320: 2009 standard, for example on a Malvern type diffractometer. Insitec®.
- Dv10 and Dv90 are respectively the corresponding diameters so that the cumulative function of the diameters of the particles, weighted by the volume, is equal to 10%, and respectively, to 90%. More specifically, Dv50 designates the median diameter in volume.
- the rules for representing the results of a particle size distribution are given by the ISO 9276 standard - parts 1 to 6.
- the term “span” is understood to designate a ratio describing the width of the particle size distribution of a powder, of the following formula: [Math 1] in which : Dv1O designates the diameter below which there are 10% by volume of the particles of the polymer powder;
- Dv50 designates the diameter below which 50% by volume of the particles of the polymer powder are located (by definition Dv50 is also the median diameter by volume), and
- Dv90 designates the diameter below which 90% by volume of the particles of the polymer powder are located, these diameters being measured as indicated above.
- inherent viscosity means the viscosity as calculated from the flow speed of a solution of the polymer and the solvent, measured in an Ubbelohde type viscometer according to ISO 307:2019, except for use as a solvent m-cresol and a temperature of 20°C.
- the inherent viscosity is calculated according to formula (1) below: [Math 2]
- the inherent viscosity is equal to the natural logarithm of the ratio between the flow time of the polymer solution t divided by that of the solvent t 0 , all divided by the concentration c of polymer dissolved in the solvent, as a mass percentage.
- the dimension of the inherent viscosity is the inverse of the concentration, and without unit when the concentration is given as here in mass percentage.
- composition of polyamide powders useful for additive manufacturing on a powder bed according to the invention comprises:
- Polyamide A powder and Polyamide B powder are distinct. These may be powders of the same polyamide or of a separate polyamide. Preferably, these are powders of the same polyamide. Polyamide powders differ in at least one of their properties. These properties may in particular be their appearance, for example their color, the inherent viscosity, the particle size, the crystallinity or their thermal properties.
- one of the polyamide powders in the composition can be obtained from the other polyamide powder in the composition, in particular by recycling.
- Polyamide powders A and B have an inherent viscosity such that their difference remains moderate, so as to avoid inhomogeneities in the sintered parts.
- these polyamide powders have a deviation in the inherent viscosity which in absolute value does not exceed 0.6, in particular 0.5, more preferably 0.4 and very particularly 0.3.
- the inherent viscosity difference in absolute value is between 0 and 0.6, and in particular 0.05 to 0.5, and very particularly 0.1 to 0.3.
- these polyamide powders have an inherent viscosity of at least 0.8, preferably at least 1 and more preferably at least 1.2. According to the invention, these polyamide powders have an inherent viscosity of at most 2.8, preferably at most 2.5.
- the viscosity of a polyamide powder depends, in addition to the nature of the polyamide, in particular on its molecular weight. Thus, a polyamide of high molecular weight will have a higher viscosity than the same polyamide of lower molecular weight.
- powders A and B are powders of the same polyamide but distinct in that one has been recycled while the other has not or less summer, these powders generally also have a difference in viscosity. This difference in viscosity can vary in particular depending on the formulation of the powder and depending on the temperature and duration of use of the recycled powder, and is easily measurable.
- the composition of polyamide powders also has a specific particle size, characterized in particular by its span.
- the particle size distribution of the polyamide powder can have a significant impact on performance in additive manufacturing by sintering, and in particular on roughness.
- the polyamide powders have a span, as defined above, of between 0.4 and 1.40, and in particular between 0.6 and 1.10, in particular between 0.8 and 1.0.
- the volume diameter Dv10 of the polyamide powders in the composition is preferably greater than 15 ⁇ m. According to certain embodiments, the polyamide powder has a volume diameter Dv10 of between 15 and 50 pm, or between 25 and 45 pm or between 30 and 40 pm.
- the volume diameter Dv50 of the powder is preferably between 30 and 60 pm. According to certain embodiments, the polyamide powder has a volume diameter Dv50 of between 35 and 55 pm, or between 40 and 50 pm.
- the polyamide powder has a volume diameter Dv90 of less than 120 pm, in particular less than 100 pm, and very particularly less than 90 pm. According to certain embodiments, the polyamide powder has a volume diameter Dv90 of between 40 and 120 pm, or between 45 and 100 pm, or between 50 and 80 pm.
- the polyamide powder of the invention advantageously has a volume average diameter Dv of less than 55 pm.
- the polyamide powder has a volume average diameter Dv of between 30 and 55 pm, in particular between 35 and 50 pm and very particularly between 40 and 45 pm.
- the polyamide may in particular be chosen from aliphatic polyamides, semi-crystalline polyamides and their copolymers and mixtures.
- the composition comprises 20 to 80%, preferably 25 to 70% by weight and very particularly 30 to 60% by weight of polyamide A powder.
- the polyamide powder composition comprises 10 to 20% , or 20 to 30%, or 30 to 40%, or 40 to 50%, or 50 to 60%, or 60 to 70%, or 70 to 80%, or 80 to 90% by weight of polyamide A powder per relative to the total weight of the polyamide powder composition.
- the composition comprises 20 to 80%, preferably 25 to 70% by weight and very particularly 30 to 60% by weight of polyamide B powder.
- the polyamide powder composition comprises 10 to 20% , or 20 to 30%, or 30 to 40%, or 40 to 50%, or 50 to 60%, or 60 to 70%, or 70 to 80%, or 80 to 90% by weight of polyamide B powder per relative to the total weight of the polyamide powder composition.
- the polyamide powder composition does not contain any other polyamide.
- composition of polyamide powders may in particular comprise, in addition to polyamide powders A and B, additionally 0 to 40% by weight of one or more usual additives and fillers.
- the additives generally represent less than 5% by weight relative to the total weight of the composition. Preferably, the additives represent less than 1% by weight of the total powder weight.
- the additives we can cite flow agents, stabilizing agents (light, in particular UV, and heat), optical brighteners, dyes, pigments, energy absorber additives (including UV absorbers) .
- the composition is free of pigments or dyes.
- the flow agent represents 0.01 to 0.4% by weight relative to the total weight of composition.
- the powder composition does not include a flow agent.
- the composition of polyamide powders may also include one or more fillers.
- the fillers generally represent less than 40% by weight, in particular less than 30% by weight, and preferably less than 25% by weight relative to the total weight of the final powder composition.
- fillers in particular mineral fillers such as carbon black, talc, nanotubes, carbon or not, and fibers, in particular glass or carbon fibers, crushed or not, or even glass in another form, for example in the form of flakes or balls, hollow or not.
- mineral fillers such as carbon black, talc, nanotubes, carbon or not
- fibers in particular glass or carbon fibers, crushed or not, or even glass in another form, for example in the form of flakes or balls, hollow or not.
- the process which is the subject of the invention may in particular be a selective laser sintering process (SLS, Selective Laser Sintering, in English), a sintering process of the MJF (Multi Jet Fusion) type or a sintering process of the HSS type ( High Speed Sintering).
- SLS selective laser sintering process
- MJF Multi Jet Fusion
- HSS High Speed Sintering
- construction temperature a temperature that is deposited on a horizontal plate held in an enclosure heated to a temperature called construction temperature.
- heating to construction temperature is carried out by means of IR radiation lamps, for example halogen lamps, which generally have a maximum emission at a wavelength between 750 nm and 1250 nm.
- the construction temperature designates the temperature to which the powder bed, of a constituent layer of a three-dimensional article under construction, is heated during the layer-by-layer sintering process of the powder.
- Electromagnetic radiation for example in the form of a laser, subsequently provides the energy necessary to sinter the powder particles at different points of the powder layer according to a geometry corresponding to an object, for example using a computer having in memory the shape of an object and restoring the latter in the form of slices. Then, the horizontal plate is lowered by a height corresponding to the thickness of a layer of powder, and a new layer of powder is spread, heated and then sintered in the same way. The procedure is repeated until the object has been made.
- the layer of powder deposited on a horizontal plate can have, before sintering, for example a thickness of 20 to 200 ⁇ m, and preferably of 50 to 150 ⁇ m. After sintering, the thickness of the layer of agglomerated material is a little lower, and can for example have a thickness of 10 to 150 ⁇ m, and preferably of 30 to 120 ⁇ m.
- Fusion agent is a compound capable of absorbing radiation and converting it into energy thermal, for example black ink. It is selectively applied in the selected region of the building material. The melting agent is able to penetrate the layer of the building material and transmits the absorbed energy to the neighboring building material, thereby causing it to melt or be sintered. By melting, bonding and subsequent hardening of each layer of the building material, the object is formed.
- a detailing agent is also added to the edges of the area to be melted to allow the parts to have better definition.
- the use of the polyamide powder composition described below in these processes does not require any particular modification.
- the process makes it possible to use the composition of polyamide powders in several successive constructions. In this case, it can be reused alone or mixed with other powders, recycled or not.
