WO2024085192A1 - 電極部材の製造方法及び電極部材の製造システム、並びに正極活物質の製造方法、正極活物質、正極合剤及び二次電池 - Google Patents
電極部材の製造方法及び電極部材の製造システム、並びに正極活物質の製造方法、正極活物質、正極合剤及び二次電池 Download PDFInfo
- Publication number
- WO2024085192A1 WO2024085192A1 PCT/JP2023/037723 JP2023037723W WO2024085192A1 WO 2024085192 A1 WO2024085192 A1 WO 2024085192A1 JP 2023037723 W JP2023037723 W JP 2023037723W WO 2024085192 A1 WO2024085192 A1 WO 2024085192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- electrode active
- active material
- sulfur
- component
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/22—Alkali metal sulfides or polysulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
- H01M4/606—Polymers containing aromatic main chain polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for manufacturing a positive electrode active material for a secondary battery and a method for manufacturing an electrode member suitable for the same. It also relates to a positive electrode mixture and a secondary battery that use the electrode member (including the positive electrode active material) obtained by these manufacturing methods.
- lithium secondary batteries have been growing in recent years as a small power source for mobile phones and the like, as well as medium- and large-sized power sources for electric vehicles and power storage.
- lithium the main constituent element of the positive electrode active material in lithium secondary batteries, can only be profitably produced from salt lakes in a few countries, raising concerns about supply instability and price hikes as demand for lithium secondary batteries expands.
- Patent Document 1 discloses that sulfur-modified polyacrylonitrile obtained by heating sulfur powder and polyacrylonitrile powder in a non-oxidizing atmosphere is used as a positive electrode active material for lithium secondary batteries.
- Patent Document 2 discloses that fluorine-introduced sulfur-modified polyacrylonitrile, which has a higher potential due to the introduction of fluorine, is used as a positive electrode active material for secondary batteries.
- Patent Document 3 a method for producing a positive electrode active material using rubbers containing sulfur, such as rubbers derived from tires, as a raw material has been reported (Patent Document 3).
- the rubbers are thermally decomposed to separate them into solids and dry distillation gas, the dry distillation gas is cooled to separate them into oil and gas, the oil is distilled and separated, and the sulfur and heavy oil obtained are mixed and heat-treated to produce a product that is used as the positive electrode active material for lithium secondary batteries.
- Patent No. 5534227 JP 2013-101811 A Patent No. 6266655
- the sulfur-modified polyacrylonitrile-based positive electrode active materials of Patent Documents 1 and 2 are substantially for lithium secondary batteries, and although there are some examples of their use in sodium secondary batteries, the capacity is limited, and there is no track record for secondary batteries using other alkali metals (K) or alkaline earth metals (Ca, Mg).
- K alkali metals
- Ca, Mg alkaline earth metals
- the positive electrode active material using the rubber-derived raw material described in Patent Document 3 has the advantage that waste materials such as rubbers derived from waste tires can be used as the sulfur-containing raw material rubbers. Although it showed excellent performance as a lithium secondary battery, it could not be directly used in secondary batteries of ions other than Li.
- the present invention relates to the following method for producing an electrode member.
- a method for producing an electrode member using a sulfur-containing rubber as a raw material, the electrode member being a positive electrode active material the method comprising: a step (1) of thermally decomposing the raw material to separate it into a solid and a dry distillation gas; a step (2) of separating an unrefined carbonized material from the solid; a step (3) of washing the unrefined carbonized material, and then heat-treating it under a non-oxidizing atmosphere to obtain a refined carbonized material; a step (4) of cooling the dry distillation gas to separate it into an oil and a gas, and distilling the oil into a heavy oil, a light oil, and sulfur; and a step (5) of kneading an ion raw material (A) containing one or more elements selected from the group consisting of Na, K, Ca, and Mg, a carbonized material for a positive electrode active material (B), heavy oil (C), and sulfur (D
- ⁇ 3> The method for producing an electrode member according to ⁇ 1> or ⁇ 2>, wherein at least a part of the component (A) is wood combustion ash obtained by burning wood.
- ⁇ 4> The method for producing an electrode member according to ⁇ 1> or ⁇ 2>, wherein at least a part of the component (A) is a baked eggshell.
- ⁇ 5> The method for producing an electrode member according to any one of ⁇ 1> to ⁇ 4>, wherein the unrefined carbonized material in the step (3) is washed with subcritical or supercritical carbon dioxide.
- ⁇ 6> The method for producing an electrode member according to ⁇ 1> or ⁇ 5>, in which the sulfur-containing rubber is a rubber derived from a tire.
- a method for producing an electrode member using a sulfur-containing rubber as a raw material comprising: The electrode member is a positive electrode active material,
- a method for manufacturing an electrode member comprising the steps of: pyrolyzing the raw material to separate it into a solid and a dry distillation gas; cooling the dry distillation gas to separate it into an oil component and a gas; distilling the oil component to separate it into heavy oil, light oil, and sulfur; kneading the heavy oil and sulfur obtained by the above-mentioned process, an ion raw material containing one or more elements selected from the group consisting of Na, K, Ca, and Mg, and a carbide for a positive electrode active material; and heat treating the mixture in a non-oxidizing atmosphere to obtain a positive electrode active material.
- ⁇ 8> The method for producing an electrode member according to ⁇ 7>, wherein the ion raw material is at least one selected from the group consisting of inorganic detergents, plant combustion ash, burned eggshells, burned shells, gypsum, and hot spring scale.
- a secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, the positive electrode being formed using the positive electrode mixture according to ⁇ 11>.
- TFEP tris(2,2,2-trifluoroethyl)phosphate having sodium bis(fluorosulfonyl)imide (NaFSI) or potassium bis(fluorosulfonyl)imide (KFSI) dissolved therein as an electrolyte salt.
- NaFSI sodium bis(fluorosulfonyl)imide
- KFSI potassium bis(fluorosulfonyl)imide
- the present invention also relates to the following manufacturing system for an electrode member.
- a kneading means for kneading an ion raw material (A) containing one or more elements selected from the group consisting of Na, K, Ca, and Mg, a carbonized material for a positive electrode active material (B), heavy oil (C), and sulfur (D) to obtain a raw material mixture; a heat treatment means (z3) for heat-treating the raw material mixture in a non-oxidizing atmosphere to obtain a solid material; and an adjustment means (z4) for pulverizing and drying the obtained solid material.
- ⁇ 2a> The system for manufacturing an electrode member according to ⁇ 1a>, wherein the unrefined carbonized material is treated with subcritical or supercritical carbon dioxide in a cleaning means (y2).
- ⁇ 3a> The electrode member manufacturing system described in ⁇ 2a>, wherein the electrode member manufacturing system has a gas processing means (w1) that combusts the gas separated by the separation means (z1) and recovers the generated carbon dioxide, and in a cleaning means (y2), the unrefined carbonized material is subjected to subcritical or supercritical carbon dioxide treatment using the carbon dioxide recovered by the gas processing means (w1).
- ⁇ 4a> The system for producing an electrode member according to any one of ⁇ 1a> to ⁇ 3a>, wherein the heat treatment means (x) combusts the light oil separated by the separation means (z1) and uses the generated heat to pyrolyze the raw material.
- ⁇ 5a> The system for producing an electrode member according to any one of ⁇ 1a> to ⁇ 4a>, further comprising a crushing means (w3) for crushing the refined carbide obtained by the heat treatment means (y3).
- w3 a crushing means for crushing the refined carbide obtained by the heat treatment means (y3).
- w6a> The system for producing an electrode member according to any one of ⁇ 1a> to ⁇ 5a>, further comprising an ion raw material producing means (w4) for producing one or more selected from the group consisting of inorganic detergents, plant combustion ash, burned eggshells, burned seashells, gypsum, and hot spring scale.
- ⁇ 7a> The electrode member manufacturing system according to any one of ⁇ 1a> to ⁇ 6a>, further comprising a neutralization treatment means (w5), the neutralization treatment means (w5) neutralizes the sulfide generated in the heat treatment means (z3) to produce the neutralized solid content, and the ion raw material (A) contains the neutralized solid content.
- ⁇ 8a> The system for producing an electrode member according to any one of ⁇ 1a> to ⁇ 7a>, wherein the sulfur-containing rubber is a rubber derived from a tire.
- a method for producing a positive electrode active material comprising a step of heat-treating, in a non-oxidizing atmosphere, a raw material mixture obtained by mixing the following components (A) to (D): Component (A): an ion raw material component containing one or more elements selected from the group consisting of Na, K, Ca, and Mg; (B): a carbonized component for a positive electrode active material; (C): a heavy oil component; and (D): sulfur.
- ⁇ 2b> The method for producing a positive electrode active material according to ⁇ 1b>, wherein at least a part of component (A) is one or more selected from the group consisting of an inorganic detergent, plant combustion ash, calcined eggshell, calcined seashell, gypsum, and hot spring scale.
- component (B) is a refined carbonized product obtained by pyrolyzing a sulfur-containing rubber to separate it into a solid and a dry distillation gas, selecting an unrefined carbonized product from the solid, and heat-treating the unrefined carbonized product.
- ⁇ 4b> The method for producing a positive electrode active material according to any one of ⁇ 1b> to ⁇ 3b>, wherein at least a part of the component (C) is heavy oil obtained by thermally decomposing a sulfur-containing rubber to separate it into a solid and a dry distillation gas, cooling the dry distillation gas to separate it into an oil component and a gas, and distilling the oil component to separate it into a heavy oil, a light oil, and sulfur.
- ⁇ 5b> The method for producing a positive electrode active material according to any one of ⁇ 1b> to ⁇ 4b>, wherein at least a part of component (D) is sulfur obtained by thermally decomposing a sulfur-containing rubber to separate it into a solid and a dry distillation gas, cooling the dry distillation gas to separate it into an oil component and a gas, and distilling the oil component to separate it into a heavy oil, a light oil, and sulfur.
- component (D) is sulfur obtained by thermally decomposing a sulfur-containing rubber to separate it into a solid and a dry distillation gas, cooling the dry distillation gas to separate it into an oil component and a gas, and distilling the oil component to separate it into a heavy oil, a light oil, and sulfur.
- ⁇ 6b> The method for producing a positive electrode active material according to any one of ⁇ 1b> to ⁇ 4b>, wherein component (A) is one or more selected from the group consisting of inorganic detergents, plant combustion ash, burned eggshells, burned seashells, gypsum, and hot spring scale, At least a part of the component (B) is a refined carbonized product obtained by pyrolyzing a sulfur-containing rubber and separating it into a solid matter and a carbonization gas, separating an unrefined carbonized product from the solid matter, and heat-treating the unrefined carbonized product; At least a portion of the component (C) is a heavy oil obtained by cooling the dry distillation gas to separate it into an oil component and a gas, and distilling the oil component to separate it into a heavy oil component, a light oil component, and sulfur, The method for producing a positive electrode active material according to ⁇ 1b>, wherein at least a part of the component (D) is sulfur obtained by distill
- ⁇ 7b> The method for producing a positive electrode active material according to any one of ⁇ 3b> to ⁇ 6b>, in which the sulfur-containing rubber is a rubber derived from a tire.
- ⁇ 8b> A positive electrode active material obtained by the production method according to any one of ⁇ 1b> to ⁇ 7b>.
- ⁇ 1c> A positive electrode mixture containing the positive electrode active material according to ⁇ 8b>.
- ⁇ 2c> A secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode is formed using the positive electrode mixture according to ⁇ 1c>.
- the electrolytic solution is a phosphate having sodium bis(fluorosulfonyl)imide (NaFSI) or potassium bis(fluorosulfonyl)imide (KFSI) dissolved therein as an electrolyte salt.
- NaFSI sodium bis(fluorosulfonyl)imide
- KFSI potassium bis(fluorosulfonyl)imide
- the present invention provides a method and system for manufacturing an electrode member using sulfur-containing rubber as a raw material. It also provides a method and a positive electrode active material containing ion species other than lithium, as well as a positive electrode mixture and a secondary battery.
- FIG. 1 is a conceptual diagram of a manufacturing system for an electrode member according to an embodiment of the present invention.
- the term “electrode member” means “a member constituting an electrode of a battery”, and specifically means an electrode active material (a positive electrode active material and a negative electrode active material), a conductive material (a positive electrode conductive material and a negative electrode conductive material), and a current collector (a positive electrode current collector and a negative electrode current collector).
- the "positive electrode active material” refers to an electrode active material that is used for a positive electrode among materials involved in a reaction that generates electric energy.
- the “negative electrode active material” refers to an electrode active material that is used for a negative electrode among materials involved in a reaction that generates electric energy.
- a carbonized product is a concept that encompasses not only a "carbon material composed of pure carbon atoms" but also a "material containing carbon atoms and impurities (such as mineral components derived from the carbon-containing raw material) obtained by heat treating a carbon-containing raw material.”
