WO2024095313A1 - 造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 - Google Patents
造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 Download PDFInfo
- Publication number
- WO2024095313A1 WO2024095313A1 PCT/JP2022/040669 JP2022040669W WO2024095313A1 WO 2024095313 A1 WO2024095313 A1 WO 2024095313A1 JP 2022040669 W JP2022040669 W JP 2022040669W WO 2024095313 A1 WO2024095313 A1 WO 2024095313A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- spin
- shaping
- modeling
- relaxation time
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 383
- 238000007493 shaping process Methods 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 57
- 230000006866 deterioration Effects 0.000 title claims abstract description 44
- 239000002904 solvent Substances 0.000 claims abstract description 99
- 239000006185 dispersion Substances 0.000 claims abstract description 77
- 238000000465 moulding Methods 0.000 claims description 73
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229920005992 thermoplastic resin Polymers 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 abstract description 8
- 230000007423 decrease Effects 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000005481 NMR spectroscopy Methods 0.000 description 48
- 238000005259 measurement Methods 0.000 description 33
- 239000002245 particle Substances 0.000 description 27
- 238000011084 recovery Methods 0.000 description 20
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 239000004743 Polypropylene Substances 0.000 description 11
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000000654 additive Substances 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 8
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 8
- 239000002612 dispersion medium Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 238000000685 Carr-Purcell-Meiboom-Gill pulse sequence Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000000110 selective laser sintering Methods 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229940116333 ethyl lactate Drugs 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000010334 sieve classification Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
Definitions
- This technology relates to a method for measuring the degree of deterioration of powder used for additive manufacturing, for example, by irradiation with a laser or electron beam, a method and device for manufacturing recycled powder for additive manufacturing, and a method and device for manufacturing three-dimensional objects.
- the powder bed method involves laying out layers of powder, irradiating them with a laser or beam to sinter or melt the powder particles, and repeating this process to achieve additive manufacturing.
- the powder bed method can increase the density of the object, making it possible to obtain physical properties similar to those of conventional mass production manufacturing methods (such as injection molding for resin and casting for metal).
- Patent Document 1 discloses classifying the powder using a sieve and reusing it. However, simply classifying the powder does not allow the degree of powder deterioration to be detected, and there is a risk of a decrease in the mechanical properties and dimensional accuracy of the model.
- This technology has been proposed in light of the current situation, and provides a method for measuring the deterioration of powder for modeling that can suppress deterioration of the mechanical properties and dimensional accuracy of the modeled object, a method and device for manufacturing recycled powder for modeling, and a method and device for manufacturing three-dimensional models.
- the present inventors have found that the specific surface area of a powder for molding determined by measuring the spin-spin relaxation time T2 of the 1H nucleus of the powder for molding using pulsed NMR indicates the degree of deterioration of the powder for molding. This is believed to be because the apparent specific surface area of the powder for molding increases or decreases due to preheating in the powder bed or heat generated when irradiated with a laser or electron beam. Note that whether the specific surface area increases or decreases due to deterioration of the powder for molding depends on the type of powder for molding.
- the present technology provides the following: a method for measuring the deterioration level of powder for modeling, a method and device for manufacturing recycled powder for modeling, and a method and device for manufacturing a three-dimensional object.
- a method for measuring the deterioration of a powder for shaping comprising using a pulsed NMR device to measure the spin-spin relaxation time T2 of the 1H nucleus of a dispersion in which the powder for shaping is dispersed in a solvent, and calculating the specific surface area of the powder for shaping based on the spin-spin relaxation time T2 of the 1H nucleus of the dispersion and the spin-spin relaxation time T2 of the 1H nucleus of the solvent.
- [3] The method for measuring a deterioration level of a powder for shaping according to [1] or [2], wherein the solvent has a Hansen solubility parameter of 14 (J/cm 3 ) 1/2 or more and 30 (J/cm 3 ) 1/2 or less.
- [4] The method for measuring the deterioration degree of a powder for molding according to [1] or [2], wherein the spin-spin relaxation time T2 of the 1 H nucleus of the solvent is 1000 ms or more.
- [5] A method for measuring the degree of deterioration of a powder for molding described in [1] or [2], in which the degree of deterioration of the powder for molding after use is calculated based on the specific surface area of the powder for molding before use that has been measured and calculated in advance.
- a method for producing recycled powder for molding comprising: a production process for mixing the used powder for molding with the unused powder for molding based on the specific surface area of the used powder for molding, to produce recycled powder for molding.
- a measuring unit that samples the used shaping powder, measures the spin-spin relaxation time T2 of the 1 H nucleus of a dispersion in which the used shaping powder is dispersed in a solvent using a pulse NMR device, and calculates the specific surface area of the used shaping powder based on the spin-spin relaxation time T2 of the 1 H nucleus of the dispersion and the spin-spin relaxation time T2 of the 1 H nucleus of the solvent; and a generation unit that mixes the used powder for molding with the powder for molding before use based on the specific surface area of the used powder for molding to generate recycled powder for molding.
- a method for manufacturing a three-dimensional object comprising the steps of: [9] A measuring unit that samples the used shaping powder, measures the spin-spin relaxation time T2 of the 1 H nucleus of a dispersion in which the used shaping powder is dispersed in a solvent using a pulse NMR device, and calculates the specific surface area of the used shaping powder based on the spin-spin relaxation time T2 of the 1 H nucleus of the dispersion and the spin-spin relaxation time T2 of the 1 H nucleus of the solvent; A generation unit that mixes the used powder for modeling with the powder for modeling before use based on the specific surface area of the used powder for modeling to generate recycled powder for modeling; and a molding unit that uses the recycled powder for modeling to mold a three-dimensional object by additive manufacturing.
- This technology makes it possible to detect the degree of deterioration of the modeling powder, regenerate the modeling powder, and prevent deterioration of the mechanical properties and dimensional accuracy of the model.
- FIG. 1 is a functional block diagram showing an example of a manufacturing apparatus for recycled powder to which the present technology is applied.
- FIG. 2 is a flowchart for explaining an example of the operation of a manufacturing device for recycled powder to which the present technology is applied.
- FIG. 3 is a cross-sectional view illustrating an outline of an example of a three-dimensional modeling apparatus to which the present technology is applied.
- 4A and 4B are cross-sectional views for explaining the modeling operation of a three-dimensional modeling device, in which FIG. 4(A) shows a powder supply process, FIG. 4(B) shows a powder layer flattening process, FIG. 4(C) shows a flattening roller return process, and FIG. 4(D) shows a modeling process for forming a modeled object.
- the deterioration degree measuring method of the powder for shaping uses a pulse NMR device to measure the spin-spin relaxation time T2 of the 1 H nucleus of a dispersion in which the powder for shaping is dispersed in a solvent, and calculates the specific surface area of the powder for shaping based on the spin-spin relaxation time T2 of the 1 H nucleus of the dispersion and the spin-spin relaxation time T2 of the 1 H nucleus of the solvent.
- the specific surface area of the powder for shaping apparently increases or decreases due to preheating in the powder bed or heat generated when irradiated with a laser or electron beam, and therefore can be used as an index of the deterioration degree of the powder for shaping.
- thermoplastic resins include general-purpose resins and engineering plastics.
- general-purpose resins include polypropylene (PP), polyethylene (PE), polyvinyl alcohol (PVA), polyvinylidene chloride (PVDC), and polyethylene terephthalate (PET).
- PA polyamides
- PC polycarbonate
- PEEK polyether ether ketone
- fluororesins such as polytetrafluoroethylene (PTFE), liquid crystal polymers (LCP), polyamideimide (PAI), and polyetherimide (PEI).
- metals include titanium, aluminum, stainless steel, cobalt-chromium, nickel alloys, and copper alloys.
- the average particle size of the powder particles is preferably 10 ⁇ m or more and 200 ⁇ m or less.
- the average particle size can be determined by measuring 200 or more particles using a microscope (optical microscope, metallurgical microscope, electron microscope, etc.) and averaging the measurements.
- the solvent can be appropriately selected according to the powder for molding, for example, based on the Hansen solubility parameter (HSP) of the solvent.
- the lower limit of the Hansen solubility parameter (HSP) of the solvent is preferably 5 (J/cm 3 ) 1/2 or more, more preferably 10 (J/cm 3 ) 1/2 or more, and even more preferably 14 (J/cm 3 ) 1/2 or more, and the lower limit of the HSP of the solvent is preferably 40 (J/cm 3 ) 1/2 or less, more preferably 35 (J/cm 3 ) 1/2 or less, and even more preferably 30 (J/cm 3 ) 1/2 or less.
- the HSP of the solvent be 14 (J/cm 3 ) 1/2 or more and 30 (J/cm 3 ) 1/2 or less, excellent dispersibility of the powder for molding can be obtained, and the deterioration degree can be compared.
- the Hansen solubility parameter ( ⁇ ) is composed of three parameters: the dispersion term ⁇ d, the polarity term ⁇ p, and the hydrogen bonding term ⁇ h, and is expressed by the following formula (1).
- ⁇ 2 ⁇ d 2 + ⁇ p 2 + ⁇ h 2 (1)
- ⁇ d Energy due to dispersion forces between molecules
- ⁇ p Energy due to dipole interactions between molecules
- ⁇ h Energy due to hydrogen bonds between molecules
- Hansen solubility parameters ( ⁇ , ⁇ d, ⁇ p, ⁇ h)
- HSPiP Hansen Solubility Parameters in Practice 4th Edition 4.1.07
- Hansen solubility parameters ( ⁇ , ⁇ d, ⁇ p, ⁇ h) of solvents include ethanol ( ⁇ : 26.5, ⁇ d: 15.8, ⁇ p: 8.8, ⁇ h: 19.4), DPG (dipropylene glycol, SP: 26.4, ⁇ d: 16.5, ⁇ p: 10.6, ⁇ h: 17.7), butanol ( ⁇ : 23.2, ⁇ d: 16, ⁇ p: 5.7, ⁇ h: 15.8), DMAC (dimethylacetamide, SP: 22.4, ⁇ d: 16.8, ⁇ p: 11.5, ⁇ h: 9.4), and ethyl lactate ( ⁇ : 21.7, ⁇ d: 16, ⁇ p:7.6, ⁇ h:12.5), acetic acid ( ⁇ :21.4, ⁇ d:14.5, ⁇ p:8, ⁇ h:13.5), cyclohexanone (SP:20.3, ⁇ d:17.8, ⁇ p:8.4, ⁇ h:5.1), acetone ( ⁇ ::20.3
- the pulsed NMR measurement method (Nuclear Magnetic Resonance) is a technique specialized in obtaining the relaxation time (spin-lattice relaxation time T1) and spin-spin relaxation time T2 of 1 H nuclei, which are evaluation indexes of molecular mobility.
