WO2023249106A1 - 筋萎縮性側索硬化症の治療剤又は予防剤 - Google Patents
筋萎縮性側索硬化症の治療剤又は予防剤 Download PDFInfo
- Publication number
- WO2023249106A1 WO2023249106A1 PCT/JP2023/023264 JP2023023264W WO2023249106A1 WO 2023249106 A1 WO2023249106 A1 WO 2023249106A1 JP 2023023264 W JP2023023264 W JP 2023023264W WO 2023249106 A1 WO2023249106 A1 WO 2023249106A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- mmol
- atom
- tetrahydroquinolin
- hydrogen atom
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
Definitions
- the present invention relates to a therapeutic or preventive agent for amyotrophic lateral sclerosis.
- ALS Amyotrophic lateral sclerosis
- SOD1 superoxide dismutase 1
- TDP-43 43kDa TAR DNA-binding protein
- FUS Fused in Sarcoma
- Patent Document 1 The pathological mechanisms of amyotrophic lateral sclerosis are known to include excitotoxicity, oxidative stress, and the accumulation of abnormal proteins; however, the therapeutic agents currently on the market for the treatment of ALS do not induce excitotoxicity. Only riluzole suppresses this and edaravone (Patent Document 1) has an antioxidant effect.
- Ferroptosis is a phenomenon in which various stimuli cause a decrease in antioxidant function such as a decrease in the amount of intracellular glutathione and glutathione peroxidase 4 (GPX4), and as a result of divalent iron-dependent reactions progressing, intracellular lipid peroxide becomes lethal. This is a reaction in which the amount of cells increases to a certain level, resulting in cell death.
- Non-Patent Document 2 It has been reported that iron accumulates and lipid peroxidation occurs in the spinal cord of patients with amyotrophic lateral sclerosis (Non-Patent Document 2). In addition, iron accumulates in the spinal cords of superoxide dismutase 1 (SOD1) gene mutant mice, which are pathological model animals for amyotrophic lateral sclerosis, and it has been reported that iron chelating agents have a survival effect (Non-Patent Document 3). .
- SOD1 superoxide dismutase 1
- Non-Patent Documents 1 and 4 Aniline derivatives such as Ferrostatin-1 are known as compounds that exhibit a ferroptosis inhibitory effect. Furthermore, it has been disclosed that tetrahydroquinoxaline derivatives and 3,4-dihydro-2H-benzo-[1,4]oxazine derivatives also have ferroptosis inhibiting effects (Patent Documents 2 and 3).
- Non-Patent Document 5 It has been reported that radical scavenging action is important for the expression of ferroptosis inhibitory action. Furthermore, it is disclosed that the tetrahydroquinoxaline derivative described in Patent Document 2 has a strong radical scavenging effect and, as a result, exhibits a ferroptosis inhibiting effect (Non-Patent Documents 6 and 7).
- Patent Documents 4 to 8 disclose tetrahydroquinoline derivatives having antiviral action, antitumor action, pain treatment action, or immune response modification action.
- Patent Documents 2 to 8 and Non-Patent Documents 1 to 7 do not disclose the ferroptosis inhibitory effect of tetrahydroquinoline derivatives and the treatment or prevention of amyotrophic lateral sclerosis, nor do they suggest the possibility thereof. Not yet.
- various therapeutic agents for amyotrophic lateral sclerosis are being researched, but the currently commercially available therapeutic agents for amyotrophic lateral sclerosis have effects on cell death due to excitotoxicity and cell death due to oxidative stress. The mechanism is that it does not treat amyotrophic lateral sclerosis by protecting cells by inhibiting ferroptosis. All of the therapeutic agents on the market can only postpone the progression of pathological conditions such as movement disorders for several months, and cannot be said to have sufficient therapeutic effects.
- an object of the present invention is to provide a therapeutic or preventive agent for amyotrophic lateral sclerosis that has ferroptosis inhibitory activity.
- the present inventors have conducted extensive research to solve the above problems, and have found that a novel tetrahydroquinoline-based compound with ferroptosis inhibitory activity is effective in treating or preventing amyotrophic lateral sclerosis. This discovery led to the completion of the present invention.
- the present invention provides a therapeutic or preventive agent for amyotrophic lateral sclerosis, which contains a tetrahydroquinoline derivative represented by the following general formula (I) or a pharmacologically acceptable salt thereof as an active ingredient. provide.
- a therapeutic or preventive agent for amyotrophic lateral sclerosis which contains a tetrahydroquinoline derivative represented by the following general formula (I) or a pharmacologically acceptable salt thereof as an active ingredient.
- R 1x is a hydrogen atom, an aryl group, or a 5- or 6-membered heteroaryl group containing 1 or 2 heteroatoms selected from nitrogen atoms, oxygen atoms, and sulfur atoms (the aryl group and the 5- or 6-membered heteroaryl group).
- One or two arbitrary hydrogen atoms of the membered ring heteroaryl group are each independently substituted with a halogen atom, and one to three arbitrary hydrogen atoms are each independently substituted with a hydroxy group or a fluorine atom.
- R 1y represents a hydrogen atom, a phenyl group, a 4-hydroxymethylphenyl group, a 4-aminocarbonylphenyl group, a 4-acetamidophenyl group, a 4-aminosulfonylphenyl group, a 4-methylsulfonylphenyl group, or a 3-pyridyl group.
- R 1x and R 1y are both hydrogen atoms
- the combination of R 2 , R 4 and R 5 is such that R 2 , R 4 and R 5 are all hydrogen atoms, Or, one of R 2 , R 4 and R 5 is a halogen atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group, and the other two are hydrogen atoms, R 3 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may each be independently substituted with a hydroxy group or a fluorine atom, 3-hydroxyoxetane- 3-yl group, hydroxy group, alkoxy group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may be substituted with fluorine atoms, methoxycarbonyl group, -NR 9 R 10 , -CH 2 NR 11 R 12 or -CH
- R 13 and R 14 are combined and one or two arbitrary hydrogen atoms are a fluorine atom, methyl group, hydroxy group, or methoxy group, or one arbitrary CH 2 group is an oxygen atom, a nitrogen atom or -(CH 2 ) k - which may be substituted with -CONH-, k represents an integer from 3 to 5,
- R 15 represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or -NHR 16 ;
- R 16 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
- R v represents a hydrogen atom, a methyl group in which one arbitrary hydrogen atom may be substituted with a hydroxy group or a methoxycarbonyl group, or
- R 1x is a hydrogen atom, a phenyl group (the hydrogen atom at the para position of the phenyl group is a fluorine atom, a trifluoromethyl group, a trifluoromethoxy group, a cyano group, an aminocarbonyl group, an acetamido group, an aminosulfonyl group) , optionally substituted with a methylsulfonylamino group or a methylsulfonyl group), R 1y is a hydrogen atom or a 4-aminosulfonylphenyl group (provided that when R 1x is a hydrogen atom, R 1y is a 4-aminosulfonylphenyl group, or R 1x is a phenyl group (The hydrogen atom at the para position of the phenyl group is substituted with a fluorine atom, trifluoromethyl group, trifluoromethoxy group, cyano group, aminocarbonyl group,
- R 1y is a hydrogen atom
- the combination of R 2 , R 4 and R 5 is such that R 2 , R 4 and R 5 are all hydrogen atoms, or one of R 2 and R 4 is a fluorine atom, a chlorine atom or a methyl group, and the other and R 5 is a hydrogen atom
- R 3 is a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, a hydroxymethyl group, a trifluoromethoxy group, or -CH 2 CONR 13 R 14 , R 13 is a hydrogen atom or a methyl group, R 14 is a tert-butyl group, 2-hydroxyethyl group, cyclopropyl group, cyclobutyl group or oxetan-3-yl group, or R 13 and R 14 together with the nitrogen atom to which they are bonded are piperazine ring, piperazin-2-one ring, azetidine ring, 3,3-d
- the therapeutic or preventive agent for amyotrophic lateral sclerosis according to [1] or [2], wherein the tetrahydroquinoline derivative or a pharmacologically acceptable salt thereof is selected from the following group: 2-phenyl-1,2,3,4-tetrahydroquinoline, 4-(1,2,3,4-tetrahydroquinolin-2-yl)benzenesulfonamide, 4-(1,2,3,4-tetrahydroquinolin-2-yl)benzamide, 1-(3-hydroxyazetidin-1-yl)-2-(2-phenyl-1,2,3,4-tetrahydroquinolin-6-yl)ethane-1-one, 4-(6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)benzamide, 4-(6-methyl-1,2,3,4-tetrahydroquinolin-2-yl)benzenesulfonamide, 4-(7-methyl-1,2,3,4-tetrahydroquinol
- the present invention includes a ferroptosis inhibitor containing a tetrahydroquinoline derivative represented by the following general formula (I) or a pharmacologically acceptable salt thereof as an active ingredient. .
- R 1x is a hydrogen atom, an aryl group, or a 5- or 6-membered heteroaryl group containing 1 or 2 heteroatoms selected from nitrogen atoms, oxygen atoms, and sulfur atoms (the aryl group and the 5- or 6-membered heteroaryl group).
- One or two arbitrary hydrogen atoms of the membered ring heteroaryl group are each independently substituted with a halogen atom, and one to three arbitrary hydrogen atoms are each independently substituted with a hydroxy group or a fluorine atom.
- R 1x and R 1y are both hydrogen atoms
- the combination of R 2 , R 4 and R 5 is such that R 2 , R 4 and R 5 are all hydrogen atoms, Or, one of R 2 , R 4 and R 5 is a halogen atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group, and the other two are hydrogen atoms, R 3 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may each be independently substituted with a hydroxy group or a fluorine atom, 3-hydroxyoxetane- 3-yl group, hydroxy group, alkoxy group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may be substituted with fluorine atoms, methoxycarbonyl group, -NR 9 R 10 , -CH 2 NR 11 R 12 or -CH
- R 13 and R 14 are combined and one or two arbitrary hydrogen atoms are a fluorine atom, methyl group, hydroxy group, or methoxy group, or one arbitrary CH 2 group is an oxygen atom, a nitrogen atom or -(CH 2 ) k - which may be substituted with -CONH-, k represents an integer from 3 to 5,
- R 15 represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or -NHR 16 ;
- R 16 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
- R v represents a hydrogen atom, a methyl group in which one arbitrary hydrogen atom may be substituted with a hydroxy group or a methoxycarbonyl group, or
- the present invention includes the use of the above-mentioned tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof in the production of a ferroptosis inhibitor.
- the present invention provides the use of the above-mentioned tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof in the production of a therapeutic or preventive agent for amyotrophic lateral sclerosis. include.
- the present invention includes the above-described tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof for use in treating or preventing amyotrophic lateral sclerosis. .
- the present invention provides a method for treating or preventing amyotrophic lateral sclerosis, which comprises administering an effective amount of the above tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof. , to a subject in need thereof.
- the tetrahydroquinoline derivative of the present invention or a pharmacologically acceptable salt thereof has the effect of treating or preventing amyotrophic lateral sclerosis through its ferroptosis inhibiting action and pharmacological action based thereon.
- FIG. 2 is a diagram showing a method for evaluating motor function of amyotrophic lateral sclerosis model mice.
- FIG. 2 is a diagram showing the effect of the compound of Example 1 on the age of onset of movement disorders in amyotrophic lateral sclerosis model mice.
- a tetrahydroquinoline derivative or a pharmacologically acceptable salt thereof according to one embodiment of the present invention is characterized by being represented by the following general formula (I).
- R 1x is a hydrogen atom, an aryl group, or a 5- or 6-membered heteroaryl group containing 1 or 2 heteroatoms selected from nitrogen atoms, oxygen atoms, and sulfur atoms (the aryl group and the 5- or 6-membered heteroaryl group).
- One or two arbitrary hydrogen atoms of the membered ring heteroaryl group are each independently substituted with a halogen atom, and one to three arbitrary hydrogen atoms are each independently substituted with a hydroxy group or a fluorine atom.
- R 1x and R 1y are both hydrogen atoms
- the combination of R 2 , R 4 and R 5 is such that R 2 , R 4 and R 5 are all hydrogen atoms, Or, one of R 2 , R 4 and R 5 is a halogen atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group, and the other two are hydrogen atoms, R 3 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may each be independently substituted with a hydroxy group or a fluorine atom, 3-hydroxyoxetane- 3-yl group, hydroxy group, alkoxy group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may be substituted with fluorine atoms, methoxycarbonyl group, -NR 9 R 10 , -CH 2 NR 11 R 12 or -CH
- R 13 and R 14 are combined and one or two arbitrary hydrogen atoms are a fluorine atom, methyl group, hydroxy group, or methoxy group, or one arbitrary CH 2 group is an oxygen atom, a nitrogen atom or -(CH 2 ) k - which may be substituted with -CONH-, k represents an integer from 3 to 5,
- R 15 represents an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or -NHR 16 ;
- R 16 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
- R v represents a hydrogen atom, a methyl group in which one arbitrary hydrogen atom may be substituted with a hydroxy group or a methoxycarbonyl group, or
- Halogen atom means a fluorine atom, chlorine atom, bromine atom, or iodine atom.
- Alkyl group having 1 to 3 carbon atoms means a methyl group, ethyl group, propyl group or isopropyl group.
- Alkyl group having 1 to 5 carbon atoms means a linear or branched hydrocarbon group having 1 to 5 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, Examples include isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group and neopentyl group.
- Alkyl group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may be independently substituted with a hydroxy group or a fluorine atom refers to the above-mentioned "alkyl group having 1 to 3 carbon atoms”.
- '' means a group in which 1 to 3 arbitrary hydrogen atoms may each be independently substituted with a hydroxy group or a fluorine atom, such as a methyl group, a hydroxymethyl group, an ethyl group, a 1-hydroxy Ethyl group, 2-hydroxyethyl group, 1,2-dihydroxyethyl group, propyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 1,2-dihydroxypropyl group, 1,3- Dihydroxypropyl group, 2,3-dihydroxypropyl group, isopropyl group, 2-hydroxypropan-2-yl group, 1-hydroxypropan-2-yl group, 1,2-dihydroxy-1-methylethyl group, fluoromethyl group , difluoromethyl group, trifluoromethyl group, 1,1-difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1-difluoropropyl group, 2,2-di
- Alkyl group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may be substituted with fluorine atoms means 1 to 3 of the above-mentioned "alkyl group having 1 to 3 carbon atoms” Refers to a group in which any hydrogen atom may be substituted with a fluorine atom, such as methyl group, fluoromethyl group, difluoromethyl group, trifluoromethyl group, ethyl group, 1,1-difluoroethyl group, 2, 2,2-trifluoroethyl group, propyl group, 1,1-difluoropropyl group, 2,2-difluoropropyl group, 3,3,3-trifluoropropyl group, isopropyl group, 2-fluoropropan-2-yl or 1,1,1-trifluoropropan-2-yl group.
- a fluorine atom such as methyl group, fluoromethyl group, difluoromethyl group, trifluoro
- Alkyl group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms are substituted with fluorine atoms means any 1 to 3 alkyl group having 1 to 3 carbon atoms of the above "alkyl group having 1 to 3 carbon atoms”
- a hydrogen atom is substituted with a fluorine atom, such as a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 1,1-difluoroethyl group, a 2,2,2-trifluoroethyl group, , 1-difluoropropyl group, 2,2-difluoropropyl group, 3,3,3-trifluoropropyl group, 2-fluoropropan-2-yl group or 1,1,1-trifluoropropan-2-yl group can be mentioned.
- Alkyl group having 1 to 3 carbon atoms, in which one arbitrary hydrogen atom may be substituted with a hydroxy group means one arbitrary hydrogen atom of the above-mentioned "alkyl group having 1 to 3 carbon atoms” means a group which may be substituted with a hydroxy group, such as a methyl group, a hydroxymethyl group, an ethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a propyl group, a 1-hydroxypropyl group, a 2- Examples include hydroxypropyl group, 3-hydroxypropyl group, isopropyl group, 2-hydroxypropan-2-yl group, and 1-hydroxypropan-2-yl group.
- a C1-C3 alkyl group in which one arbitrary hydrogen atom is substituted with a hydroxy group refers to the above "C1-C3 alkyl group” in which one arbitrary hydrogen atom is substituted with a hydroxy group. means a group substituted with a group, such as hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 2-hydroxy Examples include propan-2-yl group and 1-hydroxypropan-2-yl group.
- Alkyl group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may be substituted with a fluorine atom or 1 arbitrary hydrogen atom with a hydroxy group means the above-mentioned “1 to 3 carbon atoms "an alkyl group having 1 to 3 carbon atoms in which any hydrogen atom may be substituted with a fluorine atom” or "an alkyl group having 1 to 3 carbon atoms in which one arbitrary hydrogen atom may be substituted with a hydroxy group" "alkyl group”.
- a methyl group in which one hydrogen atom may be substituted with a hydroxy group means a methyl group or a hydroxymethyl group.
- Alkoxy group having 1 to 3 carbon atoms means a methoxy group, ethoxy group, propoxy group or isopropoxy group.
- Alkoxy group having 1 to 5 carbon atoms means a monovalent substituent in which a linear or branched hydrocarbon group having 1 to 5 carbon atoms is bonded to an oxygen atom, such as a methoxy group, an ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, isopentyloxy group, sec-pentyloxy group, tert-pentyloxy group or neopentyloxy group can be mentioned.
- Alkoxy group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may be substituted with fluorine atoms means 1 to 3 of the above-mentioned "alkoxy group having 1 to 3 carbon atoms” Refers to a group in which any hydrogen atom may be substituted with a fluorine atom, such as a methoxy group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, an ethoxy group, a 1,1-difluoroethoxy group, 2, 2,2-trifluoroethoxy group, propoxy group, 1,1-difluoropropoxy group, 2,2-difluoropropoxy group, 3,3,3-trifluoropropoxy group, isopropoxy group, (2-fluoropropane-2 -yl)oxy group or (1,1,1-trifluoropropan-2-yl)oxy group.
- a methoxy group in which 1 to 3 arbitrary hydrogen atoms are substituted with fluorine atoms means a fluoromethoxy group, a difluoromethoxy group, or a trifluoromethoxy group.