- the polyamide powder contained in the composition can in particular be obtained by grinding polyamide in the form of extruded granules or scales, according to conventional techniques.
- Grinding can be carried out on equipment known for this purpose, for example by means of a mill with counter-rotating pins (pin mill), a hammer mill (hammer mill) or in a whirling mill (whirl mill).
- the powder comprises, in addition to the polyamide powders, certain additives and/or reinforcing fillers
- these additives and/or fillers can be incorporated by mixing in the molten state, for example by extrusion (compounding) and granulation followed by grinding of the granules .
- the flow agent is added by dry mixing.
- the process for manufacturing the polyamide powder comprises the steps of:
- the polyamide powder can also be manufactured by other processes known in the art, for example by precipitating anionic polymerization as described for example in EP 1 814 931 B1 or FR 06.56024 B1.
- the inherent viscosity of the polyamide powder thus obtained will depend in particular on the parameters of the polycondensation, and in the case of the process described, in particular on the solid phase polycondensation.
- the inherent viscosity of a polyamide powder can increase during the aging of the powder, that is to say in particular with the time of exposure to heat.
- the speed with which the inherent viscosity of a polyamide powder increases then depends in particular on the temperature and also on the possible presence of antioxidants or catalysts.
- Catalysts may in particular be phosphorus acids, in particular hypophosphorous acid, phosphorous acid as well as phosphoric acid.
- a polyamide powder with a recycled polyamide powder in particular having been used in 3D printing by laser sintering and having therefore been exposed for a substantial time to a temperature close to the melting temperature.
- a composition comprising a polyamide powder with a recycled powder of the same polyamide.
- Such a composition of polyamide powders can in particular be manufactured by combining a virgin polyamide powder having the required properties and a recycled polyamide powder having the required properties, the inherent viscosity respective being adjusted so that the difference in viscosity between the powders does not exceed a certain value.
- the additives and/or reinforcing fillers can be added to the prepolymer, by melt mixing (compounding) or dry mixing, between steps (i) and (ii) of the process. Alternatively, they can be added to the composition later, in particular by dry mixing.
- the span of a powder When the span of a powder is too low, it can be increased by adding particles with a finer or larger particle size.
- the span of a powder is too high, it can be reduced by removing the finest or largest particles, for example by sieving or refining.
- composition according to the invention thus makes it possible to manufacture three-dimensional parts of good quality, particularly of surface quality.
- these articles may have low roughness.
- composition of polyamide powders allows the additive manufacturing by sintering of parts which have properties, particularly surface properties, and in particular in terms of roughness, at least similar to the parts obtained if not superior compared to conventional polyamide powders.
- the roughness of the sintered object is evaluated by means of a roughness meter, in particular a non-contact roughness meter such as for example an AltiSurf® 500 surface condition characterization station from AltiMet, using a sensor Alti Probe Optic optic with a point taking rate of 1000 Hz.
- the roughness thus measured is expressed by the usual parameters Ra which designates the arithmetic average roughness of the profile and Rz which represents the maximum roughness of the profile.
- the sintered object may comprise particles of polyamide powder composition as described above, assembled by partial fusion, characterized in that it has a surface roughness, as measured under conditions explained in the examples , characterized by an Rz ⁇ 50 pm and a Ra ⁇ 10 pm.
- the powders were characterized in terms of particle size using an Insitec type laser diffractometer from Malvern with RT Sizer type software, according to the ISO 13320: 2009 standard.
- the measurement is carried out on 30 g of powder. We note on the measured particle size distribution the parameters Dv10, Dv50, Dv90 and the span.
- the inherent viscosity of the powders was determined from the flow times of a solution and the solvent, measured in a viscometer with micro-Ubbelohde type 538-23 I IC tubes according to ISO 307:2019, unless used as solvent m-cresol and a temperature of 20°C.
- Polyamide 11 A Rilsan® Invent Natural marketed by the company Arkema, additive with 6000 ppm of H 3 PO 4 , inherent viscosity 1.2;
- Polyamide 11 B Polyamide 11 A having been subjected to aging in a vacuum oven at a temperature of 180°C for 7 hours, inherent viscosity 1.7;
- Polyamide 11 C Rilsan® Invent Natural marketed by the company Arkema, additive with 10,000 ppm of H 3 PO 4 , inherent viscosity 1.2
- Polyamide 11 D Polyamide 11 C having been subjected to aging in a vacuum study at a temperature of 180°C for 7 hours, inherent viscosity 1.3;
- Polyamide 11 E Rilsan® Invent Natural marketed by the company Arkema, additive with 600 ppm of H 3 PO 4 , inherent viscosity 1.2
- Polyamide 11 F Polyamide 11 E having been subjected to aging in a vacuum study at a temperature of 180°C for 7 hours, inherent viscosity 2.5; Polyamide 12 G: Orgasol® Invent Smooth marketed by the company Arkema, inherent viscosity 1.3;
- Polyamide 12 H Polyamide 12 G having been subjected to aging in a vacuum study at a temperature of 170°C for 7 hours; inherent viscosity 1.3;
- Polyamide 11 I Polyamide 11 F having been subjected to aging in a vacuum study at a temperature of 180°C for 7 hours, inherent viscosity 3.0.
- the resulting powder composition was characterized with respect to particle size and inherent viscosity as indicated above.
- composition of polyamide powders obtained was used to manufacture by 3D printing by laser sintering a 1A XY specimen (1A specimen according to ISO 527-2, called “XY” because printed in the plane of the printer, it is - that is to say horizontally) on a P100 machine (marketed by the company EOS) by adjusting the thickness of the powder layer to 100 pm.
- the print settings used are as follows:
- the roughness of the specimen was determined using a non-contact roughness meter (AltiSurf® 500 surface condition characterization station from AltiMet), using an Alti Probe Optic optical sensor with a point taking rate of 1000 Hz. Roughness is expressed by the usual parameters Ra and Rz. The roughness of the upper face of the horizontally sintered specimen is measured. The results are summarized in Table 2 below. It can be seen that this powder makes it possible to obtain sintered parts with low roughness.
- the resulting powder composition was characterized with respect to particle size and inherent viscosity as indicated above.
- composition of polyamide powders obtained was used to manufacture by 3D printing by laser sintering, a 1A XY test piece as indicated in Example 1.
- Example 3 The roughness of the specimen was determined as indicated in Example 1. The results are summarized in Table 2 below. This powder therefore makes it possible to obtain sintered parts with very low roughness. Example 3
- the resulting powder composition was characterized with respect to particle size and inherent viscosity as indicated above.
- composition of polyamide powders obtained was used to manufacture by 3D printing by laser sintering, a 1A XY test piece as indicated in Example 1.
- the roughness of the specimen was determined as indicated in Example 1. The results are summarized in Table 2 below. This powder therefore makes it possible to obtain sintered parts with very low roughness.
- the resulting powder composition was characterized with respect to particle size and inherent viscosity as indicated above.
- composition of polyamide powders obtained was used to manufacture by 3D printing by laser sintering, a 1A XY test piece as indicated in Example 1.
- the roughness of the specimen was determined as indicated in Example 1.
- Table 2 The results are summarized in Table 2 below. It is observed that this powder results in obtaining sintered parts having high roughness.
- the resulting powder composition was characterized with respect to particle size and inherent viscosity as indicated above.
- composition of polyamide powders obtained was used to manufacture by 3D printing by laser sintering, a 1A XY test piece as indicated in Example 1.
- the roughness of the specimen was determined as indicated in Example 1. The results are summarized in Table 2 below. This powder therefore makes it possible to obtain sintered parts with very low roughness.
- the roughness of the specimen was determined as indicated in Example 1. The results are summarized in Table 2 below. This powder therefore makes it possible to obtain sintered parts with very low roughness.
- the resulting powder composition was characterized with respect to particle size and inherent viscosity as indicated above.
- composition of polyamide powders obtained was used to manufacture by 3D printing by laser sintering, a 1A XY test piece as indicated in Example 1.
- the roughness of the specimen was determined as indicated in Example 1. The results are summarized in Table 2 below. We observe that this powder makes it possible to obtain sintered parts with high roughness.