- spin-lattice relaxation time T1 and spin-spin relaxation time T2 of 1 H nuclei which are evaluation indexes of molecular mobility.
- the spin-spin relaxation time T2 of 1 H nuclei is referred to as the "transverse relaxation time” or simply as the "relaxation time T2".
- the transverse relaxation time can be measured, for example, using a pulsed NMR device Acorn area manufactured by Xigo nanotools.
- the pulse sequence for pulsed NMR measurements can be appropriately selected from, for example, the Hahn echo method, solid echo method, CPMG method (Carr-Purcell-Meiboom-Gill method), 90° pulse method, etc.
- CPMG method Carr-Purcell-Meiboom-Gill method
- 90° pulse method etc.
- the CPMG method spin echoes are repeated using successive 180° pulses at regular intervals, and magnetization is fixed on the xy plane of a rotating coordinate system. The sum of transverse magnetization decreases due to T2 relaxation during this time, so the transverse relaxation time can be measured.
- the specific surface area of a powder determined by measuring the relaxation time T2 of a powder dispersion using pulsed NMR can be used as an index of the powder's degree of deterioration. This is thought to be because the apparent specific surface area of the powder increases or decreases due to preheating in the powder bed or heat generated when irradiated with a laser or electron beam. This makes it possible to detect the degree of powder deterioration and regenerate the powder.
- the specific surface area is the surface area per unit mass of a powder, and the finer the particles, the larger the specific surface area is for the same mass.
- the specific surface area can be calculated from the relaxation time T2 in pulse NMR measurement using the following formula (2).
- R av ⁇ p SL ⁇ p (R s -R b ) + R b (2)
- R av average relaxation rate of the dispersion (reciprocal of the relaxation time)
- ⁇ p Particle volume ratio to solvent volume
- S Surface area per unit mass (specific surface area)
- L thickness of the solvent bound to the particle surface
- ⁇ p particle density
- R s relaxation rate of the solvent bound to the particle interface (reciprocal of relaxation time)
- R b Relaxation rate of the solvent in a free state (bulk state) (reciprocal of the relaxation time)
- Ka L ⁇ p (R s -R b ) (3)
- Ka (Rav - Rb ) / K ⁇ p (4) Ka can be calculated using the specific surface area that is actually in contact with the solvent.
- the area that is actually in contact with the liquid can be obtained by using the Sears method.
- it may be calculated from particle size measurements using a dynamic light scattering method, a centrifugal sedimentation method, a laser diffraction method, a microscope, or the like, as an estimation method.
- ⁇ p can be calculated by the following formula (5).
- S c the solid concentration (mass %) of the powder in the dispersion
- S d the density of the powder (g/cm 3 )
- T d the density of the solvent (g/cm 3 ).
- the specific surface area S can be obtained from the relaxation time T2 (the reciprocal of Rav ) in a system containing powder particles.
- the movement of liquid molecules adsorbed on particle surfaces is restricted, but liquid molecules in the bulk liquid can move freely.
- the transverse relaxation time of liquid molecules adsorbed on particle surfaces is shorter than the transverse relaxation time of liquid molecules in the bulk liquid.
- the stronger the interaction between the particles and the dispersion medium the shorter the transverse relaxation time.
- the higher the affinity between the particles and the dispersion medium the shorter the transverse relaxation time.
- the affinity between the particles and the dispersion medium can be adjusted, for example, by the type and number of functional groups on the particle surface and the compounds added to the dispersion medium.
- the lower limit of the transverse relaxation time of the dispersion medium measured using a pulsed NMR device is preferably 50 ms or more, more preferably 500 ms or more, and even more preferably 1000 ms or more.
- the upper limit of the transverse relaxation time of the dispersion medium measured using a pulsed NMR device is preferably 5000 ms or less, more preferably 3000 ms or less, and even more preferably 2500 ms or less. This makes it possible to increase the ratio of the specific surface area of the powder to the specific surface area of the solvent.
- the manufacturing method of the recycled powder for shaping in this embodiment includes a measurement step of sampling the used powder for shaping, measuring the spin-spin relaxation time T2 of the 1H nucleus of a dispersion in which the used powder for shaping is dispersed in a solvent using a pulse NMR device, and calculating the specific surface area of the used powder for shaping based on the spin-spin relaxation time T2 of the 1H nucleus of the dispersion and the spin-spin relaxation time T2 of the 1H nucleus of the solvent, and a production step of mixing the used powder for shaping and the unused powder for shaping based on the specific surface area of the used powder for shaping to produce the recycled powder for shaping.
- the manufacturing device for recycled powder for shaping in this embodiment includes a measurement unit that samples used powder for shaping, measures the spin-spin relaxation time T2 of the 1H nucleus of a dispersion in which the used powder for shaping is dispersed in a solvent using a pulse NMR device, and calculates the specific surface area of the used powder for shaping based on the spin-spin relaxation time T2 of the 1H nucleus of the dispersion and the spin-spin relaxation time T2 of the 1H nucleus of the solvent, and a generation unit that mixes the used powder for shaping and the unused powder for shaping based on the specific surface area of the used powder for shaping to generate recycled powder for shaping.
- the degree of deterioration of the used modeling powder based on the specific surface area of the modeling powder before use that has been measured and calculated in advance, it is possible to calculate the mixing ratio of the used modeling powder to the modeling powder before use, and also to calculate the degree of deterioration of the modeling powder after mixing. This makes it possible to manufacture recycled modeling powder having a predetermined degree of deterioration (specific surface area).
- [Regenerated powder manufacturing equipment] 1 is a functional block diagram showing an example of a manufacturing apparatus for recycled powder to which the present technology is applied.
- the recycled powder manufacturing apparatus 10 includes a powder recovery section 11 for recovering used powder, a sieve mesh classification section 12 for sieving the powder, a measurement section 13 for measuring the deterioration degree of the powder, a powder supply section 14 for supplying new powder, a mixing section 15 for mixing the powder that has passed through the sieve mesh with the new powder, an output section 16 for outputting the recycled powder, and a control section 17 for controlling the amount of new powder supplied from the powder supply section 14 to the mixing section 15.
- the sieve classification section 12 may not be provided.
- the powder recovery unit 11 recovers powder after use, for example, in the three-dimensional modeling device 20 described below. For example, it may recover powder 41 from the modeling tank 40 that was not used to create an object in the three-dimensional modeling device 20 described below, or it may recover powder 51 from the recovery tank 50.
- powder transport methods for recovery include a screw conveyor method using a screw and an air transport method using air.
- the sieve mesh classification section 12 classifies the used powder collected in the powder recovery section 11 using a sieve mesh. This separates the used powder into fine powder made up of fine particles that pass through the sieve mesh and coarse powder made up of coarse particles that remain on the sieve mesh. The coarse powder may be discarded, or it may be crushed in a ball mill or the like and the fine particles may be extracted by air flow classification and returned to the powder recovery section 11.
- the measuring unit 13 samples a portion of the powder that passed through the sieve and measures the deterioration degree of the powder. Specifically, a pulse NMR device is used to measure the spin-spin relaxation time T2 of 1H nuclei of a dispersion in which the powder is dispersed in a solvent, and the specific surface area of the powder is calculated. The calculation result of the specific surface area is transmitted to the control unit 17. The measuring unit 13 may also sample the mixed powder of the mixing unit 15, calculate the specific surface area of the mixed powder using the pulse NMR device, and transmit the calculation result to the control unit 17.
- the powder supply unit 14 stores new powder and supplies a predetermined amount of new powder notified by the control unit 17 to the mixer 15.
- the mixer 15 mixes the powder that has passed through the sieve mesh of the sieve mesh classification unit 12 with the new powder supplied from the powder supply unit 14.
- the output unit 16 outputs the powder mixed in the mixer 15 as usable recycled powder. For example, the output unit 16 outputs the recycled powder to the powder tank 30 of the three-dimensional modeling device 20 described below.
- the control unit 17 controls the processing of each unit. Specifically, the control unit controls the supply amount of new powder supplied from the powder supply unit 14 to the mixing unit 15 based on the specific surface area calculated by the measurement unit 13.
- the control unit 17 may, for example, determine a first supply amount of new powder based on the specific surface area of the powder that passed through a sieve mesh, and determine a second supply amount of new powder based on the specific surface area of the powder after mixing.
- the control unit 17 also controls the amount of used powder supplied to the sieve mesh classification unit 12.
- Fig. 2 is a flowchart for explaining an example of the operation of the manufacturing apparatus for recycled powder to which the present technology is applied.
- step S1 the powder recovery unit 11 recovers, for example, powder 41 from the modeling tank 40 and powder 51 from the recovery tank 50 that were not used to form an object in the 3D modeling device 20 described below.
- step S2 the sieve mesh classification unit 12 classifies the used powder collected in the powder recovery unit 11 using a sieve mesh. This separates the used powder into fine powder consisting of fine particles that pass through the sieve mesh and coarse powder consisting of coarse particles that remain on the sieve mesh. The coarse powder may be discarded, or it may be crushed in a ball mill or the like and the fine particles may be extracted by air flow classification and returned to the powder recovery unit 11.
- step S3 the measuring unit 13 samples a portion of the fine powder that passed through the sieve in step S2, and measures the spin-spin relaxation time T2 of 1H nuclei of a dispersion in which the used powder is dispersed in a solvent using a pulsed NMR device, thereby calculating the specific surface area of the used powder.
- the control unit 17 calculates a first supply amount of new powder to be supplied from the powder supply unit 14 to the mixing unit 15 based on the specific surface area of the used powder.