- a methoxy group in which 1 to 3 arbitrary hydrogen atoms may be substituted with fluorine atoms refers to the above-mentioned "methoxy group in which 1 to 3 arbitrary hydrogen atoms are substituted with fluorine atoms" or Means a methoxy group.
- Alkylsulfonyl group having 1 to 3 carbon atoms means a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, or an isopropylsulfonyl group.
- Aryl group means a monocyclic or bicyclic aromatic hydrocarbon group, and includes, for example, a phenyl group or a naphthyl group (1-naphthyl group or 2-naphthyl group).
- a 5- or 6-membered heteroaryl group containing 1 or 2 heteroatoms selected from nitrogen atoms, oxygen atoms, and sulfur atoms means a nitrogen atom, an oxygen atom, and a sulfur atom in addition to carbon atoms as ring constituent atoms.
- pyrimidinyl group e.g. 2-pyrimidinyl group, 4-pyrimidinyl group
- 5-pyrimidinyl group or 6-pyrimidinyl group pyridazinyl group
- pyridazinyl group eg, 3-pyridazinyl group or 4-pyridazinyl group
- pyrazinyl group eg, 2-pyridazinyl group.
- 5- and 6-membered lactam ring means a pyrrolidin-2-one ring and a piperidin-2-one ring.
- 5- and 6-membered saturated heterocycles containing 1 or 2 oxygen atoms as ring constituent atoms refers to 5- and 6-membered saturated heterocycles containing 1 or 2 oxygen atoms in addition to carbon atoms as ring constituent atoms.
- a tetrahydrofuran ring, a 1,3-dioxolane ring, a tetrahydro-2H-pyran ring, a 1,2-dioxane ring, a 1,3-dioxane ring, and a 1,4-dioxane ring can be mentioned.
- a fused ring in which a phenyl group is fused with one ring selected from the group consisting of a 5- and 6-membered lactam ring and a 5- and 6-membered saturated heterocycle containing 1 or 2 oxygen atoms as ring constituent atoms.
- group is selected from the group consisting of a phenyl group, the above-mentioned “5- and 6-membered lactam ring", and the above-mentioned “5- and 6-membered saturated heterocycle containing 1 or 2 oxygen atoms as ring constituent atoms" 3-oxoisoindolin-4-yl group, 3-oxoisoindolin-5-yl group, 1-oxoisoindolin-5 -yl group, 1-oxoisoindolin-4-yl group, 2-oxoindolin-4-yl group, 2-oxoindolin-5-yl group, 2-oxoindolin-6-yl group, 2-oxoindolin- 7-yl group, 2,3-dihydrobenzofuran-4-yl group, 2,3-dihydrobenzofuran-5-yl group, 2,3-dihydrobenzofuran-6-yl group, 2,3-dihydrobenzofuran-7-yl
- a fused ring group in which a phenyl group is fused with one ring selected from the group consisting of pyrrolidin-2-one, piperidin-2-one, and 1,3-dioxolane means, for example, 3-oxoisoindoline -4-yl group, 3-oxoisoindolin-5-yl group, 1-oxoisoindolin-5-yl group, 1-oxoisoindolin-4-yl group, 2-oxoisoindolin-4-yl group, 2 -oxoindolin-5-yl group, 2-oxoindolin-6-yl group, 2-oxoindolin-7-yl group, benzo[d][1,3]dioxol-4-yl group, benzo[d][ 1,3]dioxol-5-yl group, 1-oxo-1,2,3,4-tetrahydroisoquinolin-5-yl group, 1-oxo-1,2,3,
- R 2 , R 4 and R 5 is a halogen atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group, and the other two are hydrogen atoms.
- R 2 is a halogen atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group
- R 4 and R 5 are both hydrogen atoms
- R 4 is a halogen an atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group
- R 2 and R 5 are both hydrogen atoms
- R 5 is a halogen atom, a methoxy group, or It means a methyl group in which one hydrogen atom may be substituted with a hydroxy group, and R 2 and R 4 are both hydrogen atoms.
- R 2 and R 4 is a fluorine atom, a chlorine atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group, and the other and R 5 are hydrogen atoms"
- R 2 is a fluorine atom, a chlorine atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group
- R 4 and R 5 are both hydrogen atoms
- R 4 means a fluorine atom, a chlorine atom, a methoxy group, or a methyl group in which one hydrogen atom may be substituted with a hydroxy group
- R 2 and R 5 are both hydrogen atoms.
- R 11 and R 12 together represent -(CH 2 ) m -, m represents an integer from 3 to 5, where one arbitrary methylene group is substituted with an oxygen atom.
- Azetidine ring in which one arbitrary hydrogen atom may be substituted with a hydroxy group together with the nitrogen atom to which R 13 and R 14 are bonded means, for example, an azetidine ring or a 3-hydroxyazetidine ring. Examples include rings.
- Azetidine ring in which two arbitrary hydrogen atoms may be substituted with a methyl group or a fluorine atom, or one arbitrary hydrogen atom may be substituted with a hydroxy group or a methoxy group means an azetidine ring, 2,2-dimethylazetidine ring, Zine ring, 2,3-dimethylazetidine ring, 2,4-dimethylazetidine ring, 3,3-dimethylazetidine ring, 3,3-difluoroazetidine ring, 3-hydroxyazetidine ring or 3-methoxyazetidine ring Examples include the Jin ring.
- a cycloalkyl group having 3 or 4 carbon atoms in which one arbitrary carbon atom may be substituted with an oxygen atom means, for example, a cyclopropyl group, a cyclobutyl group, an oxiran-2-yl group, or an oxetane-3 -yl group is mentioned.
- a methyl group in which one arbitrary carbon atom is substituted with a cycloalkyl group having 3 or 4 carbon atoms which may be substituted with a nitrogen atom or an oxygen atom means, for example, a cyclopropylmethyl group, a cyclobutyl Examples include methyl group, oxiran-2-ylmethyl group, oxetan-2-ylmethyl, oxetan-3-ylmethyl, aziridin-2-ylmethyl, azetidin-2-ylmethyl group and azetidin-3-ylmethyl group.
- Examples of the "methyl group in which one arbitrary hydrogen atom may be substituted with a hydroxy group or a methoxycarbonyl group” include a methyl group, a hydroxymethyl group, and a methoxycarbonylmethyl group.
- R 1x is a phenyl group (one arbitrary hydrogen atom of the phenyl group is a fluorine atom, a chlorine atom, 1 to 3 arbitrary hydrogen atoms are a fluorine atom, or one arbitrary hydrogen atom is a hydroxy group)
- R 1x is a substituted phenyl group, it is preferable that the hydrogen atom at the para position is substituted.
- R 1x is a phenyl group (one arbitrary hydrogen atom of the phenyl group is a halogen atom).
- R 1x is a hydrogen atom, a phenyl group (any hydrogen atom of one of the phenyl groups).
- the atom is an alkyl group having 1 to 3 carbon atoms in which one arbitrary hydrogen atom is substituted with a hydroxy group, -CONR 6 R 7 , an aminosulfonyl group, a methylsulfonylamino group, an aminosulfonylamino group, or an alkyl group having 1 carbon number ⁇ 3 alkylsulfonyl groups, or one hydrogen atom at the meta position of the phenyl group is substituted with a cyano group, or the hydrogen atom at the para position of the phenyl group is substituted with a trifluoromethoxy group.
- 1-methyl-1H-pyrazol-4-yl group or 6-methoxypyridin-3-yl group, or phenyl group and pyrrolidin-2-one, piperidin-2-one and 1 , 3-dioxolane is preferably a fused ring group (one arbitrary hydrogen atom of the fused ring group may be substituted with a methyl group).
- R 1y is preferably a hydrogen atom, a phenyl group, a 4-hydroxymethylphenyl group, a 4-aminocarbonylphenyl group, a 4-acetamidophenyl group, a 4-aminosulfonylphenyl group, a 4-methylsulfonylphenyl group, and -Hydroxymethylphenyl group, 4-aminocarbonylphenyl group, 4-acetamidophenyl group, 4-aminosulfonylphenyl group or 4-methylsulfonylphenyl group, more preferably 4-aminocarbonylphenyl group, 4-aminosulfonyl group. More preferably, it is a phenyl group or a 4-methylsulfonylphenyl group.
- R 1x and R 1y are not both hydrogen atoms.
- R 1x and R 1y are that R 1x is a hydrogen atom and R 1y is a substituent other than a hydrogen atom, or R 1x is a substituent other than a hydrogen atom and R 1y is a hydrogen atom. is preferable, and it is more preferable that R 1x is a substituent other than a hydrogen atom and R 1y is a hydrogen atom.
- R 2 is preferably a hydrogen atom, a fluorine atom, a chlorine atom, a hydroxymethyl group or a methyl group, and more preferably a hydrogen atom.
- R 3 is a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 3 carbon atoms in which one arbitrary hydrogen atom may be substituted with a hydroxy group, a trifluoromethoxy group, -CH 2 NR 11 R 12 or -CH 2 CONR 13 R 14 , more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, a hydroxymethyl group, a trifluoromethoxy group or -CH 2 CONR 13 R 14 , More preferred are a hydrogen atom, a fluorine atom, a chlorine atom, and a methyl group.
- R 4 is preferably a hydrogen atom, a fluorine atom, a chlorine atom, or a methyl group, and more preferably a hydrogen atom.
- R 5 is a hydrogen atom.
- R 6 and R 7 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, or R 6 and R 7 together with the nitrogen atom bonded thereto are a piperidine ring, a morpholine It is preferable that a ring, a piperazine ring or an N-methylpiperazine ring may be formed, and it is more preferable that R 6 and R 7 are both hydrogen atoms.
- R 8 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
- R 9 is a hydrogen atom
- R 10 is a hydrogen atom, -COR 15 , or an alkylsulfonyl group having 1 to 3 carbon atoms, or R 9 and R 10 taken together are -(CH 2 ) n -, n is preferably 4 or 5, R 9 is a hydrogen atom, and R 10 is more preferably -COR 15 .
- R 11 and R 12 together represent -(CH 2 ) m -, where m is 4 or 5 (here, one arbitrary methylene group may be substituted with an oxygen atom) It is preferable that
- R 13 is a hydrogen atom or a methyl group
- R 14 is a hydrogen atom, methyl group, ethyl group, isopropyl group, tert-butyl group, 2-hydroxyethyl group, cyclopropyl group, cyclobutyl group, oxetane-3- yl group, cyclopropylmethyl group, cyclobutylmethyl group or oxetan-3-ylmethyl group, or R 13 and R 14 together with the nitrogen atom bonded thereto are a pyrrolidine ring, a piperidine ring, a piperazine ring, It is preferable that a morpholine ring, azetidine ring, 3,3-dimethylazetidine ring, 3,3-difluoroazetidine ring, 3-hydroxyazetidine ring or 3-methoxyazetidine ring is formed.
- R 15 is preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or -NHR 16 .
- R 16 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
- R v is preferably a hydrogen atom.
- R w is a hydrogen atom.
- tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof can be used not only as a single stereoisomer but also as a mixture of stereoisomers such as a racemate and a diastereomer mixture (e.g., an enantiomer). (mixtures of) are also included.
- Stepoisomer refers to compounds that have the same chemical structure but different configurations in three-dimensional space, such as conformers, rotamers, tautomers, enantiomers, or diastereomers. etc.
- the above tetrahydroquinoline derivative (I) may have the following general formulas (I-1) to (I-8).
- R 1x , R 1y , R 2 , R 3 , R 4 , R 5 , R v and R w have the same meanings as the above definitions. ]
- R 1x is a phenyl group (one arbitrary hydrogen atom of the phenyl group is a fluorine atom, a chlorine atom, and 1 to 3 arbitrary hydrogen atoms are a fluorine atom). or an alkyl group having 1 to 3 carbon atoms in which one arbitrary hydrogen atom may be substituted with a hydroxy group, or an alkyl group having 1 to 3 carbon atoms in which 1 to 3 arbitrary hydrogen atoms may be substituted with fluorine atoms.
- tetrahydroquinoline derivative (I) includes, for example, a tetrahydroquinoline derivative represented by the following general formula (II-a) or a pharmacologically acceptable salt thereof.
- A is a hydrogen atom or -CONH 2
- R 9 and R 10 are each independently a hydrogen atom, -COR 15 or an alkylsulfonyl group having 1 to 3 carbon atoms, or R 9 and R 10 are -(CH 2 ) n - together, n is an integer of 3 to 6, and R 15 is an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. It is an alkoxy group or -NHR 16 , and R 16 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
- R 9 is a hydrogen atom
- R 10 is -COR 15
- R 15 is preferably an alkoxy group having 1 to 5 carbon atoms
- A is a hydrogen atom
- R 9 is a hydrogen atom
- R 10 is -COR 15
- R 15 is an alkoxy group having 1 to 5 carbon atoms. More preferably, A is a hydrogen atom, R 9 is a hydrogen atom, R 10 is -COR 15 , and R 15 is a tert-butoxy group.
- the above tetrahydroquinoline derivative (II-a) or a pharmacologically acceptable salt thereof contains the above tetrahydroquinoline derivative (II-a) or a pharmacologically acceptable salt thereof as an active ingredient. It can be used as a therapeutic or preventive agent for amyotrophic lateral sclerosis.
- the above tetrahydroquinoline derivative (II-a) or a pharmacologically acceptable salt thereof contains the above tetrahydroquinoline derivative (II-a) or a pharmacologically acceptable salt thereof as an active ingredient.
- tetrahydroquinoline derivative (I) includes, for example, a tetrahydroquinoline derivative represented by the following general formula (II-b) or a pharmacologically acceptable salt thereof.
- R 1y is a phenyl group, 4-hydroxymethylphenyl group, 4-aminocarbonylphenyl group, 4-acetamidophenyl group, 4-aminosulfonylphenyl group, 4-methylsulfonylphenyl or 3-pyridyl group;
- R 3 is a hydrogen atom or a halogen atom, and
- R 4 is a hydrogen atom or a halogen atom (excluding 3-phenyl-1,2,3,4-tetrahydroquinoline).
- R 1y is a 4-hydroxymethylphenyl group, a 4-aminocarbonylphenyl group, 4-acetamidophenyl group, 4-aminosulfonylphenyl group or 4-methylsulfonylphenyl group
- R 3 is a hydrogen atom, a fluorine atom or a chlorine atom
- R 4 is a hydrogen atom, a fluorine atom or a chlorine atom.
- R 1y is a 4-aminocarbonylphenyl group, 4-aminosulfonylphenyl group, or 4-methylsulfonylphenyl group
- R 3 is a hydrogen atom
- R 4 is a hydrogen atom. is more preferable.
- the above tetrahydroquinoline derivative (II-b) or a pharmacologically acceptable salt thereof contains the above tetrahydroquinoline derivative (II-b) or a pharmacologically acceptable salt thereof as an active ingredient. It can be used as a therapeutic or preventive agent for amyotrophic lateral sclerosis.
- the above tetrahydroquinoline derivative (II-b) or a pharmacologically acceptable salt thereof contains the above tetrahydroquinoline derivative (II-b) or a pharmacologically acceptable salt thereof as an active ingredient.
- tetrahydroquinoline derivative (I) includes, for example, a tetrahydroquinoline derivative represented by the following general formula (II-c) or a pharmacologically acceptable salt thereof.
- R 1x is a hydrogen atom, a phenyl group, a 4-carbamoylphenyl group, a 4-aminosulfonylphenyl group, or a pyrazolyl group
- R 1y is a hydrogen atom or a 4-aminosulfonylphenyl group
- R 3 is a hydrogen atom, a methyl group, a fluorine atom or a chlorine atom
- R 1x is a hydrogen atom
- R 1y is a 4-aminosulfonylphenyl group
- R 3 is a hydrogen atom.
- R 1x is a phenyl group, 4-carbamoylphenyl group, 4-aminosulfonylphenyl group, or pyrazolyl group
- R 1y is a hydrogen atom
- R 3 is a hydrogen atom, a methyl group, a fluorine atom, or It is a chlorine atom.
- R 1x is a hydrogen atom, a phenyl group, a 4-carbamoylphenyl group, a 4- is an aminosulfonylphenyl group or a pyrazolyl group
- R 1y is a hydrogen atom or a 4-aminosulfonylphenyl group
- R 3 is a hydrogen atom, a methyl group, a fluorine atom or a chlorine atom, where R 1x is , a hydrogen atom, R 1y is a 4-aminosulfonylphenyl group, R 3 is a hydrogen atom, or R 1x is a phenyl group, 4-carbamoylphenyl group, 4-aminosulfonylphenyl group or pyrazolyl group, R 1y is a hydrogen atom
- the above tetrahydroquinoline derivative (II-c) or a pharmacologically acceptable salt thereof contains the above tetrahydroquinoline derivative (II-c) or a pharmacologically acceptable salt thereof as an active ingredient. It can be used as a therapeutic or preventive agent for amyotrophic lateral sclerosis.
- the above tetrahydroquinoline derivative (II-c) or a pharmacologically acceptable salt thereof contains the above tetrahydroquinoline derivative (II-c) or a pharmacologically acceptable salt thereof as an active ingredient.
- the compounds listed in Tables 1-1 to 1-7 also include stereoisomers thereof, solvates thereof, pharmacologically acceptable salts thereof, and mixtures thereof.
- the present invention also includes prodrugs of the above-mentioned tetrahydroquinoline derivative (I).
- the prodrug of the above-mentioned tetrahydroquinoline derivative (I) is a compound that is enzymatically or chemically converted into the above-mentioned tetrahydroquinoline derivative (I) in vivo.
- the active substance of the prodrug of the above tetrahydroquinoline derivative (I) is the above tetrahydroquinoline derivative (I), but the prodrug of the above tetrahydroquinoline derivative (I) itself may have activity.
- Examples of the "pharmacologically acceptable salts" of the above-mentioned tetrahydroquinoline derivative (I) include inorganic salts such as hydrochloride, sulfate, nitrate, hydrobromide, hydroiodide or phosphate.
- organic acid salts such as glutamate or cinnamate.