- the surface properties of the sintered parts are considered acceptable When The roughness of a 1A XY specimen is characterized by an Rz less than 50 pm and a Ra less than 10 pm. Conversely, they are considered bad when Rz is greater than 50 pm and Ra is greater than 10 pm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
L'invention vise principalement une composition de poudres de polyamide utile pour la fabrication additive sur lit de poudre consistant en : (a) 10 à 90% en poids d'une poudre de polyamide A présentant une viscosité inhérente, calculée selon la formule (1) à partir de la vitesse d'écoulement d'une solution du polymère et du solvant, mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C, de 0,8 à 2.8, et présentant un span compris entre 0,4 et 1,40; (b) 90 à 10% en poids d'une poudre de polyamide B, distincte de la poudre de polyamide A, présentant une viscosité inhérente, calculée comme indiqué ci-dessus, de 0,8 à 2.8, et présentant un span compris entre 0,4 et 1,40; (c) 0 à 40% en poids d'additifs choisis parmi les agents d'écoulement, les agents stabilisants, les azurants optiques et les additifs absorbeurs d'énergie et/ou charges, dans laquelle la poudre de polyamide B est issue de la poudre de polyamide A, étant entendu que l'écart entre les viscosité inhérentes respectives de la poudre A et B n'excède pas 0,6 en valeur absolue.
Description
Description
Titre : PROCEDE DE FABRICATION D’OBJ ETS FRITTES A RUGOSITE AM ELIOREE
[Domaine technique]
La présente demande de brevet concerne un procédé de fabrication par impression 3D d’objets frittés à rugosité améliorée, de tels objets frittés ainsi qu’une composition utile pour leur fabrication.
[Technique antérieure]
La fabrication additive sur lit de poudre de polymère thermoplastique (SLS, MJF, HSS...) permet de construire des pièces de géométrie complexe, y compris en série. Elle permet en effet la réalisation d’un grand nombre de pièces simultanément, avec une excellente résolution et de très bonnes propriétés mécaniques, ce qui leur donne un avantage sur les autres procédés de fabrication additive comme le dépôt de fil fondu.
Cependant, ces procédés sont très exigeants en termes de propriétés des poudres de polymère. Par exemple, les poudres doivent pouvoir former un lit de poudre ayant les propriétés requises dans le procédé de fabrication additive. En effet, les poudres doivent à la fois pouvoir être étalées en couche fine d’une épaisseur homogène et former un lit de poudre cohésif pouvant supporter le poids des pièces en cours de construction.
Les propriétés des poudres de polymères sont également importantes afin d’obtenir des objets sans défauts, notamment à faible rugosité. En effet, les pièces imprimées présentent souvent une rugosité de surface qui n’est pas adaptée à certaines applications, telles que les applications nécessitant des pièces avec des côtes précises de type cages de roulement, joints, turbines, pistons, bagues, vannes de compresseur ou pièces de moteur. Ce problème se pose en particulier dans le cadre du recyclage de la poudre résiduelle récupérée à l’issue de chaque impression qui s’impose pour des raisons économiques. En particulier, on constate que le recyclage de telles poudres ne permet pas d’assurer la fabrication de pièces de qualité et notamment de rugosité constante.
Il est connu d’améliorer l’état de surface de pièces obtenues par fabrication additive par un traitement physique et/ou chimique. Cependant, ces traitements augmentent de manière substantielle le temps de production et donc son coût.
La demande US 2011/0237731 divulgue une poudre pour l’impression 3D par frittage laser comprenant 10 à 30% en poids d’une poudre de polyamide 12 peu évolutive
en termes de viscosité sous L’effet de La chaleur en mélange avec une poudre de polyamide 12 plus évolutive. Cependant, certains de ces mélanges présentent des composantes aux propriétés très différentes, ce qui peut engendrer des inhomogénéités dans l’article fabriqué et affecter ses propriétés mécaniques.
La demande de brevet US 2018/094103 propose des poudres de polyamide pour l’impression 3D par frittage avec une viscosité en solution selon ISO 307 de 1,55 à 1,75, cette viscosité évoluant de 10 à 40% après 24H sous azote à une température de 10°C en-dessous de son point de fusion. L’impression 3D avec ces poudres ne permet pas toujours d’obtenir des pièces avec une rugosité satisfaisante pour les applications nécessitant des pièces avec des côtes précises de type cages de roulement, joints, turbines, pistons, bagues, vannes de compresseur ou pièces de moteur.
[Résumé de l’invention]
L’invention a donc pour but de proposer une composition de poudres de polyamide pour l’impression 3D par frittage laser, notamment partiellement recyclées, qui permet la fabrication de pièces avec une bonne qualité de surface, notamment une faible rugosité.
En effet, la présente invention repose sur la constatation qu’un mélange de poudres de polyamide sélectionnées spécifiquement et présentant notamment un écart de la viscosité inhérente inférieur à 0,6 permet la fabrication d’articles présentant une bonne qualité de surface, et notamment une faible rugosité.
Aussi, selon un premier aspect, l’invention a pour objet une composition de poudres de polyamide comprenant :
(a) 10 à 90% en poids d’une poudre de polyamide A présentant une viscosité inhérente, calculée selon la formule (1) à partir de la vitesse d’écoulement d’une solution du polymère et du solvant, mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C, de 0,8 à 2,8, et présentant un span compris entre 0,4 et 1,40 ;
(b) 90 à 10% en poids d’une poudre de polyamide B, distincte de la poudre de polyamide A, présentant une viscosité inhérente, calculée comme indiqué ci-dessus, de 0,8 à 2,8, et présentant un span compris entre 0,4 et 1,40 ;
(c) 0 à 40% en poids d’additifs et/ou charges,
étant entendu que L’écart entre Les viscosité inhérentes respectives de La poudre A et B n’excède pas 0,6 en valeur absolue.
Selon un mode de réalisation, la poudre de polyamide A et la poudre de polyamide B sont choisies respectivement parmi les PA 6, PA 66, PA613, PA1010, PA 1012, PA 11, PA 12, PA 11/10T et leurs copolymères.
Selon un mode de réalisation, la poudre de polyamide B est issue de la poudre de polyamide A.
Selon un mode de réalisation, la poudre de polyamide A et/ou B présente une viscosité inhérente comprise entre 0.90 et 1.50.
Selon un mode de réalisation, l’écart entre la viscosité inhérente de la poudre de polyamide A et la poudre de polyamide B n’excède pas en valeur absolue 0,5, de préférence 0,4 et tout particulièrement 0,3.
Selon un mode de réalisation, la composition de poudres de polyamide comprend 20 à 80%, de préférence 30 à 70% et tout particulièrement 40 à 60% en poids de poudre de polyamide A.
Selon un mode de réalisation, la composition de poudres de polyamide comprend 20 à 80%, de préférence 30 à 70% et tout particulièrement 40 à 60% en poids de poudre de polyamide B.
Selon un second aspect, l’invention vise un procédé de fabrication de ladite composition de poudres, par mélange de :
(i) une poudre de polyamide A présentant une viscosité inhérente, calculée selon la formule (1) à partir de la vitesse d’écoulement d’une solution du polymère et du solvant, mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C, de 0,8 à 2,8, et présentant un span compris entre 0,4 et 1,40, ladite poudre A n’ayant jamais été utilisée ;
(ii) une poudre de polyamide B présentent toutes deux une viscosité inhérente, calculée comme indiqué ci-dessus, de 0,8 à 2,8, et présentant un span compris entre 0,4 et 1,40, ladite poudre B ayant été utilisée en impression 3D par frittage laser au préalable ; ainsi que
(iii) des additifs et/ou charges éventuelles ; étant entendu que l’écart entre leurs viscosités inhérentes respectives n’excède pas 0,6 en valeur absolue.
Selon encore un autre aspect, L’invention vise un procédé de fabrication d’un objet fritté par impression 3D par frittage Laser, comprenant les étapes consistant en :
(i) Préparation d’une composition de poudres de polyamide telle que définie précédemment ;
(ii) Impression 3D par frittage laser en utilisant ledit lot de poudre de polyamide de sorte à obtenir un objet fritté.
Selon un mode de réalisation, la poudre de polyamide A et la poudre de polyamide B sont choisies respectivement parmi les PA 6, PA 66, PA613, PA1010, PA 1012, PA 11, PA 12, PA 11/10T et leurs copolymères.
Selon un mode de réalisation, la poudre de polyamide B est issue de la poudre de polyamide A.
Selon un mode de réalisation, l’écart entre la viscosité inhérente de la poudre de polyamide A et de la poudre de polyamide B n’excède pas en valeur absolue 0,5, de préférence 0,4 et tout particulièrement 0,3.
Selon un mode de réalisation, la poudre de polyamide A et/ou B présente une viscosité inhérente compris entre 0,9 et 1,5.
Selon un dernier aspect enfin, l’invention vise un objet fritté comprenant des particules de composition de poudres de polyamide telle que définie ci-dessus, assemblées par fusion partielle, caractérisé en ce qu’il présente une rugosité de surface, telle que mesurée dans les conditions expliquées dans les exemples, caractérisée par un Rz < 50 pm et un Ra < 10 pm.