- the term “unrefined carbonized material” refers to a carbonized material selected from a solid material obtained by pyrolysis of a raw material that is a sulfur-containing rubber.
- the term “refined carbonized material” refers to a carbonized material obtained by washing the unrefined carbonized material and then subjecting it to a heat treatment in a non-acidic atmosphere. The unrefined carbonized material and the refined carbonized material may be subjected to a pulverization treatment as desired.
- the present invention relates to a method for producing a positive electrode active material, the method including a step of heat-treating a raw material mixture obtained by mixing the following components (A) to (D) in a non-oxidizing atmosphere (hereinafter referred to as the "method for producing the positive electrode active material of the present invention").
- Component (A) An ion raw material containing one or more elements selected from the group consisting of Na, K, Ca, and Mg.
- Component (B) Carbonized material for positive electrode active material.
- Component (C) Heavy oil.
- Component (D) Sulfur.
- the positive electrode active material of the present invention can be produced as follows using the components (A) to (D) as starting materials, that is, by including the following steps (p1) and (p2) in this order.
- Step (p1) A step of mixing components (A) to (D) to obtain a raw material mixture.
- Step (p2) A step of heat-treating the obtained raw material mixture in a non-oxidizing atmosphere to obtain a heat-treated product.
- the positive electrode active material of the present invention can be suitably manufactured by the "electrode member manufacturing system of the present invention" described below in ⁇ 2. Electrode member manufacturing method and electrode member manufacturing system>, but is not limited thereto, and the positive electrode active material manufacturing method of the present invention can also be performed using manufacturing equipment other than the "electrode member manufacturing system of the present invention.”
- Step (p1) is a step of mixing components (A) to (D) to obtain a raw material mixture.
- Component (A) is an ion source containing one or more elements selected from the group consisting of Na, K, Ca, and Mg.
- the ionic raw material which is component (A), refers to a raw material that contains the target ionic species (Na, K, Ca, or Mg) and can provide the desired ionic species to the positive electrode active material.
- the ionic raw material, component (A) may be one type, but two or more types may be used. When two or more types of ionic raw materials are used, the ionic species may be the same or different.
- component (A) examples include percarbonates, carbonates, hydrogen carbonates, sulfates, and nitrates of Na, K, Ca, or Mg.
- a new raw material can be used, but it is preferable to use a raw material derived from waste.
- component (A) only a new raw material may be used, only a raw material derived from waste may be used, or a mixture of a new raw material and a raw material derived from waste (mixing ratio is optional) may be used.
- component (A) is an inorganic detergent containing a peroxygen bleach.
- the sodium percarbonate contained in the peroxygen bleach of inorganic detergents can be a suitable sodium source.
- component (A) is plant combustion ash (particularly wood combustion ash).
- Plant fuel ash is the combustion ash of a plant-based raw material, and contains Na, K, Ca, and Mg (particularly Ca) derived from the plant-based raw material, as well as other mineral components.
- the plant-based raw material is at least one selected from rice husks, straw, bamboo, thinning materials, and weeds.
- wood combustion ash is the combustion ash of wood raw material.
- the wood raw material is not particularly limited as long as it does not impair the object of the present invention, but typically includes broad-leaved trees such as cedar, larch, and cypress, coniferous trees such as beech, birch, and oak, and bamboo.
- broad-leaved trees such as cedar, larch, and cypress
- coniferous trees such as beech, birch, and oak
- bamboo bamboo
- examples of wood raw materials include wood from dismantled houses, wood waste from sawmills, wood waste from furniture factories, wood from trees, etc.
- component (A) is a calcined biological material that contains calcium.
- calcium-containing biological materials include eggshells and seashells, and calcined products of these, such as calcined eggshells and calcined seashells, can be suitably used as ion sources that provide calcium.
- component (A) is gypsum.
- Gypsum is a mineral containing calcium sulfate and is suitable as a calcium source.
- the gypsum is not particularly limited as long as it does not impair the object of the present invention, but from the viewpoint of waste utilization, gypsum produced by separating gypsum boards can be used.
- component (A) is hot spring scale.
- Hot spring scale is a component that was originally dissolved in hot spring water but precipitates and accumulates as an insoluble component due to changes in temperature or pressure, contact with air, contact with pipes, etc.
- the components of hot spring scale depend on the original hot spring water, but include at least one of calcium, sodium, potassium, and magnesium. Since hot spring scale often also contains components such as silica-based minerals and iron oxide hydroxide, these may be removed as necessary before use as component (A).
- the carbonized product for a positive electrode active material which is component (B), is a carbonized product used as a raw material for a positive electrode active material.
- the carbonized material for the positive electrode active material any carbon material can be used as long as it does not impair the object of the present invention.
- the carbonized material include graphite powder, carbon black (e.g., acetylene black, ketjen black, furnace black, etc.), and fibrous carbon materials (carbon nanotubes, carbon nanofibers, vapor-grown carbon fibers, etc.).
- the carbonized material for the positive electrode active material it is preferable to use a carbon-containing raw material that has been heat-treated under inactive conditions.
- the carbon-containing raw material that is used as the raw material for the carbonized material can be any material as long as it does not impair the object of the present invention, and examples of the carbon-containing raw material include biomass raw materials (e.g., wood, bamboo, rice husks, etc.), various resin materials, and plastics such as rubber materials. These carbon-containing raw materials can be used alone or in combination of two or more types.
- component (B) contains at least a portion of a refined carbide, which will be described later in ⁇ 2.
- Manufacturing method and manufacturing system for electrode member> a suitable example of the carbonized material for positive electrode active material, which is component (B), is a refined carbonized material obtained by pyrolyzing a rubber containing sulfur to separate it into a solid and a dry distillation gas, separating the carbonized material from the solid, and heat-treating the unrefined carbonized material.
- the heat treatment conditions are appropriately determined in consideration of the type of carbon-containing raw material and the physical properties (crystallinity, porosity, etc.) of the target carbonized product.
- the carbon-containing raw material is heated in a non-oxidizing atmosphere (e.g., under a flow of an inert gas such as N2 ) to perform the carbonization treatment.
- the carbonization temperature is, for example, 500°C or higher and 1200°C or lower.
- the heavy oil as component (C) is an essential component of the positive electrode active material and also functions as a binder that binds the other components together during production.
- Heavy oils that can be used include coal tar, petroleum, and rubber oils.
- component (C) contains at least a portion of heavy oil, which will be described later in ⁇ 2.
- Manufacturing method and manufacturing system for electrode member> a suitable example of the heavy oil which is component (C) is a heavy oil at least a portion of which is obtained by thermally decomposing sulfur-containing rubbers to separate them into solids and dry distillation gas, cooling the dry distillation gas to separate it into an oil component and a gas, and distilling the oil component to separate it into heavy oil, light oil, and sulfur.
- the sulfur as component (D) may be a commercially available product, or may be one separated from a compound or composition containing sulfur.
- component (D) contains at least a portion of sulfur, which will be described later in ⁇ 2.
- Manufacturing method and manufacturing system for electrode member> At least a portion of component (D) is sulfur obtained by thermally decomposing sulfur-containing rubbers to separate them into solids and carbonization gas, cooling the carbonization gas to separate it into an oil component and a gas, and distilling the oil component to separate it into heavy oil, light oil, and sulfur.
- component (A) is at least one selected from the group consisting of inorganic detergents, plant combustion ash, burned eggshells, burned seashells, gypsum, and hot spring scale; at least a portion of component (B) is a refined carbonized material obtained by pyrolyzing sulfur-containing rubbers to separate them into a solid and a dry distillation gas, selecting an unrefined carbonized material from the solid, and heat treating the unrefined carbonized material; at least a portion of component (C) is heavy oil obtained by cooling the dry distillation gas to separate it into an oil and a gas, distilling the oil to separate it into heavy oil, light oil, and sulfur; and at least a portion of component (D) is sulfur obtained by distilling the oil to separate it into heavy oil, light oil, and sulfur.
- component (B) is a refined carbonized material obtained by pyrolyzing sulfur-containing rubbers to separate them into a solid and a dry distillation gas, selecting an unrefined carbonized material from the solid, and heat treating the
- the proportions of the components (A) to (D) are appropriately determined depending on the types of the components (A) to (D) within the range in which they function as a positive electrode active material.
- suitable ratios of components (A) to (D) are 20 to 60% by weight of component (A), 10 to 30% by weight of component (B), 5 to 15% by weight of component (C), and 20 to 40% by weight of component (D).
- the mixing method in step (p1) may be dry mixing, which is commonly used industrially.
- dry mixing devices include a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, and a dry ball mill.
- Mixing may also be performed by wet mixing, provided that the object of the present invention is not impaired.
- step (p2) the raw material mixture obtained in step (p1) is heat-treated in a non-oxidizing atmosphere to obtain a heat-treated product.
- non-oxidizing atmosphere refers to an atmosphere that does not substantially contain oxidizing gases such as oxygen, and is typically an inert gas atmosphere such as nitrogen, argon, or helium. In addition, as long as it does not impair the objective of the present invention, it may also be a reducing atmosphere such as hydrogen or an inert gas containing hydrogen.
- step (p2) the raw material mixture is heat-treated, for example, by placing the raw material mixture in a non-oxidizing atmosphere, raising the temperature from room temperature to a heat treatment temperature, performing heat treatment at the heat treatment temperature for a predetermined period of time, and then lowering the temperature to, for example, room temperature.
- the heat treatment temperature and heat treatment time are appropriately set in a range that produces the desired heat-treated product (positive electrode active material) depending on the types and proportions of the components (A) to (D).
- the heat treatment temperature is, for example, 250° C. to 500° C. (preferably, 300° C. to 400° C.)
- the heat treatment time is, for example, 10 minutes to 10 hours.
- the heat-treated product obtained in step (p2) is used after being pulverized as necessary.
- the pulverization method may be any pulverization method commonly used in industry. Examples of pulverizing equipment include pulverizers such as vibration mills, jet mills, and dry ball mills. In addition, classification operations such as air classification may be performed as necessary.
- Electrode member manufacturing method and electrode member manufacturing system The above-mentioned method for producing a positive electrode active material of the present invention can be a part of a method for producing an electrode member using a sulfur-containing rubber as a raw material (hereinafter referred to as "the method for producing an electrode member of the present invention") described below.
- the method for producing an electrode member of the present invention can be suitably realized by using a system for producing an electrode member (hereinafter referred to as "the system for producing an electrode member of the present invention”) described below.
- the electrode member manufacturing method of the present invention when manufacturing electrode members (electrode active material, conductive material, and current collector) from sulfur-containing rubbers as raw materials, can reuse not only the main raw materials for the electrode members, such as carbide, sulfur, and heavy oil, but also the by-produced light oil, sulfide, carbon dioxide, and exhaust heat, and use them as raw materials and energy. Therefore, the electrode member manufacturing method of the present invention can use sulfur-containing rubbers, such as tires, as raw materials for battery components.
- the manufacturing method for electrode members of the present invention can use new raw materials, but has the advantage of being able to effectively use rubber materials that are normally discarded (e.g., waste tires, etc.) as raw materials.
- the method for manufacturing an electrode member of the present invention is a method for manufacturing an electrode member using a sulfur-containing rubber as a raw material, the electrode member being a positive electrode active material, and is characterized by comprising the steps of: pyrolyzing the raw material to separate it into a solid and a dry distillation gas; cooling the dry distillation gas to separate it into an oil and a gas; distilling the oil to separate it into a heavy oil, a light oil, and sulfur; kneading the heavy oil and the sulfur, an ion raw material containing one or more elements selected from the group consisting of Na, K, Ca, and Mg, and a carbonized material for a positive electrode active material, and heat treating the mixture in a non-oxidizing atmosphere.
- Another example of the method for manufacturing an electrode member of the present invention is a method for manufacturing an electrode member using sulfur-containing rubber as a raw material, the electrode member being a negative electrode active material, characterized in that the method includes the steps of pyrolyzing the raw material to separate it into a solid and a dry distillation gas, selecting an unrefined carbonized material from the solid, treating the unrefined carbonized material with subcritical or supercritical carbon dioxide, and then heat treating it in a non-oxidizing atmosphere to obtain a refined carbonized material as the negative electrode active material.