- step S4 the powder supply unit 14 supplies the first supply amount of new powder calculated by the control unit 17 to the mixing unit 15, and the mixing unit 15 mixes the powder that passed through the sieve mesh of the sieve mesh classification unit 12 with the new powder supplied from the powder supply unit 14.
- the measurement unit 13 may also sample a portion of the mixed powder in the mixing unit 15 and calculate the specific surface area of the mixed powder using a pulse NMR device, and the control unit 17 may calculate a second supply amount of new powder based on the specific surface area of the mixed powder and cause the powder supply unit 14 to supply new powder to the mixing unit 15.
- the output unit 16 outputs the powder mixed in the mixing unit 15 as usable recycled powder, for example to the powder tank 30 of the three-dimensional modeling device 20 described later.
- recycled powder with a specified specific surface area can be produced.
- the method for manufacturing a three-dimensional object includes a measurement step of sampling the used shaping powder, measuring the spin-spin relaxation time T2 of the 1H nucleus of a dispersion in which the used shaping powder is dispersed in a solvent using a pulsed NMR device, and calculating the specific surface area of the used shaping powder based on the spin-spin relaxation time T2 of the 1H nucleus of the dispersion and the spin-spin relaxation time T2 of the 1H nucleus of the solvent; a generation step of mixing the used shaping powder with the used shaping powder based on the specific surface area of the used shaping powder to generate recycled shaping powder; and a molding step of molding a three-dimensional object by additive manufacturing using the recycled shaping powder.
- the manufacturing device for a three-dimensional object includes a measurement unit that samples used shaping powder, measures the spin-spin relaxation time T2 of the 1H nucleus of a dispersion in which the used shaping powder is dispersed in a solvent using a pulse NMR device, and calculates the specific surface area of the used shaping powder based on the spin-spin relaxation time T2 of the 1H nucleus of the dispersion and the spin-spin relaxation time T2 of the 1H nucleus of the solvent, a generation unit that mixes the used shaping powder with the used shaping powder based on the specific surface area of the used shaping powder to generate recycled shaping powder, and a molding unit that uses the recycled shaping powder to mold a three-dimensional object by additive manufacturing.
- a three-dimensional object is layered using recycled modeling powder with a predetermined degree of deterioration (specific surface area), so that deterioration of the mechanical properties and dimensional accuracy of the object caused by powder deterioration can be suppressed.
- the additive manufacturing methods used in 3D modeling devices include selective laser sintering (SLS), selective laser melting (SLM), and electron beam melting (EBM).
- SLS selective laser sintering
- SLM selective laser melting
- EBM electron beam melting
- powder bed type 3D modeling device in which the powder for modeling is spread in a thin layer on a tray called a powder bed, and a laser or electron beam is scanned over the powder to form the cross-sectional shape of the model.
- FIG. 3 is a cross-sectional view showing an example of a schematic of a three-dimensional modeling apparatus to which the present technology is applied.
- Fig. 4 is a cross-sectional view for explaining a modeling operation of the three-dimensional modeling apparatus, in which Fig. 4(A) shows a powder supply process, Fig. 4(B) shows a powder layer flattening process, Fig. 4(C) shows a flattening roller return process, and Fig. 4(D) shows a modeling process for forming a model.
- the three-dimensional modeling device 20 includes a powder tank 30 that supplies powder, a modeling tank 40 that models a model, and a recovery tank 50 that collects powder.
- the three-dimensional modeling device 20 also includes a modeling unit 70 that emits laser light 71 to form a modeling layer 60 in a powder layer 61 and models a three-dimensional model by stacking the modeling layers 60.
- the three-dimensional modeling device 20 also includes the above-mentioned recycled powder manufacturing device 10, and may supply recycled powder output from the output unit 16 to the powder tank 30, or may supply powder 41 from the modeling tank 40 that was not used to form a model to the powder recovery unit 11, or may supply powder 51 from the recovery tank 50 to the powder recovery unit 11.
- powder transport methods for supplying powder include a screw conveyor method using a screw and an air transport method using air.
- the flattening roller 21 is a flattening means (recoater) that can move back and forth relative to the top surface of the modeling tank 40, transfers and supplies the powder 31 from the powder tank 30 to the modeling tank 40, flattens the powder 41 in the modeling tank 40 to form a powder layer 61, and collects the powder 51 in the collection tank 50.
- a flattening means such as a plate-shaped member (blade) may be used instead of the flattening roller 21, a flattening means such as a plate-shaped member (blade) may be used instead of the flattening roller 21, a flattening means such as a plate-shaped member (blade) may be used.
- the powder tank 30 has a box-like shape with an open top that holds the powder 31 to be supplied to the modeling tank 40, and is equipped with a supply stage 32 at the bottom.
- the supply stage 32 moves up and down in the vertical direction (height direction), and by raising it in the direction of arrow Z1, the powder 31 on the upper surface is transported and supplied by the flattening roller 21.
- the powder 31 may be recycled powder output from the output section 16 of the recycled powder manufacturing device 10 described above.
- the modeling tank 40 has a box-like shape with an open top that holds the powder 41 that will be used to model the object, and is equipped with a modeling stage 42 at the bottom.
- the modeling stage 42 moves up and down vertically (height direction), and is lowered ⁇ t1 in the direction of the arrow Z2 to form a powder layer 61 on the top surface.
- the modeling tank 40 also forms modeling layers 60 in the powder layer 61 by emitting laser light 71 from the modeling unit 70, and models a three-dimensional object by stacking the modeling layers 60.
- the powder 41 in the modeling tank 40 that is not used to model the object may be collected in the powder collection section 11 of the recycled powder manufacturing device 10 described above as used powder.
- the recovery tank 50 stores the surplus powder 51 that does not form the powder layer 61 out of the powder 31 that is transferred and supplied by the flattening roller 21 when forming the powder layer 61 on the upper surface of the modeling tank 40.
- the powder 51 in the recovery tank 50 may be collected in the powder recovery section 11 of the recycled powder manufacturing device 10 described above as used powder.
- the modeling unit 70 emits laser light 71 onto the powder layer 61 on the modeling stage 42, and the entire modeling unit 70 moves back and forth in the Y direction perpendicular to the X direction.
- the supply stage 32 of the supply tank 30 is raised in the Z1 direction, and the modeling stage 42 of the modeling tank 40 is lowered in the Z2 direction.
- the lowering distance of the modeling stage 42 is set so that the distance between the surface of the first powder layer and the lower part (lower tangent part) of the flattening roller 21 is ⁇ t1.
- This distance ⁇ t1 corresponds to the thickness (layer pitch) of the second powder layer 61. It is preferable that the distance ⁇ t1 is approximately 1 to 100 ⁇ m.
- the powder 31 located on the upper surface of the supply tank 30 is moved in the Y1 direction (towards the modeling tank 40) while rotating the flattening roller 21, thereby transferring and supplying the powder 31 to the modeling tank 40 (powder supply process).
- the flattening roller 21 is moved parallel to the stage surface of the modeling stage 42 of the modeling tank 40 to flatten the powder 41 while supplying it to the modeling tank 40 (flattening process).
- a powder layer 61 with a predetermined thickness ⁇ t1 is formed on the modeling stage 42 of the modeling tank 40.
- the surplus powder 51 not used to form the powder layer 61 falls into the recovery tank 50.
- the flattening roller 21 is transported in the Y2 direction and returned to the initial position (origin position) as shown in FIG. 4(C) (return process).
- a laser beam 71 is emitted from the modeling unit 70 to form a modeling layer 60 in the powder layer 61 (modeling process).
- the modeling layer 60 is formed, for example, when the powder layer 61 generates heat due to the laser beam 71, causing the powder to sinter or melt.
- a three-dimensional object can be manufactured by stacking modeling layers 60.
- the powder 41 remaining in the modeling tank 40 and the powder 51 collected in the collection tank 50 are supplied to the powder collection section 11 of the recycled powder manufacturing device 10, and the recycled powder output from the output section 16 is supplied to the supply tank 30, thereby suppressing deterioration of the mechanical properties and dimensional accuracy of the object due to powder deterioration.
- the powder for molding was dispersed in various solvents, and the specific surface area of the powder for molding was calculated using a pulse NMR device.
- Pulse sequence CPMG method Resonance frequency: 13 MHz Bulk Relaxation Time: 2600.0 ms Specific Surface Relaxivity: 0.000264 g/ m2 /ms Measurement temperature: 25°C Amount of sample measured: 1.0 cm3 Time from mixing to measurement: 3 min
- Dispersions were prepared using PA12 (new, used, and recycled) as the powder for molding and ethanol as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface area was calculated.
- a dispersion was prepared using PA12 (new, used, recycled) as the powder for molding and DPG (dipropylene glycol) as the solvent.
- the relaxation time T2 of the solvent and the dispersion was measured using a pulse NMR device, and the specific surface area was calculated.
- Dispersions were prepared using PA12 (new, used, and recycled) as the powder for molding and butanol as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface area was calculated.
- a dispersion was prepared using PA12 (new and used) as the powder for molding and acetic acid as the solvent.
- the relaxation time T2 of the solvent and the dispersion was measured using a pulse NMR device, and the specific surface area was calculated.
- Dispersions were prepared using PA12 (new, used, and recycled) as the powder for molding and cyclohexane as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface area was calculated.
- a dispersion was prepared using PA12 (new and used) as the powder for molding and hexane as the solvent.
- the relaxation time T2 of the solvent and the dispersion was measured using a pulse NMR device, and the specific surface area was calculated.
- Dispersions were prepared using PP (new, used, recycled) as the powder for molding and DPG (dipropylene glycol) as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface area was calculated.
- Dispersions were prepared using PP (new, used, recycled) as the powder for molding and DMAC (dimethylacetamide) as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface area was calculated.
- Dispersions were prepared using PP (new, used, recycled) as the powder for molding and ethyl lactate as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface areas were calculated.
- Dispersions were prepared using PP (new, used, recycled) as the powder for molding and cyclohexanone as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface area was calculated.
- Dispersions were prepared using PP (new, used, recycled) as the powder for molding and MCH (methylcyclohexane) as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface area was calculated.
- Dispersions were prepared using PP (new, used, and recycled) as the powder for molding and hexane as the solvent.