- the above tetrahydroquinoline derivative (I) may be a crystal, and whether it has a single crystal form or a mixture of crystal forms is included in the above tetrahydroquinoline derivative (I).
- the above tetrahydroquinoline derivative (I) may be a pharmaceutically acceptable co-crystal or co-crystal salt.
- Co-crystals or co-crystal salts are defined as two or more unique compounds at room temperature, each with different physical properties (e.g. structure, melting point, heat of fusion, hygroscopicity, solubility or stability).
- Co-crystals or co-crystal salts can be produced according to known co-crystallization methods.
- the above tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof may be anhydrous or may form a solvate such as a hydrate.
- the above tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof can be converted into a solvate such as a hydrate by a known method.
- a known method for example, the above-mentioned tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof is mixed with water, other solvents (for example, alcoholic solvents such as methanol, ethanol or n-propanol, N , N-dimethylformamide (hereinafter referred to as DMF), dimethyl sulfoxide (hereinafter referred to as DMSO)) or a mixed solvent thereof.
- DMF alcoholic solvents
- DMSO dimethyl sulfoxide
- the above tetrahydroquinoline derivative (I) may be labeled with one or more isotopes, and the labeled isotopes include, for example, 2 H, 3 H, 13 C, 14 C, 15 N, 15 O, 17 O, 18 O and/or 125 I are mentioned.
- the above tetrahydroquinoline derivative (I) can be produced by an appropriate method based on the characteristics derived from its basic skeleton and the types of substituents. Note that the starting materials and reagents used for producing these compounds can be generally purchased or produced by known methods.
- the above tetrahydroquinoline derivative (I) and the intermediates and starting materials used for its production can be isolated and purified by known means.
- Known means for isolation and purification include, for example, solvent extraction, recrystallization or chromatography.
- each isomer can be obtained as a single compound by a known method or a method analogous thereto.
- Known methods include, for example, crystallization, enzymatic resolution or chiral chromatography.
- a general method for producing the above tetrahydroquinoline derivative (I) is illustrated below. Note that the compounds in the following schemes may also form salts, and examples of such salts include those similar to the salts in the above-mentioned tetrahydroquinoline derivative (I).
- the manufacturing method of the present invention is not limited to the examples shown below.
- R 1y , R v and R w are all hydrogen atoms
- R 3 is a hydrogen atom, a halogen atom, or 1 to 3 arbitrary hydrogen atoms each independently.
- the tetrahydroquinoline derivative (Ia) which is a group or a methoxycarbonyl group can be obtained, for example, by the method described in Scheme 1.
- the quinoline derivative (IX) can be obtained by a coupling reaction between the 2-haloquinoline derivative (III) and the boronic acid derivative (IV) in the presence of a metal catalyst and a base.
- the amount of the boronic acid derivative (IV) used in the coupling reaction is preferably 0.5 to 10 equivalents, more preferably 0.8 to 4 equivalents, relative to the 2-haloquinoline derivative (III).
- metal catalyst used in the coupling reaction examples include 1,1'-bis(diphenylphosphino)ferrocene dichloropalladium(II) dichloromethane adduct, palladium(II) chloride, palladium(II) acetate, bis(dibenzylideneacetone) ) palladium (0), tetrakistriphenylphosphinepalladium (0) or dichlorobistriphenylphosphinepalladium (0), and tetrakistriphenylphosphinepalladium (0) is preferred.
- the amount of the metal catalyst used in the coupling reaction is preferably 0.01 to 5 equivalents, more preferably 0.025 to 1 equivalent, relative to the 2-haloquinoline derivative (III).
- the coupling reaction may further use a ligand.
- ligand examples include triphenylphosphine, tert-butylphosphine, or 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl.
- Examples of the base used in the coupling reaction include organic bases such as triethylamine or N,N-diisopropylethylamine, inorganic bases such as sodium carbonate, potassium carbonate, or cesium carbonate, and lithium bases such as lithium hexamethyldisilazide or lithium diisopropylamide. Mention may be made of amides, metal alkoxides such as sodium tert-butoxide or potassium tert-butoxide, or mixtures thereof, but inorganic bases such as sodium carbonate, potassium carbonate or cesium carbonate are preferred.
- organic bases such as triethylamine or N,N-diisopropylethylamine
- inorganic bases such as sodium carbonate, potassium carbonate, or cesium carbonate
- lithium bases such as lithium hexamethyldisilazide or lithium diisopropylamide. Mention may be made of amides, metal alkoxides such as sodium tert-butoxide or potassium
- the amount of the base used in the coupling reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 4 equivalents, relative to the 2-haloquinoline derivative (III).
- the reaction solvent used in the coupling reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- THF tetrahydrofuran
- DME 1,4- Ether solvents
- nitrile solvents such as acetonitrile or propionitrile
- aromatic hydrocarbon solvents such as benzene or toluene, DMF, N,N-dimethylacetamide
- Examples include aprotic polar solvents such as DMA (hereinafter referred to as DMA) or DMSO, water, or mixed solvents thereof; ether solvents such as THF, 1,4-dioxane, or DME; A polar solvent or a mixed solvent thereof with water is preferred.
- the reaction temperature of the coupling reaction is preferably 0 to 200°C, more preferably 50 to 150°C.
- reaction time of the coupling reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 30 hours.
- the 2-haloquinoline derivative (III) and boronic acid derivative (IV) used in the coupling reaction can be purchased or produced by a known method or a method analogous thereto.
- the quinoline derivative (IX) can be obtained by a cycloaddition reaction between the 2-aminobenzyl alcohol derivative (V) and the ketone derivative (VI) in the presence of a base.
- a cycloaddition reaction between the 2-aminobenzyl alcohol derivative (V) and the ketone derivative (VI) in the presence of a base.
- it can be carried out according to the method described in (Tetrahedron Letters, 2008, pp. 6893-6895) or a method analogous thereto.
- the amount of the ketone derivative (VI) used in the cycloaddition reaction is preferably 0.5 to 10 equivalents, more preferably 0.8 to 5 equivalents, relative to the 2-aminobenzyl alcohol derivative (V).
- Examples of the base used in the cycloaddition reaction include inorganic bases such as sodium hydroxide, potassium hydroxide, or cesium hydroxide, metal alkoxides such as sodium ethoxide, sodium tert-butoxide, or potassium tert-butoxide, sodium hydride, Mention may be made of metal hydrides such as potassium hydride or calcium hydride, or mixtures thereof, with metal alkoxides such as sodium ethoxide, sodium tert-butoxide or potassium tert-butoxide being preferred.
- the amount of the base used in the cycloaddition reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, based on the 2-aminobenzyl alcohol derivative (V).
- the reaction solvent used in the cycloaddition reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- THF 1,4-dioxane
- DME 1,4-dioxane
- examples include ether solvents such as benzene or toluene, aromatic hydrocarbon solvents such as benzene or toluene, aprotic polar solvents such as DMF, DMA or DMSO, or mixed solvents thereof; Ether solvents are preferred.
- the reaction temperature of the cycloaddition reaction is preferably 0 to 200°C, more preferably 50 to 150°C.
- reaction time for the cycloaddition reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 24 hours.
- the 2-aminobenzyl alcohol derivative (V) and ketone derivative (VI) used in the cycloaddition reaction can be purchased or produced by a known method or a method analogous thereto.
- the quinoline derivative (IX) is produced by an oxidative cyclization reaction between the aniline derivative (VII) and an allyl alcohol derivative (VIII-a) or an ⁇ , ⁇ unsaturated aldehyde derivative (VIII-b) in an oxygen atmosphere in the presence of a metal catalyst. It can be obtained by For example, it can be carried out according to the method described in (RSC Advances, 2017, pp. 36242-36245) or a method analogous thereto.
- the amount of the allyl alcohol derivative (VIII-a) or ⁇ , ⁇ unsaturated aldehyde derivative (VIII-b) used in the oxidative cyclization reaction is preferably 0.5 to 10 equivalents relative to the aniline derivative (VII), and 0. .8 to 2 equivalents is more preferred.
- metal catalysts used in the oxidative cyclization reaction include palladium (II) acetate, palladium (II) trifluoroacetate, palladium (II) chloride, and dichlorobis(acetonitrile)palladium (II); II) is preferred.
- the amount of the metal catalyst used in the oxidative cyclization reaction is preferably 0.01 to 5 equivalents, more preferably 0.025 to 1 equivalent, relative to the aniline derivative (VII).
- the pressure of oxygen used in the oxidative cyclization reaction is preferably about 1 to about 20 atm, more preferably about 1 to about 5 atm.
- the reaction solvent used in the oxidative cyclization reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- THF, 1,4-dioxane, or DME examples include ether solvents such as benzene or toluene, aromatic hydrocarbon solvents such as benzene or toluene, aprotic polar solvents such as DMF, DMA or DMSO, or mixed solvents thereof; Polar solvents are preferred.
- the reaction temperature of the oxidative cyclization reaction is preferably 0 to 300°C, more preferably 70 to 200°C.
- reaction time of the oxidative cyclization reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 24 hours.
- the aniline derivative (VII), allyl alcohol derivative (VIII-a), and ⁇ , ⁇ unsaturated aldehyde derivative (VIII-b) used in the oxidative cyclization reaction can be purchased or prepared using a known method or similar method. It can be manufactured by the method.
- Tetrahydroquinoline derivative (Ia) can be obtained by hydrogenation reaction of quinoline derivative (IX) in a hydrogen atmosphere in the presence of a metal catalyst. Alternatively, it can be obtained by a hydrogen transfer reduction reaction between a 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid ester derivative and a quinoline derivative (IX).
- metal catalysts used in the hydrogenation reaction include palladiums such as palladium on carbon, palladium(II) hydroxide on carbon and palladium(II) oxide, nickel such as developed nickel catalysts, platinum(IV) oxide or platinum on carbon, etc.
- palladiums such as palladium on carbon, palladium(II) hydroxide on carbon and palladium(II) oxide
- nickel such as developed nickel catalysts
- platinum(IV) oxide or platinum on carbon etc.
- platinums such as , rhodiums such as rhodium carbon, and platinum (IV) oxide is preferred.
- the amount of the metal catalyst used in the hydrogenation reaction is preferably 0.001 to 1 equivalent, more preferably 0.01 to 0.5 equivalent, relative to the quinoline derivative (IX).
- the pressure of hydrogen used in the hydrogenation reaction is preferably about 1 to about 30 atm, more preferably about 1 to about 10 atm.
- the reaction solvent used in the hydrogenation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction, such as methanol, ethanol, isopropyl alcohol, or tert-butyl alcohol.
- alcohol solvents such as toluene or xylene, chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as diethyl ether, THF, DME or 1,4-dioxane , ester solvents such as ethyl acetate or propyl acetate, aprotic polar solvents such as DMF, DMA or DMSO, carboxylic acid solvents such as formic acid or acetic acid, water or a mixed solvent thereof, but methanol, ethanol, A mixed solvent of an alcohol solvent such as isopropyl alcohol or tert-butyl alcohol and a carboxylic acid solvent such as formic acid or acetic acid is
- the reaction temperature of the hydrogenation reaction is preferably 0 to 200°C, more preferably 10 to 100°C.
- the reaction time of the hydrogenation reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 0.5 to 40 hours.
- Examples of the 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid ester derivative used in the hydrogen transfer reduction reaction include 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acid.
- the amount of the 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid ester derivative used in the hydrogen transfer reduction reaction is preferably 1 to 10 equivalents, and 1.7 to 10 equivalents relative to the quinoline derivative (IX). 3 equivalents is more preferred.
- the reaction solvent used in the hydrogen transfer reduction reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- methanol, ethanol, isopropyl alcohol, or tert-butyl Alcohol solvents such as alcohol, aromatic hydrocarbon solvents such as toluene or xylene, chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane, ether solvents such as diethyl ether, THF, DME or 1,4-dioxane
- Solvents include ester solvents such as ethyl acetate or propyl acetate, aprotic polar solvents such as DMF, DMA or DMSO, or mixed solvents thereof, and chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane; Ether solvents such as diethyl ether, THF, DME or 1,4-dioxane are preferred.
- the reaction temperature of the hydrogen transfer reduction reaction is preferably 0 to 100°C, more preferably 10 to 50°C.
- the reaction time for the hydrogen transfer reduction reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 24 hours.
- the aminoquinoline derivative (XI) can be obtained by a coupling reaction between a 6-haloquinoline derivative (IX-a) and a secondary amine derivative (X) in the presence of a metal catalyst and a base.
- the amount of the secondary amine derivative (X) used in the coupling reaction is preferably 0.5 to 20 equivalents, more preferably 0.8 to 10 equivalents, relative to the 6-haloquinoline derivative (IX-a).
- metal catalyst used in the coupling reaction examples include 1,1'-bis(diphenylphosphino)ferrocene dichloropalladium(II) dichloromethane adduct, palladium(II) chloride, palladium(II) acetate, bis(dibenzylideneacetone) ) palladium(0), tris(dibenzylideneacetone)dipalladium(0), tetrakistriphenylphosphinepalladium(0) or dichlorobistriphenylphosphinepalladium(0), and palladium(II) acetate is preferred.
- the amount of the metal catalyst used in the coupling reaction is preferably 0.001 to 5 equivalents, more preferably 0.02 to 0.5 equivalents, based on the 6-haloquinoline derivative (IX-a).
- the coupling reaction may further use a ligand.
- ligand examples include triphenylphosphine, tert-butylphosphine, 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, 2-(dicyclohexylphosphino)-2',4' , 6'-triisopropyl-1,1'-biphenyl or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene.
- the amount of the ligand is preferably 0.001 to 5 equivalents, more preferably 0.02 to 1 equivalent, relative to the 6-haloquinoline derivative (IX-a).
- Examples of the base used in the coupling reaction include organic bases such as triethylamine or N,N-diisopropylethylamine, inorganic bases such as sodium carbonate, potassium carbonate, or cesium carbonate, and lithium bases such as lithium hexamethyldisilazide or lithium diisopropylamide. Mention may be made of amides, metal alkoxides such as sodium tert-butoxide or potassium tert-butoxide, or mixtures thereof, but inorganic bases such as sodium carbonate, potassium carbonate or cesium carbonate are preferred.
- organic bases such as triethylamine or N,N-diisopropylethylamine
- inorganic bases such as sodium carbonate, potassium carbonate, or cesium carbonate
- lithium bases such as lithium hexamethyldisilazide or lithium diisopropylamide. Mention may be made of amides, metal alkoxides such as sodium tert-butoxide or potassium
- the amount of the base used in the coupling reaction is preferably 0.8 to 10 equivalents, more preferably 1 to 5 equivalents, relative to the 6-haloquinoline derivative (IX-a).
- the reaction solvent used in the coupling reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction, such as methanol, ethanol, isopropyl alcohol, or tert-butyl alcohol.
- alcoholic solvents such as THF, 1,4-dioxane or DME, aromatic hydrocarbon solvents such as benzene or toluene, nitrile solvents such as acetonitrile or propionitrile, DMF, DMA or DMSO, etc.
- Examples include aprotic polar solvents, chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane, and mixed solvents thereof, and ether solvents such as THF, 1,4-dioxane or DME are preferred.
- the reaction temperature of the coupling reaction is preferably 0 to 200°C, more preferably 50 to 150°C.
- reaction time of the coupling reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 30 hours.
- the 6-haloquinoline derivative (IX-a) used in the coupling reaction can be purchased or manufactured by the methods described in Steps 1-1 to 1-3, a known method, or a method analogous thereto. Can be done.
- the secondary amine derivative (X) used in the coupling reaction can be purchased or manufactured by a known method or a method analogous thereto.
- Tetrahydroquinoline derivative (Ib) can be obtained by hydrogenation reaction or hydrogen transfer reduction reaction of aminoquinoline derivative (XI).
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 1-4.
- Y represents an alkyl group having 1 to 5 carbon atoms, and each of the other symbols has the same meaning as the above definition.
- the quinoline-6-carboxylic acid derivative (XII) can be obtained by a hydrolysis reaction of the quinoline-6-carboxylic acid ester derivative (IX-b) in the presence of a base.
- Examples of the base used in the hydrolysis reaction include lithium hydroxide, potassium hydroxide, sodium hydroxide, and sodium tert-butoxide, with potassium hydroxide or sodium hydroxide being preferred.
- the amount of base used in the hydrolysis reaction is preferably 0.5 to 100 equivalents, more preferably 0.8 to 30 equivalents, relative to the quinoline-6-carboxylic acid ester derivative (IX-b). .
- the reaction solvent used in the hydrolysis reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- an ether solvent such as THF, 1,4-dioxane, or DME Solvents
- chlorinated solvents such as dichloromethane, chloroform or 1,2-dichloroethane
- aromatic hydrocarbon solvents such as benzene or toluene
- aprotic polar solvents such as DMF, DMA or DMSO
- ketone solvents such as acetone or methyl ethyl ketone
- alcoholic solvents such as methanol, ethanol, or 2-propanol, water, or a mixed solvent thereof, preferably a mixed solvent of an alcoholic solvent such as methanol, ethanol, or 2-propanol, and water.
- the reaction temperature for the hydrolysis reaction is preferably -50°C to 150°C, more preferably -20°C to 100°C.
- reaction time of the hydrolysis reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 30 hours.
- the quinoline-6-carboxylic acid ester derivative (IX-b) used in the hydrolysis reaction can be purchased, or can be obtained by the method described in Steps 1-1 to 1-3, a known method, or a method similar thereto. It can be manufactured in
- Step 3-2 The quinoline-6-carbamate ester derivative (XIV) is obtained by alcoholysis of the isocyanate derivative produced by the rearrangement reaction of the acid azide produced by using diphenylphosphoric acid azide for the quinoline-6-carboxylic acid derivative (XII). It can be obtained by reaction.
- the amount of diphenylphosphoric acid azide used in the rearrangement reaction is preferably 1 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the quinoline-6-carboxylic acid derivative (XII).
- Examples of the base used in the rearrangement reaction include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, magnesium hydroxide, or calcium hydroxide, or organic bases such as triethylamine or N,N-diisopropylethylamine. Examples include bases, and organic bases such as triethylamine or N,N-diisopropylethylamine are preferred.