- Another example of the manufacturing method of the electrode member of the present invention is a manufacturing method of an electrode member using a rubber containing sulfur as a raw material, the electrode member being a positive electrode active material, the method comprising: a step (1) of pyrolyzing the raw material to separate it into a solid and a dry distillation gas; a step (2) of selecting an unrefined carbonized material from the solid; a step (3) of washing the unrefined carbonized material, and then heat-treating it under a non-oxidizing atmosphere to obtain a refined carbonized material; a step (4) of cooling the dry distillation gas to separate it into an oil and a gas, and distilling the oil to separate it into a heavy oil, a light oil, and sulfur; and a step (5) of kneading an ion raw material (A) containing one or more elements selected from the group consisting of Na, K, Ca, and Mg, a carbonized material for a positive electrode active material (B), heavy oil (C), and sulfur (D), and
- the above-mentioned manufacturing method of the electrode member of the present invention can be suitably carried out using the manufacturing system of the electrode member of the present invention.
- the electrode member manufacturing system of the present invention is a manufacturing system for an electrode member that uses the manufacturing method for an electrode member of the present invention described above, and includes a heat treatment means (x) for pyrolyzing the raw material and separating it into a solid and a dry distillation gas, a sorting means (y1) for separating an unrefined carbonized material from the solid, a washing means (y2) for washing the unrefined carbonized material, a heat treatment means (y3) for heat treating the washed unrefined carbonized material in a non-oxidizing atmosphere to obtain a refined carbonized material, and a heat treatment means (y4) for cooling the dry distillation gas to separate it into an oil and a gas, and a heat treatment means (y5) for cooling the dry distillation gas to separate it into an oil and a gas, and a heat treatment means (y6) for cooling the dry distillation gas to obtain a refined carbonized material.
- a heat treatment means (x) for pyrolyzing the raw material and separating it into a
- the system includes a separation means (z1) for distilling the mixture and separating it into heavy oil, light oil, and sulfur, a kneading means (z2) for kneading an ion raw material (A) containing one or more elements selected from the group consisting of Na, K, Ca, and Mg, a carbonized material for a positive electrode active material (B), heavy oil (C), and sulfur (D) to obtain a raw material mixture, a heat treatment means (z3) for heat-treating the raw material mixture in a non-oxidizing atmosphere to obtain a solid, and an adjustment means (z4) for pulverizing and drying the obtained solid.
- a separation means (z1) for distilling the mixture and separating it into heavy oil, light oil, and sulfur
- a kneading means (z2) for kneading an ion raw material (A) containing one or more elements selected from the group consisting of Na, K, Ca, and Mg, a carbonized material for a
- FIG. 1 is a conceptual diagram of a manufacturing system for battery components according to an embodiment of the present invention.
- rubbers containing sulfur are used as raw materials, the raw materials are pyrolyzed to separate them into solids and dry distillation gas, unrefined carbonized material is selected from the solids, refined carbonized material (carbonized material for negative electrode active material and/or positive electrode active material (corresponding to component (B) above)) is produced from the obtained unrefined carbonized material, the dry distillation gas is cooled to separate it into oil and gas components, the oil components are distilled to separate it into heavy oil, light oil, and sulfur, and the obtained heavy oil (corresponding to component (C) above) and sulfur (corresponding to component (D) above), refined carbonized material (corresponding to component (B) above), and ion raw material (corresponding to component (A) above) are kneaded and heat-treated to produce a positive electrode active material.
- rubbers containing sulfur as a raw material can be used as raw materials, the raw materials are pyrolyzed
- the negative electrode active material thus obtained can be applied together with a binder to a negative electrode current collector to produce a negative electrode.
- the positive electrode active material thus obtained can be applied together with a binder to a positive electrode current collector to produce a positive electrode.
- the produced positive electrode and negative electrode can be used to produce a battery.
- the negative electrode active material, the negative electrode conductive material, and the negative electrode, as well as the positive electrode active material, the positive electrode conductive material, and the positive electrode according to the present invention are not limited to being used to manufacture the same battery, and can also be used to manufacture separate batteries.
- rubber as a raw material is thermally decomposed using a thermal decomposition furnace as a heat treatment means (x), whereby the rubber is separated into a solid material and a gaseous dry distillation gas.
- the heat for pyrolyzing the rubbers as raw materials in the pyrolysis furnace is the combustion heat generated when light oil is burned in the combustion furnace, which is the combustion means (w2). If the combustion heat is insufficient, fuel is added from the outside to heat the system. By using the combustion heat of light oil, the need to add fuel from the outside is reduced, improving the energy efficiency of the production method (and production system) according to this embodiment.
- the thermal decomposition conditions in the thermal treatment means (x) can be appropriately set depending on the amount and type of raw material to be thermally decomposed, etc. Any thermal treatment means can be used as the thermal treatment means (x) as long as it can thermally decompose the raw material and separate it into a solid and a dry distillation gas.
- the raw rubber may be any rubber containing sulfur, and is preferably rubber derived from tires.
- rubbers derived from tires refers to rubbers contained in tires, and tires are obtained by removing components other than rubber (metals such as reinforcing materials).
- the tire may be any tire that uses vulcanized rubber, and examples of such tires include pneumatic tires, solid tires, etc.
- new tires can be used as the raw rubber material, but tires that are discarded after use (scrap tires) and waste materials that are generated and discarded as defective or surplus materials during the tire manufacturing process and contain sulfur-containing rubber as the main component can also be used.
- the rubbers used as raw materials can be used not only for the above-mentioned tires, but also for, for example, vibration-proof rubber components for automobiles.
- the solid matter separated from the rubbers by pyrolysis is sorted using a sorting machine, which is a sorting means (y1). This separates the solid matter into unrefined charcoal and non-unrefined charcoal (typically metals). As mentioned above, tires contain metals such as reinforcing materials in addition to rubbers, but the sorting process removes the metals from the solid matter.
- sorting means (y1) Any sorting means can be used as the sorting means (y1) as long as it can separate the unrefined carbonized material from the solid material obtained by the heat treatment means (x).
- a magnetic sorter, a wind sorter, or a sieve sorter can be used as the sorting means (y1).
- Metals separated from the solids can be recycled as metal resources.
- the unrefined carbide separated from the solids is washed to remove impurities.
- a subcritical/supercritical treatment device which is the washing means (y2)
- the unrefined carbide is washed with subcritical or supercritical carbon dioxide, and the quality and performance of the carbide (refined carbide) for use as a negative electrode active material or positive electrode active material can be improved.
- the unrefined carbonized material separated from the solids may be crushed if necessary before washing.
- the cleaning means (y2) can be any cleaning means as long as it can clean the unrefined carbonized material separated from the solid matter.
- the washed unrefined carbide is subjected to a heat treatment (under a non-oxidizing atmosphere, at 500 to 1200° C.) using a heat treatment device, which is a heat treatment means (y3), to obtain a refined carbide.
- the refined carbide obtained can be recycled as a carbide for a negative electrode active material or a positive electrode active material.
- the heat treatment conditions (shape and dimensions of the heat treatment machine, temperature, heat treatment time, etc.) in the heat treatment means (y3) can be appropriately set depending on the amount and type of the unrefined carbide to be heat-treated, etc.
- Any heat treatment means can be used as the heat treatment means (y3) as long as it can heat-treat the unrefined carbide to be heat-treated in a non-oxidizing atmosphere and obtain a refined carbide (a carbide for a negative electrode active material and a positive electrode active material).
- the obtained refined carbide can be pulverized by a pulverizer, which is a pulverizing means (w3), and can be pulverized.
- the pulverized refined carbide can be molded using a binder as a negative electrode active material and recycled as a negative electrode of a battery.
- the pulverizing means (w3) may be a pulverizer such as a vibration mill, a jet mill, or a dry ball mill.
- the refined carbonized material obtained can also be used for purposes other than the negative electrode active material of secondary batteries and conductive materials (e.g., active material for capacitors and carrier for fuel cell catalysts, etc.).
- the carbonized gas separated from the rubbers by thermal decomposition is sent to a separation means (z1) for separating the carbonized gas.
- the separation means (z1) has a cooler for separating the carbonized gas into gas and liquid, a distiller for distilling the liquid separated by the cooler, and a desulfurizer (not shown) for removing sulfur from the gas or liquid.
- the carbonized gas is first cooled using a cooler, whereby the carbonized gas is separated into a liquid oil fraction and a gas fraction (non-condensed gas).
- the production ratio and composition of heavy oil and non-condensable gas can be controlled by the cooling temperature of the cooler. Lowering the cooling temperature increases the production ratio of heavy oil and decreases the amount of hydrocarbons contained in the non-condensable gas. Therefore, it is possible to detect the hydrocarbon concentration of the non-condensable gas with a detector and control the cooling temperature so that the concentration remains constant.
- the non-condensed gas separated from the dry distillation gas is decompressed and then desulfurized using a desulfurizer.
- the sulfur recovered by the desulfurizer can also be used to manufacture positive electrode active materials.
- the non-condensed gas after the desulfurization process is a hydrocarbon gas that does not contain sulfur, and is sent to the gas processing means (w1).
- the gas processing means (w1) has a combustor and a carbon dioxide recovery device.
- the desulfurized gas to be condensed is burned in the combustor, and then the carbon dioxide is recovered in the carbon dioxide recovery device, and the rest is exhausted.
- a part or all of the recovered CO2 can be used for the subcritical or supercritical carbon dioxide treatment of the unrefined char in the above-mentioned washing means (y2).
- the oil separated from the dry distillation gas is distilled in a distiller at a temperature above the boiling point of sulfur. This process separates the light oil, which contains a large amount of sulfur, and leaves behind the heavy oil, which contains almost no sulfur.
- Light oil containing sulfur is desulfurized in a desulfurizer, which separates it into sulfur and sulfur-free light oil, which are then recovered.
- the separated sulfur-free light oil can then be recycled as fuel.
- the separation means (z1) according to this embodiment has a cooler, a distiller, and a desulfurizer
- any separation means can be used for the separation means (z1) according to the present invention as long as it can separate the dry distillation gas obtained by the heat treatment means (x) into gas components, heavy oil, light oil, and sulfur.
- the separated heavy oil and sulfur are kneaded together with the refined carbide (positive electrode active material) and ion raw material recovered from the solid matter using a kneader, which is the kneading means (z2), and then heat-treated in a heat treatment machine (non-oxidizing atmosphere), which is the heat treatment means (z3).
- the mixture is then crushed in a crusher included in the adjustment means (z4), and further dried in a vacuum dryer included in the adjustment means (z4), thereby producing the desired solid positive electrode active material.
- the kneading means (z2), the heat treatment means (z3) and the adjusting means (z4) are optional as long as they do not impair the object of the present invention.
- the kneading means (z2) may be a dry mixer that is commonly used industrially. Examples of the dry mixer include a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, and a dry ball mill. The kneading may also be performed by wet mixing as long as it does not impair the object of the present invention.
- the heat treatment means (z3) may be an electric heat treatment machine, a combustion heat treatment machine, a batch type heat treatment machine, or a flow type heat treatment machine. Examples of the pulverizer included in the adjusting means (z4) include a vibration mill, a jet mill, and a dry ball mill.
- the ion raw material, carbonized material for the positive electrode active material, heavy oil, and sulfur correspond to components (A), (B), (C), and (D) in ⁇ 1.
- ion raw material has been described in detail above as component (A), so a detailed explanation will be omitted here.
- raw materials such as inorganic detergents, eggshells, plant-derived raw materials (grasses), shells, gypsum, and hot spring scale are subjected to heat treatment or other processing using a heat treatment machine, which is the ion raw material production means (w4), and used as an ion raw material containing one or more elements selected from the group consisting of Na, K, Ca, and Mg.
- the carbonized material for the positive electrode active material (component (B)), heavy oil (component (C)), and sulfur (component (D)) used in the production of the positive electrode active material are not limited to those derived from the rubbers used as raw materials, and those produced from other raw materials or commercially available products may be added as necessary. However, it is preferable that at least a part of the carbonized material for the positive electrode active material (component (B)), heavy oil (component (C)), and sulfur (component (D)) used in the production of the positive electrode active material is obtained by the method for producing an electrode member of the present invention.
- the carbonized material for the positive electrode active material is a refined carbonized material obtained by thermally decomposing sulfur-containing rubbers and separating them into a solid and a dry distillation gas, selecting an unrefined carbonized material from the solid, and heat treating the unrefined carbonized material
- at least a part of the heavy oil (component (C)) is a heavy oil obtained by cooling the dry distillation gas to separate it into an oil and a gas, and distilling the oil to separate it into a heavy oil, a light oil, and sulfur
- at least a part of the sulfur (component (D)) is sulfur obtained by distilling the oil to separate it into a heavy oil, a light oil, and sulfur.
- the sulfides (particularly hydrogen sulfide) generated during the heat treatment in the heat treatment means (z3) are desulfurized in an aqueous solution containing a neutralizing agent in the neutralization means (w5), which is a neutralizer, and the sulfur content is recovered.
- the solid matter containing ions (neutralized solid matter) obtained by evaporating water from the aqueous solution containing the neutralizing agent used in the desulfurization process can also be reused as an ion raw material.