- the relaxation times T2 of the solvent and the dispersion were measured using a pulse NMR device, and the specific surface area was calculated.
- a dispersion was prepared using titanium (new, used) as the powder for molding and DPG (dipropylene glycol) as the solvent.
- the relaxation time T2 of the solvent and the dispersion was measured using a pulse NMR device, and the specific surface area was calculated.
- the titanium used was sieved 10 times before measurement.
- Table 1 shows the pulse NMR measurement results of Measurement Example 1 to Measurement Example 17.
- T2 is the spin-spin relaxation time T2 of 1H nucleus
- S.A. is the specific surface area
- the solvent ratio is the ratio to the S.A. of the solvent
- the new ratio is the ratio to the S.A. of the new powder.
- the specific surface area of the powder for molding (new, used, recycled) can be calculated using a pulsed NMR device and can be used as an index of the deterioration degree of the powder for molding. It was found that various solvents with Hansen solubility parameters of 14 (J/ cm3 ) 1/2 or more and 30 (J/ cm3 ) 1/2 or less can be used. It was also found that the ratio of the specific surface area of the powder to the specific surface area of the solvent can be increased by setting the relaxation time T2 of the solvent to 1000 ms or more.
- REFERENCE SIGNS LIST 10 Regenerated powder manufacturing device 11 Powder recovery section, 12 Sieve mesh classification section, 13 Measurement section, 14 Powder supply section, 15 Mixing section, 16 Output section, 17 Control section, 20 Three-dimensional modeling device, 21 Flattening roller, 30 Powder tank, 31 Powder, 40 Modeling tank, 41 Powder, 50 Recovery tank, 51 Powder,
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
造形物の機械特性と寸法精度の低下を抑制することができる造造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置を提供する。 パルスNMR装置を用いて、溶媒に造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて造形用粉体の比表面積を算出する。造形用粉体の比表面積は、パウダーベッド内での予備加熱や、レーザーや電子ビームを照射した際の熱によって見かけ上増減するため、造形用粉体の劣化度の指標とすることができる。
Description
本技術は、例えばレーザーや電子ビームの照射により積層造形する造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置に関する。
従来、樹脂、金属などの粉体を用いて積層造形(Additive Manufacturing)し、部品・製品を製造する技術が知られている。例えば、パウダーベッド方式は、粉体を層状に敷き詰め、そこにレーザーやビームを照射し、粉体の粒子を焼結又は融解させ、これを繰り返すことにより積層造形する。パウダーベッド方式によれば、造形物の密度を高めることができるため、従来の一般の量産向けの製造方法(樹脂の場合は射出成形、金属の場合は鋳造など)に近い物性を得ることができる。
積層造形では、層状に敷き詰めた粉体の一部をレーザーなどで焼結又は融解するため、焼結又は融解されなかった粉体を再利用することが望まれている。例えば、特許文献1には、粉体をふるい網で分級し、再利用することが開示されている。しかしながら、粉体を分級するだけでは、粉体の劣化度を検知することができず、造形物の機械特性と寸法精度が低下する虞がある。
本技術は、このような従来の実情に鑑みて提案されたものであり、造形物の機械特性と寸法精度の低下を抑制することができる造造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置を提供する。
本件発明者らは、パルスNMRを用いた造形用粉体の1H核のスピン-スピン緩和時間T2の測定により求めた造形用粉体の比表面積が、造形用粉体の劣化度を示すことを見出した。これは、パウダーベッド内での予備加熱や、レーザーや電子ビームを照射した際の熱によって、造形用粉体の見かけの比表面積が増減するためであると考えられる。なお、造形用粉体の劣化によって比表面積が増加するか減少するかは、造形用粉体の種類によって異なる。
すなわち、本技術は、上記課題を解決するため、以下の造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置を提供する。
[1]
パルスNMR装置を用いて、溶媒に造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記造形用粉体の比表面積を算出する造形用粉体の劣化度測定方法。
[2]
前記造形用粉体が、熱可塑性樹脂又は金属である[1]記載の造形用粉体の劣化度測定方法。
[3]
前記溶媒のハンセン溶解度パラメータが、14(J/cm3)1/2以上30(J/cm3)1/2以下である[1]又は[2]記載の造形用粉体の劣化度測定方法。
[4]
前記溶媒の1H核のスピン-スピン緩和時間T2が、1000ms以上である[1]又は[2]記載の造形用粉体の劣化度測定方法。
[5]
予め測定及び算出された使用前の造形用粉体の比表面積を基準にして、使用後の造形用粉体の劣化度を算出する[1]又は[2]記載の造形用粉体の劣化度測定方法。
[6]
使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定工程と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程と
を有する造形用再生粉体の製造方法。
[7]
使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定部と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成部と
を備える造形用再生粉体の製造装置。
[8]
使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定工程と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程と
前記造形用再生粉体を用いて3次元造形物を積層造形により成形する成形工程と、
を有する3次元造形物の製造方法。
[9]
使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定部と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成部と、
前記造形用再生粉体を用いて3次元造形物を積層造形により成形する成形部と
を備える3次元造形物の製造装置。
パルスNMR装置を用いて、溶媒に造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記造形用粉体の比表面積を算出する造形用粉体の劣化度測定方法。
[2]
前記造形用粉体が、熱可塑性樹脂又は金属である[1]記載の造形用粉体の劣化度測定方法。
[3]
前記溶媒のハンセン溶解度パラメータが、14(J/cm3)1/2以上30(J/cm3)1/2以下である[1]又は[2]記載の造形用粉体の劣化度測定方法。
[4]
前記溶媒の1H核のスピン-スピン緩和時間T2が、1000ms以上である[1]又は[2]記載の造形用粉体の劣化度測定方法。
[5]
予め測定及び算出された使用前の造形用粉体の比表面積を基準にして、使用後の造形用粉体の劣化度を算出する[1]又は[2]記載の造形用粉体の劣化度測定方法。
[6]
使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定工程と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程と
を有する造形用再生粉体の製造方法。
[7]
使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定部と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成部と
を備える造形用再生粉体の製造装置。
[8]
使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定工程と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程と
前記造形用再生粉体を用いて3次元造形物を積層造形により成形する成形工程と、
を有する3次元造形物の製造方法。
[9]
使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定部と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成部と、
前記造形用再生粉体を用いて3次元造形物を積層造形により成形する成形部と
を備える3次元造形物の製造装置。
本技術によれば、造形用粉体の劣化度を検知することができ、造形用粉体を再生させることができ、造形物の機械特性と寸法精度の低下を抑制することができる。
以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.造形用粉体の劣化度測定方法
2.造形用再生粉体の製造方法及び製造装置
3.3次元造形物の製造方法及び製造装置
4.実施例
1.造形用粉体の劣化度測定方法
2.造形用再生粉体の製造方法及び製造装置
3.3次元造形物の製造方法及び製造装置
4.実施例
<1.造形用粉体の劣化度測定方法>
本実施の形態に係る造形用粉体の劣化度測定方法は、パルスNMR装置を用いて、溶媒に造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて造形用粉体の比表面積を算出する。造形用粉体の比表面積は、パウダーベッド内での予備加熱や、レーザーや電子ビームを照射した際の熱によって見かけ上増減するため、造形用粉体の劣化度の指標とすることができる。
本実施の形態に係る造形用粉体の劣化度測定方法は、パルスNMR装置を用いて、溶媒に造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて造形用粉体の比表面積を算出する。造形用粉体の比表面積は、パウダーベッド内での予備加熱や、レーザーや電子ビームを照射した際の熱によって見かけ上増減するため、造形用粉体の劣化度の指標とすることができる。
[造形用粉体]
造形用粉体は、3Dプリンターに用いられるものであれば特に限定されるものではなく、例えば、熱可塑性樹脂、金属などが挙げられる。熱可塑性樹脂としては、例えば、汎用樹脂、エンジニアリングプラスチックなどが挙げられる。汎用樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリエチレンテレフタラート(PET)などが挙げられる。エンジニアリングプラスチックとしては、例えば、ナイロン12(PA12)、ナイロン6(PA6)などのポリアミド(PA)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂、液晶ポリマー(LCP)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)などが挙げられる。金属としては、例えば、チタン、アルミニウム、ステンレス鋼、コバルト・クロム、ニッケル合金、銅合金などが挙げられる。