- the amount of the base used in the rearrangement reaction is preferably 1 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the quinoline-6-carboxylic acid derivative (XII).
- the reaction solvent used in the rearrangement reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- ethers such as THF, 1,4-dioxane, or DME are used.
- ester solvents such as ethyl acetate or propyl acetate, chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane, aromatic hydrocarbon solvents such as benzene or toluene, nitrile solvents such as acetonitrile or propionitrile Solvents include aprotic polar solvents such as DMF, DMA, or DMSO, or mixed solvents thereof.
- Examples of the alcohol (XIII) used in the alcoholysis reaction include methanol, ethanol, isopropyl alcohol, and tert-butyl alcohol.
- the amount of alcohol (XIII) used in the alcoholysis reaction may be 1 to 20 equivalents relative to the quinoline-6-carboxylic acid derivative (XII), or a reaction solvent may be used instead of the reaction solvent used in the rearrangement reaction. It may also be used as
- the reaction temperature of the rearrangement reaction and alcoholysis reaction is preferably 30 to 200°C, more preferably 50 to 150°C.
- reaction time for the rearrangement reaction and the alcoholysis reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 30 hours.
- the above-mentioned reactive functional groups include, for example, acid chlorides, mixed acid anhydrides with chlorocarbonate esters (e.g. methyl chlorocarbonate, ethyl chlorocarbonate, isobutyl chlorocarbonate), symmetrical acid anhydrides, activation with imidazole.
- chlorocarbonate esters e.g. methyl chlorocarbonate, ethyl chlorocarbonate, isobutyl chlorocarbonate
- symmetrical acid anhydrides activation with imidazole.
- activation with imidazole e.g. amides.
- Tetrahydroquinoline derivative (Ic) can be obtained by hydrogenation reaction or hydrogen transfer reduction reaction of quinoline-6-carbamate ester derivative (XIV).
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 1-4.
- L each independently represents a leaving group
- Z represents an alkyl group having 1 to 3 carbon atoms
- each of the other symbols has the same meaning as the above definition.
- Examples of the leaving group represented by L include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, an alkylthio group having 1 to 12 carbon atoms such as a methylthio group, an ethylthio group, or a dodecylthio group, or a phenoxy group.
- a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom
- an alkylthio group having 1 to 12 carbon atoms such as a methylthio group, an ethylthio group, or a dodecylthio group, or a phenoxy group.
- aryloxy groups such as methanesulfonyloxy groups, ethanesulfonyloxy groups, trifluoromethanesulfonyloxy groups, and alkylsulfonyloxy groups in which the hydrogen atom may be substituted with a halogen atom, and alkylsulfonylamino groups, such as trifluoromethanesulfonylamino groups. or an azolyl group such as an imidazol-1-yl group or a pyrazol-1-yl group.
- Step 4-1 The diphenylmethanimine derivative (XV) can be obtained by a coupling reaction between the 6-haloquinoline derivative (IX-a) and diphenylmethanimine in the presence of a metal catalyst and a base.
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 2-1.
- the 6-haloquinoline derivative (IX-a) used in the coupling reaction can be purchased or manufactured by the methods described in Steps 1-1 to 1-3, a known method, or a method analogous thereto. Can be done.
- Step 4-2 The aminoquinoline derivative (XVI) can be obtained by deprotection of the diphenylmethanimine derivative (XV).
- Examples of the acid used in the deprotection reaction include hydrochloric acid, a 10% by weight hydrogen chloride/methanol solution, a 4 mol/L hydrogen chloride/ethyl acetate solution, trifluoroacetic acid, or hydrofluoric acid, with hydrochloric acid being preferred.
- the amount of acid used in the deprotection reaction is preferably 0.5 to 100 equivalents, more preferably 1 to 10 equivalents, relative to the diphenylmethanimine derivative (XV).
- the reaction solvent for the deprotection reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- ether solvents such as diethyl ether, THF, DME, 1,4-dioxane, etc.
- ester solvents such as ethyl acetate or propyl acetate
- chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane
- alcohol solvents such as methanol or ethanol, or mixed solvents thereof.
- Ester solvents such as ethyl or propyl acetate or chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane are preferred.
- the reaction temperature for the deprotection reaction is preferably 0 to 200°C, more preferably 0 to 100°C.
- the reaction time for the deprotection reaction varies depending on the reaction conditions, but is preferably 1 to 48 hours.
- the amidoquinoline derivative (XVIII) can be obtained by an acylation reaction between the aminoquinoline derivative (XVI) and the acylating agent (XVII).
- the amount of the acylating agent (XVII) used in the acylation reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the aminoquinoline derivative (XVI).
- a base may be used in the acylation reaction if desired.
- the base used include organic bases such as triethylamine, N,N-diisopropylethylamine, or pyridine, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, or lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, etc.
- Alkali metal carbonates such as alkali metal hydrogen carbonates, sodium carbonate, potassium carbonate, and mixtures thereof can be mentioned, and alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide are preferred.
- the reaction solvent used in the acylation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- nitrile solvents such as acetonitrile or propionitrile, DMF , aprotic polar solvents such as DMA or DMSO, ether solvents such as diethyl ether, THF, DME or 1,4-dioxane, ester solvents such as ethyl acetate or propyl acetate, ketone solvents such as acetone or methyl ethyl ketone
- Examples include water or a mixed solvent thereof, and a mixed solvent of water and an ether solvent such as diethyl ether, THF, DME or 1,4-dioxane is preferred.
- the reaction temperature of the acylation reaction is preferably -78°C to 100°C, more preferably -20°C to 50°C.
- the reaction time for the acylation reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
- the acylating agent (XVII) used in the acylation reaction can be purchased or manufactured by a known method or a method analogous thereto.
- Step 4-4 The tetrahydroquinoline derivative (I-d) can be obtained by hydrogenation reaction or hydrogen transfer reduction reaction of the amidoquinoline derivative (XVIII).
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 1-4.
- the ureaquinoline derivative (XX) can be obtained by a ureation reaction between the aminoquinoline derivative (XVI) and the ureation agent (XIX).
- the amount of the ureating agent (XIX) used in the ureating reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the aminoquinoline derivative (XVI).
- a base may be used in the ureation reaction if desired.
- the base used include organic bases such as triethylamine, N,N-diisopropylethylamine, or pyridine, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, or lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, etc.
- alkali metal carbonates such as alkali metal bicarbonates, sodium carbonate, potassium carbonate, and mixtures thereof
- organic bases such as triethylamine, N,N-diisopropylethylamine, or pyridine are preferred.
- the reaction solvent used in the ureation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- nitrile solvents such as acetonitrile or propionitrile, DMF , aprotic polar solvents such as DMA or DMSO, ether solvents such as diethyl ether, THF, DME or 1,4-dioxane, ester solvents such as ethyl acetate or propyl acetate, ketone solvents such as acetone or methyl ethyl ketone, Water or a mixed solvent thereof may be used, but ether solvents such as diethyl ether, THF, DME or 1,4-dioxane are preferred.
- the reaction temperature for the ureation reaction is preferably -78°C to 100°C, more preferably -20°C to 50°C.
- the reaction time for the ureation reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
- the ureating agent (XIX) used in the ureating reaction can be purchased or produced by a known method or a method analogous thereto.
- Tetrahydroquinoline derivative (Ie) can be obtained by hydrogenation reaction or hydrogen transfer reduction reaction of ureaquinoline derivative (XX).
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 1-4.
- the sulfonylamidoquinoline derivative (XXII) can be obtained by a sulfonylation reaction between the aminoquinoline derivative (XVI) and the sulfonylating agent (XXI).
- the amount of the sulfonylating agent (XXI) used in the sulfonylation reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the aminoquinoline derivative (XVI).
- a base may be used in the sulfonylation reaction if desired.
- the base used include organic bases such as triethylamine, N,N-diisopropylethylamine, or pyridine, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, or lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, etc.
- alkali metal carbonates such as alkali metal bicarbonates, sodium carbonate, potassium carbonate, and mixtures thereof
- organic bases such as triethylamine, N,N-diisopropylethylamine, or pyridine are preferred.
- the reaction solvent used in the sulfonylation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- nitrile solvents such as acetonitrile or propionitrile, DMF , aprotic polar solvents such as DMA or DMSO, ether solvents such as diethyl ether, THF, DME or 1,4-dioxane, ester solvents such as ethyl acetate or propyl acetate, ketone solvents such as acetone or methyl ethyl ketone, Water or a mixed solvent thereof may be used, but ether solvents such as diethyl ether, THF, DME or 1,4-dioxane are preferred.
- the reaction temperature of the sulfonylation reaction is preferably -78°C to 100°C, more preferably -20°C to 50°C.
- the reaction time for the sulfonylation reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
- the sulfonylating agent (XXI) used in the sulfonylation reaction can be purchased or produced by a known method or a method analogous thereto.
- Step 4-8 The tetrahydroquinoline derivative (If) can be obtained by hydrogenation reaction or hydrogen transfer reduction reaction of the sulfonylamidoquinoline derivative (XXII).
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 1-4.
- Step 5-1 The methoxycarbonyltetrahydroquinoline derivative (XXIII) can be obtained by hydrogenation reaction or hydrogen transfer reduction reaction of the quinoline-6-carboxylic acid ester derivative (IX-b).
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 1-4.
- the quinoline-6-carboxylic acid ester derivative (IX-b) used in the hydrogenation reaction or hydrogen transfer reduction reaction can be purchased, or can be prepared by the methods described in Steps 1-1 to 1-3 or by known methods. Alternatively, it can be manufactured by a method similar to that method.
- Step 5-2 Hydroxymethyltetrahydroquinoline derivative (XXIV) can be obtained by reduction reaction of methoxycarbonyltetrahydroquinoline derivative (XXIII).
- Examples of the reducing agent used in the reduction reaction include aluminum-based reducing agents such as lithium aluminum hydride and diisobutyl aluminum hydride, and boron-based reducing agents such as sodium borohydride and lithium borohydride.
- Aluminum-based reducing agents such as aluminum or diisobutylaluminum hydride are preferred.
- the amount of the reducing agent used in the reduction reaction is preferably 0.3 to 100 equivalents, more preferably 0.5 to 20 equivalents, relative to the methoxycarbonyltetrahydroquinoline derivative (XXIII).
- the reaction solvent used in the reduction reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- a reaction solvent used in the reduction reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- Alcohol solvents such as DMF, DMA or DMSO, ether solvents such as diethyl ether, THF, DME or 1,4-dioxane, chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane, Examples include aromatic hydrocarbon solvents such as toluene or xylene, or mixed solvents thereof; ether solvents such as diethyl ether, THF, DME or 1,4-dioxane, or aromatic hydrocarbon solvents such as toluene or xylene. Solvents are preferred.
- the reaction temperature of the reduction reaction is preferably -100°C to 200°C, more preferably -50°C to 50°C.
- the reaction time for the reduction reaction varies depending on the reaction conditions, but is preferably 1 to 30 hours.
- the tetrahydroquinoline derivative (Ig) can be obtained by a substitution reaction between a hydroxymethyltetrahydroquinoline derivative (XXIV) and a secondary amine derivative (XXV) in the presence of a phosphine derivative and iodine.
- the amount of the secondary amine derivative (XXV) used in the substitution reaction is preferably 0.5 to 100 equivalents, more preferably 1 to 20 equivalents, relative to the hydroxymethyltetrahydroquinoline derivative (XXIV).
- Examples of the phosphine derivative used in the substitution reaction include triphenylphosphine, trimethylphosphine, and tri-n-butylphosphine, with triphenylphosphine being preferred.
- the amount of the phosphine derivative used in the substitution reaction is preferably 0.5 to 20 equivalents, more preferably 1 to 5 equivalents, relative to the hydroxymethyltetrahydroquinoline derivative (XXIV).
- the amount of iodine used in the substitution reaction is preferably 0.5 to 20 equivalents, more preferably 1 to 5 equivalents, relative to the hydroxymethyltetrahydroquinoline derivative (XXIV).
- the reaction solvent used in the substitution reaction is not particularly limited as long as it does not inhibit the reaction, and examples include aprotic polar solvents such as DMF, DMA or DMSO, ketone solvents such as acetone or methyl ethyl ketone, ethyl acetate or acetic acid.
- aprotic polar solvents such as DMF, DMA or DMSO
- ketone solvents such as acetone or methyl ethyl ketone, ethyl acetate or acetic acid.
- Ester solvents such as propyl, ether solvents such as diethyl ether, THF, DME or 1,4-dioxane, chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane, aromatic hydrocarbons such as toluene or xylene Examples include solvents or mixed solvents thereof, and chlorinated solvents such as dichloromethane, chloroform, or 1,2-dichloroethane are preferred.
- the reaction temperature of the substitution reaction is preferably 0 to 150°C, more preferably 10 to 70°C.
- the reaction time for the substitution reaction varies depending on the reaction conditions, but is preferably 1 to 24 hours.
- Step 6-1 The nitrile derivative (XXVI) can be obtained by Mitsunobu reaction of the hydroxymethyltetrahydroquinoline derivative (XXIV) and acetone cyanohydrin using an azodicarboxylic acid ester derivative in the presence of a phosphine derivative.
- Examples of the azodicarboxylic acid ester derivatives used in the Mitsunobu reaction include diethyl azodicarboxylate, diisopropyl azodicarboxylate, 1,1'-(azodicarbonyl)dipiperidine, and 1,1'-(azodicarbonyl) Dipiperidine is preferred.
- the amount of the azodicarboxylic acid ester derivative used in the Mitsunobu reaction is preferably 0.5 to 30 equivalents, more preferably 1 to 10 equivalents, relative to the hydroxymethyltetrahydroquinoline derivative (XXIV).
- Examples of the phosphine derivative used in the Mitsunobu reaction include triphenylphosphine, trimethylphosphine, and tri-n-butylphosphine, with tri-n-butylphosphine being preferred.
- the amount of the phosphine derivative used in the Mitsunobu reaction is preferably 0.5 to 30 equivalents, more preferably 1 to 10 equivalents, relative to the hydroxymethyltetrahydroquinoline derivative (XXIV).
- the amount of acetone cyanohydrin used in the Mitsunobu reaction is preferably 0.5 to 50 equivalents, more preferably 1 to 20 equivalents, relative to the hydroxymethyltetrahydroquinoline derivative (XXIV).
- the reaction solvent used in the Mitsunobu reaction is not particularly limited as long as it does not inhibit the reaction, and examples include aprotic polar solvents such as DMF, DMA or DMSO, ketone solvents such as acetone or methyl ethyl ketone, ethyl acetate or acetic acid.
- aprotic polar solvents such as DMF, DMA or DMSO
- ketone solvents such as acetone or methyl ethyl ketone, ethyl acetate or acetic acid.
- Ester solvents such as propyl, ether solvents such as diethyl ether, THF, DME or 1,4-dioxane, chlorine solvents such as dichloromethane, chloroform or 1,2-dichloroethane, aromatic hydrocarbons such as toluene or xylene Examples include solvents or mixed solvents thereof, and ether solvents such as diethyl ether, THF, DME, or 1,4-dioxane are preferred.
- the reaction temperature of the Mitsunobu reaction is preferably -20°C to 200°C, more preferably -10°C to 100°C.
- the reaction time for the Mitsunobu reaction varies depending on the reaction conditions, but is preferably 1 to 12 hours.
- Step 6-2 The tetrahydroquinoline derivative (Ih) can be obtained by a hydrolysis reaction with a nitrile derivative (XXVI) in the presence of hydrogen peroxide and a base.
- the amount of hydrogen peroxide used in the hydrolysis reaction is preferably 0.5 to 100 equivalents, more preferably 1 to 30 equivalents, relative to the nitrile derivative (XXVI).
- Examples of the base used in the hydrolysis reaction include lithium hydroxide, potassium hydroxide, sodium hydroxide, and sodium tert-butoxide, with potassium hydroxide or sodium hydroxide being preferred.
- the amount of base used in the hydrolysis reaction is preferably 0.5 to 100 equivalents, more preferably 0.8 to 20 equivalents, relative to the nitrile derivative (XXVI).
- the reaction solvent used in the hydrolysis reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- an ether solvent such as THF, 1,4-dioxane, or DME Solvents, chlorinated solvents such as dichloromethane, chloroform or 1,2-dichloroethane, aromatic hydrocarbon solvents such as benzene or toluene, aprotic polar solvents such as DMF, DMA or DMSO, ketone solvents such as acetone or methyl ethyl ketone , alcoholic solvents such as methanol, ethanol or 2-propanol, or mixed solvents thereof; aprotic polar solvents such as DMF, DMA or DMSO; and ethereal solvents such as THF, 1,4-dioxane or DME.
- a mixed solvent with is preferred.
- the reaction temperature for the hydrolysis reaction is preferably -50°C to 150°C, more preferably -20°C to 100°C.
- reaction time of the hydrolysis reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 30 hours.
- the carboxylic acid derivative (XXVII) can be obtained by hydrolyzing the tetrahydroquinoline derivative (Ih) in the presence of a base.
- Examples of the base used in the hydrolysis reaction include lithium hydroxide, potassium hydroxide, sodium hydroxide, and sodium tert-butoxide, with potassium hydroxide or sodium hydroxide being preferred.
- the amount of base used in the hydrolysis reaction is preferably 0.5 to 100 equivalents, more preferably 0.8 to 30 equivalents, relative to the tetrahydroquinoline derivative (Ih).
- the reaction solvent used in the hydrolysis reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- an ether solvent such as THF, 1,4-dioxane, or DME Solvents
- chlorinated solvents such as dichloromethane, chloroform or 1,2-dichloroethane
- aromatic hydrocarbon solvents such as benzene or toluene
- aprotic polar solvents such as DMF, DMA or DMSO
- ketone solvents such as acetone or methyl ethyl ketone
- alcoholic solvents such as methanol, ethanol, or 2-propanol, water, or a mixed solvent thereof, preferably a mixed solvent of an alcoholic solvent such as methanol, ethanol, or 2-propanol, and water.
- the reaction temperature of the hydrolysis reaction is preferably 0 to 200°C, more preferably 20 to 100°C.