- the positive electrode mixture of the present invention may be composed only of the positive electrode active material of the present invention, but in order to reduce the resistance inside the electrode, it may be mixed with a conductive material that is another conductive material (and other materials as necessary) and used.
- the conductive material has the role of improving electronic conductivity when the electrode is formed.
- the conductive material may be either an inorganic material or an organic material as long as it has electrical conductivity (electronic conductivity) and does not impair the performance of the positive electrode active material of the present invention, but is typically a carbon-based material.
- any carbon-based material used in secondary batteries can be used, and more specific examples thereof include graphite powder, carbon black (e.g., acetylene black, ketjen black, furnace black, etc.), fibrous carbon materials (carbon nanotubes, carbon nanofibers, vapor-grown carbon fibers, etc.), and the like.
- carbon black is a fine particle having a large surface area, and its addition to the positive electrode mixture can increase the electrical conductivity inside the resulting electrode, thereby improving the charge/discharge efficiency and large current discharge characteristics.
- Manufacturing method and system for manufacturing electrode members> can also be used as a carbon-based material as a conductive material.
- the shape and size of the conductive carbonaceous material can be appropriately selected taking into consideration the intended use of the electrode, but if the carbonaceous material is particulate, it has a particle size of, for example, 0.03 to 500 ⁇ m, and if it is fibrous, it has a diameter of 2 nm to 20 ⁇ m and a total length of about 0.03 to 500 ⁇ m.
- the conductive material used in the present invention may be one type, or two or more types of conductive materials differing in size (particle size, fiber diameter, and fiber length), crystallinity, etc. may be used in any ratio.
- the proportion of the conductive material in the positive electrode mixture can be appropriately selected taking into consideration the intended use of the electrode, but if the conductive material is a carbon-based material, the proportion of the carbon-based material in the electrode is usually 5 to 100 parts by weight per 100 parts by weight of the electrode active material.
- the positive electrode mixture of the present invention may contain other components to the extent that the purpose is not impaired.
- a typical example of such other components is a binder.
- the binder acts as a binding agent for adhering other electrode constituent materials.
- the binder include binders made of organic polymer compounds.
- the organic polymer compounds as binders include polysaccharides and derivatives thereof, such as methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl hydroxyethyl cellulose, and nitrocellulose;
- the resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVDF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers, hexafluoropropylene-vinylidene fluoride copolymers, tetrafluoroethylene-perfluorovinyl ether copolymers; phenol resins; melamine resins; polyurethane resins; urea resins; poly
- the binder may contain multiple types of binding agents.
- the amount of binder in the electrode is usually about 0.5 to 50 parts by weight, and preferably about 1 to 30 parts by weight, per 100 parts by weight of the positive electrode active material and conductive material combined.
- the secondary battery of the present invention is characterized in that it comprises a positive electrode, a negative electrode, and an electrolyte, and the positive electrode is made of the positive electrode mixture of the present invention.
- the structure of the secondary battery of the present invention is not particularly limited, and the structure of a conventionally known secondary battery can be adopted. For example, a stacked (flat) battery, a wound (cylindrical) battery, etc. can be mentioned.
- the positive electrode has a current collector and a positive electrode active material layer formed on the surface of the current collector, and the positive electrode active material layer is formed from the positive electrode mixture of the present invention (positive electrode active material, conductive material, and binder).
- the current collector is not particularly limited and may be any conventionally known material. Examples include foils, meshes, expanded grids (expanded metals), punched metals, etc. made of conductive materials such as aluminum, nickel, copper, and stainless steel (SUS).
- the size and thickness of the current collector are determined based on the intended use of the battery, and an appropriate size can be selected depending on the size of the positive electrode being used.
- the method for manufacturing a positive electrode is typically to mix a positive electrode mixture (positive electrode active material, conductive material, and binder) with a solvent to prepare a slurry, which is then coated onto a current collector, dried, and then pressed or otherwise adhered to the collector, forming a positive electrode active material layer on the surface of the current collector to obtain a positive electrode.
- a positive electrode mixture positive electrode active material, conductive material, and binder
- the solvent for the slurry examples include amines such as N,N-dimethylaminopropylamine and diethyltriamine; ethers such as ethylene oxide and tetrahydrofuran; ketones such as methyl ethyl ketone; esters such as methyl acetate; and aprotic polar solvents such as dimethylacetamide and N-methyl-2-pyrrolidone.
- the method for applying the slurry to the current collector is not limited as long as it does not impair the object of the present invention, and examples of the method include slit die coating, screen coating, curtain coating, knife coating, gravure coating, and electrostatic spraying.
- the negative electrode has a current collector and a negative electrode active material layer formed on the surface of the current collector, and the negative electrode active material layer is typically formed of a negative electrode mixture containing a negative electrode active material.
- Anode active materials include carbon materials such as natural graphite, artificial graphite, cokes, hard carbon, carbon black, pyrolytic carbons, carbon fiber, and sintered organic polymer compounds.
- the carbon material may be in any shape, such as flakes like natural graphite, spheres like mesocarbon microbeads, fibers like graphitized carbon fiber, or aggregates of fine powder.
- the carbon material may also function as a conductive material.
- the negative electrode active material in the present invention is not limited to a specific one, but hard carbon may be used.
- Hard carbon is a carbon material whose stacking order hardly changes even when heat-treated at high temperatures of 2000°C or higher, and is also called non-graphitizable carbon.
- Examples of hard carbon include carbon fibers made by carbonizing infusible yarn, an intermediate product in the carbon fiber manufacturing process, at about 1000-1400°C, and carbon materials made by oxidizing organic compounds in air at about 150-300°C and then carbonizing them at about 1000-1400°C. There are no particular limitations on the method for manufacturing hard carbon, and hard carbon manufactured by conventional methods can be used.
- the refined carbide described in ⁇ 2. Manufacturing method and manufacturing system of electrode member> can be used.
- the refined carbide the same one as component (B) in the positive electrode active material can be used. That is, a suitable example of a negative electrode active material is a refined carbonized material, at least a portion of which is obtained by pyrolyzing a sulfur-containing rubber to separate it into a solid and a dry distillation gas, separating an unrefined carbonized material from the solid, and heat-treating the unrefined carbonized material.
- the above-mentioned carbon materials may be used as the negative electrode active material either alone or in combination of two or more.
- the amount of negative electrode active material in the negative electrode active material layer is not particularly limited, but is preferably 80 to 95 mass %.
- the binder can be the same as that usable for the positive electrode, a description of these will be omitted.
- a conductive material such as aluminum, nickel, copper, or stainless steel (SUS) is used.
- the current collector is made of foil, mesh, expanded grid (expanded metal), punched metal, etc.
- the method for forming the negative electrode active material layer on the current collector can be the same as the method for forming the positive electrode active material layer on the current collector.
- the type of electrolyte is not particularly limited and can be selected as necessary.
- the electrolyte may be at least one type selected from a solid electrolyte and a liquid electrolyte (i.e., an electrolytic solution).
- an electrolytic solution i.e., an electrolytic solution
- the electrolytic solution contains an electrolyte salt and a non-aqueous solvent.
- the electrolyte salt can be an electrolyte salt (e.g., sodium salt or potassium salt) for use in the secondary battery.
- electrolyte salt e.g., sodium salt or potassium salt
- One type of electrolyte salt can be used, or two or more types can be used in combination.
- the non-aqueous solvent may be any of the non-aqueous solvents used in secondary batteries, including carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; ethers such as 1,2-dimethoxyethane and 1,3-dimethoxypropane; amides such as N,N-dimethylformamide and N,N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; phosphates such as tris(2,2,2-trifluoroethyl)phosphate; or the above organic solvents further containing fluorine substituents.
- carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate
- ethers such as 1,2-dimethoxyethane and 1,3-dimethoxypropane
- amides such as N,N-dimethylformamide and N
- phosphates are preferred, and tris(2,2,2-trifluoroethyl)phosphate is particularly preferred.
- Suitable examples of the electrolyte salt to be dissolved in the phosphate include sodium bis(fluorosulfonyl)imide (NaFSI) and potassium bis(fluorosulfonyl)imide (KFSI) disclosed in the Examples.
- NaFSI is an electrolyte salt suitable for use when the ion species (derived from component (A)) contained in the positive electrode active material of the present invention contains a large amount of sodium
- KFSI is an electrolyte salt suitable for use when the ion species (derived from component (A)) contained in the positive electrode active material of the present invention contains a large amount of potassium and/or calcium.
- a suitable example of the secondary battery of the present invention is a secondary battery formed using a positive electrode mixture containing the positive electrode active material obtained by the method for producing a positive electrode active material of the present invention.
- a preferred example of the secondary battery of the present invention is such that at least a part of the preferred example of the negative electrode active material is a refined carbonized material obtained by pyrolyzing a sulfur-containing rubber to separate it into a solid and a dry distillation gas, selecting an unrefined carbonized material from the solid, and heat-treating the unrefined carbonized material.
- the electrolyte is preferably tris(2,2,2-trifluoroethyl)phosphate (TFEP) in which sodium bis(fluorosulfonyl)imide (NaFSI) or potassium bis(fluorosulfonyl)imide (KFSI) is dissolved as an electrolyte salt.
- TFEP tris(2,2,2-trifluoroethyl)phosphate
- the negative electrode was prepared as follows.
- the negative electrode active material used was a carbonized material derived from waste tires, "Renesis A1 (product number).”
- the waste tire-derived charcoal “Renesis A1 (product number)” is a refined charcoal produced by a manufacturing system for electrode members conforming to Fig. 1.
- the waste tire is heated in an inert atmosphere container at 400°C for 2 hours, the components in the waste tire are gasified and cooled to be converted into oil (total of gasification and oilification is about 55%), the residue that is not gasified or converted into oil is collected, the collected waste tire pyrolysis residue is further heat-treated and pulverized to an average particle size of 20 ⁇ m, and the magnetic material is completely removed using a 16,000 Gauss electromagnetic separator to obtain an unrefined charcoal derived from the waste tire pyrolysis residue, which is further washed with supercritical carbon dioxide ( CO2 washing) and pulverized to adjust the particle size, thereby obtaining a refined charcoal.
- CO2 washing supercritical carbon dioxide
- a negative electrode mixture was obtained by mixing (kneading) 1.5 g (92.71% of the total) of the negative electrode active material (carbonized material derived from waste tires) and 0.106 g (6.55% of the total) of polyacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product name 20CLPAH) as a binder with 1.2 g of an aqueous solution containing 0.007 g of carboxymethyl cellulose (CMC) and 0.005 g of CNT ("TUBALL TM BATT H 2 O CMC" by Kusumoto Chemical Industries, Ltd.) as a solvent.
- CMC carboxymethyl cellulose
- the obtained negative electrode mixture was applied to an aluminum sheet (thickness 16 ⁇ m) serving as a negative electrode current collector, and dried at 70° C. for 3 hours to obtain a negative electrode sheet.
- a negative electrode having a diameter of 11.3 mm was cut out from the obtained negative electrode sheet.
- the positive electrode active material of Experimental Example 1 was obtained by the following procedure.
- As the carbonized material for the positive electrode active material a carbonized material derived from waste tires "Renesis A1 (product number)" (the same as the negative electrode in Experimental Example 1) was used. 5.5 g (24.2% of the total raw materials) of the carbonized material for the positive electrode active material (component (B)), 8.44 g (37.2% of the total raw materials) of sodium percarbonate (component (A)), 2.75 g (12.1% of the total raw materials) of coal tar (component (C)), and 6 g (26.4% of the total raw materials) of sulfur (component (D)) were kneaded in a stainless steel container and put into a heating furnace, and nitrogen gas was passed through the container to create an inert atmosphere, and heating was started 10 minutes later.
- the temperature was increased to 300°C in 50 minutes, and heating was continued even after reaching 300°C, and stopped at 350°C. After that, the temperature dropped to 200°C, and the product was taken out of the heating furnace and naturally cooled. After the temperature inside the container became 50°C or less, the synthesized product was taken out. The weight of the synthesized product was 15.2 g.
- the synthesized product was pulverized in a mixer to obtain a powder having an average particle size of 20 ⁇ m as the positive electrode active material of Experimental Example 2. It was confirmed by evaluation of the physical properties that the positive electrode active material of Experimental Example 1 contained sodium thiosulfate.
- the positive electrode of Experimental Example 1 was obtained as follows. 2 g (94.49% of the total) of the positive electrode active material of Experimental Example 1 and 0.056 g (2.64% of the total) of acetylene black (AB, Denki Kagaku Kogyo Co., Ltd. (HS100)) as a conductive material were mixed (kneaded) uniformly into 0.673 g of NMP solvent (CNT was substantially 0.003 g, solid content ratio 0.08%) containing 0.058 g (2.71% of the total) of PVDF to obtain a positive electrode mixture of Experimental Example 1.