造形用粉体は、3Dプリンターに用いられるものであれば特に限定されるものではなく、例えば、熱可塑性樹脂、金属などが挙げられる。熱可塑性樹脂としては、例えば、汎用樹脂、エンジニアリングプラスチックなどが挙げられる。汎用樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリエチレンテレフタラート(PET)などが挙げられる。エンジニアリングプラスチックとしては、例えば、ナイロン12(PA12)、ナイロン6(PA6)などのポリアミド(PA)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂、液晶ポリマー(LCP)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)などが挙げられる。金属としては、例えば、チタン、アルミニウム、ステンレス鋼、コバルト・クロム、ニッケル合金、銅合金などが挙げられる。
粉体粒子の平均粒径は、10μm以上200μm以下であることが好ましい。平均粒径は、顕微鏡観察(光学顕微鏡、金属顕微鏡、電子顕微鏡など)で200個以上を計測し、その平均値とすることができる。
[溶媒]
溶媒は、造形用粉体に応じて適宜選択することができ、例えば、溶媒のハンセン溶解度パラメータ(HSP)に基づいて選択することができる。溶媒のハンセン溶解度パラメータ(HSP)の下限値は、好ましくは5(J/cm3)1/2以上、より好ましくは10(J/cm3)1/2以上、さらに好ましくは14(J/cm3)1/2以上であり、溶媒のHSPの下限値は、好ましくは40(J/cm3)1/2以下、より好ましくは35(J/cm3)1/2以下、さらに好ましくは30(J/cm3)1/2以下である。特に、溶媒のHSPが、14(J/cm3)1/2以上30(J/cm3)1/2以下であることにより、造形用粉体の優れた分散性を得ることができ、劣化度を比較することができる。
溶媒は、造形用粉体に応じて適宜選択することができ、例えば、溶媒のハンセン溶解度パラメータ(HSP)に基づいて選択することができる。溶媒のハンセン溶解度パラメータ(HSP)の下限値は、好ましくは5(J/cm3)1/2以上、より好ましくは10(J/cm3)1/2以上、さらに好ましくは14(J/cm3)1/2以上であり、溶媒のHSPの下限値は、好ましくは40(J/cm3)1/2以下、より好ましくは35(J/cm3)1/2以下、さらに好ましくは30(J/cm3)1/2以下である。特に、溶媒のHSPが、14(J/cm3)1/2以上30(J/cm3)1/2以下であることにより、造形用粉体の優れた分散性を得ることができ、劣化度を比較することができる。
ハンセン溶解度パラメータ(δ)は、分散項δd、極性項δp、及び水素結合項δhの3つのパラメータで構成され、下記(1)式で表される。
δ2=δd2 + δp2 + δh2 (1)
δd:分子間の分散力によるエネルギー
δp:分子間の双極子相互作用によるエネルギー
δh:分子間の水素結合によるエネルギー
δd:分子間の分散力によるエネルギー
δp:分子間の双極子相互作用によるエネルギー
δh:分子間の水素結合によるエネルギー
なお、ハンセン溶解度パラメータ(δ、δd、δp、δh)は、例えば、コンピュータソフトウェアであるHansen Solubility Parameters in Practice 4th Edition 4.1.07(HSPiP)に収録された値をそのまま使用することができる。
具体例として示す溶媒のハンセン溶解度パラメータ(δ、δd、δp、δh)としては、例えば、エタノール(δ:26.5、δd:15.8、δp:8.8、δh:19.4)、DPG(ジプロピレングリコール、SP:26.4、δd:16.5、δp:10.6、δh:17.7)、ブタノール(δ:23.2、δd:16、δp:5.7、δh:15.8)、DMAC(ジメチルアセトアミド、SP:22.4、δd:16.8、δp:11.5、δh:9.4)、乳酸エチル(δ:21.7、δd:16、δp:7.6、δh:12.5)、酢酸(δ:21.4、δd:14.5、δp:8、δh:13.5)、シクロヘキサノン(SP:20.3、δd:17.8、δp:8.4、δh:5.1)、アセトン(δ:20、δd:15.5、δp:10.4、δh:7)、トルエン(δ:18.2、δd:18、δp:1.4、δh:2)、MCH(メチルシクロヘキサン、SP:16、δd:16、δd:0、δh:1)、ヘキサン(δ:14.9、δd:14.9、δp:0、δh:0)などが挙げられる。
[パルスNMR測定法を用いた比表面積]
パルスNMR測定法(Nuclear Magnetic Resonance)は、分子運動性の評価指標である1H核の緩和時間(スビン-格子緩和時間T1)及びスピン-スピン緩和時間T2を取得することに特化した手法である。以下、1H核のスピン-スピン緩和時間T2を、「横緩和時間」又は単に「緩和時間T2」という。横緩和時間は、例えば、Xigo nanotools社製のパルスNMR装置Acorn areaを用いて測定することができる。
パルスNMR測定法(Nuclear Magnetic Resonance)は、分子運動性の評価指標である1H核の緩和時間(スビン-格子緩和時間T1)及びスピン-スピン緩和時間T2を取得することに特化した手法である。以下、1H核のスピン-スピン緩和時間T2を、「横緩和時間」又は単に「緩和時間T2」という。横緩和時間は、例えば、Xigo nanotools社製のパルスNMR装置Acorn areaを用いて測定することができる。
パルスNMR測定でのパルス系列としては、例えばハーンエコー法、ソリッドエコー法、CPMG法(Carr-Purcell-Meiboom-Gill法)、90゜パルス法などから適宜選択することができる。造形用粉体の拡散の影響が大きいと予想される場合には、CPMG法を適用することが好ましい。CPMG法は、一定の間隔で連続する180°パルスによってスピンエコーを繰り返し、磁化を回転座標系のxy平面上に固定する。この間のT2緩和によって横磁化の総和は減少していくため、横緩和時間を測定することができる。
パルスNMRを用いた粉体の分散体の緩和時間T2の測定により求めた粉体の比表面積は、粉体の劣化度の指標とすることができる。これは、パウダーベッド内での予備加熱や、レーザーや電子ビームを照射した際の熱によって、粉体の見かけの比表面積が増減するためだと考えられる。これにより、粉体の劣化度を検知することができ、粉体を再生させることが可能となる。
比表面積は、粉体の単位質量あたりの表面積であり、同じ質量なら粒子が細かいほど大きくなる。比表面積は、パルスNMR測定の緩和時間T2から下記(2)式によって換算することができる。
Rav=ΨpSLρp(Rs-Rb)+Rb (2)
Rav:分散体の平均の緩和速度(緩和時間の逆数)
Ψp:溶媒体積に対する粒子体積比
S:単位質量当たりの表面積(比表面積)
L:粒子表面に拘束された溶媒の厚み
ρp:粒子密度
Rs:粒子界面に拘束された溶媒の緩和速度(緩和時間の逆数)
Rb:自由な状態(バルク状態)にある溶媒の緩和速度(緩和時間の逆数)
Rav=ΨpSLρp(Rs-Rb)+Rb (2)
Rav:分散体の平均の緩和速度(緩和時間の逆数)
Ψp:溶媒体積に対する粒子体積比
S:単位質量当たりの表面積(比表面積)
L:粒子表面に拘束された溶媒の厚み
ρp:粒子密度
Rs:粒子界面に拘束された溶媒の緩和速度(緩和時間の逆数)
Rb:自由な状態(バルク状態)にある溶媒の緩和速度(緩和時間の逆数)
ここで、Kaを下記(3)式で定義すると、比表面積Sは下記(4)式で表される。
Ka=Lρp(Rs-Rb) (3)
Ka=Lρp(Rs-Rb) (3)
S=(Rav-Rb)/KaΨp (4)
Kaは、実際に溶媒が接触している比表面積を用いて算出することができる。例えば、シリカの場合シアーズ法を用いることで実際に液体と接している面積を得ることができる。また、推定法として、動的光散乱法、遠心沈降法、レーザー回折法、顕微鏡などによる粒子径計測から計算してもよい。
Kaは、実際に溶媒が接触している比表面積を用いて算出することができる。例えば、シリカの場合シアーズ法を用いることで実際に液体と接している面積を得ることができる。また、推定法として、動的光散乱法、遠心沈降法、レーザー回折法、顕微鏡などによる粒子径計測から計算してもよい。
また、Ψpは、下記(5)式によって算出することができる。
Ψp=(Sc/Sd)/[(1-Sc)/Td] (5)
式中、Scは分散体の粉体の固形分濃度(質量%)、Sdは粉体の密度(g/cm3)、Tdは溶媒の密度(g/cm3)を示す。
式中、Scは分散体の粉体の固形分濃度(質量%)、Sdは粉体の密度(g/cm3)、Tdは溶媒の密度(g/cm3)を示す。
すなわち、溶媒の緩和時間T2(Rbの逆数)がわかっていれば、粉体粒子を含んだ系での緩和時間T2(Ravの逆数)から比表面積Sを求めることができる。
一般に、粒子表面に吸着している液体分子の運動は制限を受けるが、バルク液中の液体分子は自由に動くことができる。その結果、粒子表面に吸着している液体分子の横緩和時間は、バルク液中の液体分子の横緩和時間よりも短くなる。
粒子表面に吸着している分散媒の体積分率Psが大きいほど、横緩和時間は短くなる。したがって、粒子の総表面積が大きいほど、横緩和時間が短くなる。そのため、粒子の比表面積が大きいほど横緩和時間は短くなり、粒子径が小さいほど横緩和時間は短くなる傾向がある。また、粒子の数が多いほど、横緩和時間は短くなる傾向がある。
また、粒子と分散媒との相互作用が強いほど、横緩和時間は短くなる。換言すれば、粒子と分散媒との親和性が高いほど、横緩和時間は短くなる。粒子と分散媒との親和性は、例えば、粒子の表面の官能基の種類や数、分散媒に配合する化合物によって調整することができる。
パルスNMR装置を用いて測定される分散媒の横緩和時間の下限は、好ましくは50ms以上、より好ましくは500ms以上、さらに好ましくは1000ms以上である。パルスNMR装置を用いて測定される分散媒の横緩和時間の上限は、好ましくは5000ms以下、より好ましくは3000ms以下、さらに好ましくは、2500ms以下である。これにより、溶媒の比表面積に対する粉体の比表面積の比を大きくすることができる。
<2.造形用再生粉体の製造方法及び製造装置>
本実施の形態に係る造形用再生粉体の製造方法は、使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて使用後の造形用粉体の比表面積を算出する測定工程と、使用後の造形用粉体の比表面積に基づいて、使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程とを有する。
本実施の形態に係る造形用再生粉体の製造方法は、使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて使用後の造形用粉体の比表面積を算出する測定工程と、使用後の造形用粉体の比表面積に基づいて、使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程とを有する。
本実施の形態に係る造形用再生粉体の製造装置は、使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて使用後の造形用粉体の比表面積を算出する測定部と、使用後の造形用粉体の比表面積に基づいて、使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成部とを備える。
このような実施形態によれば、例えば、予め測定及び算出された使用前の造形用粉体の比表面積を基準にして、使用後の造形用粉体の劣化度を算出することにより、使用後の造形用粉体と使用前の造形用粉体との混合比を算出することができ、また、混合後の造形用粉体の劣化度を算出することができる。これにより、所定の劣化度(比表面積)を有する造形用再生粉体を製造することができる。
[再生粉体の製造装置]
図1は、本技術を適用させた再生粉体の製造装置の一例を示す機能ブロック図である。図1に示すように、再生粉体製造装置10は、使用後の粉体を回収する粉体回収部11と、粉体をふるいに掛けるふるい網分級部12と、粉体の劣化度を測定する測定部13と、新品の粉体を供給する粉体供給部14と、ふるい網を通過した粉体と新品の粉体とを混合する混合部15と、再生粉体を出力する出力部16と、粉体供給部14から混合部15に供給する新品の粉体の量を制御する制御部17とを備える。なお、使用後の粉体として、例えば、パウダーベッド内での予備加熱や、レーザーや電子ビームによる熱の影響を受けていない粉体を用いる場合、ふるい分級部12を設けない構成としてもよい。
図1は、本技術を適用させた再生粉体の製造装置の一例を示す機能ブロック図である。図1に示すように、再生粉体製造装置10は、使用後の粉体を回収する粉体回収部11と、粉体をふるいに掛けるふるい網分級部12と、粉体の劣化度を測定する測定部13と、新品の粉体を供給する粉体供給部14と、ふるい網を通過した粉体と新品の粉体とを混合する混合部15と、再生粉体を出力する出力部16と、粉体供給部14から混合部15に供給する新品の粉体の量を制御する制御部17とを備える。なお、使用後の粉体として、例えば、パウダーベッド内での予備加熱や、レーザーや電子ビームによる熱の影響を受けていない粉体を用いる場合、ふるい分級部12を設けない構成としてもよい。