- reaction time of the hydrolysis reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 30 hours.
- Tetrahydroquinoline derivative (I-i) can be obtained by a condensation reaction between a carboxylic acid derivative (XXVII) and an amine derivative (XXVIII) in the presence of a condensing agent.
- the amount of the amine derivative (XXVIII) used in the condensation reaction is preferably 0.1 to 10 equivalents, more preferably 0.5 to 5 equivalents, relative to the carboxylic acid derivative (XXVII).
- condensing agents used in the condensation reaction include N,N'-dicyclohexylcarbodiimide, N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride, N,N'-carbodiimidazole, ⁇ [(1- Cyano-2-ethoxy-2-oxoethylidene)amino]oxy ⁇ -4-morpholinomethylene ⁇ dimethylammonium hexafluorophosphate, O-(7-azabenzotriazol-1-yl)-1,1,3,3 -tetramethyluronium hexafluorophosphate or O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate; Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate is preferred.
- the amount of the condensing agent used in the condensation reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 3 equivalents, relative to the carboxylic acid derivative (XXVII).
- Examples of the base used in the condensation reaction include organic bases such as triethylamine or diisopropylethylamine, inorganic bases such as sodium hydrogen carbonate or potassium carbonate, metal hydrides such as sodium hydride, potassium hydride, or calcium hydride, methyllithium, etc.
- organic bases such as triethylamine or diisopropylethylamine
- inorganic bases such as sodium hydrogen carbonate or potassium carbonate
- metal hydrides such as sodium hydride, potassium hydride, or calcium hydride
- methyllithium etc.
- alkyllithiums such as butyllithium
- lithium amides such as lithium hexamethyldisilazide or lithium diisopropylamide, or mixtures thereof
- organic bases such as triethylamine or diisopropylethylamine are preferable.
- the amount of the base used in the condensation reaction is preferably 0.5 to 10 equivalents, more preferably 1 to 5 equivalents, relative to the carboxylic acid derivative (XXVII).
- the amine derivative (XXVIII) may be used as a base for the condensation reaction, and when the amine derivative (XXVIII) is used as the base for the condensation reaction, the amount of the amine derivative (XXVIII) is the same as that of the carboxylic acid derivative (XXVII).
- the amount is preferably 0.6 to 20 equivalents, more preferably 1 to 10 equivalents.
- the reaction solvent used in the condensation reaction is appropriately selected depending on the type of reagent used, but is not particularly limited as long as it does not inhibit the reaction.
- an ether solvent such as THF, 1,4-dioxane, or DME Solvents include chlorinated solvents such as dichloromethane, chloroform or 1,2-dichloroethane, aprotic polar solvents such as DMF or DMSO, or nitrile solvents such as acetonitrile or propionitrile; -Chlorinated solvents such as dichloroethane or aprotic polar solvents such as DMF or DMSO are preferred.
- the reaction temperature of the condensation reaction is preferably 0 to 200°C, more preferably 20 to 100°C.
- the reaction time of the condensation reaction is appropriately selected depending on conditions such as reaction temperature, but is preferably 1 to 30 hours.
- the amine derivative (XXVIII) used in the condensation reaction may be a free form or a salt such as a hydrochloride.
- the amine derivative (XXVIII) used in the condensation reaction can be purchased or produced by a known method or a method analogous thereto.
- the optically active forms (I-j') and (I-j'') of the tetrahydroquinoline derivative (I) are 1,4-dihydro-2,6-dimethyl-3,5- It can be obtained by an asymmetric hydrogen transfer reduction reaction between a pyridine dicarboxylic acid ester derivative and a quinoline derivative (XXIX). For example, it can be carried out according to the method described in (Tetrahedron: Asymmetry, 2015, pp. 1174-1179) or a method analogous thereto.
- the quinoline derivative (XXIX) used in the asymmetric hydrogen transfer reduction reaction can be purchased or used in steps 1-1 to 1-3, step 2-1, step 3-1, step 3-2, step It can be produced by the methods described in Steps 4-1 to 4-3, Steps 4-5 and 4-7, known methods, or methods analogous thereto.
- Examples of the asymmetric phosphoric acid catalyst used in the asymmetric hydrogen transfer reduction reaction include hydrogen phosphate (S)-1,1'-binaphthalene-2,2'-diyl, hydrogen phosphate (R)-1,1' -binaphthalene-2,2'-diyl, hydrogen phosphate (S)-3,3'-bis(3,5-bis(trifluoromethyl)phenyl)-1,1'-binaphthyl-2,2'-diyl , hydrogen phosphate (R)-3,3'-bis(3,5-bis(trifluoromethyl)phenyl)-1,1'-binaphthyl-2,2'-diyl, hydrogen phosphate (S)-3 , 3'-bis(triphenylsilyl)-1,1'-binaphthyl-2,2'-diyl, hydrogen phosphate (R)-3,3'-bis(triphenylsilyl)-1,1'-bina
- Step 8-1 The quinoline derivative (XXXII) can be obtained by a coupling reaction between a 3-haloquinoline derivative (XXX) and a boronic acid derivative (XXXI) in the presence of a metal catalyst and a base.
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 1-1.
- the 3-haloquinoline derivative (XXX) and boronic acid derivative (XXXI) used in the coupling reaction can be purchased or manufactured by a known method or a method analogous thereto.
- Tetrahydroquinoline derivative (Ik) can be obtained by hydrogenation reaction or hydrogen transfer reduction reaction of quinoline derivative (XXXII).
- the selection conditions of the reagent, catalyst, hydrogen pressure, reaction solvent, and reaction temperature in this step are the same as in Step 1-4.
- optically active forms (Ik') and (Ik'') of the tetrahydroquinoline derivative (Ik) in which R 1x , R v and R w are all hydrogen atoms ) can be obtained, for example, by the method described in Scheme 9.
- Step 9-1 Optically active forms (Ik') and (Ik'') of the tetrahydroquinoline derivative (Ik) can be obtained by HPLC fractionation using a chiral column.
- One embodiment of the present invention has a ferroptosis inhibiting effect and can be used to treat or prevent amyotrophic lateral sclerosis.
- Ferroptosis inhibition means inhibiting ferroptosis (cell death controlled in a divalent iron-dependent manner).
- the ferroptosis inhibitor of the present invention can be expected to prevent, delay, or improve pathological conditions or alleviate symptoms by inhibiting ferroptosis.
- Amyotrophic lateral sclerosis is characterized by selective degeneration and loss of motor neurons, and the resulting systemic muscle atrophy causes movement disorders and, in the final stage, respiratory muscle paralysis. It is a fatal neurodegenerative disease. The age of onset and disease progression vary. Amyotrophic lateral sclerosis, which is the subject of treatment or prevention according to the present invention, includes both familial and sporadic forms, and includes both those with and without causative genetic mutations.
- Mutated genes are not particularly limited, but include superoxide dismutase 1 (SOD1), TDP-43, C9orf72, alsin, SETX, FUS/TLS, VAPB, ANG, FIG4, OPTN, ATXN2, DAO, UBQLN2, PFN1, DCTN1, CHPM2B, Examples include VCP.
- SOD1 superoxide dismutase 1
- TDP-43 TDP-43
- C9orf72 alsin
- SETX FUS/TLS
- VAPB ANG
- FIG4 OPTN
- ATXN2 DAO
- UBQLN2 UBQLN2
- PFN1 DCTN1
- CHPM2B CHPM2B
- the tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof of the present invention is a ferroptosis inhibitor containing the tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof as an active ingredient. It can also be used as a therapeutic or preventive agent for amyotrophic lateral sclerosis.
- the above-mentioned ferroptosis inhibitor includes tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof, 2-phenyl-1,2,3,4-tetrahydroquinoline or a pharmacologically acceptable salt thereof. Salt can be used.
- ferroptosis inhibitor refers to a compound that has the effect of improving cell survival rate and improving and maintaining cell function by inhibiting ferroptosis, and a composition containing such a compound as an active ingredient.
- Patent Document 2 and Non-Patent Document 6 disclose that tetrahydroquinoxaline derivatives have a strong radical scavenging effect.
- Non-Patent Document 11 reports that tetrahydroquinoline derivatives have an extremely weak radical scavenging effect. Nevertheless, the tetrahydroquinoline derivative (I) of the present invention or a pharmacologically acceptable salt thereof exhibits a ferroptosis inhibitory effect, and therefore is a novel novel drug for treating or preventing amyotrophic lateral sclerosis. It can be used as a medicine.
- the ferroptosis inhibitory effect of the tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof can be evaluated using an in vitro test. For example, by treating established cell lines such as human fibrosarcoma cells (HT-1080 cells), primary cultured cells, iPS cells, etc. with ferroptosis inducers such as Erastin, RSL3, FIN56, or buthionine sulfoximine. The inhibitory effect on cell death that occurs can be used as an index for evaluation.
- ferroptosis inducers such as Erastin, RSL3, FIN56, or buthionine sulfoximine.
- the radical scavenging effect of a test compound can be evaluated using an in vitro test. For example, it can be evaluated by a method using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), which is a stable radical (Antioxidants, Vol. 258, 2019).
- DPPH 1,1-Diphenyl-2-picrylhydrazyl
- Pathological models include, for example, superoxide dismutase 1 (SOD1) gene mutant mice (Science, 1994, Vol. 264, p. 1772-1775), TDP-43 gene mutant mice, patients with amyotrophic lateral sclerosis.
- SOD1 gene mutant mice are mice that overexpress the human mutated SOD1 gene, which is the most common gene responsible for familial amyotrophic lateral sclerosis, and are animals in which degeneration and necrosis of motor neurons occur with age.
- the above-mentioned animal model is used to evaluate the efficacy of therapeutic or preventive agents for amyotrophic lateral sclerosis because its symptoms and pathological findings are similar to those of human patients.
- the effectiveness for the treatment or prevention of amyotrophic lateral sclerosis was determined using the above-mentioned SOD1 gene mutant mice, for example, by examining motor dysfunction, which is a characteristic symptom of amyotrophic lateral sclerosis, such as hindlimb extension. It is possible to evaluate using disabilities as indicators.
- Tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof has a ferroptosis inhibitory effect, and therefore is suitable for use in mammals (e.g., mice, rats, hamsters, rabbits, cats, dogs, cows, sheep, monkeys, or humans). ) can be used as a useful therapeutic or preventive use for amyotrophic lateral sclerosis).
- the tetrahydroquinoline derivative (I) or its pharmacologically acceptable salt When used clinically as a therapeutic or preventive agent for amyotrophic lateral sclerosis, the tetrahydroquinoline derivative (I) or its pharmacologically acceptable salt is used clinically as a therapeutic or preventive agent for amyotrophic lateral sclerosis, the tetrahydroquinoline derivative (I) or its pharmacologically acceptable salts acceptable for can be administered orally, parenterally, or locally as such or in combination with a pharmacologically acceptable carrier.
- the above therapeutic or preventive agent for amyotrophic lateral sclerosis may contain excipients, binders, lubricants, disintegrants, sweeteners, stabilizers, corrigents, fragrances, and coloring agents, as necessary.
- a fluidizing agent a preservative, a buffer, a solubilizing agent, an emulsifier, a surfactant, a suspending agent, a diluent, or an isotonizing agent
- examples of pharmacologically acceptable carriers include these additives.
- the therapeutic or preventive agent for amyotrophic lateral sclerosis described above can be produced by a conventional method using these pharmacologically acceptable carriers as appropriate.
- the administration forms of the therapeutic or preventive agent for amyotrophic lateral sclerosis include, for example, oral administration in the form of tablets, pills, capsules, granules, powders, syrups, emulsions or suspensions, and inhalation.
- parenteral preparations such as tablets, injections, suppositories, and liquid preparations, as well as ointments, creams, and patches for local administration.
- a suitable base for example, a polymer of butyric acid, a polymer of glycolic acid, a copolymer of butyric acid-glycolic acid, a mixture of a polymer of butyric acid and a polymer of glycolic acid, or a polyglycerol fatty acid ester. Therefore, it is also effective to formulate a sustained release formulation.
- the above formulation containing the above tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof can be prepared according to a known manufacturing method commonly used in the pharmaceutical field.
- Tablets can be prepared by containing, for example, excipients, binders, disintegrants, lubricants, etc.
- Pills and granules can be prepared by containing, for example, excipients, binders, disintegrants, and lubricants.
- Capsules and powders can be prepared by containing excipients, etc.
- syrups can be prepared by containing, for example, sweeteners, etc.
- Emulsions and suspensions can be prepared by adding, for example, surfactants, suspending agents, emulsifying agents, and the like.
- excipients examples include lactose, glucose, starch, sucrose, microcrystalline cellulose, licorice powder, mannitol, sodium bicarbonate, calcium phosphate, and calcium sulfate.
- binders examples include starch paste, gum arabic, gelatin, tragacanth, carboxymethyl cellulose, sodium alginate, and glycerin.
- disintegrants examples include starch and calcium carbonate.
- Examples of the above-mentioned lubricants include magnesium stearate, calcium stearate, polyethylene glycol, purified talc, and silica.
- sweeteners examples include glucose, fructose, invert sugar, sorbitol, xylitol, glycerin, or simple syrup.
- surfactants examples include sodium lauryl sulfate, polysorbate 80, sorbitan monofatty acid ester, and polyoxyl stearate 40.
- suspending agents examples include gum arabic, sodium alginate, sodium carboxymethylcellulose, methylcellulose, and bentonite.
- emulsifiers examples include gum arabic, tragacanth, gelatin, and polysorbate 80.
- a therapeutic or preventive agent for amyotrophic lateral sclerosis containing the tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof into the above dosage form, it is generally known in the pharmaceutical field. Coloring agents, preservatives, aromatics, flavoring agents, stabilizers, thickening agents, etc. that are commonly used can be added as appropriate.
- the above therapeutic or preventive agent for amyotrophic lateral sclerosis preferably contains 0.00001 to 90% by weight of the tetrahydroquinoline derivative (I) or a pharmacologically acceptable salt thereof; More preferably, the content is 70% by weight.
- the daily dosage is appropriately selected depending on the patient's condition, body weight, age, route of administration, etc., but for example, the amount of active ingredient for an adult (body weight approximately 60 kg) is 1 mg to 1000 mg for oral formulation, and 1 mg to 1000 mg for injection. In the case of a drug, it is preferable to administer 0.01 to 100 mg, and each dose can be administered once or in divided doses.
- the above therapeutic or preventive agents for amyotrophic lateral sclerosis may be used in combination with other drugs in appropriate amounts or in combination in order to supplement or enhance their therapeutic or preventive effects or to reduce the dosage. do not have. It may be administered simultaneously with other drugs or sequentially in any order.
- Other drugs include, for example, other drugs for treating amyotrophic lateral sclerosis as shown below, drugs for treating symptoms such as movement disorders and paralysis in patients with amyotrophic lateral sclerosis, or stem cell transplants. It can be used in combination with, but is not limited to, treatment methods.
- Examples of other drugs for treating amyotrophic lateral sclerosis include riluzole and edaravone.
- Room temperature in the following Examples and Reference Examples usually refers to about 10 to about 35°C.
- the solvent name shown in the NMR data indicates the solvent used in the measurement.
- the 400 MHz NMR spectrum was measured using a JNM-ECS400 type nuclear magnetic resonance apparatus or a JNM-ECZ400S type nuclear magnetic resonance apparatus (JEOL Ltd.). The chemical shift is expressed in ⁇ (unit: ppm) based on tetramethylsilane, and the signals are s (singlet), d (doublet), t (triplet), q (quartet), and quint, respectively.
- silica gel 60 As the silica gel, Silica Gel 60 (Merck & Co., Ltd.) was used, as amino silica gel, (Fuji Silysia Chemical Co., Ltd.) was used, and for flash chromatography, YFLCW-prep2XY (Yamazensha) was used. Silica gel 60 (Merck & Co.) was used for preparative thin layer chromatography (hereinafter referred to as preparative TLC).
- preparative TLC preparative thin layer chromatography
- the obtained crude product was purified by column chromatography (silica gel, hexane/ethyl acetate) to obtain the title compound (hereinafter, the compound of Example 2) (95.0 mg, 0.457 mmol, yield 95%, enantioexcess rate). 98.5% ee) was obtained as a colorless transparent oil.
- Example 8 7-methoxy-2-(4-methoxyphenyl)quinoline (62.0 mg, 0.234 mmol) synthesized in Reference Example 4, the title compound (hereinafter referred to as Example 8) was synthesized in the same manner as in Example 4. Compound) (62.3 mg, 0.234 mmol, yield 99%) was obtained as a white solid.
- Example 10 2-(2-(trifluoromethyl)phenyl)quinoline (62.0 mg, 0.227 mmol) synthesized in Reference Example 6, the title compound (hereinafter referred to as Example 10) was synthesized in the same manner as in Example 4. Compound) (52.2 mg, 0.188 mmol, yield 83%) was obtained as a colorless transparent oil.
- the obtained crude product was purified by column chromatography (silica gel, chloroform/methanol) and column chromatography (amino silica gel, hexane/ethyl acetate) to obtain the title compound in the upper row (hereinafter, the compound of Example 14) (4 .1 mg, 0.019 mmol, yield 15%) was obtained as a colorless transparent oil.
- Example 15 2-(6-methoxypyridin-3-yl)quinoline (50.0 mg, 0.212 mmol) synthesized in Reference Example 8, the title compound (hereinafter referred to as Example 15) was synthesized in the same manner as in Example 4. Compound) (11.0 mg, 0.0458 mmol, yield 22%) was obtained as a colorless transparent oil.
- Methyl 4-(1,2,3,4-tetrahydroquinolin-2-yl)benzoate (50.0 mg, 0.187 mmol) synthesized in Example 17 was dissolved in THF (1.9 mL), and then poured on ice. A methyllithium THF solution (0.56 mL, 0.65 mmol) was added dropwise under cooling, and the mixture was stirred for 2 hours under ice cooling. After the reaction was completed, water was added to the reaction mixture, and the reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure.