- CNT was substantially 0.003 g, solid content ratio 0.08%
- the obtained positive electrode mixture was applied to an aluminum sheet (thickness 16 ⁇ m) that serves as a positive electrode current collector, and dried at 50 ° C for 3 hours to obtain a positive electrode sheet.
- a 15 mm ⁇ cut was made from the obtained positive electrode sheet to obtain the positive electrode of Experimental Example 1.
- the obtained positive and negative electrodes were combined with an electrolyte solution of tris(2,2,2-trifluoroethyl)phosphate (TFEP) in which sodium bis(fluorosulfonyl)imide (NaFSI) was dissolved at 2 moles/liter as a sodium salt (hereinafter referred to as "NaFSI/TFEP”) and a separator of Celgard 2400 to obtain a battery of Experimental Example 1 (coin-type battery (cylindrical type, outer diameter 20 mm/height 3.2 mm), hereinafter referred to as "coin-type battery (R2032)").
- TFEP tris(2,2,2-trifluoroethyl)phosphate
- NaFSI/TFEP sodium bis(fluorosulfonyl)imide
- Celgard 2400 separator of Celgard 2400
- a chargeable and dischargeable secondary battery can be produced using a positive electrode active material obtained by heat treating sodium percarbonate (component (A)), carbonized positive electrode active material (component (B)), coal tar (component (C)), and sulfur (component (D)) under an inert gas atmosphere.
- Example 2 The positive electrode active material of Experimental Example 2 was obtained by the following procedure.
- As the carbonized material for the positive electrode active material a carbonized material derived from waste tires "Renesis A1 (product number)" (the same as the negative electrode in Experimental Example 1) was used.
- the synthesized product was pulverized in a mixer to obtain a powder having an average particle size of 20 ⁇ m as the positive electrode active material of Experimental Example 2. It was confirmed by evaluation of the physical properties that the positive electrode active material of Experimental Example 2 contained potassium thiosulfate.
- the negative electrode was prepared using the same procedure as in Experimental Example 1.
- KFSI potassium bis(fluorosulfonyl)imide
- Celgard 2400 a separator to obtain the battery of Experimental Example 2 (coin battery (R2032)).
- a chargeable and dischargeable secondary battery can be produced using a positive electrode active material obtained by heat treating potassium bicarbonate (component (A)), carbonized material for the positive electrode active material (component (B)), coal tar (component (C)), and sulfur (component (D)) under an inert gas atmosphere.
- component (A) potassium bicarbonate
- component (B) carbonized material for the positive electrode active material
- component (C) coal tar
- sulfur component (D)
- Example 3 The positive electrode active material of Experimental Example 3 was obtained by the following procedure. Wood combustion ash (plant combustion ash) obtained by burning wood (camellia tree) in air using a heating furnace was used as component (A). In addition, a waste tire-derived carbonized material "Renesis A1 (product number)" (the same as the negative electrode in Experimental Example 1) was used as the carbonized material for the positive electrode active material (component (B)).
- a total of 30.7 g of raw materials consisting of 12.7 g (41% of the total raw materials) of wood combustion ash (component (A)), 6 g (20% of the total raw materials) of carbonized material for positive electrode active material (component (B)), 3 g of coal tar (10% of the total raw materials), and 9 g of sulfur (29% of the total raw materials), were kneaded in a stainless steel container and put into a heating furnace. Nitrogen gas was introduced into the container to create an inert atmosphere, and heating was started after 10 minutes. The temperature was raised to 300°C in 50 minutes, and heating was continued even after reaching 300°C, and stopped at 350°C.
- the synthesized product was pulverized in a mixer to obtain a positive electrode active material of Experimental Example 3 consisting of a powder with an average particle size of 20 ⁇ m.
- the negative electrode was prepared using the same procedure as in Experimental Example 1.
- the obtained positive and negative electrodes were combined with tris(2,2,2-trifluoroethyl)phosphate (TFEP) as an electrolyte, potassium bis(fluorosulfonyl)imide (KFSI) as a potassium salt dissolved at 2 moles/liter (KFSI/TFEP), and Celgard 2400 as a separator to obtain the battery of Experimental Example 3 (coin battery (R2032)).
- TFEP tris(2,2,2-trifluoroethyl)phosphate
- KFSI potassium bis(fluorosulfonyl)imide
- Celgard 2400 as a separator
- a rechargeable secondary battery can be produced using a positive electrode active material obtained by heat treating wood combustion ash (component (A)), carbonized material for the positive electrode active material (component (B)), coal tar (component (C)), and sulfur (component (D)) under an inert gas atmosphere.
- component (A) wood combustion ash
- component (B) carbonized material for the positive electrode active material
- component (C) coal tar
- component (D) sulfur
- Example 4 The positive electrode active material of Experimental Example 4 was obtained by the following procedure.
- the eggshells were heat-treated at 1200°C in a heating furnace to obtain calcined eggshells (main component: CaO), which were used as component (A).
- a carbonized material derived from waste tires, "Renesis A1 (product number)" was used as the carbonized material for the positive electrode active material (component (B)).
- the synthesized product was taken out.
- the weight of the synthesized product was 32.5g, with a yield of 67%.
- the synthesized product was pulverized with a mixer to obtain a positive electrode active material of Experimental Example 4 consisting of a powder with an average particle size of 20 ⁇ m.
- the negative electrode was prepared using the same procedure as in Experimental Example 1.
- the obtained positive and negative electrodes were combined with tris(2,2,2-trifluoroethyl)phosphate (TFEP) as an electrolyte, potassium bis(fluorosulfonyl)imide (KFSI) as a potassium salt dissolved at 2 moles/liter (KFSI/TFEP), and Celgard 2400 as a separator to obtain the battery of Experimental Example 4 (coin battery (R2032)).
- TFEP tris(2,2,2-trifluoroethyl)phosphate
- KFSI potassium bis(fluorosulfonyl)imide
- Celgard 2400 as a separator
- a chargeable and dischargeable secondary battery can be produced using a positive electrode active material obtained by heat treating baked eggshells (component (A)), carbonized positive electrode active material (component (B)), coal tar (component (C)), and sulfur (component (D)) under an inert gas atmosphere.
- the present invention is extremely useful industrially because it can provide a secondary battery using inexpensive materials without using lithium.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本願は、2022年10月18日に出願された日本国特許出願(特願2022-167033号)の利益および優先権を主張する。前述の特許出願に対する優先権を明示的に主張するものであり、参照により、その出願の全開示内容が、あらゆる目的のために本明細書に組み込まれる。
例えば、特許文献1には、硫黄粉末とポリアクリロニトリル粉末を非酸化性雰囲気下で加熱して得られる硫黄変性ポリアクリロニトリルを、リチウム二次電池の正極活物質に使用することが開示されている。また、特許文献2には、フッ素を導入することによって電位をより高くしたフッ素導入硫黄変性ポリアクリロニトリルを二次電池の正極活物質に使用することが開示されている。
一方、体積容量がそれほど求められない、すなわちコンパクトにする必要のない定置型二次電池では、リチウム以外のイオン種の二次電池への使用が想定される。
また、特許文献3のゴム類由来原料を使用した正極活物質は、原料の硫黄を含有するゴム類として廃タイヤ由来のゴム類等の廃棄物を使用できるという利点があるが、リチウム二次電池としては優れた性能を示したものの、Li以外のイオン種の二次電池にそのまま転用できるものではなかった。
また、本発明の他の目的は、リチウム以外のイオン種を使用した、新規の正極活物質の製造方法及び正極活物質、並びに正極合剤及び二次電池を提供することである。