[Description des modes de réalisation]
Définition des termes
La nomenclature utilisée pour désigner Les polyamides suit La norme ISO 1874-1. En particulier, dans La notation PA X, X représente le nombre d’atomes de carbone des motifs polyamide issus de La condensation d’un aminoacide ou lactame. Dans la notation PA XY désignant un polyamide issu de La condensation d’une diamine avec un acide dicarboxylique ou un dérivé d’acide possédant di-fonctionnel, X représente le nombre d’atomes de carbone de La diamine et Y représente le nombre d’atomes de carbone de L’acide dicarboxylique ou du dérivé d’acide. La notation PA X/Y se rapporte à des copolyamides dans Lesquels X et Y sont deux monomères distincts.
On entend par Le terme « fabrication additive sur lit de poudre » désigner des procédés dans Lesquels une couche de poudre de polymère, Le lit de poudre, est irradiée par rayonnement électromagnétique (par exemple faisceau Laser, rayonnement infrarouge, rayonnement UV), de sorte à fondre sélectivement Les particules de poudre impactées par Le rayonnement. Les particules fondues coalescent et se solidifient pour conduire à La formation d’une masse solide. Ce procédé peut produire des articles par L'irradiation répétée d'une succession de couches de poudre fraîchement appliquées.
On entend par ailleurs par Le terme « diamètre moyen en volume » ou « Dv » Le diamètre moyen en volume d’une matière pulvérulente, tel que mesuré par diffraction Laser selon La norme ISO 13320 : 2009, par exemple sur un diffractomètre Malvern de type Insitec®. De même, « Dv10 » et « Dv90 » sont respectivement Les diamètres correspondants pour que la fonction cumulative des diamètres des particules, pondérée par Le volume, soit égale à 10%, et respectivement, à 90%. Plus spécifiquement, Le Dv50 désigne le diamètre médian en volume. Les règles de représentation de résultats d’une distribution de taille de particules sont données par La norme ISO 9276 - parties 1 à 6.
On entend par le terme « span » désigner un ratio décrivant La largeur de La distribution granulométrique d’une poudre, de formule suivante : [Math 1]
dans Laquelle :
Dv1O désigne Le diamètre en-dessous duquel se trouvent 10% en volume des particules de La poudre de polymère ;
Dv50 désigne le diamètre en-dessous duquel se trouvent 50% en volume des particules de la poudre de polymère (par définition Dv50 est aussi le diamètre médian en volume), et
Dv90 désigne le diamètre en-dessous duquel se trouvent 90% en volume des particules de la poudre de polymère, ces diamètres étant mesurés comme indiqué ci-dessus.
Le terme « viscosité inhérente » désigne la viscosité telle que calculée à partir de la vitesse d’écoulement d’une solution du polymère et du solvant, mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C. La viscosité inhérente est calculée selon la formule (1) ci-dessous : [Math 2]
La viscosité inhérente est égale au logarithme népérien du rapport entre le temps d’écoulement de la solution de polymère t divisé par celui du solvant t0, le tout divisé par la concentration c de polymère dissous dans le solvant, en pourcentage massique. La dimension de la viscosité inhérente est l’inverse de la concentration, et sans unité lorsque la concentration est donnée comme ici en pourcentage massique.
A. Composition de poudres de polyamide
La composition de poudres de polyamide utile pour la fabrication additive sur lit de poudre selon l’invention comprend :
(a) 10 à 90% en poids d’une poudre de polyamide A présentant une viscosité inhérente, calculée selon la formule (1) à partir de la vitesse d’écoulement d’une solution du polymère et du solvant, mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C, de 0,8 à 2,8 et présentant un span compris entre 0,4 et 1,40 ;
(b) 90 à 10% en poids d’une poudre de polyamide B, distincte de la poudre de polyamide A, présentant une viscosité inhérente, calculée comme indiqué ci-dessus, de 0,8 à 2,8 et présentant un span compris entre 0,4 et 1,40 ;
(c) 0 à 40% en poids d’additifs et/ou charges, étant entendu que L’écart entre Les viscosité inhérentes respectives de La poudre A et B n’excède pas 0,6 en valeur absolue.
La poudre de polyamide A et La poudre de polyamide B sont distinctes. IL peut s’agir de poudres d’un même polyamide ou d’un polyamide distinct. De préférence, il s’agit de poudres du même polyamide. Les poudres de polyamide se différencient par au moins l’une de leurs propriétés. Ces propriétés peuvent être notamment leur aspect, par exemple leur couleur, la viscosité inhérente, la granulométrie, la cristallinité ou leurs propriétés thermiques.
En particulier, une des poudres de polyamide dans la composition peut être issue de l’autre poudre de polyamide dans la composition, notamment par recyclage.
Les poudres de polyamide A et B présentent une viscosité inhérente telle que leur écart reste modéré, de sorte à éviter des inhomogénéités dans les pièces frittées. Ainsi, selon l’invention, ces poudres de polyamide présentent un écart de la viscosité inhérente qui en valeur absolue n’excède pas 0,6, en particulier 0,5, encore préféré 0,4 et tout particulièrement 0,3. De préférence, l’écart de viscosité inhérente en valeur absolue est compris de 0 à 0,6, et en particulier 0,05 à 0,5, et tout particulièrement 0,1 à 0,3.
Par ailleurs, selon l’invention, ces poudres de polyamide présentent une viscosité inhérente d’au moins 0,8, préférentiellement d’au moins 1 et de manière davantage préférée d’au moins 1,2. Selon l’invention, ces poudres de polyamide présentent une viscosité inhérente d’au plus 2,8, préférentiellement d’au plus 2.5.
Ces gammes de viscosité sont particulièrement avantageuses et permettent d’obtenir un bon compromis pour avoir à la fois de bonnes propriétés de coalescence lors du frittage (viscosité suffisamment faible) et de bonnes propriétés mécaniques de l’objet fritté (viscosité suffisamment élevée).
La viscosité d’une poudre de polyamide dépend, outre de la nature du polyamide, notamment de son poids moléculaire. Ainsi, un polyamide de poids moléculaire élevé aura une viscosité plus élevée qu’un même polyamide de poids moléculaire plus faible.
La plupart des polyamides disponibles dans le commerce est proposée sous forme de différents grades, avec une viscosité différente. Il est donc aisé de choisir dans les gammes de polyamides proposées ceux qui présentent un écart de viscosité tel que spécifié.
Par ailleurs, lorsque les poudres A et B sont des poudres du même polyamide mais distinctes par le fait que l’une a été recyclée alors que l’autre ne l’a pas ou moins
été, ces poudres présentent en général également une différence de viscosité. Cette différence de viscosité peut varier notamment selon la formulation de la poudre et selon la température et la durée de l’utilisation de la poudre recyclée, et est facilement mesurable.
Selon l’invention, la composition de poudres de polyamide présente par ailleurs une granulométrie spécifique, caractérisée notamment par son span.
En effet, la distribution granulométrique de la poudre de polyamide peut avoir un impact sensible sur les performances en fabrication additive par frittage, et notamment sur la rugosité.
Ainsi, selon l’invention, les poudres de polyamide présentent un span, tel que défini ci-dessus, compris entre 0,4 et 1,40, et en particulier entre 0,6 et 1,10, notamment entre 0,8 et 1,0.
Selon un mode de réalisation, le diamètre en volume Dv10 des poudres de polyamide dans la composition est de préférence supérieur à 15 pm. Selon certains modes de réalisation, la poudre de polyamide présente un diamètre en volume Dv10 compris entre 15 à 50 pm, ou entre 25 et 45 pm ou entre 30 et 40 pm.
Selon un mode de réalisation, le diamètre en volume Dv50 de la poudre est de préférence compris entre 30 et 60 pm. Selon certains modes de réalisation, la poudre de polyamide présente un diamètre en volume Dv50 compris entre 35 à 55 pm, ou entre 40 et 50 pm.
Selon un mode de réalisation, la poudre de polyamide présente un diamètre en volume Dv90 inférieur à 120 pm, en particulier inférieur à 100 pm, et tout particulièrement inférieur à 90 pm. Selon certains modes de réalisation, la poudre de polyamide présente un diamètre en volume Dv90 compris entre 40 à 120 pm, ou entre 45 et 100 pm, ou entre 50 et 80 pm.
Enfin, la poudre de polyamide de l’invention présente avantageusement un diamètre moyen en volume Dv inférieur à 55 pm. Selon certains modes de réalisation, la poudre de polyamide présente un diamètre moyen en volume Dv compris entre 30 à 55 pm, en particulier entre 35 et 50 pm et tout particulièrement entre 40 et 45 pm.
Le polyamide peut notamment être choisi parmi les polyamides aliphatiques, les polyamides semi-cristallins et leurs copolymères et mélanges.
On peut mentionner notamment les polyamides aliphatiques tels que le PA 6, PA 66, PA613, PA1010, PA 1012, PA 11, PA 12 et leurs copolymères, et les polyamides semi-aromatiques tels que le PA 11/10T par exemple.