- the title compound (hereinafter referred to as the compound of Example 18) (13.1 mg, 0.0490 mmol, yield 26%) was obtained as a colorless product by purifying the obtained crude product by column chromatography (silica gel, hexane/ethyl acetate). Obtained as a clear oil.
- Example Compound No. 21 N-(4-(quinolin-2-yl)phenyl)acetamide (40.0 mg, 0.152 mmol) synthesized in Reference Example 13, the title compound (hereinafter referred to as Example Compound No. 21) (6.60 mg, 24.8 ⁇ mol, yield 16%) was obtained as a white amorphous.
- Example 23 Using 3',4'-dihydro-[2,6'-biquinolin]-2'(1'H)-one (118 mg, 0.431 mmol) synthesized in Reference Example 15, the same method as in Example 4 was carried out.
- the title compound (hereinafter referred to as the compound of Example 23) (80.6 mg, 0.290 mmol, yield 67%) was obtained as a white solid.
- Example Compound No. 25 5-(quinolin-2-yl)isoindolin-1-one (61.6 mg, 0.237 mmol) synthesized in Reference Example 17, the title compound (hereinafter referred to as Example Compound No. 25) (35.7 mg, 0.135 mmol, yield 57%) was obtained as a white solid.
- Example 29 2-(4-(trifluoromethyl)phenyl)quinoline (80.0 mg, 0.293 mmol) synthesized in Reference Example 21, the title compound (hereinafter referred to as Example 29) was synthesized in the same manner as in Example 26.
- Compound) (77.0 mg, 0.278 mmol, yield 95%) was obtained as a colorless transparent oil.
- Example 30 2-(3-(trifluoromethyl)phenyl)quinoline (40.0 mg, 0.146 mmol) synthesized in Reference Example 22, the title compound (hereinafter referred to as Example 30) was synthesized in the same manner as in Example 26. Compound) (39.1 mg, 0.141 mmol, yield 96%) was obtained as a colorless transparent oil.
- Example 32 4-(quinolin-2-yl)benzenesulfonamide (70.0 mg, 0.246 mmol) synthesized in Reference Example 24, the title compound (hereinafter referred to as the compound of Example 32) was synthesized in the same manner as in Example 26. ) (36.1 mg, 0.125 mmol, yield 51%) was obtained as a white solid.
- Example 35 Using 4-(quinolin-2-yl)benzonitrile (95.0 mg, 0.413 mmol) synthesized in Reference Example 25, the title compound (hereinafter referred to as the compound of Example 35) was prepared in the same manner as in Example 26. (94.9 mg, 0.405 mmol, yield 98%) was obtained as a white solid.
- the obtained crude product was purified by column chromatography (silica gel, hexane/ethyl acetate) to obtain the title compound (hereinafter, the compound of Example 46) (115 mg, 0.454 mmol, yield 76%) as a white solid. Obtained.
- Example 47 Using (2-(quinolin-2-yl)phenyl)methanol (139 mg, 0.592 mmol) synthesized in Reference Example 30, the title compound (hereinafter referred to as the compound of Example 47) was prepared in the same manner as in Example 26. (56.6 mg, 0.237 mmol, yield 40%) was obtained as a pale yellow oil.
- Example 48 Using (3-(quinolin-2-yl)phenyl)methanol (143 mg, 0.607 mmol) synthesized in Reference Example 31, the title compound (hereinafter referred to as the compound of Example 48) was prepared in the same manner as in Example 26. (133 mg, 0.554 mmol, yield 94%) was obtained as a pale yellow oil.
- Example 49 Using (4-(quinolin-2-yl)phenyl)methanol (136 mg, 0.576 mmol) synthesized in Reference Example 32, the title compound (hereinafter referred to as the compound of Example 49) was prepared in the same manner as in Example 26. (77.3 mg, 0.323 mmol, yield 56%) was obtained as a pale yellow oil.
- Methyl 2-phenylquinoline-5-carboxylate (60.0 mg, 0.228 mmol) was dissolved in toluene (1 mL) under an argon atmosphere, and a 1.0 mol/L diisobutylaluminum hydride/hexane solution (0.0 mol/L diisobutylaluminum hydride/hexane solution) was dissolved at -78°C. 912 mL, 0.912 mmol) was added thereto, and the mixture was stirred at -78°C for 1.5 hours.
- Methyl 2-chloroquinoline-6-carboxylate (100 mg, 0.451 mmol) was dissolved in THF (2 mL), and a 1 mol/L methylmagnesium bromide/THF solution (1.35 mL, 1.35 mmol) was dissolved in -78 mL under an argon atmosphere. C. and stirred at room temperature for 3 hours. After the reaction was completed, a saturated aqueous ammonium chloride solution was added to the reaction mixture until the pH reached 6-7, and the aqueous layer was extracted with ethyl acetate. The organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, and then the filtrate was concentrated under reduced pressure.
- Methyl 2-phenyl-1,2,3,4-tetrahydroquinoline-6-carboxylate (25.0 mg, 93.5 ⁇ mol) synthesized in Example 56 was dissolved in THF (1 mL), and 1 mol/L methylmagnesium bromide was added. /THF solution (0.374 mL, 0.374 mmol) was added at 0° C. under an argon atmosphere and stirred at room temperature for 16 hours. After the reaction was completed, water was added to the reaction mixture and extracted with ethyl acetate. The organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, and then the filtrate was concentrated under reduced pressure.
- the obtained crude product was purified by thin layer preparative chromatography (hexane/ethyl acetate), and the title compound (hereinafter referred to as the compound of Example 57) (3.70 mg, 13.8 ⁇ mol, yield 15%) was purified in a pale layer. Obtained as yellow amorphous.
- Methyl 2-phenylquinoline-6-carboxylate (0.279 g, 1.06 mmol) synthesized in Reference Example 38 was dissolved in THF/methanol solution (10 mL), and 1 mol/L sodium hydroxide aqueous solution (2.12 mL, 2 .12 mmol) was added thereto, and the mixture was stirred at room temperature for 17 hours. After the reaction was completed, the reaction mixture was concentrated under reduced pressure. 1 mol/L hydrochloric acid (4 mL) was added to the obtained crude product, and the precipitated solid was collected by filtration. The solid was washed with water and dried under vacuum to give the title compound (0.246 g, 0.988 mmol, 93% yield) as a white solid.
- Example Compound No. 63 tert-butyl (2-phenylquinolin-6-yl)carbamate (29.0 mg, 0.0895 mmol, yield 40%) was obtained as a white solid.
- the title compound (hereinafter referred to as the compound of Example 71) (49.2 mg, 0.174 mmol, yield 69%) was obtained as a colorless product by purifying the obtained crude product by column chromatography (silica gel, hexane/ethyl acetate). Obtained as a clear oil.
- 6-bromo-2-phenylquinoline synthesized in Reference Example 49 (60.0 mg, 0.211 mmol), cesium carbonate (241 mg, 0.739 mmol), palladium (II) acetate (4.74 mg, 21.1 ⁇ mol), 2 ,2'-bis(diphenylphosphino)-1,1'-binaphthyl (26.3 mg, 42.2 ⁇ mol) was suspended in 1,4-dioxane (2.10 mL), and piperidine (69.7 ⁇ L, 0.2 ⁇ L) was suspended in 1,4-dioxane (2.10 mL). 633 mmol) was added thereto, and the mixture was stirred at 100° C. for 15 hours under an argon atmosphere.
- diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate 50.4 mg, 0.199 mmol was added, and the mixture was stirred at room temperature under an argon atmosphere for 3 hours. Furthermore, iodine (2.40 mg, 9.46 ⁇ mol) and diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (50.4 mg, 0.199 mmol) were added, and the mixture was heated at 40°C for 19 hours. Stirred. After the reaction was completed, the reaction mixture was concentrated under reduced pressure.
- the obtained crude product was purified by column chromatography (silica gel, hexane/ethyl acetate) to obtain the title compound (hereinafter referred to as the compound of Example 72) (6.00 mg, 20.5 ⁇ mol, yield 22%) as a brown solid. obtained as.
- 1,1-diphenyl-N-(2-phenylquinolin-6-yl)methanimine (108 mg, 0.280 mmol) synthesized in Reference Example 52 was dissolved in THF (1.0 mL), and 2 mol/L hydrochloric acid (0.28 mg, 0.280 mmol) was dissolved in THF (1.0 mL). 420 mL, 0.840 mmol) was added thereto, and the mixture was stirred at room temperature for 1 hour. After the reaction was completed, a saturated aqueous sodium bicarbonate solution was added to the reaction mixture, and the mixture was extracted with chloroform. The organic layers were combined and dried over anhydrous sodium sulfate, and the filtrate was concentrated under reduced pressure.
- Example 73 N-(2-phenylquinolin-6-yl)acetamide (15.5 mg, 59.1 ⁇ mol) synthesized in Reference Example 54, the title compound (hereinafter referred to as Example 73) was synthesized in the same manner as in Example 4. Compound) (12.1 mg, 45.4 ⁇ mol, yield 77%) was obtained as a colorless amorphous.
- Example 74 N-(2-phenylquinolin-6-yl)pivalamide (64.8 mg, 0.213 mmol) synthesized in Reference Example 55, the title compound (hereinafter referred to as Example 74) was synthesized in the same manner as in Example 26. Compound) (62.6 mg, 0.203 mmol, yield 95%) was obtained as a white solid.
- 2-phenylquinolin-6-amine (40.0 mg, 0.182 mmol) synthesized in Reference Example 53 was dissolved in dichloromethane (1.8 mL), cooled to 0°C, and triethylamine (38.0 ⁇ L, 0.272 mmol) and Methanesulfonyl chloride (14.1 ⁇ L, 0.182 mmol) was added, and the mixture was stirred at 0° C. for 2 hours under an argon atmosphere. Next, triethylamine (25.3 ⁇ L, 0.182 mmol) and methanesulfonyl chloride (16.9 ⁇ L, 0.218 mmol) were added, and the mixture was stirred at room temperature under an argon atmosphere for 18 hours.
- Example Compound No. 75 (20.2 mg, 66.8 ⁇ mol, yield 41%) was obtained as a white solid.
- Example 77 1-(2-phenylquinolin-6-yl)urea (47.9 mg, 0.182 mmol) synthesized in Reference Example 58, the title compound (hereinafter referred to as Example 77) was synthesized in the same manner as in Example 4. Compound) (40.6 mg, 0.152 mmol, yield 84%) was obtained as a white amorphous.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Neurology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pain & Pain Management (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
[1] 下記の一般式(I)で示されるテトラヒドロキノリン誘導体又はその薬理学的に許容される塩を有効成分として含有する、筋萎縮性側索硬化症の治療剤又は予防剤。
R1xにおいて、前記アリール基がフェニル基である場合は、該フェニル基と、5及び6員のラクタム環並びに環の構成原子として酸素原子を1又は2個含む5及び6員環飽和ヘテロ環からなる群から選択される1つの環とが縮合した縮合環基(該縮合環基の1個の任意の水素原子は、メチル基で置換されていてもよい)となっていてもよく、
R1yは、水素原子、フェニル基、4-ヒドロキシメチルフェニル基、4-アミノカルボニルフェニル基、4-アセトアミドフェニル基、4-アミノスルホニルフェニル基、4-メチルスルホニルフェニル基又は3-ピリジル基を表し(ただし、R1xおよびR1yがともに水素原子であることを除く)、
R2、R4及びR5の組み合わせは、R2、R4及びR5が全て水素原子であるか、
又は、R2、R4及びR5の1つは、ハロゲン原子、メトキシ基若しくは1つの水素原子がヒドロキシ基で置換されていてもよいメチル基、かつ、他の2つは水素原子であり、
R3は、水素原子、ハロゲン原子、1~3個の任意の水素原子がそれぞれ独立してヒドロキシ基若しくはフッ素原子で置換されていてもよい炭素数1~3のアルキル基、3-ヒドロキシオキセタン-3-イル基、ヒドロキシ基、1~3個の任意の水素原子がフッ素原子で置換されていてもよい炭素数1~3のアルコキシ基、メトキシカルボニル基、-NR9R10、-CH2NR11R12又は-CH2CONR13R14を表し、
R6及びR7は、それぞれ独立して、水素原子又は炭素数1~3のアルキル基を表すか、あるいは、
R6及びR7は、一体となって-(CH2)h-を表し、
hは、3~5の整数を表し、ここで、1個の任意のメチレン基は、酸素原子、-NH-又は-N(CH3)-で置換されていてもよく、
R8は、水素原子又は炭素数1~3のアルキル基を表し、
R9及びR10は、それぞれ独立して、水素原子、-COR15又は炭素数1~3のアルキルスルホニル基を表すか、あるいは、
R9及びR10は、一体となって-(CH2)n-を表し、
nは、3~6の整数を表し、
R11及びR12は、一体となって-(CH2)m-を表し、
mは、3~5の整数を表し、ここで、1個の任意のメチレン基は酸素原子で置換されていてもよく、
R13及びR14は、それぞれ独立して、水素原子、炭素数1~5のアルキル基、2-ヒドロキシエチル基、1個の任意の炭素原子が酸素原子で置換されていてもよい炭素数3あるいは4のシクロアルキル基、又は、1個の任意の炭素原子が窒素原子あるいは酸素原子で置換されていてもよい炭素数3あるいは4のシクロアルキル基で置換されているメチル基を表すか、あるいは、
R13及びR14は、一体となって1又は2個の任意の水素原子がフッ素原子、メチル基、ヒドロキシ基又はメトキシ基で、若しくは、1個の任意のCH2基が酸素原子、窒素原子又は-CONH-で置換されていてもよい-(CH2)k-を表し、
kは、3~5の整数を表し、
R15は、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基又は-NHR16を表し、
R16は、水素原子又は炭素数1~5のアルキル基を表し、
Rvは、水素原子、1個の任意の水素原子がヒドロキシ基あるいはメトキシカルボニル基で置換されていてもよいメチル基、又は、メトキシカルボニル基を表し、