粉体回収部11は、例えば、後述する3次元造形装置20で使用後の粉体を回収する。例えば、後述する3次元造形装置20の造形物とならなかった造形槽40の粉体41を回収してもよく、回収槽50の粉体51を回収してもよい。回収のための粉体搬送方法としては、スクリューを利用したスクリューコンベア方式や、エアーを利用した空気輸送方式などが挙げられる。
ふるい網分級部12は、粉体回収部11で回収した使用後の粉末を、ふるい網を用いて分級する。これにより、使用後の粉体を、ふるい網を通過する微細粒子から構成される微細粉体と、ふるい網に残存する粗大粒子から構成される粗大粉体とに分離する。粗大粉体は、廃棄してもよく、ボールミルなどで粉砕して気流分級により微細粒子を取り出し、粉体回収部11に戻してもよい。
測定部13は、ふるい網を通過した粉体の一部をサンプリングし、粉体の劣化度を測定する。具体的には、パルスNMR装置を用いて、溶媒に粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、粉体の比表面積を算出する。比表面積の算出結果は、制御部17に送信される。また、測定部13は、混合部15の混合粉体をサンプリングし、パルスNMR装置を用いて混合粉体の比表面積を算出し、算出結果を制御部17に送信してもよい。
粉体供給部14は、新品の粉体が格納されており、制御部17から通知された所定量の新品の粉体を混合部15に供給する。混合部15は、ふるい網分級部12のふるい網を通過した粉体と、粉末供給部14から供給される新品の粉体とを混合する。出力部16は、混合部15で混合させた粉体を、使用可能な再生粉体として出力する。例えば、出力部16は、後述する3次元造形装置20の粉体槽30に再生粉体を出力する。
制御部17は、各部の処理を制御する。具体的には、制御部は、測定部13で算出された比表面積に基づいて、粉体供給部14から混合部15に供給する新品の粉体の供給量を制御する。制御部17は、例えば、ふるい網を通過した粉体の比表面積に基づいて新品の粉体の第1の供給量を決定し、混合後の粉体の比表面積に基づいて新品の粉体の第2の供給量を決定してもよい。また、制御部17は、ふるい網分級部12に供給する使用後の粉体の量なども制御する。
[再生粉体の製造装置の動作]
次に、図1及び図2を参照し、再生粉体の製造装置の動作について説明する。図2は、本技術を適用させた再生粉体の製造装置の動作の一例を説明するためのフローチャートである。
次に、図1及び図2を参照し、再生粉体の製造装置の動作について説明する。図2は、本技術を適用させた再生粉体の製造装置の動作の一例を説明するためのフローチャートである。
図2に示すように、先ず、ステップS1において、粉体回収部11は、例えば、後述する3次元造形装置20の造形物とならなかった造形槽40の粉体41、回収槽50の粉体51などを回収する。
ステップS2において、ふるい網分級部12は、粉体回収部11で回収した使用後の粉末を、ふるい網を用いて分級する。これにより、使用後の粉体を、ふるい網を通過する微細粒子から構成される微細粉体と、ふるい網に残存する粗大粒子から構成される粗大粉体とに分離する。粗大粉体は、廃棄してもよく、ボールミルなどで粉砕して気流分級により微細粒子を取り出し、粉体回収部11に戻してもよい。
ステップS3において、測定部13は、ステップS2でふるい網を通過した微細粉体の一部をサンプリングし、パルスNMR装置を用いて、溶媒に使用後の粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、使用後の粉体の比表面積を算出する。制御部17は、使用後の粉体の比表面積に基づいて、粉体供給部14から混合部15に供給する新品の粉体の第1の供給量を算出する。
ステップS4において、粉体供給部14は、制御部17で算出された第1の供給量の新品の粉体を混合部15に供給し、混合部15は、ふるい網分級部12のふるい網を通過した粉体と、粉末供給部14から供給される新品の粉体とを混合する。また、測定部13は、混合部15の混合粉体の一部をサンプリングし、パルスNMR装置を用いて混合粉体の比表面積を算出し、制御部17は、混合粉体の比表面積に基づいて新品の粉体の第2の供給量を算出し、粉体供給部14から混合部15に新品の粉体を供給させてもよい。出力部16は、混合部15で混合させた粉体を、例えば、後述する3次元造形装置20の粉体槽30に、使用可能な再生粉体として出力する。
以上のように、パルスNMR装置を用いて算出された使用後の粉体の比表面積に基づいて、使用後の粉体と新品の粉体とを混合することにより、所定の比表面積を有する再生粉体を製造することができる。
<3.3次元造形物の製造方法及び製造装置>
本実施形態に係る3次元造形物の製造方法は、使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて使用後の造形用粉体の比表面積を算出する測定工程と、使用後の造形用粉体の比表面積に基づいて、使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程と、造形用再生粉体を用いて3次元造形物を積層造形により成形する成形工程とを有する。
本実施形態に係る3次元造形物の製造方法は、使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて使用後の造形用粉体の比表面積を算出する測定工程と、使用後の造形用粉体の比表面積に基づいて、使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程と、造形用再生粉体を用いて3次元造形物を積層造形により成形する成形工程とを有する。
本実施形態に係る3次元造形物の製造装置は、使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて使用後の造形用粉体の比表面積を算出する測定部と、使用後の造形用粉体の比表面積に基づいて、使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成部と、造形用再生粉体を用いて3次元造形物を積層造形により成形する成形部とを備える。
このような実施形態によれば、所定の劣化度(比表面積)を有する造形用再生粉体を用いて3次元造形物を積層造形するため、粉体劣化による造形物の機械特性と寸法精度の低下を抑制することができる。
3次元造形装置の積層造形の方式として、選択的レーザー焼結法(SLS:Selective Laser Sintering)、選択的レーザー溶融法(SLM)、電子ビーム溶融法(EBM)などが挙げられる。一般的に、造形用粉体が樹脂の場合、SLSが用いられ、造形用粉体が金属の場合、SLS、SLM、EBMが用いられる。
以下では、パウダーベッドという受け皿に、造形用粉体を薄い層状に敷き詰め、そこにレーザー又は電子ビームを走査させて造形物の横断面の形状を形成するパウダーベッド方式の3次元造形装置について説明する。
[3次元造形装置]
図3は、本技術を適用させた3次元造形装置の概略の一例を示す断面図である。また、図4は、3次元造形装置の造形動作を説明するための断面図であり、図4(A)は、粉体の供給処理を示し、図4(B)は、粉体層の平坦化処理を示し、図4(C)は、平坦化ローラーの復帰処理を示し、図4(D)は、造形物を造形する造形処理を示す。
図3は、本技術を適用させた3次元造形装置の概略の一例を示す断面図である。また、図4は、3次元造形装置の造形動作を説明するための断面図であり、図4(A)は、粉体の供給処理を示し、図4(B)は、粉体層の平坦化処理を示し、図4(C)は、平坦化ローラーの復帰処理を示し、図4(D)は、造形物を造形する造形処理を示す。
3次元造形装置20は、粉体を供給する粉体槽30と、造形物を造形する造形槽40と、粉体を回収する回収槽50とを備える。また、3次元造形装置20は、レーザー光71を出射して粉体層61に造形層60を形成し、造形層60を積層した立体造形物を造形する造形ユニット70を備える。また、3次元造形装置20は、前述した再生粉体製造装置10を備え、出力部16から出力される再生粉体を粉体槽30に供給してもよく、造形物とならなかった造形槽40の粉体41を粉体回収部11に供給してもよく、回収槽50の粉体51を粉体回収部11に供給してもよい。粉体供給のための粉体搬送方法としては、スクリューを利用したスクリューコンベア方式や、エアーを利用した空気輸送方式などが挙げられる。
平坦化ローラー21は、平坦化手段(リコータ)であり、造形槽40の上面に対して相対的に往復可能に移動し、粉体槽30の粉体31を造形槽40に移送供給し、造形槽40の粉体41を平坦化して粉体層61を形成し、回収槽50に粉体51を回収させる。なお、平坦化ローラー21に代えて、例えば板状部材(ブレード)などの平坦化手段を用いてもよい。
粉体槽30は、造形槽40に供給する粉体31を保持する上面が開放された箱型形状をなし、底部に供給ステージ32を備える。供給ステージ32は、鉛直方向(高さ方向)に昇降し、矢印Z1方向に上昇させることにより、上面の粉体31を平坦化ローラー21によって移送供給させる。ここで、粉体31は、前述した再生粉体製造装置10の出力部16から出力される再生粉体であってもよい。
造形槽40は、造形物を造形する粉体41を保持する上面が開放された箱型形状をなし、底部に造形ステージ42を備える。造形ステージ42は、鉛直方向(高さ方向)に昇降し、矢印Z2方向に△t1降下させることにより、上面に粉体層61を形成させる。また、造形槽40は、造形ユニット70からのレーザー光71の出射により粉体層61に造形層60を形成させ、造形層60を積層した立体造形物を造形する。造形物とならなかった造形槽40の粉体41は、使用後の粉体として、前述した再生粉体製造装置10の粉体回収部11に回収されてもよい。
回収槽50は、造形槽40の上面に粉体層61を形成するときに平坦化ローラー21によって移送供給される粉体31のうち、粉体層61を形成しない余剰の粉体51を溜める。回収槽50の粉体51は、使用後の粉体として、前述した再生粉体製造装置10の粉体回収部11に回収されてもよい。
造形ユニット70は、造形ステージ42上の粉体層61にレーザー光71を出射し、造形ユニット70全体がX方向と直交するY方向に往復可能に移動する。
[造形動作]
次に、図3及び図4を参照し、3次元造形装置の造形動作について説明する。ここでは、図3及び図4(A)に示すように、造形槽40の造形ステージ42上に、1層目の造形層60が形成されている状態から説明する。
次に、図3及び図4を参照し、3次元造形装置の造形動作について説明する。ここでは、図3及び図4(A)に示すように、造形槽40の造形ステージ42上に、1層目の造形層60が形成されている状態から説明する。
図3及び図4(A)に示すように、2層目の造形層60を形成する場合、供給槽30の供給ステージ32をZ1方向に上昇させ、造形槽40の造形ステージ42をZ2方向に下降させる。このとき、1層目の粉体層表面と平坦化ローラー21の下部(下方接線部)との間隔が△t1となるように造形ステージ42の下降距離を設定する。この間隔△t1が2層目の粉体層61の厚さ(積層ピッチ)に相当する。間隔△t1は、1~100μm程度であることが好ましい。
次いで、図4(B)に示すように、供給槽30の上面に位置する粉体31を、平坦化ローラー21を回転させながらY1方向(造形槽40側)に移動させることで、粉体31を造形槽40へと移送供給する(粉体供給処理)。
さらに、図4(B)に示すように、平坦化ローラー21を造形槽40の造形ステージ42のステージ面と平行に移動させて、造形槽40に粉体41を供給しながら平坦化する(平坦化処理)。これにより、図4(C)に示すように、造形槽40の造形ステージ42上に所定の厚さ△t1になる粉体層61が形成される。このとき、粉体層61の形成に使用されなかった余剰の粉体51は回収槽50に落下する。
粉体層61の形成後、平坦化ローラー21は、図4(C)に示すように、Y2方向に搬送されて初期位置(原点位置)に戻される(復帰処理)。
その後、図4(D)に示すように、造形ユニット70からレーザー光71を出射し、粉体層61に造形層60を形成する(造形処理)。なお、造形層60は、例えば、レーザー光71により粉体層61が発熱し、粉体が焼結又は融解することにより形成される。
以後、前述した粉体供給処理、平坦化処理、復帰処理、及び造形処理を必要な回数繰り返すことによって造形層60を積層した立体造形物を製造することができる。ここで、立体造形物の完成後に造形槽40に残存した粉体41及び回収槽50に回収した粉体51を、再生粉体製造装置10の粉体回収部11に供給し、出力部16から出力される再生粉体を供給槽30に供給することにより、粉体劣化による造形物の機械特性と寸法精度の低下を抑制することができる。
<4.実施例>
本実施例では、造形用粉体を各種溶媒に分散させ、パルスNMR装置を用いて造形用粉体の比表面積を算出した。
本実施例では、造形用粉体を各種溶媒に分散させ、パルスNMR装置を用いて造形用粉体の比表面積を算出した。
造形用粉体として、下記を準備した。
PA12(ナイロン12(ポリアミド)、平均粒径60μm)
・新品(3次元造形装置に未使用の使用前の造形用粉体)
・使用品(3次元造形装置に使用した使用後の造形用粉体)
・再生品(新品と使用品との混合粉体、新品:使用品=20:80(質量比))
PP(ポリプロピレン、平均粒径51μm)
・新品(3次元造形装置に未使用の使用前の造形用粉体)
・使用品(3次元造形装置に使用した使用後の造形用粉体)
・再生品(新品と使用品との混合粉体、新品:使用品=20:80(質量比))