Avantageusement, La composition comprend 20 à 80%, de préférence 25 à 70% en poids et tout particulièrement 30 à 60% en poids de poudre de polyamide A. Selon certains modes de réalisation, La composition de poudres de polyamide comprend 10 à 20%, ou 20 à 30%, ou 30 à 40%, ou 40 à 50%, ou 50 à 60%, ou 60 à 70%, ou 70 à 80%, ou 80 à 90% en poids de poudre de polyamide A par rapport au poids total de la composition de poudres de polyamide.
Avantageusement, la composition comprend 20 à 80%, de préférence 25 à 70% en poids et tout particulièrement 30 à 60% en poids de poudre de polyamide B. Selon certains modes de réalisation, la composition de poudres de polyamide comprend 10 à 20%, ou 20 à 30%, ou 30 à 40%, ou 40 à 50%, ou 50 à 60%, ou 60 à 70%, ou 70 à 80%, ou 80 à 90% en poids de poudre de polyamide B par rapport au poids total de la composition de poudres de polyamide.
De préférence, la composition de poudres de polyamide ne comporte pas d’autre polyamide.
Le reste de la composition peut être constitué d’autres composés, notamment de charges et/ou d’additifs. La composition de poudres de polyamide peut notamment comprendre en addition des poudres de polyamides A et B en outre 0 à40% en poids d’un ou plusieurs additifs et charges habituels.
Les additifs représentent généralement moins de 5% en poids par rapport au poids total de composition. De préférence, les additifs représentent moins de 1% en poids du poids total de poudre. Parmi les additifs, on peut citer les agents d’écoulement, les agents stabilisants (lumière, en particulier UV, et chaleur), les azurants optiques, les colorants, les pigments, les additifs absorbeurs d’énergie (dont absorbeurs d’UV). Avantageusement, la composition est dépourvue de pigments ou colorants.
Parmi les agents d’écoulement, on peut citer par exemple une silice hydrophile ou hydrophobe. Avantageusement, l’agent d’écoulement représente de 0.01 à 0.4 % en poids par rapport au poids total de composition. Dans d’autres modes de réalisation, la composition pulvérulente ne comprend pas d’agent d’écoulement. La composition de poudres de polyamide peut également comprendre une ou plusieurs charges. Les charges représentent généralement moins de 40% en poids, en particulier moins de 30 % en poids, et de préférence moins de 25 % en poids par rapport au poids total de composition de poudres finale. Parmi les charges, citons les charges renforçantes, notamment des charges minérales telles que le noir de carbone, le talc, des nanotubes, de carbone ou non, et les fibres, notamment les fibres de verre ou de carbone, broyées ou non, ou encore du verre
sous une autre forme, par exemple sous forme de flocons ou de billes, creuses ou non.
B. Procédé d’impression 3D par frittage laser
Le procédé objet de l’invention peut être en particulier un procédé de frittage sélectif par laser (SLS, Selective Laser Sintering, en anglais), un procédé de frittage du type MJF (Multi Jet Fusion) ou un procédé de frittage du type HSS (High Speed Sintering).
Le procédé SLS est largement connu. Dans ce contexte, il peut être notamment renvoyé aux documents US 6,136,948 et WO 96/06881.
Dans ce type de procédé, une fine couche de poudre est déposée sur une plaque horizontale maintenue dans une enceinte chauffée à une température appelée température de construction. Le plus souvent, le chauffage à la température de construction est réalisé au moyen de lampes à rayonnement IR, par exemple des lampes halogènes, lesquelles ont généralement un maximum d’émission à une longueur d’onde comprise entre 750 nm et 1250 nm. La température de construction désigne la température à laquelle le lit de poudre, d’une couche constitutive d’un article tridimensionnel en construction, est chauffé pendant le procédé de frittage couche-par-couche de la poudre. Un rayonnement électromagnétique, par exemple sous forme de laser, apporte par la suite l’énergie nécessaire à fritter les particules de poudre en différents points de la couche de poudre selon une géométrie correspondant à un objet, par exemple à l’aide d’un ordinateur ayant en mémoire la forme d’un objet et restituant cette dernière sous forme de tranches. Ensuite, la plaque horizontale est abaissée d’une hauteur correspondant à l’épaisseur d’une couche de poudre, et une nouvelle couche de poudre est étalée, chauffée puis fritter de la même manière. La procédure est répétée jusqu’à ce que l’on ait fabriqué l’objet.
La couche de poudre déposée sur une plaque horizontale peut avoir, avant frittage, par exemple une épaisseur de 20 à 200 pm, et de préférence de 50 à 150 pm. Après frittage, l’épaisseur de la couche de matériau aggloméré est un peu plus faible, et peut avoir par exemple une épaisseur de 10 à 150 pm, et de préférence de 30 à 120 pm.
Pour le procédé MJF et HSS, la couche entière du matériau de construction est exposée au rayonnement, mais seule une partie recouverte d’un agent de fusion est fondue pour devenir une couche d'une pièce 3D. L’agent de fusion est un composé capable d'absorber le rayonnement et de le convertir en énergie
thermique, par exemple une encre noire. IL est appliqué sélectivement dans La région sélectionnée du matériau de construction. L’agent de fusion est capable de pénétrer dans la couche du matériau de construction et transmet l’énergie absorbée au matériau de construction voisin, amenant ainsi celui-ci à fondre ou à être fritté. Par la fusion, la liaison et le durcissement subséquent de chaque couche du matériau de construction, on forme l’objet.
Dans le cas particulier du MJF, un agent détaillant est en outre ajouté sur les bords de la zone à fondre pour permettre aux pièces d’avoir une meilleure définition.
Avantageusement, l’utilisation de la composition de poudre de polyamide décrite ci-après dans ces procédés ne requiert pas de modification particulière. Elle permet en revanche d’obtenir des pièces présentant un bon aspect de surface, notamment une plus faible rugosité et une meilleure définition.
Avantageusement, le procédé permet de mettre en oeuvre la composition de poudres de polyamide dans plusieurs constructions successives. Dans cette hypothèse, elle peut être réutilisée seule ou en mélange avec d’autres poudres, recyclées ou non.
C. Procédé de fabrication de la poudre de polyamide
La poudre de polyamide contenue dans la composition peut notamment être obtenue par broyage de polyamide sous forme de granulés extrudés ou d’écailles, selon des techniques conventionnelles.
Le broyage peut être réalisé sur des équipements connus à cet effet, par exemple au moyen d’un broyeur à broches contrarotatives (pin mill), un broyeur à marteaux (hammer mill) ou dans un broyeur tourbillonnant (whirl mill).
Lorsque la poudre comporte outre les poudres de polyamide certains additifs et/ou charges renforçantes, ces additifs et/ou charges peuvent être incorporées par mélange à l’état fondu, par exemple par extrusion (compoundage) et granulation suivie d’un broyage des granulés. En alternative, il est également possible d’ajouter d’autres polymères et/ou certains additifs et/ou certaines charges renforçantes par mélange à sec (« dry blend »). De préférence, l’agent d’écoulement est ajouté par mélange à sec.
Selon un mode de réalisation, le procédé de fabrication de la poudre de polyamide comprend les étapes de :
(i) prépolymérisation du ou des monomères du polyamide et granulation subséquente ;
(ii) broyage en une poudre ;
(iii) tamisage subséquent éventuel de La poudre de prépolymère obtenue ;
(iv) Traitement de La poudre de prépolymère par mise en contact de La poudre de prépolymère à L'état solide avec de L'eau ou de La vapeur d'eau à une température proche de sa température de cristallisation Te pendant une durée suffisante pour augmenter sa température de fusion et/ou son enthalpie de fusion, séparation de L'eau ou de La vapeur d'eau de La poudre de prépolymère et séchage ; cette étape permet d’additiver La poudre au taux d’acide phosphorique désiré
(v) soumission de La poudre de prépolymère traitée obtenue à une polycondensation en phase solide pour obtenir une poudre de polymère.
Le procédé de traitement de La poudre de prépolymère est décrit notamment dans La demande de brevet EP 1413595 A1.
En variante, La poudre de polyamide peut également être fabriquée par d’autres procédés connus en La matière, par exemple par polymérisation anionique précipitante telle que décrite par exemple dans EP 1 814 931 B1 ou FR 06.56024 B1.
La viscosité inhérente de la poudre de polyamide ainsi obtenue dépendra notamment des paramètres de la polycondensation, et dans le cas du procédé décrit, notamment de la polycondensation en phase solide.
Par ailleurs, on observera que la viscosité inhérente d’une poudre de polyamide peut augmenter lors du vieillissement de la poudre, c’est-à-dire notamment avec le temps d’exposition à la chaleur. La vitesse avec laquelle la viscosité inhérente d’une poudre de polyamide augmente dépend alors notamment de la température et par ailleurs de la présence éventuelle d’antioxydants ou de catalyseurs. Des catalyseurs peuvent être notamment des acides du phosphore, notamment l’acide hypophosphoreux, l’acide phosphoreux ainsi que l’acide phosphorique.