Rwは、水素原子、メチル基、ヒドロキシメチル基又はメトキシカルボニル基を表す。]
R1yは、水素原子又は4-アミノスルホニルフェニル基であり(ただし、R1xが、水素原子である場合は、R1yは、4-アミノスルホニルフェニル基であり、又は、R1xが、フェニル基(該フェニル基のパラ位の水素原子は、フッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、シアノ基、アミノカルボニル基、アセトアミド基、アミノスルホニル基、メチルスルホニルアミノ基又はメチルスルホニル基で置換されていてもよい)である場合は、R1yは、水素原子である)、
R2、R4及びR5の組み合わせは、R2、R4及びR5が全て水素原子であるか、R2とR4は、一方がフッ素原子、塩素原子又はメチル基、かつ、他方及びR5が水素原子であり、
R3は、水素原子、フッ素原子、塩素原子、メチル基、ヒドロキシメチル基、トリフルオロメトキシ基又は-CH2CONR13R14であり、
R13は、水素原子又はメチル基であり、
R14は、tert-ブチル基、2-ヒドロキシエチル基、シクロプロピル基、シクロブチル基又はオキセタン-3-イル基であるか、あるいは、
R13及びR14がそれらと結合している窒素原子とともに、ピペラジン環、ピペラジン-2-オン環、アゼチジン環、3,3-ジフルオロアゼチジン環、3,3-ジメチルアゼチジン環、3-ヒドロキシアゼチジン環又は3-メトキシアゼチジン環を形成していてもよく、
Rvは、水素原子であり、
Rwは、水素原子である、[1]記載のテトラヒドロキノリン誘導体又はその薬理学的に許容される塩を有効成分として含有する、筋萎縮性側索硬化症の治療剤又は予防剤。
2-フェニル-1,2,3,4-テトラヒドロキノリン、
4-(1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
1-(3-ヒドロキシアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン、
4-(6-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(6-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(7-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(7-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(6-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(5-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(6-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(7-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(6-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(6-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(5-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(5-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(5-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
1-(3-メトキシアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン、
N-(オキセタン-3-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)アセトアミド、
1-(3,3-ジフルオロアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン、
N-(2-ヒドロキシエチル)-N-メチル-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)アセトアミド、
1-(アゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン、
N-シクロプロピル-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)アセトアミド、
N-シクロブチル-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)アセトアミド、
2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)-1-(ピペラジン-1-イル)エタン-1-オン、及び
4-(1,2,3,4-テトラヒドロキノリン-3-イル)ベンゼンスルホンアミド、又はその薬理学的に許容される塩。
R1xにおいて、前記アリール基がフェニル基(該フェニル基は下記縮合環基を形成していてもよい)である場合は、該フェニル基と、5及び6員のラクタム環並びに環の構成原子として酸素原子を1又は2個含む5及び6員環飽和ヘテロ環からなる群から選択される1つの環とが縮合した縮合環基(該縮合環基の1個の任意の水素原子は、メチル基で置換されていてもよい)となっていてもよく、
R1yは、水素原子、フェニル基、4-ヒドロキシメチルフェニル基、4-アミノカルボニルフェニル基、4-アセトアミドフェニル基、4-アミノスルホニルフェニル基、4-メチルスルホニルフェニル基又は3-ピリジル基を表し(ただし、R1xおよびR1yがともに水素原子であることを除く)、
R2、R4及びR5の組み合わせは、R2、R4及びR5が全て水素原子であるか、
又は、R2、R4及びR5の1つは、ハロゲン原子、メトキシ基若しくは1つの水素原子がヒドロキシ基で置換されていてもよいメチル基、かつ、他の2つは水素原子であり、
R3は、水素原子、ハロゲン原子、1~3個の任意の水素原子がそれぞれ独立してヒドロキシ基若しくはフッ素原子で置換されていてもよい炭素数1~3のアルキル基、3-ヒドロキシオキセタン-3-イル基、ヒドロキシ基、1~3個の任意の水素原子がフッ素原子で置換されていてもよい炭素数1~3のアルコキシ基、メトキシカルボニル基、-NR9R10、-CH2NR11R12又は-CH2CONR13R14を表し、
R6及びR7は、それぞれ独立して、水素原子又は炭素数1~3のアルキル基を表すか、あるいは、
R6及びR7は、一体となって-(CH2)h-を表し、
hは、3~5の整数を表し、ここで、1個の任意のメチレン基は、酸素原子、-NH-又は-N(CH3)-で置換されていてもよく、
R8は、水素原子又は炭素数1~3のアルキル基を表し、
R9及びR10は、それぞれ独立して、水素原子、-COR15又は炭素数1~3のアルキルスルホニル基を表すか、あるいは、
R9及びR10は、一体となって-(CH2)n-を表し、
nは、3~6の整数を表し、
R11及びR12は、一体となって-(CH2)m-を表し、
mは、3~5の整数を表し、ここで、1個の任意のメチレン基は酸素原子で置換されていてもよく、
R13及びR14は、それぞれ独立して、水素原子、炭素数1~5のアルキル基、2-ヒドロキシエチル基、1個の任意の炭素原子が酸素原子で置換されていてもよい炭素数3あるいは4のシクロアルキル基、又は、1個の任意の炭素原子が窒素原子あるいは酸素原子で置換されていてもよい炭素数3あるいは4のシクロアルキル基で置換されているメチル基を表すか、あるいは、
R13及びR14は、一体となって1又は2個の任意の水素原子がフッ素原子、メチル基、ヒドロキシ基又はメトキシ基で、若しくは、1個の任意のCH2基が酸素原子、窒素原子又は-CONH-で置換されていてもよい-(CH2)k-を表し、
kは、3~5の整数を表し、
R15は、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基又は-NHR16を表し、
R16は、水素原子又は炭素数1~5のアルキル基を表し、
Rvは、水素原子、1個の任意の水素原子がヒドロキシ基あるいはメトキシカルボニル基で置換されていてもよいメチル基、又は、メトキシカルボニル基を表し、
Rwは、水素原子、メチル基、ヒドロキシメチル基又はメトキシカルボニル基を表す。]
さらに別の一態様として、本発明は、筋委縮性側索硬化症の治療剤又は予防剤の製造における、上記のテトラヒドロキノリン誘導体(I)又はその薬理学的に許容される塩の使用、を包含する。
R1xにおいて、前記アリール基がフェニル基(該フェニル基は下記縮合環基を形成していてもよい)である場合は、該フェニル基と、5及び6員のラクタム環並びに環の構成原子として酸素原子を1又は2個含む5及び6員環飽和ヘテロ環からなる群から選択される1つの環とが縮合した縮合環基(該縮合環基の1個の任意の水素原子は、メチル基で置換されていてもよい)となっていてもよく、
R1yは、水素原子、フェニル基、4-ヒドロキシメチルフェニル基、4-アミノカルボニルフェニル基、4-アセトアミドフェニル基、4-アミノスルホニルフェニル基、4-メチルスルホニルフェニル基又は3-ピリジル基を表し(ただし、R1xおよびR1yがともに水素原子であることを除く)、
R2、R4及びR5の組み合わせは、R2、R4及びR5が全て水素原子であるか、
又は、R2、R4及びR5の1つは、ハロゲン原子、メトキシ基若しくは1つの水素原子がヒドロキシ基で置換されていてもよいメチル基、かつ、他の2つは水素原子であり、
R3は、水素原子、ハロゲン原子、1~3個の任意の水素原子がそれぞれ独立してヒドロキシ基若しくはフッ素原子で置換されていてもよい炭素数1~3のアルキル基、3-ヒドロキシオキセタン-3-イル基、ヒドロキシ基、1~3個の任意の水素原子がフッ素原子で置換されていてもよい炭素数1~3のアルコキシ基、メトキシカルボニル基、-NR9R10、-CH2NR11R12又は-CH2CONR13R14を表し、
R6及びR7は、それぞれ独立して、水素原子又は炭素数1~3のアルキル基を表すか、あるいは、
R6及びR7は、一体となって-(CH2)h-を表し、
hは、3~5の整数を表し、ここで、1個の任意のメチレン基は、酸素原子、-NH-又は-N(CH3)-で置換されていてもよく、
R8は、水素原子又は炭素数1~3のアルキル基を表し、
R9及びR10は、それぞれ独立して、水素原子、-COR15又は炭素数1~3のアルキルスルホニル基を表すか、あるいは、
R9及びR10は、一体となって-(CH2)n-を表し、
nは、3~6の整数を表し、
R11及びR12は、一体となって-(CH2)m-を表し、
mは、3~5の整数を表し、ここで、1個の任意のメチレン基は酸素原子で置換されていてもよく、
R13及びR14は、それぞれ独立して、水素原子、炭素数1~5のアルキル基、2-ヒドロキシエチル基、1個の任意の炭素原子が酸素原子で置換されていてもよい炭素数3あるいは4のシクロアルキル基、又は、1個の任意の炭素原子が窒素原子あるいは酸素原子で置換されていてもよい炭素数3あるいは4のシクロアルキル基で置換されているメチル基を表すか、あるいは、
R13及びR14は、一体となって1又は2個の任意の水素原子がフッ素原子、メチル基、ヒドロキシ基又はメトキシ基で、若しくは、1個の任意のCH2基が酸素原子、窒素原子又は-CONH-で置換されていてもよい-(CH2)k-を表し、
kは、3~5の整数を表し、
R15は、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基又は-NHR16を表し、
R16は、水素原子又は炭素数1~5のアルキル基を表し、
Rvは、水素原子、1個の任意の水素原子がヒドロキシ基あるいはメトキシカルボニル基で置換されていてもよいメチル基、又は、メトキシカルボニル基を表し、
Rwは、水素原子、メチル基、ヒドロキシメチル基又はメトキシカルボニル基を表す。]
R1yは、水素原子であり、
R2は、水素原子であり、
R3は、水素原子、フッ素原子、塩素原子、1個の任意の水素原子がヒドロキシ基で置換されていてもよい炭素数1~3のアルキル基、メトキシ基、-NR9R10、-CH2NR11R12又は-CH2CONR13R14であり、
R4は、水素原子又はメトキシ基であり、
R5は、水素原子であり、
R6及びR7は、それぞれ独立して、水素原子又は炭素数1~3のアルキル基であるか、あるいは、R6及びR7は、それらと結合している窒素原子とともに、ピペリジン環、モルホリン環、ピペラジン環又はN-メチルピペラジン環を形成していてもよく、
R8は、水素原子又は炭素数1~3のアルキル基であり
R9は、水素原子であり、R10は、水素原子、-COR15又は炭素数1~3のアルキルスルホニル基であるか、あるいは、R9及びR10は、一体となって、-(CH2)n-であり、
nは、4又は5であり、
R11及びR12は、一体となって、-(CH2)m-であり、
mは、4又は5であり、ここで、1個の任意のメチレン基は酸素原子で置換されていてもよく、
R13は、水素原子又はメチル基であり、R14は、水素原子、メチル基、エチル基、イソプロピル基、tert-ブチル基、2-ヒドロキシエチル基、シクロプロピル基、シクロブチル基、オキセタン-3-イル基、シクロプロピルメチル基、シクロブチルメチル基又はオキセタン-3-イルメチルであるか、あるいは、R13及びR14は、それらと結合している窒素原子とともに、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、アゼチジン環、3,3-ジメチルアゼチジン環、3,3-ジフルオロアゼチジン環、3-ヒドロキシアゼチジン環又は3-メトキシアゼチジン環を形成していてもよく、
R15は、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基又は-NHR16であり、
R16は、水素原子又は炭素数1~5のアルキル基であり、
Rvは、水素原子であり、
Rwは、水素原子であることが好ましい。
上記のテトラヒドロキノリン誘導体(I)において、R1y、Rv及びRwが全て、水素原子であり、R3が、水素原子、ハロゲン原子、1~3個の任意の水素原子がそれぞれ独立してヒドロキシ基若しくはフッ素原子で置換されていてもよい炭素数1~3のアルキル基、ヒドロキシ基、1~3個の任意の水素原子がフッ素原子で置換されていてもよい炭素数1~3のアルコキシ基又はメトキシカルボニル基であるテトラヒドロキノリン誘導体(I-a)は、例えば、スキーム1に記載の方法により得ることができる。
キノリン誘導体(IX)は、金属触媒及び塩基存在下、2-ハロキノリン誘導体(III)とボロン酸誘導体(IV)とのカップリング反応により得ることができる。
キノリン誘導体(IX)は、塩基存在下、2-アミノベンジルアルコール誘導体(V)と、ケトン誘導体(VI)との付加環化反応により得ることができる。例えば、(Tetrahedron Letters,2008年,6893-6895頁)に記載の方法、又はそれに準じた方法に従って実施できる。
キノリン誘導体(IX)は、酸素雰囲気下、金属触媒存在下、アニリン誘導体(VII)とアリルアルコール誘導体(VIII-a)又はα,β不飽和アルデヒド誘導体(VIII-b)との酸化的環化反応により得ることができる。例えば、(RSC Advances,2017年,36242-36245頁)に記載の方法、又はそれに準じた方法に従って実施できる。
テトラヒドロキノリン誘導体(I-a)は、水素雰囲気下、金属触媒存在下、キノリン誘導体(IX)の水素添加反応により得ることができる。又は、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸エステル誘導体とキノリン誘導体(IX)との水素移動還元反応により得ることができる。
上記のテトラヒドロキノリン誘導体(I)において、R1y、Rv及びRwが全て、水素原子であり、R3が-NR9R10であり、R9及びR10が一体となって-(CH2)n-であるテトラヒドロキノリン誘導体(I-b)は、例えば、スキーム2に記載の方法により得ることができる。
アミノキノリン誘導体(XI)は、金属触媒及び塩基存在下、6-ハロキノリン誘導体(IX-a)と2級アミン誘導体(X)とのカップリング反応により得ることができる。
テトラヒドロキノリン誘導体(I-b)は、アミノキノリン誘導体(XI)の水素添加反応又は水素移動還元反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程1-4と同様である。
上記のテトラヒドロキノリン誘導体(I)において、R1y、Rv及びRwが全て、水素原子であり、R3がNR9R10であり、R9が水素原子、R10が-COR15であり、R15が炭素数1~5のアルコキシ基であるテトラヒドロキノリン誘導体(I-c)は、例えば、スキーム3に記載の方法により得ることができる。
キノリン-6-カルボン酸誘導体(XII)は、塩基存在下、キノリン-6-カルボン酸エステル誘導体(IX-b)の加水分解反応により得ることができる。
キノリン-6-カルバミン酸エステル誘導体(XIV)は、キノリン-6-カルボン酸誘導体(XII)にジフェニルリン酸アジドを用いることにより生成する酸アジ化物の転位反応で生成するイソシアナート誘導体の加アルコール分解反応により得ることができる。
テトラヒドロキノリン誘導体(I-c)はキノリン-6-カルバミン酸エステル誘導体(XIV)の水素添加反応又は水素移動還元反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程1-4と同様である。
上記のテトラヒドロキノリン誘導体(I)において、R1y、Rv及びRwが全て、水素原子であり、R3が-NR9R10であり、R9が水素原子、R10が-COR15又は炭素数1~3のアルキルスルホニル基であり、R15は、炭素数1~5のアルキル基又は-NHR16であり、R16は、水素原子、炭素数1~5のアルキル基であるテトラヒドロキノリン誘導体(I-d)~(I-f)は、例えば、スキーム4に記載の方法により得ることができる。
ジフェニルメタンイミン誘導体(XV)は、金属触媒及び塩基存在下、6-ハロキノリン誘導体(IX-a)とジフェニルメタンイミンとのカップリング反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程2-1と同様である。
アミノキノリン誘導体(XVI)は、ジフェニルメタンイミン誘導体(XV)の脱保護反応により得ることができる。
アミドキノリン誘導体(XVIII)は、アミノキノリン誘導体(XVI)とアシル化剤(XVII)とのアシル化反応により得ることができる。
テトラヒドロキノリン誘導体(I-d)はアミドキノリン誘導体(XVIII)の水素添加反応又は水素移動還元反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程1-4と同様である。
ウレアキノリン誘導体(XX)は、アミノキノリン誘導体(XVI)とウレア化剤(XIX)とのウレア化反応により得ることができる。
テトラヒドロキノリン誘導体(I-e)はウレアキノリン誘導体(XX)の水素添加反応又は水素移動還元反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程1-4と同様である。
スルホニルアミドキノリン誘導体(XXII)は、アミノキノリン誘導体(XVI)とスルホニル化剤(XXI)とのスルホニル化反応により得ることができる。
テトラヒドロキノリン誘導体(I-f)はスルホニルアミドキノリン誘導体(XXII)の水素添加反応又は水素移動還元反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程1-4と同様である。
上記のテトラヒドロキノリン誘導体(I)において、R1y、Rv及びRwが全て、水素原子であり、R3が-CH2NR11R12であるテトラヒドロキノリン誘導体(I-g)は、例えば、スキーム5に記載の方法により得ることができる。
メトキシカルボニルテトラヒドロキノリン誘導体(XXIII)はキノリン-6-カルボン酸エステル誘導体(IX-b)の水素添加反応又は水素移動還元反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程1-4と同様である。
ヒドロキシメチルテトラヒドロキノリン誘導体(XXIV)は、メトキシカルボニルテトラヒドロキノリン誘導体(XXIII)の還元反応により得ることができる。
テトラヒドロキノリン誘導体(I-g)は、ホスフィン誘導体及びヨウ素存在下、ヒドロキシメチルテトラヒドロキノリン誘導体(XXIV)と2級アミン誘導体(XXV)の置換反応により得ることができる。
上記のテトラヒドロキノリン誘導体(I)において、R1y、Rv及びRwが全て、水素原子であり、R3が-CH2CONR13R14であるテトラヒドロキノリン誘導体(I-h)及び(I-i)は、例えば、スキーム6に記載の方法により得ることができる。
ニトリル誘導体(XXVI)は、ホスフィン誘導体存在下、アゾジカルボン酸エステル誘導体を用いた、ヒドロキシメチルテトラヒドロキノリン誘導体(XXIV)とアセトンシアノヒドリンとの光延反応により得ることができる。
テトラヒドロキノリン誘導体(I-h)は、過酸化水素水及び塩基存在下、ニトリル誘導体(XXVI)との加水分解反応により得ることができる。
カルボン酸誘導体(XXVII)は、塩基存在下、テトラヒドロキノリン誘導体(I-h)の加水分解反応により得ることができる。
テトラヒドロキノリン誘導体(I-i)は、縮合剤存在下、カルボン酸誘導体(XXVII)とアミン誘導体(XXVIII)との縮合反応により得ることができる。
上記のテトラヒドロキノリン誘導体(I)において、R1y、Rv及びRwが全て、水素原子であるテトラヒドロキノリン誘導体の光学活性体(I-j’)及び(I-j’’)は、例えば、スキーム7に記載の方法により得ることができる。
テトラヒドロキノリン誘導体(I)の光学活性体(I-j’)及び(I-j’’)は、不斉リン酸触媒存在下、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸エステル誘導体とキノリン誘導体(XXIX)との不斉水素移動還元反応により得ることができる。例えば、(Tetrahedron: Asymmetry,2015年,1174-1179頁)に記載の方法、又はそれに準じた方法に従って実施できる。
上記のテトラヒドロキノリン誘導体(I)において、R1x、Rv及びRwが全て、水素原子であるテトラヒドロキノリン誘導体(I-k)は、例えば、スキーム8に記載の方法により得ることができる。
キノリン誘導体(XXXII)は、金属触媒及び塩基存在下、3-ハロキノリン誘導体(XXX)とボロン酸誘導体(XXXI)とのカップリング反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程1-1と同様である。
テトラヒドロキノリン誘導体(I-k)は、キノリン誘導体(XXXII)の水素添加反応又は水素移動還元反応により得ることができる。当工程の試薬、触媒、水素圧力、反応溶媒、反応温度の選択条件は、工程1-4と同様である。
上記のテトラヒドロキノリン誘導体(I)において、R1x、Rv及びRwが全て、水素原子であるテトラヒドロキノリン誘導体(I-k)の光学活性体(I-k’)及び(I-k’’)は、例えば、スキーム9に記載の方法により得ることができる。
テトラヒドロキノリン誘導体(I-k)の光学活性体(I-k’)及び(I-k’’)は、キラルカラムを用いたHPLC分取により得ることができる。
1H-NMR(DMSO-d6)δ:7.40-7.34(4H,m),7.28(1H,t,J=6.8Hz),6.94(2H,t,J=7.9Hz),6.67(1H,d,J=6.8Hz),6.56(1H,s),4.44(1H,dd,J=8.6,3.2Hz),2.81(1H,dt,J=17.8,6.1Hz),2.55(1H,ddd,J=25.0,12.3,8.7Hz),2.03-1.99(1H,m),1.91(1H,s).
MS(ESI)[M+H]+:210.
1H-NMR(CDCl3)δ:7.37(4H,ddt,J=16.0,8.9,2.8Hz),7.28(1H,tt,J=7.0,2.2Hz),7.01(2H,t,J=7.2Hz),6.65(1H,td,J=7.4,1.1Hz),6.54(1H,dd,J=8.4,1.1Hz),4.44(1H,dd,J=9.3,3.4Hz),4.04(1H,s),2.97-2.89(1H,m),2.74(1H,dt,J=16.3,4.8Hz),2.16-2.09(1H,m),2.05-1.94(1H,m).
MS(ESI)[M+H]+:210.
保持時間(以下、Rt):18.40分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=5:95
流量:0.6mL/min
検出:UV(254nm)
1H-NMR(CDCl3)δ:7.41-7.32(4H,m),7.31-7.25(1H,m),7.01(2H,t,J=7.2Hz),6.65(1H,td,J=7.4,1.2Hz),6.55(1H,dd,J=7.2,1.4Hz),4.44(1H,dd,J=9.3,3.4Hz),4.04(1H,s),2.97-2.89(1H,m),2.74(1H,dt,J=16.5,4.9Hz),2.16-2.09(1H,m),2.04-1.94(1H,m).
MS(ESI)[M+H]+:210.