<1> 硫黄を含有するゴム類を原料に用いた電極部材の製造方法であって、前記電極部材が、正極活物質であり、前記原料を熱分解して固形物と乾留ガスとに分離する工程(1)と、前記固形物から未精製炭化物を選別する工程(2)と、前記未精製炭化物を洗浄した後に、非酸化性雰囲気下で熱処理した後、精製炭化物を得る工程(3)と、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離する工程(4)と、Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料(A)と、正極活物質用炭化物(B)と、重質油(C)及び硫黄(D)と、を混錬し、非酸化性雰囲気下で熱処理して得られる固形物を粉砕して乾燥して正極活物質を得る工程(5)と、を備え、下記要件(i)~(iii)のいずれか1以上の要件を満たす電極部材の製造方法。
要件(i):正極活物質用炭化物(B)の少なくとも一部が、工程(3)により得られる精製炭化物であること
要件(ii):重質油(C)の少なくとも一部が、工程(4)により得られる重質油であること
要件(iii):硫黄(D)の少なくとも一部が、工程(4)により得られる硫黄であること
<2> 成分(A)の少なくとも一部が、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上である<1>に記載の電極部材の製造方法。
<3> 成分(A)の少なくとも一部が、木材を燃焼させて得られた木質燃焼灰である<1>または<2>に記載の電極部材の製造方法。
<4> 成分(A)の少なくとも一部が、卵殻焼成物である<1>または<2>に記載の電極部材の製造方法。
<5> 工程(3)における未精製炭化物の洗浄が、亜臨界または超臨界二酸化炭素処理である<1>から<4>のいずれかに記載の電極部材の製造方法。
<6> 硫黄を含有するゴム類が、タイヤ由来のゴム類である<1>または<5>のいずれかに記載の電極部材の製造方法。
<7> 硫黄を含有するゴム類を原料に用いた電極部材の製造方法であって、
前記電極部材が、正極活物質であり、
前記原料を熱分解して固形物と乾留ガスとに分離し、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られた前記重質油と前記硫黄と、Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料と、正極活物質用炭化物とを混練し、非酸化性雰囲気下で熱処理し、正極活物質を得る工程を有する電極部材の製造方法。
<8> 前記イオン原料が、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上である<7>に記載の電極部材の製造方法。
<9> 硫黄を含有するゴム類を原料に用いた電極部材の製造方法であって、前記電極部材が、負極活物質であり、前記原料を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、前記未精製炭化物を亜臨界または超臨界二酸化炭素処理した後に、非酸化性雰囲気下で熱処理し、負極活物質としての精製炭化物を得る工程を有する電極部材の製造方法。
<10> 硫黄を含有するゴム類が、タイヤ由来のゴム類である<1>から<9>のいずれかに記載の電極部材の製造方法。
<11> <1>から<8>のいずれか、または<10>に記載の製造方法で得られた正極活物質を含有する正極合剤。
<12> 正極、負極、及び電解質を備え、前記正極が、<11>に記載の正極合剤を用いてなる二次電池。
<13> 前記負極が、<9>の製造方法で得られた負極活物質を含む<12>に記載の二次電池。
<14> 前記電解液が、電解質塩としてナトリウムビス(フルオロスルホニル)イミド(NaFSI)又はカリウムビス(フルオロスルホニル)イミド(KFSI)を溶解したトリス(2,2,2-トリフルオロエチル)ホスファート(TFEP)である<12>または<13>に記載の二次電池。
<1a> <1>から<10>のいずれかに記載の電極部材の製造方法を用いる電極部材の製造システムであって、前記原料を熱分解して固形物と乾留ガスとに分離する熱処理手段(x)と、前記固形物から未精製炭化物を選別する選別手段(y1)と、前記未精製炭化物を洗浄する洗浄手段(y2)と、洗浄後の未精製炭化物を、非酸化性雰囲気下で熱処理し、精製炭化物を得る熱処理手段(y3)と、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離する分離手段(z1)と、Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料(A)と、正極活物質用炭化物(B)と、重質油(C)及び硫黄(D)とを混錬し、原料混合物を得る混錬手段(z2)と、前記原料混合物を非酸化性雰囲気下で熱処理し、固形物を得る熱処理手段(z3)と、得られた前記固形物を粉砕して乾燥を行う調整手段(z4)と、を備える電極部材の製造システム。
<2a> 洗浄手段(y2)において、前記未精製炭化物を亜臨界または超臨界二酸化炭素処理する<1a>に記載の電極部材の製造システム。
<3a> 前記電極部材の製造システムが、分離手段(z1)によって分離されたガスを燃焼させ、発生した二酸化炭素を回収するガス処理手段(w1)を有し、洗浄手段(y2)において、ガス処理手段(w1)によって回収された二酸化炭素を用いて、前記未精製炭化物を亜臨界または超臨界二酸化炭素処理する<2a>に記載の電極部材の製造システム。
<4a> 熱処理手段(x)が、分離手段(z1)によって分離された軽質油を燃焼させ、発生した熱を用いて前記原料を熱分解する<1a>から<3a>のいずれかに記載の電極部材の製造システム。
<5a> 熱処理手段(y3)で得られた精製炭化物を粉砕する粉砕手段(w3)を有する<1a>から<4a>のいずれかに記載の電極部材の製造システム。
<6a> 前記電極部材の製造システムが、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上を製造するイオン原料製造手段(w4)を有する<1a>から<5a>のいずれかに記載の電極部材の製造システム。
<7a> 前記電極部材の製造システムが、中和処理手段(w5)を有し、中和処理手段(w5)が、熱処理手段(z3)で発生する硫化物を中和処理した前記中和済み固形分を製造し、前記イオン原料(A)が前記中和済み固形分を含む<1a>から<6a>のいずれかに記載の電極部材の製造システム。
<8a> 硫黄を含有するゴム類が、タイヤ由来のゴム類である<1a>から<7a>のいずれかに記載の電極部材の製造システム。
<1b> 下記成分(A)~(D)を混合して得られた原料混合物を非酸化性雰囲気下で熱処理する工程を含む正極活物質の製造方法。
成分(A):Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料
成分(B):正極活物質用炭化物
成分(C):重質油
成分(D):硫黄
<2b> 成分(A)の少なくとも一部が、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上である<1b>に記載の正極活物質の製造方法。
<3b> 成分(B)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、前記未精製炭化物を熱処理することで得られる精製炭化物である<1b>または<2b>に記載の正極活物質の製造方法。
<4b> 成分(C)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる重質油である<1b>から<3b>のいずれかに記載の正極活物質の製造方法。
<5b> 成分(D)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる硫黄である<1b>から<4b>のいずれかに記載の正極活物質の製造方法
<6b> 成分(A)が、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上であり、
成分(B)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、前記未精製炭化物を熱処理することで得られる精製炭化物であり、
成分(C)の少なくとも一部が、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる重質油であり、
成分(D)の少なくとも一部が、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる硫黄である<1b>に記載の正極活物質の製造方法。
<7b> 硫黄を含有するゴム類が、タイヤ由来のゴム類である<3b>から<6b>のいずれかに記載の正極活物質の製造方法。
<8b> <1b>から<7b>のいずれかに記載の製造方法で得られる正極活物質。
<2c> 正極、負極、及び電解質を備え、前記正極が、<1c>に記載の正極合剤を用いてなる二次電池。
<3c> 前記電解液が、電解質塩としてナトリウムビス(フルオロスルホニル)イミド(NaFSI)又はカリウムビス(フルオロスルホニル)イミド(KFSI)を溶解したホスファート類である<1c>または<2c>に記載の二次電池。
<4c> 前記ホスファート類が、トリス(2,2,2-トリフルオロエチル)ホスファート(TFEP)である<3c>に記載の二次電池。
y1 選別手段
y2 洗浄手段
y3 熱処理手段
z1 分離手段
z2 混錬手段
z3 熱処理手段
z4 調整手段
w1 ガス処理手段
w2 燃焼手段
w3 粉砕手段
w4 イオン原料製造手段
w5 中和処理手段
本発明において、「電極部材」とは、「電池の電極を構成する部材」を意味し、具体的には電極活物質(正極活物質及び負極活物質)、導電材(正極導電材及び負極導電材)及び集電体(正極集電体及び負極集電体)を意味する。
本発明において、「正極活物質」とは、電極活物質であって、電気エネルギーを発生させる反応に関与する物質のうち、正極に用いられるものである。また、本発明において、「負極活物質」とは、電極活物質であって、電気エネルギーを発生させる反応に関与する物質のうち、負極に用いられるものである。
また、本発明において、「未精製炭化物」とは、硫黄を含有するゴム類である原料を熱分解して得られる固形物から選別される炭化物である。また、本発明において、「精製炭化物」とは、未精製炭化物を洗浄した後に、非酸性雰囲気下で熱処理して得られる炭化物である。未精製炭化物及び精製炭化物に対する粉砕処理は、任意である。
本発明は、下記成分(A)~(D)を混合して得られた原料混合物を非酸化性雰囲気下で熱処理する工程を含む正極活物質の製造方法(以下、「本発明の正極活物質の製造方法」と称す。)に関する。
成分(A):Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料
成分(B):正極活物質用炭化物
成分(C):重質油
成分(D):硫黄
工程(p1):成分(A)~(D)を混合して原料混合物を得る工程
工程(p2):得られた原料混合物を非酸化性雰囲気中で熱処理して熱処理物を得る工程
工程(p1)は、成分(A)~(D)を混合して原料混合物を得る工程である。
成分(A)はNa、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料である。
成分(A)として、新規の原料も使用できるが、廃棄物由来の原料を使用することが好ましい。成分(A)として、新規の原料のみを使用してもよく、廃棄物由来の原料のみを使用してもよく、新規の原料と廃棄物由来の原料を混合(混合割合は任意)して使用してもよい。
植物性原料としては本発明の目的を損なわない限り特に制限はないが、廃棄物利用の観点で、籾殻、藁、竹、間伐材、雑草から選択される少なくとも1種であることが好ましい。
植物燃焼灰の好適例のひとつは、木質原料の燃焼灰である木質燃焼灰である。木質原料としては本発明の目的を損なわない限り特に制限はないが、典型的には、スギ、カラマツ、ヒノキ等の広葉樹、ブナ、シラカバ、ナラ等の針葉樹、竹を挙げることができる。また、木質原料としては、廃棄物利用の観点で、家屋解体木質、製材所木質廃材、家具工場木質廃材、樹木木質等を挙げることができる。
石膏としては本発明の目的を損なわない限り特に制限はないが、廃棄物利用の観点で、石膏ボードを分離して製造した石膏が挙げられる。
温泉スケールの構成成分は、元の温泉水によるが、カルシウム、ナトリウム、カリウム及びマグネシウムの少なくとも1種を含む。また、温泉スケールには、シリカ系鉱物、酸化水酸化鉄などの成分も含まれることが多いため、必要に応じてこれらを取り除いた後に成分(A)として使用してもよい。
成分(B)である正極活物質用炭化物は、正極活物質原料として使用される炭化物(carbonized product)である。
正極活物質用炭化物として、本発明の目的を損なわない限り、任意の炭素材料が使用でき、例えば、黒鉛粉末、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック等)、繊維状炭素材料(カーボンナノチューブ、カーボンナノファイバー、気相成長炭素繊維等)等が挙げられる。
すなわち、成分(B)である正極活物質用炭化物の好適な一例は、その少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記固形物から炭化物を選別し、未精製炭化物を熱処理することで得られる精製炭化物である。
成分(C)である重質油は、正極活物質の必須成分であると共に、製造するときに他の成分を接合するバインダーとして機能する。
すなわち、成分(C)である重質油の好適な一例は、その少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる重質油である。
成分(D)である硫黄は、市販品でもよく、硫黄を含む化合物又は組成物から分離したものを使用してもよい。
すなわち、成分(D)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる硫黄である。
例えば、成分(A)が木質燃焼灰の場合、成分(A)~(D)の好適な割合は、成分(A)を20~60重量%、成分(B)を10~30重量%、成分(C)を5~15重量%、成分(D)を20~40重量%、である。
工程(p2)は、工程(p1)で得られた原料混合物を非酸化性雰囲気中で熱処理して熱処理物を得る工程である。工程(p2)により熱処理物(正極活物質)が得られる。
熱処理温度は、例えば250℃以上500℃以下(好適には300℃以上400℃以下)である。熱処理時間は、例えば10分以上10時間以下である。
上述した本発明の正極活物質の製造方法は、以下に説明する硫黄を含有するゴム類を原料に用いた電極部材の製造方法(以下、「本発明の電極部材の製造方法」と称す。)の一部とすることができる。また、本発明の電極部材の製造方法は、以下に説明する電極部材の製造システム(以下、「本発明の電極部材の製造システム」と称す。)を使用して好適に実現できる。
要件(i):正極活物質用炭化物(B)の少なくとも一部が、工程(3)により得られる精製炭化物であること
要件(ii):重質油(C)の少なくとも一部が、工程(4)により得られる重質油であること
要件(iii):硫黄(D)の少なくとも一部が、工程(4)により得られる硫黄であること
図1に示すように、本実施形態の電池部材の製造システムでは、硫黄を含有するゴム類を原料に用い、原料を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、得られる未精製炭化物から精製炭化物(負極活物質及び/又は正極活物質用炭化物(上記成分(B)に相当))を製造し、さらに前記乾留ガスを冷却して油分とガス分とに分離し、油分を蒸留して重質油と軽質油と硫黄とに分離し、得られる重質油(上記成分(C)に相当)及び硫黄(上記成分(D)に相当)と、精製炭化物(上記成分(B)に相当)と、イオン原料(上記成分(A)に相当)とを混練し熱処理することにより正極活物質を製造する。
このように、原料として硫黄を含有するゴム類を再生して電極部材として利用できるようにしている。
なお、本発明に係る負極活物質、負極導電材及び負極、並びに正極活物質、正極導電材及び正極は、これらから同一の電池を製造する場合に限られず、それぞれ別個の電池を製造する場合に利用することもできる。
熱分解炉で原料となるゴム類を熱分解するための熱は、燃焼手段(w2)である燃焼炉で軽質油を燃焼した際の燃焼熱を用いる。燃焼熱が不足する場合は、外部から燃料を加えて加熱する。軽質油の燃焼熱を用いることにより、外部からの燃料追加を抑制し、本実施形態に係る製造方法(及び製造システム)のエネルギー効率が向上する。
なお、熱処理手段(x)での熱分解処理条件(熱分解炉の形状及び寸法、温度、熱分解時間等)は、熱分解処理される原料の量及び種類等によって、適宜設定することができる。また、熱処理手段(x)は、原料を熱分解処理して固形物と乾留ガスとに分離できる限り、任意の熱処理手段を使用することができる。
タイヤとしては、加硫ゴムが使用されたものであればよく、空気入りタイヤ、ソリッドタイヤ等を挙げることができる。また、原料となるゴム類として、新品のタイヤも使用できるが、使用後に廃棄されるタイヤ(廃タイヤ)や、タイヤの製造過程で欠損品や余剰材料として発生して廃棄される硫黄を含有するゴムを主成分とする廃棄物も好適に用いることができる。
また、原料となるゴム類は、上記のタイヤ用途のみならず、例えば、自動車用防振ゴム部材なども使用することができる。