Comme évoqué plus haut, il est particulièrement préféré d’associer dans la composition une poudre de polyamide avec une poudre de polyamide recyclée, notamment ayant été utilisée dans l’impression 3D par frittage laser et ayant donc été exposée pendant un temps substantiel à une température proche de la température de fusion. Particulièrement avantageuse est une composition comprenant une poudre de polyamide avec une poudre du même polyamide recyclée.
Une telle composition de poudres de polyamide peut être notamment fabriquée en associant une poudre de polyamide vierge ayant les propriétés requises et une poudre de polyamide recyclée ayant les propriétés requises, la viscosité inhérente
respective étant ajustés de sorte que L’écart de viscosité entre Les poudres n’excède pas une certaine valeur.
Les additifs et/ou charges renforçantes peuvent être ajoutées au prépolymère, par mélange en fusion (compoundage) ou mélange à sec, entre l’étape (i) et (ii) du procédé. En alternative, ils peuvent être ajoutés à la composition ultérieurement, notamment par mélange à sec.
Lorsque le span d’une poudre est trop faible, il peut être augmenté en ajoutant des particules présentant une taille de particules plus fine ou plus grosse.
Lorsqu’à l’inverse, le span d’une poudre est trop élevé, il peut être réduit en écartant les particules les plus fines ou les plus grosses, par exemple par tamisage ou définage.
D. Pièce susceptible d’être fabriquée
L’utilisation d’une composition selon l’invention permet ainsi de fabriquer des pièces tridimensionnelles de bonne qualité, notamment de surface. En particulier, ces articles peuvent présenter une faible rugosité.
La composition de poudres de polyamide permet la fabrication additive par frittage de pièces qui présentent des propriétés, notamment de surface, et en particulier en termes de rugosité, au moins analogues aux pièces obtenues sinon supérieures comparé aux poudres de polyamide conventionnelles.
Selon la présente demande, la rugosité de l’objet fritté est évaluée au moyen d’un rugosimètre, notamment d’un rugosimètre sans contact comme par exemple une station de caractérisation des états de surface AltiSurf® 500 d’AltiMet, en utilisant un capteur optique Alti Probe Optic avec une cadence de prise de points de 1000 Hz. La rugosité ainsi mesurée est exprimée par les paramètres habituels Ra qui désigne la rugosité moyenne arithmétique du profil et Rz qui résigne la rugosité- maximale du profil.
Ainsi, l’objet fritté peut comprendre des particules de composition de poudres de polyamide telle que décrite ci-dessus, assemblées par fusion partielle, caractérisé en ce qu’il présente une rugosité de surface, telle que mesurée dans des conditions expliquées dans les exemples, caractérisée par un Rz < 50 pm et un Ra < 10 pm.
L’invention sera expliquée plus en détail dans les exemples qui suivent.
Sauf indication contraire, les pourcentages mentionnés sont des pourcentages en poids par rapport au poids de la composition finale.
Exemples
A. Granulométrie
Les poudres ont été caractérisées en termes de granulométrie au moyen d’un diffractomètre laser de type Insitec de Malvern avec un logiciel de type RT Sizer, selon la norme ISO 13320 : 2009.
La lumière d ' un laser est envoyée sur les particules qui sont en mouvement dans l ' air. Les particules diffusent et ré-emettent la lumière, les plus petites particules dispersant davantage la lumière que les grosses. La lumière diffractée (diffusée) est reçue par une série de photo-détecteurs placés à différents angles. Ceci va constituer l’image de diffraction de l ' échantillon. Cette image est utilisée pour mesurer la taille des particules via la théorie de la dispersion de la lumière appelée théorie de Mie.
La mesure est réalisée sur 30 g de poudre. On relève sur la distribution granulométrique mesurée les paramètres Dv10, Dv50, Dv90 et le span.
B. M esure de La viscosité
La viscosité inhérente des poudres a été déterminée à partir des temps d’écoulement d’une solution et du solvant, mesurés dans un viscosimètre avec des tubes micro-Ubbelohde type 538-23 I IC selon La norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C.
Polyamide 11 A : Rilsan® Invent Natural commercialisé par la société Arkema, additivé avec 6000 ppm de H3PO4, viscosité inhérente 1,2 ;
Polyamide 11 B : Polyamide 11 A ayant été soumis à un vieillissement dans une étuve sous vide à température de 180°C pendant 7H, viscosité inhérente 1,7 ;
Polyamide 11 C : Rilsan® Invent Natural commercialisé par la société Arkema, additivé avec 10000 ppm de H3PO4, viscosité inhérente 1,2
Polyamide 11 D : Polyamide 11 C ayant été soumis à un vieillissement dans une étude sous vide à une température de 180°C pendant 7H, viscosité inhérente 1,3 ;
Polyamide 11 E : Rilsan® Invent Natural commercialisé par la société Arkema, additivé avec 600 ppm de H3PO4, viscosité inhérente 1,2
Polyamide 11 F : Polyamide 11 E ayant été soumis à un vieillissement dans une étude sous vide à une température de 180°C pendant 7H, viscosité inhérente 2,5 ;
Polyamide 12 G : Orgasol® Invent Smooth commercialisé par la société Arkema, viscosité inhérente 1,3 ;
Polyamide 12 H : Polyamide 12 G ayant été soumis à un vieillissement dans une étude sous vide à une température de 170°C pendant 7H ; viscosité inhérente 1,3 ;
Polyamide 11 I : Polyamide 11 F ayant été soumis à un vieillissement dans une étude sous vide à une température de 180°C pendant 7H, viscosité inhérente 3,0.
Exemple 1
On a mélangé 50% en poids de poudre de polyamide 11 A et 50% en poids de poudre de polyamide 11 B à sec dans un mélangeur Henschel à une vitesse de rotation de 900 tr/min pendant 100 secondes. Les propriétés des poudres respectives sont indiquées dans le tableau 1 ci-dessus.
La composition de poudre obtenue a été caractérisée en matière de granulométrie et de viscosité inhérente comme indiqué ci-dessus.
Dv10 = 19 pm
Dv50 = 45 m
Dv90 = 79 pm
Span = 1,33
- IV = 1,45
La composition de poudres de polyamide obtenue a été utilisée pour fabriquer par impression 3D par frittage laser une éprouvette 1A XY (éprouvette 1A selon la norme ISO 527-2, appelée « XY » car imprimée dans le plan de l’imprimante, c’est- à-dire à l’horizontal) sur une machine P100 (commercialisée par la société EOS) en réglant l’épaisseur de la couche de poudre à 100 pm. Les paramètres d’impression utilisés sont les suivants :
Puissance laser : 24W
Vitesse du laser : 3000mm/s
Distance entre deux passes laser : 0,25mm
La rugosité de l’éprouvette a été déterminée au moyen d’un rugosimètre sans contact (Station de caractérisation des états de surface AltiSurf® 500 d’AltiMet), en utilisant un capteur optique Alti Probe Optic avec une cadence de prise de points de 1000 Hz. La rugosité est exprimée par les paramètres habituels Ra et Rz. On mesure la rugosité de la face supérieure de l’éprouvette frittée horizontalement. Les résultats sont rassemblés dans le tableau 2 ci-dessous. On constate que cette poudre permet l’obtention de pièces frittées présentant une faible rugosité.
Exemple 2
On a mélangé 50% en poids de poudre de polyamide 11 C et 50% en poids de poudre de polyamide 11 D à sec dans un mélangeur Henschel à une vitesse de rotation de 900 tr/min pendant 100 secondes. Les propriétés des poudres respectives sont indiquées dans le tableau 1 ci-dessus.
La composition de poudre obtenue a été caractérisée en matière de granulométrie et de viscosité inhérente comme indiqué ci-dessus.
Dv10 = 19 pm
Dv50 = 45 pm
Dv90 = 79 pm
Span = 1,33
- IV = 1,25
La composition de poudres de polyamide obtenue a été utilisée pour fabriquer par impression 3D par frittage laser, une éprouvette 1A XY comme indiqué à l’exemple 1.
La rugosité de l’éprouvette a été déterminée comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 2 ci-dessous. Cette poudre permet donc l’obtention de pièces frittées présentant une très faible rugosité.
Exemple 3
On a mélangé 50% en poids de poudre de polyamide 12 G et 50% en poids de poudre de polyamide 12 H à sec dans un mélangeur Henschel à une vitesse de rotation de 900 tr/min pendant 100 secondes. Les propriétés des poudres respectives sont indiquées dans le tableau 1 ci-dessus.
La composition de poudre obtenue a été caractérisée en matière de granulométrie et de viscosité inhérente comme indiqué ci-dessus.