チタン(平均粒径10~85μm)
・新品(3次元造形装置に未使用の使用前の造形用粉体)
・使用品(3次元造形装置に使用した使用後の造形用粉体)
PA12(ナイロン12(ポリアミド)、平均粒径60μm)
・新品(3次元造形装置に未使用の使用前の造形用粉体)
・使用品(3次元造形装置に使用した使用後の造形用粉体)
・再生品(新品と使用品との混合粉体、新品:使用品=20:80(質量比))
PP(ポリプロピレン、平均粒径51μm)
・新品(3次元造形装置に未使用の使用前の造形用粉体)
・使用品(3次元造形装置に使用した使用後の造形用粉体)
・再生品(新品と使用品との混合粉体、新品:使用品=20:80(質量比))
チタン(平均粒径10~85μm)
・新品(3次元造形装置に未使用の使用前の造形用粉体)
・使用品(3次元造形装置に使用した使用後の造形用粉体)
溶媒として、下記を準備した。
エタノール(δ:26.5、δd:15.8、δp:8.8、δh:19.4)
DPG(ジプロピレングリコール、SP:26.4、δd:16.5、δp:10.6、δh:17.7)
ブタノール(δ:23.2、δd:16、δp:5.7、δh:15.8)
DMAC(ジメチルアセトアミド、SP:22.4、δd:16.8、δp:11.5、δh:9.4)
乳酸エチル(δ:21.7、δd:16、δp:7.6、δh:12.5)
酢酸(δ:21.4、δd:14.5、δp:8、δh:13.5)
シクロヘキサノン(SP:20.3、δd:17.8、δp:8.4、δh:5.1)
アセトン(δ:20、δd:15.5、δp:10.4、δh:7)
トルエン(δ:18.2、δd:18、δp:1.4、δh:2)
MCH(メチルシクロヘキサン、SP:16、δd:16、δd:0、δh:1)
ヘキサン(δ:14.9、δd:14.9、δp:0、δh:0)
エタノール(δ:26.5、δd:15.8、δp:8.8、δh:19.4)
DPG(ジプロピレングリコール、SP:26.4、δd:16.5、δp:10.6、δh:17.7)
ブタノール(δ:23.2、δd:16、δp:5.7、δh:15.8)
DMAC(ジメチルアセトアミド、SP:22.4、δd:16.8、δp:11.5、δh:9.4)
乳酸エチル(δ:21.7、δd:16、δp:7.6、δh:12.5)
酢酸(δ:21.4、δd:14.5、δp:8、δh:13.5)
シクロヘキサノン(SP:20.3、δd:17.8、δp:8.4、δh:5.1)
アセトン(δ:20、δd:15.5、δp:10.4、δh:7)
トルエン(δ:18.2、δd:18、δp:1.4、δh:2)
MCH(メチルシクロヘキサン、SP:16、δd:16、δd:0、δh:1)
ヘキサン(δ:14.9、δd:14.9、δp:0、δh:0)
[パルスNMR測定]
パルスNMR装置(Xigo nanotools社製 Acorn area)を用いて、溶媒に造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて造形用粉体の比表面積を算出した。比表面積は、前述した下記(4)式を用いて算出した。
S=(Rav-Rb)/KaΨp (4)
Rav:分散体の平均の緩和速度(分散体の緩和時間T2の逆数)
Ψp:溶媒体積に対する粒子体積比
S:単位質量当たりの表面積(比表面積)
Rb:自由な状態(バルク状態)にある溶媒の緩和速度(溶媒の緩和時間T2の逆数)
本実施例では、比表面積は、新品と使用品の相対値で評価するため、比表面積の計算におけるKa値は0.000312の一定値とし、Ψp値はゼロに固定した。
パルスNMR装置(Xigo nanotools社製 Acorn area)を用いて、溶媒に造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、分散体の1H核のスピン-スピン緩和時間T2及び溶媒の1H核のスピン-スピン緩和時間T2に基づいて造形用粉体の比表面積を算出した。比表面積は、前述した下記(4)式を用いて算出した。
S=(Rav-Rb)/KaΨp (4)
Rav:分散体の平均の緩和速度(分散体の緩和時間T2の逆数)
Ψp:溶媒体積に対する粒子体積比
S:単位質量当たりの表面積(比表面積)
Rb:自由な状態(バルク状態)にある溶媒の緩和速度(溶媒の緩和時間T2の逆数)
本実施例では、比表面積は、新品と使用品の相対値で評価するため、比表面積の計算におけるKa値は0.000312の一定値とし、Ψp値はゼロに固定した。
パルスNMR装置を用いた測定は、下記条件で行った。
パルス系列:CPMG法
共鳴周波数:13MHz
Bulk Relaxation Time:2600.0 ms
Specific Surface Relaxivity:0.000264 g/m2/ms
測定温度:25℃
測定試料の量:1.0cm3
混合から測定までの時間:3min
パルス系列:CPMG法
共鳴周波数:13MHz
Bulk Relaxation Time:2600.0 ms
Specific Surface Relaxivity:0.000264 g/m2/ms
測定温度:25℃
測定試料の量:1.0cm3
混合から測定までの時間:3min
[測定例1]
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてエタノールを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてエタノールを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例2]
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてDPG(ジプロピレングリコール)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてDPG(ジプロピレングリコール)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例3]
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてブタノールを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてブタノールを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例4]
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてDMAC(ジメチルアセトアミド)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてDMAC(ジメチルアセトアミド)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例5]
造形用粉体としてPA12(新品、使用品)、溶媒として酢酸を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品)、溶媒として酢酸を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例6]
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてシクロヘキサンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてシクロヘキサンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例7]
造形用粉体としてPA12(新品、使用品)、溶媒としてアセトンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品)、溶媒としてアセトンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例8]
造形用粉体としてPA12(新品、使用品)、溶媒としてトルエンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品)、溶媒としてトルエンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例9]
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてMCH(メチルシクロヘキサン)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品、再生品)、溶媒としてMCH(メチルシクロヘキサン)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例10]
造形用粉体としてPA12(新品、使用品)、溶媒としてヘキサンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPA12(新品、使用品)、溶媒としてヘキサンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例11]
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてDPG(ジプロピレングリコール)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてDPG(ジプロピレングリコール)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例12]
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてDMAC(ジメチルアセトアミド)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてDMAC(ジメチルアセトアミド)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例13]
造形用粉体としてPP(新品、使用品、再生品)、溶媒として乳酸エチルを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPP(新品、使用品、再生品)、溶媒として乳酸エチルを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例14]
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてシクロヘキサノンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてシクロヘキサノンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例15]
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてMCH(メチルシクロヘキサン)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてMCH(メチルシクロヘキサン)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例16]
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてヘキサンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
造形用粉体としてPP(新品、使用品、再生品)、溶媒としてヘキサンを用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。
[測定例17]
造形用粉体としてチタン(新品、使用品)、溶媒としてDPG(ジプロピレングリコール)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。なお、使用品のチタンは、ふるいを10回掛けたものを測定した。
造形用粉体としてチタン(新品、使用品)、溶媒としてDPG(ジプロピレングリコール)を用いて分散体を作製した。そして、パルスNMR装置を用いて、溶媒及び分散体の緩和時間T2を測定し、比表面積を算出した。なお、使用品のチタンは、ふるいを10回掛けたものを測定した。
表1に、測定例1-測定例17のパルスNMR測定結果を示す。表1において、T2は1H核のスピン-スピン緩和時間T2であり、S.A.は比表面積であり、溶媒比は溶媒のS.A.に対する比であり、新品比は新品粉体のS.A.に対する比である。
表1に示すように、パルスNMR装置を用いて、造形用粉体(新品、使用品、再生品)の比表面積を算出することができ、造形用粉体の劣化度の指標とすることができることが分かった。溶媒は、ハンセン溶解度パラメータが、14(J/cm3)1/2以上30(J/cm3)1/2以下の様々なものを使用できることが分かった。また、溶媒の緩和時間T2が、1000ms以上であることにより、溶媒の比表面積に対する粉体の比表面積の比を大きくすることが可能であることが分かった。
また、PA12及びチタンでは、粉体劣化により比表面積が減少したが、PPでは、粉体劣化により比表面積が増加することが分かった。また、予め測定及び算出された使用前(新品)の造形用粉体の比表面積を基準(例えば100%)にして、使用後(使用品)及び再生品の造形用粉体の劣化度を算出することが好ましいことが分かった。