なお、熱処理手段(y3)での熱処理条件(熱処理機の形状及び寸法、温度、熱処理時間等)は、熱処理される未精製炭化物の量及び種類等によって、適宜設定することができる。また、熱処理手段(y3)は、熱処理される未精製炭化物を、非酸化性雰囲気下で熱処理し、精製炭化物(負極活物質及び正極活物質用炭化物)を得ることができる限り、任意の熱処理手段を用いることができる。
粉砕手段(w3)としては、振動ミル、ジェットミル、乾式ボールミル等の粉砕機を挙げることができる。
乾留ガスは、まず、冷却器を用いて冷却処理される。これにより、乾留ガスは液体状の油分と気体状のガス分(非凝縮ガス)とに分離される。
混錬手段(z2)としては、工業的に通常用いられる乾式混合機で行ってもよい。乾式混合機としては、V型混合機、W型混合機、リボン混合機、ドラムミキサー、乾式ボールミルを挙げることができる。また、混錬は、本発明の目的を損なわない限り、湿式混合によって行うこともできる。
熱処理手段(z3)としては、電気式熱処理機、若しくは、燃焼式熱処理機、又は、バッチ式熱処理機、若しくは、フロー式熱処理機を挙げることができる。
調整手段(z4)に含まれる粉砕機としては、振動ミル、ジェットミル、乾式ボールミルを挙げることができる。
但し、正極活物質の製造に用いる正極活物質用炭化物(成分(B))、重質油(成分(C))及び硫黄(成分(D))の少なくとも一部が本発明の電極部材の製造方法によって得られたものであることが好ましい。
本発明の正極合剤は、本発明の正極活物質のみから構成されていてもよいが、電極内抵抗を小さくするため、他の導電性材料である導電材(及び必要に応じて他の材料)と混合して使用してもよい。
この中でも、カーボンブラックは、微粒で表面積が大きく、正極合剤中に添加されることにより、得られる電極内部の導電性を高め、充放電効率及び大電流放電特性を向上させることも可能である。
バインダーとしては、例えば有機高分子化合物からなるバインダーが挙げられる。バインダーとしての有機高分子化合物としては、例えば、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルヒドロキシエチルセルロース、ニトロセルロースなどの多糖類及びその誘導体;
ポリフッ化ビニリデン(以下、PVDFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体;フェノール樹脂;メラミン樹脂;ポリウレタン樹脂;尿素樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;石油ピッチ;石炭ピッチなどが挙げられる。
本発明の二次電池は、正極、負極、及び電解質を備え、正極が、上記本発明の正極合剤を用いてなることを特徴とする。なお、本発明の二次電池の構造は特に限定されず、従来公知の二次電池の構造を採用することができる。例えば、積層型(扁平型)電池、巻回型(円筒型)電池等が挙げられる。
スラリーを集電体上に塗工する方法としては、本発明の目的を損なわない限り制限はないが、例えばスリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等を挙げることができる。
すなわち、負極活物質の好適な一例は、その少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、前記未精製炭化物を熱処理することで得られる精製炭化物である。
ホスファート類(特にはトリス(2,2,2-トリフルオロエチル)ホスファート)に溶解させる電解質塩の好適例として、実施例で開示したナトリウムビス(フルオロスルホニル)イミド(NaFSI)及びカリウムビス(フルオロスルホニル)イミド(KFSI)が挙げられる。
NaFSIは、本発明の正極活物質に含まれるイオン種(成分(A)由来)がナトリウムを多く含む場合に適した電解質塩である。また、KFSIは本発明の正極活物質に含まれるイオン種(成分(A)由来)がカリウム及び/又はカルシウムを多く含む場合に適した電解質塩である。
また、本発明の二次電池の好適な例は、負極活物質の好適例の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、前記未精製炭化物を熱処理することで得られる精製炭化物であることが好ましい。
また、本発明の二次電池の好適な例は、電解液が、電解質塩としてナトリウムビス(フルオロスルホニル)イミド(NaFSI)又はカリウムビス(フルオロスルホニル)イミド(KFSI)を溶解したトリス(2,2,2-トリフルオロエチル)ホスファート(TFEP)であることが好ましい。
負極は、以下の通り作製した。
負極活物質として廃タイヤ由来炭化物「ルネシスA1(品番)」を使用した。
廃タイヤ由来炭化物「ルネシスA1(品番)」は、図1に準じる電極部材の製造システムにより製造された精製炭化物である。具体的には、廃タイヤを不活性雰囲気容器内で、400℃で2時間加熱し、廃タイヤ内の成分をガス化及び冷却にて油化(ガス化及び油化合計約55%)し、ガス化及び油化しない残渣物を回収し、回収した廃タイヤ熱分解残渣物をさらに熱処理後、粉砕して平均粒度20μmとした後に、16000ガウスの電磁分離機で磁性体を完全に除去して得られる廃タイヤ熱分解残渣物由来の未精製炭化物をさらに超臨界二酸化炭素で洗浄(CO2洗浄)後、粉砕して粒径調整することで得られる精製炭化物である。
負極活物質(廃タイヤ由来炭化物)を1.5g(全体の92.71%)と、バインダーとしてのポリアクリル酸(富士フイルム和光純薬株式会社製、製品名20CLPAH)0.106g(全体の6.55%)とを、溶媒として0.007gのカルボキシメチルセルロース(CMC)及び0.005gのCNTを含む水溶液(楠本化成株式会社「TUBALLTM BATT H2O CMC」)1.2gと共に混合(混練)することによって負極合剤を得た。
次いで、得られた負極合剤を負極集電体となるアルミシート(厚さ16μm)に塗布し、70℃で3時間乾燥を行って負極シートを得た。得られた負極シートから11.3mmφで切り抜いて負極とした。
正極活物質用炭化物として廃タイヤ由来炭化物「ルネシスA1(品番)」(実験例1の負極と同じもの)を使用した。正極活物質用炭化物(成分(B))5.5g(原料全体の24.2%)と、過炭酸ナトリウム(成分(A))8.44g(原料全体の37.2%)、コールタール(成分(C))2.75g(原料全体の12.1%)、硫黄(成分(D))6g(原料全体の26.4%)をステンレス容器で混錬し加熱炉に投入し、容器内を不活性雰囲気とするために窒素ガスを流し10分後加温を開始した。温度上昇は、50分で300℃に設定し、300℃到達後も加熱を続け、350℃で停止した。その後、温度が200℃に下降して加熱炉から取り出し、自然冷却した。容器内部温度が50℃以下になった後に合成品をとりだした。合成品重量は、15.2gであった。合成品をミキサーで粉砕して平均粒度20μmの粉末からなる実験例2の正極活物質を得た。物性評価により実験例1の正極活物質にはチオ硫酸ナトリウムが含まれることが確認された。
実験例1の正極活物質2g(全体の94.49%)及び導電材としてのアセチレンブラック(AB、電気化学工業社(HS100))0.056g(全体の2.64%)を、PVDF0.058g(全体の2.71%)を含むNMP溶媒0.673g(CNTは実質0.003g、固形分比率0.08%)に均一になるように混合(混練)することによって実験例1の正極合剤を得た。次いで、得られた正極合剤を正極集電体となるアルミシート(厚さ16μm)に塗布し、50℃で3時間乾燥を行って正極シートを得た。得られた正極シートから15mmφで切り抜いて実験例1の正極とした。
(セル構成) 2極式
正極:正極活物質を含む電極
負極:負極活物質を含む電極
電解質:2M NaFSI/TFEP
(充放電条件)
電圧範囲:0.5-3.9V
充電は、定電流を3.9Vまで流し続けその後、電圧維持するだけの電流を5時間流し、電流値が低下していくCVCC充電で行った。
73.5μA/1.766cm2(正極15mmφ)
充放電回数:20回
放電時間:約4時間(73.5μAh)
実験例2の正極活物質は、以下の手順で得た。
正極活物質用炭化物として廃タイヤ由来炭化物「ルネシスA1(品番)」(実験例1の負極と同じもの)を使用した。正極活物質用炭化物(成分(B))10g(原料全体の20%)と、炭酸水素カリウム(成分(A))25g(原料全体の51%)、コールタール(成分(C))3.8g(原料全体の8%)、硫黄(成分(D))10g(原料全体の20%)の原料合計48.8gをステンレス容器で混錬し加熱炉に投入し、容器内を不活性雰囲気とするために窒素ガスを流し10分後加温を開始した。温度上昇は、50分で300℃に設定し、300℃到達後も加熱を続け、350℃で停止した。その後、温度が200℃に下降して加熱炉から取り出し、自然冷却した。容器内部温度が50℃以下になった後に合成品をとりだした。合成品重量は、歩留まり67%の32.5gであった。合成品をミキサーで粉砕して平均粒度20μmの粉末からなる実験例2の正極活物質を得た。物性評価により実験例2の正極活物質にはチオ硫酸カリウムが含まれることが確認された。
次いで、得られた正極合剤を正極集電体となるアルミシート(厚さ16μm)に塗布し、50℃で3時間乾燥を行って正極シートを得た。得られた正極シートから15mmφで切り抜いて実験例2の正極とした。
(セル構成) 2極式
正極:正極活物質を含む電極
負極:負極活物質を含む電極
電解質:2M KFSI/TFEP
(充放電条件)
電圧範囲:2.0-4.2V
充電は、定電流を4.2Vまで流し続けその後、電圧維持するだけの電流を5時間流し、電流値が低下していくCVCC充電で行った。
64.7μA/1.766cm2(正極15mmφ)
充放電回数:5回
放電時間:約5時間(64.7μAh)
実験例3の正極活物質は、以下の手順で得た。
加熱炉を用い、空気中で木材(さざんかの木)を燃焼して得られた木質燃焼灰(植物燃焼灰)を、成分(A)として使用した。また、正極活物質用炭化物(成分(B))として廃タイヤ由来炭化物「ルネシスA1(品番)」(実験例1の負極と同じもの)を使用した。
木質燃焼灰(成分(A))12.7g(原料全体の41%)、正極活物質用炭化物((成分(B))6g(原料全体の20%)と、コールタール3g(原料全体の10%)、硫黄9g(原料全体の29%)の原料合計30.7gをステンレス容器で混錬し加熱炉に投入し、容器内を不活性雰囲気とするために窒素ガスを流し10分後加温を開始した。温度上昇は、50分で300℃に設定し、300℃到達後も加熱を続け、350℃で停止した。その後、温度が200℃に下降して加熱炉から取り出し、自然冷却した。容器内部温度が50℃以下になった後に合成品をとりだした。合成品重量は、歩留まり71%の21.9gであった。合成品をミキサーで粉砕して平均粒度20μmの粉末からなる実験例3の正極活物質を得た。
次いで、得られた正極合剤を正極集電体となるアルミシート(厚さ16μm)に塗布し、50℃で3時間乾燥を行って正極シートを得た。得られた正極シートから12.9mmφで切り抜いて実験例3の正極とした。
(セル構成) 2極式
正極:正極活物質を含む電極
負極:負極活物質を含む電極
電解質:2M KFSI/TFEP
(充放電条件)
電圧範囲:1.2-3.8V
CVCC充電、CC放電
(初回電圧保持のCVは30時間、2回目は10時間、3回目以降5時間)
112μA/1.306cm2(正極12.9mmφ)
充放電回数:27回
放電時間:約1時間(112μAh)
実験例4の正極活物質は、以下の手順で得た。
加熱炉を用い、卵殻を1200℃で熱処理した卵殻焼成物(主成分CaO)を、成分(A)として使用した。また、正極活物質用炭化物(成分(B))として廃タイヤ由来炭化物「ルネシスA1(品番)」(実験例1の負極と同じもの)を使用した。
卵殻焼成物(成分(A))25g(原料全体の51%)、正極活物質用炭化物(成分(B))10g(原料全体の20%)と、コールタール3.8g(原料全体の8%)、硫黄10g(原料全体の20%)の原料合計48.8gをステンレス容器で混錬し加熱炉に投入し、容器内を不活性雰囲気とするために窒素ガスを流し10分後加温を開始した。温度上昇は、50分で300℃に設定し、300℃到達後も加熱を続け、350℃で停止した。その後、温度が200℃に下降して加熱炉から取り出し、自然冷却した。容器内部温度が50℃以下になった後に合成品をとりだした。合成品重量は、歩留まり67%の32.5gであった。合成品をミキサーで粉砕して平均粒度20μmの粉末からなる実験例4の正極活物質を得た。
次いで、得られた正極合剤を正極集電体となるアルミシート(厚さ16μm)に塗布し、50℃で3時間乾燥を行って正極シートを得た。得られた正極シートから11.3mmφで切り抜いて実験例4の正極とした。
(セル構成) 2極式
正極:正極活物質を含む電極
負極:負極活物質を含む電極
電解質:2M KFSI/TFEP
(充放電条件)
電圧範囲:1.2-3.8V
CVCC充電、CC放電
(初回電圧保持のCVは30時間、2回目は10時間、3回目以降5時間)
112μA/1cm2(正極11.3mmφ)
充放電回数:48回
放電時間:約1時間(75μAh)
Claims (26)
- 硫黄を含有するゴム類を原料に用いた電極部材の製造方法であって、前記電極部材が、正極活物質であり、
前記原料を熱分解して固形物と乾留ガスとに分離する工程(1)と、
前記固形物から未精製炭化物を選別する工程(2)と、
前記未精製炭化物を洗浄した後に、非酸化性雰囲気下で熱処理した後、精製炭化物を得る工程(3)と、
前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離する工程(4)と、
Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料(A)と、正極活物質用炭化物(B)と、重質油(C)及び硫黄(D)と、を混錬し、非酸化性雰囲気下で熱処理して得られる固形物を粉砕して乾燥して正極活物質を得る工程(5)と、を備え、
下記要件(i)~(iii)のいずれか1以上の要件を満たすことを特徴とする電極部材の製造方法。
要件(i):正極活物質用炭化物(B)の少なくとも一部が、工程(3)により得られる精製炭化物であること
要件(ii):重質油(C)の少なくとも一部が、工程(4)により得られる重質油であること
要件(iii):硫黄(D)の少なくとも一部が、工程(4)により得られる硫黄であること - 成分(A)の少なくとも一部が、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上である請求項1に記載の電極部材の製造方法。
- 成分(A)の少なくとも一部が、木材を燃焼させて得られた木質燃焼灰である請求項1または2に記載の電極部材の製造方法。
- 成分(A)の少なくとも一部が、卵殻焼成物である請求項1または2に記載の電極部材の製造方法。
- 工程(3)における未精製炭化物の洗浄が、亜臨界または超臨界二酸化炭素処理である請求項1から4のいずれかに記載の電極部材の製造方法。
- 硫黄を含有するゴム類が、タイヤ由来のゴム類である請求項1から5のいずれかに記載の電極部材の製造方法。
- 硫黄を含有するゴム類を原料に用いた電極部材の製造方法であって、前記電極部材が、負極活物質であり、
前記原料を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、前記未精製炭化物を亜臨界または超臨界二酸化炭素処理した後に、非酸化性雰囲気下で熱処理し、負極活物質としての精製炭化物を得る工程を有することを特徴とする電極部材の製造方法。 - 請求項1から7のいずれかに記載の電極部材の製造方法を用いる電極部材の製造システムであって、
前記原料を熱分解して固形物と乾留ガスとに分離する熱処理手段(x)と、
前記固形物から未精製炭化物を選別する選別手段(y1)と、
前記未精製炭化物を洗浄する洗浄手段(y2)と、
洗浄後の未精製炭化物を、非酸化性雰囲気下で熱処理し、精製炭化物を得る熱処理手段(y3)と、
前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離する分離手段(z1)と、
Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料(A)と、正極活物質用炭化物(B)と、重質油(C)及び硫黄(D)とを混錬し、原料混合物を得る混錬手段(z2)と、
前記原料混合物を非酸化性雰囲気下で熱処理し、固形物を得る熱処理手段(z3)と、
得られた前記固形物を粉砕して乾燥を行う調整手段(z4)と、
を備えることを特徴とする電極部材の製造システム。 - 洗浄手段(y2)において、前記未精製炭化物を亜臨界または超臨界二酸化炭素処理する請求項8に記載の電極部材の製造システム。
- 前記電極部材の製造システムが、分離手段(z1)によって分離されたガスを燃焼させ、発生した二酸化炭素を回収するガス処理手段(w1)を有し、
洗浄手段(y2)において、ガス処理手段(w1)によって回収された二酸化炭素を用いて、前記未精製炭化物を亜臨界または超臨界二酸化炭素処理する請求項9に記載の電極部材の製造システム。 - 熱処理手段(x)が、分離手段(z1)によって分離された軽質油を燃焼させ、発生した熱を用いて前記原料を熱分解する請求項8から10のいずれかに記載の電極部材の製造システム。
- 熱処理手段(y3)で得られた精製炭化物を粉砕する粉砕手段(w3)を有する請求項8から11のいずれかに記載の電極部材の製造システム。