Dv10 = 33 pm
Dv50 = 40 m
Dv90 = 50 pm
Span = 0,43
- IV = 1,3
La composition de poudres de polyamide obtenue a été utilisée pour fabriquer par impression 3D par frittage laser, une éprouvette 1A XY comme indiqué à l’exemple 1.
La rugosité de l’éprouvette a été déterminée comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 2 ci-dessous. Cette poudre permet donc l’obtention de pièces frittées présentant une très faible rugosité.
Exemple 4 (comparatif)
On a mélangé 50% en poids de poudre de polyamide 12 F et 50% en poids de poudre de polyamide 12 I à sec dans un mélangeur Henschel à une vitesse de rotation de 900 tr/min pendant 100 secondes. Les propriétés des poudres respectives sont indiquées dans le tableau 1 ci-dessus.
La composition de poudre obtenue a été caractérisée en matière de granulométrie et de viscosité inhérente comme indiqué ci-dessus.
Dv10 = 19 pm
Dv50 = 45 pm
Dv90 = 79 pm
Span = 1,33
- IV = 2,75
La composition de poudres de polyamide obtenue a été utilisée pour fabriquer par impression 3D par frittage laser, une éprouvette 1A XY comme indiqué à l’exemple 1.
La rugosité de L’éprouvette a été déterminée comme indiqué à L’exemple 1. Les résultats sont rassemblés dans le tableau 2 ci-dessous. On observe que cette poudre aboutit à l’obtention de pièces frittées présentant une rugosité élevée.
Exemple 5
On a mélangé 70% en poids de poudre de polyamide 11 C et 30% en poids de poudre de polyamide 11 D à sec dans un mélangeur Henschel à une vitesse de rotation de 900 tr/min pendant 100 secondes. Les propriétés des poudres respectives sont indiquées dans le tableau 1 ci-dessus.
La composition de poudre obtenue a été caractérisée en matière de granulométrie et de viscosité inhérente comme indiqué ci-dessus.
Dv10 = 19 pm
Dv50 = 45 m
Dv90 = 79 pm
Span = 1,33
- IV = 1,3
La composition de poudres de polyamide obtenue a été utilisée pour fabriquer par impression 3D par frittage laser, une éprouvette 1A XY comme indiqué à l’exemple 1.
La rugosité de l’éprouvette a été déterminée comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 2 ci-dessous. Cette poudre permet donc l’obtention de pièces frittées présentant une très faible rugosité.
Exemple 6
On a mélangé 70% en poids de poudre de polyamide 12 G et 30% en poids de poudre de polyamide 12 H à sec dans un mélangeur Henschel à une vitesse de rotation de 900 tr/min pendant 100 secondes. Les propriétés des poudres respectives sont indiquées dans le tableau 1 ci-dessus.
La composition de poudre obtenue a été caractérisée en matière de granulométrie et de viscosité inhérente comme indiqué ci-dessus.
Dv10 = 33 pm
Dv50 = 40 pm
Dv90 = 50 pm
Span = 0,43
- IV = 1,3
La composition de poudres de polyamide obtenue a été utilisée pour fabriquer par impression 3D par frittage laser, une éprouvette 1A XY comme indiqué à l’exemple 1.
La rugosité de l’éprouvette a été déterminée comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 2 ci-dessous. Cette poudre permet donc l’obtention de pièces frittées présentant une très faible rugosité.
Exemple 7 (comparatif)
On a mélangé 50% en poids de poudre de polyamide 11 E et 50% en poids de poudre de polyamide 11 F à sec dans un mélangeur Henschel à une vitesse de rotation de 9000 tr/min pendant 100 secondes. Les propriétés des poudres respectives sont indiquées dans le tableau 1 ci-dessus.
La composition de poudre obtenue a été caractérisée en matière de granulométrie et de viscosité inhérente comme indiqué ci-dessus.
Dv10 = 19 pm
Dv50 = 45 m
Dv90 = 79 pm
Span = 1,33
- IV = 1,85
La composition de poudres de polyamide obtenue a été utilisée pour fabriquer par impression 3D par frittage laser, une éprouvette 1A XY comme indiqué à l’exemple 1.
La rugosité de l’éprouvette a été déterminée comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 2 ci-dessous. On observe que cette poudre permet l’obtention de pièces frittées présentant une rugosité élevée.
Les propriétés de surface des pièces frittées sont considérées comme acceptables Lorsque La rugosité d’une éprouvette 1A XY est caractérisée par un Rz inférieur à 50 pm et un Ra inférieur à 10 pm. A l’inverse, elles sont considérées comme mauvaises lorsque Rz est supérieur à 50 pm et le Ra supérieur à 10 pm.
Les résultats dans le tableau 2 ci-dessus mettent en évidence l’intérêt d’une composition de poudres de polyamide présentant une viscosité inhérente et un span spécifique et dont par ailleurs l’écart de viscosité inhérente est limité. En effet, les objets frittés obtenus à partir de ces poudres présentent de bonnes propriétés de surface, et notamment une faible rugosité.
[Liste des documents cités]
[US 2011/0237731]
[US 2018/094103]
Claims
1. Composition de poudres de polyamide consistant en :
(a) 10 à 90% en poids d’une poudre de polyamide A présentant une viscosité inhérente, calculée selon la formule (1) :
[Math 3]
à partir de la vitesse d’écoulement d’une solution du polymère et du solvant, mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C, de 0,8 à 2,8, et présentant un span compris entre 0,4 et 1,40 ;
(b) 90 à 10% en poids d’une poudre de polyamide B, distincte de la poudre de polyamide A, présentant une viscosité inhérente, calculée comme indiqué ci-dessus, de 0,8 à 2,8, et présentant un span compris entre 0,4 et 1,40 ;
(c) 0 à 40% en poids d’additifs choisis parmi les agents d’écoulement, les agents stabilisants, les azurants optiques et les additifs absorbeurs d’énergie et/ou charges, dans laquelle la poudre de polyamide B est issue de la poudre de polyamide A, étant entendu que l’écart entre les viscosité inhérentes respectives de la poudre A et B n’excède pas 0,6 en valeur absolue.
2. Composition de poudres de polyamide selon la revendication 1, dans laquelle la poudre de polyamide A et la poudre de polyamide B sont choisies respectivement parmi les PA 6, PA 66, PA613, PA1010, PA 1012, PA 11, PA 12, PA 11/10T et leurs copolymères.
3. Composition de poudres de polyamide selon l’une des revendications 1 à 2, dans laquelle la poudre de polyamide A et/ou B présente un diamètre Dv50 compris entre 30 et 60 pm.
4. Composition de poudres de polyamide selon l’une des revendications 1 à 3, dans laquelle la poudre de polyamide A et/ou B présente une viscosité inhérente comprise entre 0,90 et 1,50.
5. Composition de poudres de polyamide selon l’une des revendications 1 à 4, dans laquelle l’écart entre la viscosité inhérente de la poudre de polyamide A et la poudre de polyamide B n’excède pas en valeur absolue 0,5, de préférence 0,4 et tout particulièrement 0,3.
6. Composition de poudres de polyamide selon l’une des revendications 1 à 5, comprenant 20 à 80%, de préférence 30 à 70% et tout particulièrement 40 à 60% en poids de poudre de polyamide A.
7. Composition de poudres de polyamide selon l’une des revendications 1 à 6, comprenant 20 à 80%, de préférence 30 à 70% et tout particulièrement 40 à 60% en poids de poudre de polyamide B.
8. Procédé de fabrication de la composition de poudres de polyamide selon l’une des revendications 1 à 7, par mélange de :
(i) une poudre de polyamide A présentant une viscosité inhérente, calculée selon la formule (1) :
[Math 4]
à partir de la vitesse d’écoulement d’une solution du polymère et du solvant, mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C, de 0,8 à 2,8, et présentant un span compris entre 0,4 et 1,40, ladite poudre A n’ayant jamais été utilisée ;
(ii) une poudre de polyamide B présentent toutes deux une viscosité inhérente, calculée comme indiqué ci-dessus, de 0,8 à 2,8, et présentant un span compris entre 0,4 et 1,40, ladite poudre B ayant été utilisée en impression 3D par frittage laser au préalable ; ainsi que
(iii) des additifs et/ou charges éventuelles ;
dans Laquelle La poudre de polyamide B est issue de La poudre de polyamide A, étant entendu que L’écart entre leurs viscosités inhérentes respectives n’excède pas 0,6 en valeur absolue.
9. Procédé de fabrication d’un objet fritté par impression 3D par frittage Laser, comprenant les étapes consistant en :
(i) Préparation d’une composition de poudres de polyamide telle que définie dans L’une des revendications 1 à 7 ; et
(ii) Impression 3D par frittage laser en utilisant Ledit lot de poudre de polyamide de sorte à obtenir un objet fritté.