10 再生粉体製造装置、11 粉体回収部、12 ふるい網分級部、13 測定部、14 粉体供給部、15 混合部、16 出力部、17 制御部、20 3次元造形装置、21 平坦化ローラー、30 粉体槽、31 粉体、40 造形槽、41 粉体、50 回収槽、51 粉体、
Claims (9)
- パルスNMR装置を用いて、溶媒に造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記造形用粉体の比表面積を算出する造形用粉体の劣化度測定方法。
- 前記造形用粉体が、熱可塑性樹脂又は金属である請求項1記載の造形用粉体の劣化度測定方法。
- 前記溶媒のハンセン溶解度パラメータが、14(J/cm3)1/2以上30(J/cm3)1/2以下である請求項1又は2記載の造形用粉体の劣化度測定方法。
- 前記溶媒の1H核のスピン-スピン緩和時間T2が、1000ms以上である請求項1又は2記載の造形用粉体の劣化度測定方法。
- 予め測定及び算出された使用前の造形用粉体の比表面積を基準にして、使用後の造形用粉体の劣化度を算出する請求項1又は2記載の造形用粉体の劣化度測定方法。
- 使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定工程と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程と
を有する造形用再生粉体の製造方法。 - 使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定部と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成部と
を備える造形用再生粉体の製造装置。 - 使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定工程と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成工程と
前記造形用再生粉体を用いて3次元造形物を積層造形により成形する成形工程と、
を有する3次元造形物の製造方法。 - 使用後の造形用粉体をサンプリングし、パルスNMR装置を用いて、溶媒に前記使用後の造形用粉体を分散させた分散体の1H核のスピン-スピン緩和時間T2を測定し、前記分散体の1H核のスピン-スピン緩和時間T2及び前記溶媒の1H核のスピン-スピン緩和時間T2に基づいて前記使用後の造形用粉体の比表面積を算出する測定部と、
前記使用後の造形用粉体の比表面積に基づいて、前記使用後の造形用粉体と使用前の造形用粉体とを混合し、造形用再生粉体を生成する生成部と、
前記造形用再生粉体を用いて3次元造形物を積層造形により成形する成形部と
を備える3次元造形物の製造装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/040669 WO2024095313A1 (ja) | 2022-10-31 | 2022-10-31 | 造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 |
JP2024508011A JPWO2024096002A1 (ja) | 2022-10-31 | 2023-10-31 | |
PCT/JP2023/039222 WO2024096002A1 (ja) | 2022-10-31 | 2023-10-31 | 造形用粉体の劣化度測定方法及び測定装置、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 |
JP2025001828A JP2025041980A (ja) | 2022-10-31 | 2025-01-06 | 造形用粉体の劣化度測定方法及び測定装置、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/040669 WO2024095313A1 (ja) | 2022-10-31 | 2022-10-31 | 造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024095313A1 true WO2024095313A1 (ja) | 2024-05-10 |
Family
ID=90929970
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040669 WO2024095313A1 (ja) | 2022-10-31 | 2022-10-31 | 造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 |
PCT/JP2023/039222 WO2024096002A1 (ja) | 2022-10-31 | 2023-10-31 | 造形用粉体の劣化度測定方法及び測定装置、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/039222 WO2024096002A1 (ja) | 2022-10-31 | 2023-10-31 | 造形用粉体の劣化度測定方法及び測定装置、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JPWO2024096002A1 (ja) |
WO (2) | WO2024095313A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5096826A (en) * | 1987-11-27 | 1992-03-17 | Salonit Anhovo, Industrija Gradbenega Materiala, N.Sol.O | Method of measuring specific surface area |
JP2018177943A (ja) * | 2017-04-12 | 2018-11-15 | セイコーエプソン株式会社 | 水性インクジェットインク組成物及びインクジェット記録装置 |
US20190177473A1 (en) * | 2016-06-20 | 2019-06-13 | Sabic Global Technologies B.V. | Polymer composition for selective sintering |
JP2021172755A (ja) * | 2020-04-27 | 2021-11-01 | Dic株式会社 | 水性顔料分散体及び水性インクの製造方法、並びに水性顔料分散体及び水性インクの設計方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108028406B (zh) * | 2015-05-08 | 2022-01-18 | 离子材料公司 | 固体离子传导性聚合物材料 |
JP6589366B2 (ja) * | 2015-05-19 | 2019-10-16 | 株式会社リコー | 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク、組成物収容容器、像の形成方法及び形成装置、並びに成形加工品 |
-
2022
- 2022-10-31 WO PCT/JP2022/040669 patent/WO2024095313A1/ja unknown
-
2023
- 2023-10-31 JP JP2024508011A patent/JPWO2024096002A1/ja active Pending
- 2023-10-31 WO PCT/JP2023/039222 patent/WO2024096002A1/ja unknown
-
2025
- 2025-01-06 JP JP2025001828A patent/JP2025041980A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5096826A (en) * | 1987-11-27 | 1992-03-17 | Salonit Anhovo, Industrija Gradbenega Materiala, N.Sol.O | Method of measuring specific surface area |
US20190177473A1 (en) * | 2016-06-20 | 2019-06-13 | Sabic Global Technologies B.V. | Polymer composition for selective sintering |
JP2018177943A (ja) * | 2017-04-12 | 2018-11-15 | セイコーエプソン株式会社 | 水性インクジェットインク組成物及びインクジェット記録装置 |
JP2021172755A (ja) * | 2020-04-27 | 2021-11-01 | Dic株式会社 | 水性顔料分散体及び水性インクの製造方法、並びに水性顔料分散体及び水性インクの設計方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2024096002A1 (ja) | 2024-05-10 |
JPWO2024096002A1 (ja) | 2024-05-10 |
JP2025041980A (ja) | 2025-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gonzalez-Gutierrez et al. | Shaping, debinding and sintering of steel components via fused filament fabrication | |
CN105764674B (zh) | 使用泥釉的3d打印方法 | |
Shen et al. | 3D printing of polymer-bonded magnets from highly concentrated, plate-like particle suspensions | |
JP4913035B2 (ja) | ラピッドプロトタイピング用粉末およびその製造方法 | |
JP5172941B2 (ja) | 層状に三次元物体を製造する方法で使用するpaek粉末の製造方法、及び三次元物体を層状に製造する方法 | |
Frigola et al. | Fabricating copper components with electron beam melting | |
KR20160031016A (ko) | 전자사진 기반 적층제조 시스템용 반-결정 소모성 재료 | |
JP2021042372A (ja) | 積層造形のための金属前駆体を含む微粒子組成物及びそれに関連する方法 | |
JP2018154093A (ja) | 立体造形用樹脂粉末および立体造形物の製造方法 | |
Bai et al. | Nanostructural characterization of carbon nanotubes in laser-sintered polyamide 12 by 3D-TEM | |
EP3936316A1 (en) | Highly spherical polyamide microparticles and synthesis methods related thereto | |
JP2018015972A (ja) | 立体造形方法、造形物及び立体造形装置 | |
WO2024095313A1 (ja) | 造形用粉体の劣化度測定方法、造形用再生粉体の製造方法及び製造装置、並びに3次元造形物の製造方法及び製造装置 | |
JP2016500401A (ja) | 熱可塑性ポリマー粉末の製造方法 | |
JP2004124201A (ja) | 金属粉末光造形方法 | |
CN109927283A (zh) | 立体打印方法 | |
JP2021020371A (ja) | 立体造形用樹脂粉末、立体造形物の造形装置、及び立体造形物の造形方法 | |
JP2020037258A (ja) | 樹脂粉末、立体造形物の製造方法、及び立体造形物の製造装置 | |
WO2009104677A1 (ja) | 圧粉磁心用鉄基粉末とその製造方法および圧粉磁心とその製造方法 | |
CN118765221A (zh) | 用于增材制造的密度增加的粉末混合物 | |
JP2022531096A (ja) | ポリアミド粉末の粒子及び粉末凝集方法におけるその使用 | |
JP2021146677A (ja) | 樹脂粉末、立体造形用樹脂粉末、樹脂粉末の製造方法、立体造形物の製造方法、及び立体造形物の製造装置 | |
JPH10298299A (ja) | フィラー入りポリテトラフルオロエチレン粒状粉末およびその製法 | |
Belgin Paul et al. | Printability Study of Bioactive Tricalcium Phosphate Ink for Direct Ink Writing Technique | |
Gajdoš et al. | Application of rapid tooling approach in process of thermoforming mold production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22964336 Country of ref document: EP Kind code of ref document: A1 |