- 前記電極部材の製造システムが、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上を製造するイオン原料製造手段(w4)を有する請求項8から12のいずれかに記載の電極部材の製造システム。
- 前記電極部材の製造システムが、中和処理手段(w5)を有し、
中和処理手段(w5)が、熱処理手段(z3)で発生する硫化物を中和処理した中和済み固形分を製造し、
前記イオン原料(A)が前記中和済み固形分を含む請求項8から13のいずれかに記載の電極部材の製造システム。 - 硫黄を含有するゴム類が、タイヤ由来のゴム類である請求項8から14のいずれかに記載の正極活物質の製造システム。
- 下記成分(A)~(D)を混合して得られた原料混合物を非酸化性雰囲気下で熱処理する工程を含むことを特徴とする正極活物質の製造方法。
成分(A):Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料
成分(B):正極活物質用炭化物
成分(C):重質油
成分(D):硫黄 - 成分(A)の少なくとも一部が、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上である請求項16に記載の正極活物質の製造方法。
- 成分(B)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、前記未精製炭化物を熱処理することで得られる精製炭化物である請求項16または17に記載の正極活物質の製造方法。
- 成分(C)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる重質油である請求項16から18のいずれかに記載の正極活物質の製造方法。
- 成分(D)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる硫黄である請求項16から19のいずれかに記載の正極活物質の製造方法。
- 成分(A)が、無機系洗剤、植物燃焼灰、卵殻焼成物、貝殻焼成物、石膏及び温泉スケールからなる群より選ばれる1種以上であり、
成分(B)の少なくとも一部が、硫黄を含有するゴム類を熱分解して固形物と乾留ガスとに分離し、前記固形物から未精製炭化物を選別し、前記未精製炭化物を熱処理することで得られる精製炭化物であり、
成分(C)の少なくとも一部が、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる重質油であり、
成分(D)の少なくとも一部が、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られる硫黄である請求項16に記載の正極活物質の製造方法。 - 硫黄を含有するゴム類が、タイヤ由来のゴム類である請求項18から21のいずれかに記載の正極活物質の製造方法。
- 請求項16から22のいずれかに記載の製造方法で得られる正極活物質。
- 請求項23に記載の正極活物質を含有する正極合剤。
- 正極、負極、及び電解質を備え、前記正極が、請求項24に記載の正極合剤を用いてなる二次電池。
- 硫黄を含有するゴム類を原料に用いた電極部材の製造方法であって、前記電極部材が、正極活物質であり、
前記原料を熱分解して固形物と乾留ガスとに分離し、前記乾留ガスを冷却して油分とガスとに分離し、前記油分を蒸留して重質油と軽質油と硫黄とに分離して得られた前記重質油と前記硫黄と、Na、K、Ca、及びMgからなる群より選ばれる1種以上の元素を含有するイオン原料と、正極活物質用炭化物とを混練し、非酸化性雰囲気下で熱処理し、正極活物質を得る工程を有することを特徴とする電極部材の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023579287A JP7485439B1 (ja) | 2022-10-18 | 2023-10-18 | 電極部材の製造方法及び電極部材の製造システム、並びに正極活物質の製造方法、正極活物質、正極合剤及び二次電池 |
EP23879835.9A EP4517880A4 (en) | 2022-10-18 | 2023-10-18 | Method for producing an electrode element, system for producing an electrode element, method for producing a positive electrode active material, positive electrode mixture, and secondary battery |
KR1020247038530A KR102827746B1 (ko) | 2022-10-18 | 2023-10-18 | 전극 부재의 제조 방법 및 전극 부재의 제조 시스템, 및 양극 활물질의 제조 방법, 양극 활물질, 양극 합제 및 이차전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-167033 | 2022-10-18 | ||
JP2022167033 | 2022-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024085192A1 true WO2024085192A1 (ja) | 2024-04-25 |
Family
ID=90737544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/037723 WO2024085192A1 (ja) | 2022-10-18 | 2023-10-18 | 電極部材の製造方法及び電極部材の製造システム、並びに正極活物質の製造方法、正極活物質、正極合剤及び二次電池 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4517880A4 (ja) |
JP (1) | JP7485439B1 (ja) |
KR (1) | KR102827746B1 (ja) |
WO (1) | WO2024085192A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011081926A (ja) * | 2009-10-02 | 2011-04-21 | Nikkiso Co Ltd | 改質微粉状正極物質の製造方法 |
JP2011091010A (ja) * | 2009-10-26 | 2011-05-06 | Nikkiso Co Ltd | 改質微粉状正極物質の製造方法 |
JP2013101811A (ja) | 2011-11-08 | 2013-05-23 | Toyota Industries Corp | 非水電解質二次電池用正極活物質及びその製造方法並びに非水電解質二次電池 |
JP5534227B2 (ja) | 2008-10-17 | 2014-06-25 | 独立行政法人産業技術総合研究所 | 硫黄変性ポリアクリロニトリル、その製造方法、及びその用途 |
WO2015093590A1 (ja) * | 2013-12-20 | 2015-06-25 | 貞充 山▲崎▼ | 電池の製造方法 |
JP2016009583A (ja) * | 2014-06-24 | 2016-01-18 | 三洋化成工業株式会社 | 正極活物質の製造方法 |
JP2023098554A (ja) * | 2021-12-28 | 2023-07-10 | 株式会社ルネシス | 正極活物質、正極合剤及び二次電池 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102347799B1 (ko) * | 2019-11-13 | 2022-01-07 | 한국생산기술연구원 | 황화물계 및 산화물계 융합 고체전해질을 포함하는 고전압 안전성 전고체 리튬이차전지 및 그의 제조방법 |
KR102740447B1 (ko) * | 2020-10-26 | 2024-12-09 | 한국전자통신연구원 | 이차전지 바인더용 셀룰로오스 유도체 조성물 및 이를 포함하는 이차전지 전극용 조성물의 제조 방법 |
-
2023
- 2023-10-18 WO PCT/JP2023/037723 patent/WO2024085192A1/ja active IP Right Grant
- 2023-10-18 EP EP23879835.9A patent/EP4517880A4/en active Pending
- 2023-10-18 JP JP2023579287A patent/JP7485439B1/ja active Active
- 2023-10-18 KR KR1020247038530A patent/KR102827746B1/ko active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5534227B2 (ja) | 2008-10-17 | 2014-06-25 | 独立行政法人産業技術総合研究所 | 硫黄変性ポリアクリロニトリル、その製造方法、及びその用途 |
JP2011081926A (ja) * | 2009-10-02 | 2011-04-21 | Nikkiso Co Ltd | 改質微粉状正極物質の製造方法 |
JP2011091010A (ja) * | 2009-10-26 | 2011-05-06 | Nikkiso Co Ltd | 改質微粉状正極物質の製造方法 |
JP2013101811A (ja) | 2011-11-08 | 2013-05-23 | Toyota Industries Corp | 非水電解質二次電池用正極活物質及びその製造方法並びに非水電解質二次電池 |
WO2015093590A1 (ja) * | 2013-12-20 | 2015-06-25 | 貞充 山▲崎▼ | 電池の製造方法 |
JP6266655B2 (ja) | 2013-12-20 | 2018-01-24 | 貞充 山▲崎▼ | 電池の製造方法 |
JP2016009583A (ja) * | 2014-06-24 | 2016-01-18 | 三洋化成工業株式会社 | 正極活物質の製造方法 |
JP2023098554A (ja) * | 2021-12-28 | 2023-07-10 | 株式会社ルネシス | 正極活物質、正極合剤及び二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4517880A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20240171159A (ko) | 2024-12-06 |
EP4517880A1 (en) | 2025-03-05 |
EP4517880A4 (en) | 2025-06-25 |
KR102827746B1 (ko) | 2025-06-30 |
JPWO2024085192A1 (ja) | 2024-04-25 |
JP7485439B1 (ja) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101328585B1 (ko) | 양극활물질의 재활용을 통한 리튬이온 이차전지용 양극의 제조 방법 및 이에 따라 제조된 리튬이온 이차전지 | |
KR101349900B1 (ko) | 금속산화물 전극활물질의 재활용 방법, 이에 따라 제조된 리튬 이차전지용 금속산화물 전극활물질, 리튬 이차전지용 전극 및 리튬 이차전지 | |
JP6621994B2 (ja) | リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用の負極活物質層用組成物、リチウム二次電池用負極及びリチウム二次電池 | |
US20180019472A1 (en) | Method for manufacturing graphite powder for negative-electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP2015531967A (ja) | 硫黄‐炭素複合材料並びにその製造方法及びその使用方法、カソード材料、電気化学電池及びその使用方法、リチウムイオンバッテリー | |
Ray et al. | Rice husk-derived sodium hydroxide activated hierarchical porous biochar as an efficient electrode material for supercapacitors | |
JP2011029197A (ja) | リチウム二次電池用負極炭素材料、その製造法、リチウム二次電池用負極及びリチウム二次電池 | |
CN102263230B (zh) | 锂离子二次电池负极材料及其制备方法 | |
JP7485439B1 (ja) | 電極部材の製造方法及び電極部材の製造システム、並びに正極活物質の製造方法、正極活物質、正極合剤及び二次電池 | |
EP4340071A1 (en) | Positive electrode active material, positive electrode mixture, and secondary battery | |
Bensouda et al. | Effect of NaOH impregnation on the electrochemical performances of hard carbon derived from olive seeds biomass for sodium ion batteries | |
JP7246789B1 (ja) | 正極活物質、正極合剤及び二次電池 | |
JP2025069939A (ja) | 精製炭化物の製造方法、精製炭化物、負極合剤及び二次電池、並びに硫黄の製造方法、重質油及び/又は軽質油の製造方法 | |
JP4721038B2 (ja) | リチウム二次電池用負極炭素材料、その製造法、リチウム二次電池用負極及びリチウム二次電池 | |
JP6396040B2 (ja) | リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用負極及びリチウム二次電池 | |
CN113493193A (zh) | 无定形碳材料及其制备方法、钠离子电池负极和钠离子电池 | |
Askaruly et al. | Utilizing rice husk-derived Si/C composites to enhance energy capacity and cycle sustainability of lithium-ion batteries | |
Alouiz et al. | Performance of high-energy storage activated carbon derived from olive pomace biomass as an anode material for sustainable lithium-ion batteries | |
JP2023098729A (ja) | 正極活物質、正極合剤及び二次電池 | |
JP2024093446A (ja) | 二次電池及び液体電解質 | |
KR20250008086A (ko) | 탄소 재료로부터 황을 제거하는 방법 | |
JP2008251445A (ja) | リチウムイオン二次電池負極用炭素質材料及びその製造方法 | |
Paramitha et al. | A review on the development of synthesis method for biomass-derived hard carbon for sodium ion batteries | |
Sonawane et al. | Harnessing Functionalized Biochar for Enhanced Electrochemical Properties in Secondary Batteries | |
CN119695076A (zh) | 一种复合硬碳负极材料,其制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023579287 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23879835 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20247038530 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247038530 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023879835 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023879835 Country of ref document: EP Effective date: 20241128 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020247038530 Country of ref document: KR |