10. Procédé de fabrication selon La revendication 9, dans lequel La poudre de polyamide A et La poudre de polyamide B sont choisies respectivement parmi Les PA 6, PA 66, PA613, PA1010, PA 1012, PA 11, PA 12, PA 11/10T et leurs copolymères.
11. Procédé de fabrication selon La revendication 9 ou 10, dans lequel La poudre de polyamide B est issue de La poudre de polyamide A.
12. Procédé de fabrication selon L’une des revendications 9 à 11, dans lequel L’écart entre la viscosité inhérente de La poudre de polyamide A et de La poudre de polyamide B n’excède pas en valeur absolue 0,5, de préférence 0,4 et tout particulièrement 0,3.
13. Procédé de fabrication selon L’une des revendications 9 à 12, dans lequel La poudre de polyamide A et/ou B présente une viscosité inhérente compris entre 0,9 et 1,5.
14. Objet fritté comprenant des particules de composition de poudres de polyamide telle que définie dans Les revendications 1 à 7, assemblées par fusion partielle, caractérisé en ce qu’il présente une rugosité de surface, telle que mesurée au moyen d’un rugosimètre sans contact (Station de caractérisation des états de surface AltiSurf® 500 d’ALtiMet), en utilisant un capteur optique Alti Probe Optic avec une cadence de prise de points de 1000 Hz, caractérisée par un Rz < 50 pm et un Ra < 10 pm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2213669 | 2022-12-16 | ||
FR2213669A FR3143615A1 (fr) | 2022-12-16 | 2022-12-16 | Procede de fabrication d’objets frittes a rugosite amelioree |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024126965A1 true WO2024126965A1 (fr) | 2024-06-20 |
Family
ID=86099874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2023/052024 WO2024126965A1 (fr) | 2022-12-16 | 2023-12-15 | Procede de fabrication d'objets frittes a rugosite amelioree |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3143615A1 (fr) |
WO (1) | WO2024126965A1 (fr) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996006881A2 (fr) | 1994-08-30 | 1996-03-07 | Dtm Corporation | Poudre semi-cristalline pouvant etre frittee et article obtenu au moyen de cette poudre |
EP0656024B1 (fr) | 1992-08-20 | 1997-03-26 | BASF Lacke + Farben AG | Procede de fabrication de vernis en poudre et vernis en poudre obtenus selon ce procede |
US6136948A (en) | 1992-11-23 | 2000-10-24 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
EP1413595A1 (fr) | 2002-10-23 | 2004-04-28 | Atofina | Augmentation du point de fusion et de l'enthalpie de fusion des polyamides par un traitement à l'eau |
EP1642923A1 (fr) * | 2004-10-01 | 2006-04-05 | Degussa AG | Poudre avec des propriétés de recyclage améliorées, procédé de sa production et son utilisation pour préparer des objets tridimensionnels |
US20110237731A1 (en) | 2010-03-25 | 2011-09-29 | Eos Gmbh Electro Optical Systems | Pa 12 powder for use in a generative layer-wise manufacturing method |
US20120315483A1 (en) * | 2010-04-09 | 2012-12-13 | Evonik Degussa Gmbh | Polyamide-based polymer powder, use thereof in a molding method, and molded articles made from said polymer powder |
EP1814931B1 (fr) | 2004-11-12 | 2013-05-29 | Arkema France | Procédé d'obtention de particules de polyamide ou de copolyesteramide |
US20180094103A1 (en) | 2016-09-30 | 2018-04-05 | Evonik Degussa Gmbh | Polyamide powder for selective sintering methods |
DE212022000027U1 (de) * | 2021-06-17 | 2022-10-10 | Fabulous | Polymerpulverzusammensetzung für additives Herstellungsverfahren, die einen Erfassungszusatzstoff umfasst, und durch das Verfahren erhaltener Gegenstand |
-
2022
- 2022-12-16 FR FR2213669A patent/FR3143615A1/fr active Pending
-
2023
- 2023-12-15 WO PCT/FR2023/052024 patent/WO2024126965A1/fr unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0656024B1 (fr) | 1992-08-20 | 1997-03-26 | BASF Lacke + Farben AG | Procede de fabrication de vernis en poudre et vernis en poudre obtenus selon ce procede |
US6136948A (en) | 1992-11-23 | 2000-10-24 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
WO1996006881A2 (fr) | 1994-08-30 | 1996-03-07 | Dtm Corporation | Poudre semi-cristalline pouvant etre frittee et article obtenu au moyen de cette poudre |
EP1413595A1 (fr) | 2002-10-23 | 2004-04-28 | Atofina | Augmentation du point de fusion et de l'enthalpie de fusion des polyamides par un traitement à l'eau |
EP1642923A1 (fr) * | 2004-10-01 | 2006-04-05 | Degussa AG | Poudre avec des propriétés de recyclage améliorées, procédé de sa production et son utilisation pour préparer des objets tridimensionnels |
EP1814931B1 (fr) | 2004-11-12 | 2013-05-29 | Arkema France | Procédé d'obtention de particules de polyamide ou de copolyesteramide |
US20110237731A1 (en) | 2010-03-25 | 2011-09-29 | Eos Gmbh Electro Optical Systems | Pa 12 powder for use in a generative layer-wise manufacturing method |
US20120315483A1 (en) * | 2010-04-09 | 2012-12-13 | Evonik Degussa Gmbh | Polyamide-based polymer powder, use thereof in a molding method, and molded articles made from said polymer powder |
US20180094103A1 (en) | 2016-09-30 | 2018-04-05 | Evonik Degussa Gmbh | Polyamide powder for selective sintering methods |
DE212022000027U1 (de) * | 2021-06-17 | 2022-10-10 | Fabulous | Polymerpulverzusammensetzung für additives Herstellungsverfahren, die einen Erfassungszusatzstoff umfasst, und durch das Verfahren erhaltener Gegenstand |
Also Published As
Publication number | Publication date |
---|---|
FR3143615A1 (fr) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2352636B1 (fr) | Realisation d'article par fusion selective de couches de poudre de polymere | |
EP3385307B1 (fr) | Procédé pour augmenter l écart entre la température de fusion et la température de cristallisation d'une poudre de polyamide | |
EP2649112B1 (fr) | Realisation d'article par fusion selective de couches de poudre de polymere | |
EP2858809B1 (fr) | Procede de traitement thermique de poudres | |
FR3048430B1 (fr) | Poudre de poly-(aryl-ether-cetone) (paek) apte a etre utilisee plusieurs fois dans des procedes de frittage | |
FR2952062A1 (fr) | Procede de preparation de poudre recyclable a base de polyamide | |
WO2015092272A1 (fr) | Composition de poudres de poly-arylene-ether-cetone-cetones autorisant un excellent compromis coulabilite et coalescence adaptees au frittage laser | |
WO2014191675A1 (fr) | Procede de traitement thermique de poudres de polyarylene-ether-cetone-cetone adaptees au frittage laser | |
WO2020188202A1 (fr) | Procédé de fabrication par frittage d'une poudre à base de poly-aryl-éther-cétone(s) en partie recyclée | |
EP4041516A1 (fr) | Poudre de poly-aryl-éther-cétone(s) chargée, procédé de fabrication et utilisation correspondants | |
WO2024126965A1 (fr) | Procede de fabrication d'objets frittes a rugosite amelioree | |
EP2364333B1 (fr) | Procédé de préparation d'un matériau polymère transparent comprenant des nanoparticules minérales ayant un facteur de forme strictement supérieur à 1,0 | |
WO2023067284A1 (fr) | Poudre de polymère thermoplastique pour l'impression 3d par frittage | |
WO2023083809A1 (fr) | Poudre polymère pour la fabrication de pièces de haute définition et de faible rugosité | |
EP4355555A1 (fr) | Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé | |
FR3076832A1 (fr) | Poudre de polymere fluore a fenetre de frittage elargie par traitement thermique et son utilisation dans le frittage laser | |
WO2024126967A1 (fr) | Procede de fabrication de poudre de polyamide pour impression 3d | |
WO2022264027A1 (fr) | Procédé de fabrication additive, composition de poudre polymere comportant un additif de détection, et objet obtenu par ledit procédé | |
WO2024074794A1 (fr) | Procédé de recyclage d'une composition de polyamide usagée | |
FR3146477A1 (fr) | Mélange de poudres | |
FR3140627A1 (fr) | Procédé de fabrication d’une poudre de polyamide | |
FR3146475A1 (fr) | Composition à base de polyaryléthercétone(s) | |
WO2022144522A1 (fr) | Poudre à base de pekk à bas point de fusion, utilisation dans des procédés de construction par frittage, et objet correspondants | |
EP3880735A1 (fr) | Poudre de poly(ether-cetone-cetone) reutilisable pour procede de frittage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23838194 Country of ref document: EP Kind code of ref document: A1 |