Rt:14.28分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=5:95
流量:0.6mL/min
検出:UV(254nm)
1H-NMR(CDCl3)δ:7.31(2H,dt,J=9.2,2.5Hz),7.00(2H,dd,J=7.2,6.3Hz),6.89(2H,td,J=5.8,3.5Hz),6.64(1H,td,J=7.4,1.2Hz),6.54-6.51(1H,m),4.38(1H,dd,J=9.5,3.2Hz),3.99(1H,s),3.81(3H,s),2.97-2.89(1H,m),2.74(1H,dt,J=16.3,4.5Hz),2.11-2.05(1H,m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:8.23(1H,d,J=8.6Hz),8.18(1H,t,J=4.8Hz),7.85(2H,dt,J=12.5,5.5Hz),7.77-7.69(3H,m),7.56-7.51(1H,m),7.44(1H,t,J=7.9Hz),7.02(1H,tt,J=5.4,2.4Hz),3.94(3H,s).
MS(ESI)[M+H]+:236.
1H-NMR(CDCl3)δ:7.27(1H,dd,J=8.8,7.0Hz),7.03-6.96(4H,m),6.83(1H,dq,J=8.2,1.2Hz),6.65(1H,td,J=7.4,1.1Hz),6.54(1H,d,J=7.7Hz),4.42(1H,dd,J=9.3,3.4Hz),4.01(1H,brs),3.81(3H,s),2.97-2.88(1H,m),2.74(1H,dt,J=16.3,4.8Hz),2.15-2.09(1H,m),2.05-1.94(1H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:8.16(2H,t,J=8.8Hz),7.89(1H,d,J=8.2Hz),7.84(2H,dq,J=7.7,1.8Hz),7.73-7.69(1H,m),7.55-7.51(1H,m),7.43(1H,td,J=7.9,1.5Hz),7.13(1H,td,J=7.5,1.1Hz),7.04(1H,t,J=4.3Hz),3.87(3H,s).
MS(ESI)[M+H]+:236
1H-NMR(CDCl3)δ:7.43(1H,dd,J=7.7,1.8Hz),7.28-7.22(1H,m),7.05-6.85(4H,m),6.63(1H,td,J=7.4,1.2Hz),6.56(1H,d,J=7.7Hz),4.87(1H,dd,J=8.2,3.6Hz),4.04(1H,s),3.85(3H,s),2.92-2.84(1H,m),2.69(1H,td,J=10.8,5.4Hz),2.14(1H,dtd,J=13.4,5.0,2.9Hz),2.01-1.92(1H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:8.08(1H,d,J=8.6Hz),8.02(1H,d,J=8.6Hz),7.75(1H,d,J=8.6Hz),7.70(1H,d,J=1.8Hz),7.62(1H,dd,J=8.2,1.8Hz),7.37(1H,dd,J=9.1,2.7Hz),7.08(1H,d,J=2.7Hz),6.94(1H,d,J=4.1Hz),6.04(2H,d,J=5.0Hz),3.95(3H,s).
MS(ESI)[M+H]+:280.
1H-NMR(CDCl3)δ:6.91(1H,d,J=1.8Hz),6.84(1H,dd,J=8.2,1.8Hz),6.77(1H,d,J=7.7Hz),6.62(2H,td,J=7.4,2.7Hz),6.49(1H,d,J=8.6Hz),5.95(2H,s),4.28(1H,dd,J=9.7,2.9Hz),3.74(3H,s),2.97-2.88(1H,m),2.72(1H,dt,J=16.5,4.5Hz),2.09-2.03(1H,m),1.98-1.88(1H,m).
MS(ESI)[M+H]+:284.
1H-NMR(CDCl3)δ:8.13-8.09(3H,m),7.69(2H,dd,J=8.6,5.0Hz),7.47(1H,d,J=2.7Hz),7.16(1H,dd,J=8.8,2.5Hz),7.04(2H,td,J=6.0,3.5Hz),3.98(3H,s),3.89(3H,s).
MS(ESI)[M+H]+:266.
1H-NMR(CDCl3)δ:7.30(2H,td,J=5.8,3.5Hz),6.91-6.87(3H,m),6.24(1H,dd,J=8.4,2.5Hz),6.10(1H,d,J=2.3Hz),4.36(1H,dd,J=9.5,3.2Hz),4.00(1H,s),3.81(3H,s),3.75(3H,s),2.89-2.81(1H,m),2.67(1H,dt,J=16.2,4.6Hz),2.10-2.03(1H,m),1.99-1.89(1H,m).
MS(ESI)[M+H]+:270.
1H-NMR(CDCl3)δ:8.19(1H,d,J=8.6Hz),8.13(1H,t,J=4.8Hz),7.82-7.79(2H,m),7.72(2H,tt,J=8.8,2.9Hz),7.66(1H,dd,J=8.2,1.8Hz),7.53-7.49(1H,m),6.96(1H,d,J=8.2Hz),6.05(2H,s).
MS(ESI)[M+H]+:250.
1H-NMR(CDCl3)δ:7.00(2H,t,J=7.2Hz),6.90(1H,d,J=1.8Hz),6.84(1H,dd,J=8.4,1.6Hz),6.77(1H,d,J=7.7Hz),6.64(1H,td,J=7.4,1.1Hz),6.53(1H,d,J=7.2Hz),5.95(2H,t,J=1.6Hz),4.35(1H,dd,J=9.5,3.2Hz),3.98(1H,s),2.95-2.87(1H,m),2.73(1H,dt,J=16.3,4.8Hz),2.08(1H,tdd,J=8.4,4.4,2.7Hz),1.99-1.89(1H,m).
MS(ESI)[M+H]+:254.
1H-NMR(CDCl3)δ:8.23(1H,d,J=8.2Hz),8.16(1H,d,J=8.7Hz),7.89(1H,d,J=7.8Hz),7.81(1H,d,J=7.8Hz),7.77(1H,t,J=8.2Hz),7.67(1H,t,J=7.5Hz),7.62-7.54(4H,m).
MS(ESI)[M+H]+:274.
1H-NMR(CDCl3)δ:7.82(1H,d,J=8.2Hz),7.65(1H,d,J=7.8Hz),7.56(1H,t,J=7.5Hz),7.38(1H,t,J=7.5Hz),7.04-7.01(2H,m),6.69(1H,t,J=7.5Hz),6.55(1H,d,J=7.8Hz),4.82(1H,d,J=9.6Hz),3.97(1H,brs),3.03-2.94(1H,m),2.81-2.75(1H,m),2.17-2.12(1H,m),1.97-1.91(1H,m).
MS(ESI)[M+H]+:278.
1H-NMR(CDCl3)δ:8.29(2H,s),8.16(1H,d,J=8.7Hz),8.07(1H,d,J=8.7Hz),7.79(1H,d,J=8.2Hz),7.70(1H,t,J=7.5Hz),7.66(1H,d,J=8.2Hz),7.49(1H,t,J=7.5Hz).
MS(ESI)[M+H]+:196.
1H-NMR(CDCl3)δ:7.58(2H,s),7.02-6.98(2H,m),6.66(1H,t,J=7.1Hz),6.52(1H,d,J=7.8Hz),4.50(1H,dd,J=9.1,3.2Hz),2.96-2.88(1H,m),2.80-2.74(1H,m),2.17-2.11(1H,m),2.04-1.95(1H,m).
MS(ESI)[M+H]+:200.
参考例7で合成した2-(1H-ピラゾール-4-イル)キノリン(50.0mg、0.256mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(3.8mg、0.0051mmol)を1,4-ジオキサン(2mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(0.155g、0.614mmol)を加え、アルゴン雰囲気下、室温で24時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、得られた固体をヘキサン/酢酸エチルで再結晶して、表題化合物(以下、実施例12の化合物)(9.0mg、0.045mmol、収率18%、エナンチオ過剰率98.1%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.58(2H,s),6.98(2H,d,J=8.8Hz),6.65(1H,t,J=7.2Hz),6.52(1H,d,J=8.2Hz),4.50(1H,dd,J=9.3,2.9Hz),3.96(1H,s),2.96-2.88(1H,m),2.76(1H,dt,J=16.3,4.8Hz),2.17-2.11(1H,m),2.05-1.95(1H,m).
MS(ESI)[M+H]+:200.
Rt:17.78分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:4.6mm、長さ:150mm、粒子径:3μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=10:90
流量:0.6mL/min
検出:UV(254nm)
参考例7で合成した2-(1H-ピラゾール-4-イル)キノリン(70.0mg、0.359mmol)とリン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(5.40mg、7.17μmol)を用い、実施例12と同様の方法にて、表題化合物(以下、実施例13の化合物)(30.0mg、0.151mmol、収率42%、エナンチオ過剰率96.9%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.58(2H,s),7.01-6.98(2H,m),6.67-6.63(1H,m),6.53-6.50(1H,m),4.49(1H,dd,J=9.3,2.9Hz),3.97(1H,brs),2.96-2.88(1H,m),2.79-2.73(1H,m),2.17-2.10(1H,m),2.05-1.94(1H,m).
MS(ESI)[M+H]+:200.
Rt:13.11分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:4.6mm、長さ:150mm、粒子径:3μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=10:90
流量:0.6mL/min
検出:UV(254nm)
1H-NMR(CDCl3)δ:7.46(1H,s),7.32(1H,s),7.01-6.97(2H,m),6.64(1H,t,J=7.1Hz),6.50(1H,d,J=8.2Hz),4.43(1H,dd,J=9.4,3.0Hz),3.95(1H,brs),3.88(3H,s),2.94-2.86(1H,m),2.79-2.72(1H,m),2.14-2.08(1H,m),1.99-1.93(1H,m).
MS(ESI)[M+H]+:214.
1H-NMR(CDCl3)δ:8.91(1H,d,J=2.3Hz),8.48(1H,dd,J=8.7,2.3Hz),8.22(1H,d,J=8.2Hz),8.13(1H,d,J=8.7Hz),7.83(2H,d,J=8.7Hz),7.73(1H,t,J=7.1Hz),7.53(1H,t,J=7.1Hz),6.90(1H,d,J=8.7Hz),4.03(3H,s).
MS(ESI)[M+H]+:237.
1H-NMR(CDCl3)δ:8.14(1H,d,J=2.3Hz),7.63(1H,dd,J=8.7,2.3Hz),7.03-6.99(2H,m),6.74(1H,d,J=8.0Hz),6.66(1H,t,J=7.3Hz),6.53(1H,d,J=8.0Hz),4.40(1H,dd,J=9.6,3.2Hz),3.94(3H,s),3.94(1H,brs),2.99-2.91(1H,m),2.78-2.72(1H,m),2.09-1.93(2H,m).
MS(ESI)[M+H]+:241.
MS(ESI)[M+H]+:284.
1H-NMR(CDCl3)δ:7.92(2H,dt,J=8.7,1.8Hz),7.60(2H,dt,J=8.7,1.8Hz),7.06-7.00(2H,m),6.69(1H,td,J=7.3,0.9Hz),6.59(1H,dd,J=7.8,0.9Hz),4.57(1H,dd,J=8.7,3.2Hz),4.09(1H,brs),3.06(3H,s),2.95-2.87(1H,m),2.70(1H,td,J=10.9,5.5Hz),2.19-2.12(1H,m),2.01-1.97(1H,m).
MS(ESI)[M+H]+:288.
1H-NMR(CDCl3)δ:8.28-8.24(3H,m),8.21-8.18(3H,m),7.93(1H,d,J=8.7Hz),7.86(1H,d,J=8.2Hz),7.78-7.74(1H,m),7.59-7.55(1H,m),3.97(3H,s).
MS(ESI)[M+H]+:264.
1H-NMR(CDCl3)δ:8.02(2H,dt,J=8.2,1.8Hz),7.46(2H,dt,J=8.2,1.8Hz),7.05-6.99(2H,m),6.67(1H,td,J=7.3,0.9Hz),6.57(1H,dd,J=7.8,0.9Hz),4.52(1H,dd,J=9.1,3.2Hz),4.07(1H,brs),3.92(3H,s),2.95-2.87(1H,m),2.71(1H,td,J=10.7,5.5Hz),2.16-2.12(1H,m),2.03-1.94(1H,m).
MS(ESI)[M+H]+:268.
1H-NMR(CDCl3)δ:7.48(2H,d,J=8.2Hz),7.37(2H,d,J=8.2Hz),7.02-7.00(2H,m),6.65(1H,t,J=7.5Hz),6.54(1H,d,J=7.7Hz),4.44(1H,dd,J=9.5,3.2Hz),4.02(1H,brs),2.97-2.89(1H,m),2.74(1H,dt,J=16.3,4.5Hz),2.14-2.10(1H,m),2.02-1.96(1H,m),1.73(1H,s),1.59(6H,s).
MS(ESI)[M+H]+:268.
1H-NMR(CDCl3)δ:8.78(1H,t,J=1.6Hz),8.41(1H,d,J=7.8Hz),8.29(1H,d,J=8.5Hz),8.18(1H,d,J=7.8Hz),8.03(1H,d,J=7.8Hz),7.92(1H,d,J=8.5Hz),7.87(1H,d,J=7.8Hz),7.77(1H,t,J=7.8Hz),7.70(1H,t,J=7.8Hz),7.58(1H,t,J=7.8Hz),4.87(2H,brs).
MS(ESI)[M+H]+:285.
1H-NMR(CDCl3)δ:7.98(1H,s),7.85(1H,d,J=7.8Hz),7.63(1H,d,J=7.8Hz),7.51(1H,t,J=7.8Hz),7.04-7.01(2H,m),6.69(1H,t,J=7.1Hz),6.58(1H,d,J=7.8Hz),4.80(2H,brs),4.54(1H,dd,J=9.1,3.2Hz),2.97-2.89(1H,m),2.74-2.69(1H,m),2.16-2.12(1H,m),2.02-1.97(1H,m).
MS(ESI)[M+H]+:289.
1H-NMR(DMSO-d6)δ:8.54(1H,d,J=8.7Hz),8.10-8.06(3H,m),7.86-7.67(6H,m),7.61(2H,brs).
MS(ESI)[M+H]+:285.
1H-NMR(CDCl3)δ:8.06(1H,d,J=7.8Hz),7.83(1H,d,J=7.4Hz),7.60(1H,t,J=7.8Hz),7.41(1H,t,J=7.4Hz),7.05-7.01(2H,m),6.71(1H,t,J=7.4Hz),6.56(1H,d,J=7.8Hz),5.25(1H,dd,J=9.6,2.3Hz),4.96(2H,brs),4.00(1H,brs),3.04-2.96(1H,m),2.82-2.78(1H,m),2.32-2.29(1H,m),2.05-1.95(1H,m).
MS(ESI)[M+H]+:289.
1H-NMR(CDCl3)δ:8.21(1H,d,J=8.6Hz),8.17-8.13(3H,m),7.86(1H,d,J=8.8Hz),7.82(1H,d,J=8.2Hz),7.74-7.67(3H,m),7.54-7.50(1H,m),7.39(1H,brs),2.22(3H,s).
MS(ESI)[M+H]+:263.
1H-NMR(CDCl3)δ:7.46(2H,d,J=8.6Hz),7.34(2H,d,J=8.6Hz),7.15(1H,brs),7.03-6.99(2H,m),6.65(1H,dd,J=6.8,8.4Hz),6.54(1H,d,J=7.7Hz),4.41(1H,dd,J=9.5,3.2Hz),4.01(1H,brs),2.95-2.87(1H,m),2.76-2.69(1H,m),2.19(3H,s),2.12-2.06(1H,m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:8.21(1H,d,J=8.6Hz),8.10(1H,d,J=8.6Hz),7.86(1H,d,J=8.6Hz),7.82(1H,d,J=8.2Hz),7.75-7.71(2H,m),7.56-7.52(1H,m),6.96(1H,s).
MS(ESI)[M+H]+:196.
1H-NMR(CDCl3)δ:7.52(1H,s),7.02-6.98(2H,m),6.67(1H,ddd,J=7.6,7.6,1.2Hz),6.56(1H,d,J=7.7Hz),6.27(1H,s),4.64(1H,dd,J=9.1,3.6Hz),4.23(1H,brs),2.96-2.86(1H,m),2.80-2.72(1H,m),2.24-2.17(1H,m),2.12-2.02(1H,m).
MS(ESI)[M+H]+:200.
1H-NMR(DMSO-d6)δ:10.31(1H,s),8.41(1H,d,J=8.6Hz),8.15(1H,s),8.12-8.08(2H,m),8.03(1H,d,J=8.2Hz),7.97(1H,d,J=7.2Hz),7.78-7.74(1H,m),7.59-7.55(1H,m),7.01(1H,d,J=8.2Hz),3.02(2H,t,J=7.5Hz),2.55-2.51(2H,m).
MS(ESI)[M+H]+:275.
1H-NMR(CDCl3)δ:8.30(1H,brs),7.21-7.18(2H,m),7.03-6.99(2H,m),6.77-6.74(1H,m),6.66(1H,ddd,J=7.6,7.2,1.2Hz),6.54(1H,d,J=7.2Hz),4.38(1H,dd,J=9.5,3.2Hz),3.99(1H,brs),2.99-2.89(3H,m),2.77-2.71(1H,m),2.66-2.62(2H,m),2.12-2.05(1H,m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:279.
1H-NMR(CDCl3)δ:8.22(1H,d,J=8.6Hz),8.15(1H,d,J=8.6Hz),8.08-8.07(1H,m),8.03(1H,dd,J=8.6,2.3Hz),7.88-7.82(2H,m),7.76-7.71(1H,m),7.55-7.51(1H,m),7.13(1H,d,J=8.6Hz),3.43(3H,s),3.06(2H,t,J=7.5Hz),2.74-2.71(2H,m).
MS(ESI)[M+H]+:289.
1H-NMR(CDCl3)δ:7.28-7.25(1H,m),7.21(1H,s),7.03-7.00(2H,m),6.95(1H,d,J=8.6Hz),6.68-6.64(1H,m),6.55(1H,d,J=7.2Hz),4.40(1H,dd,J=9.5,3.2Hz),4.00(1H,brs),3.36(3H,s),3.00-2.88(3H,m),2.78-2.71(1H,m),2.67-2.63(2H,m),2.13-2.06(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:293.
1H-NMR(DMSO-d6)δ:8.69(1H,brs),8.54-8.49(2H,m),8.40(1H,d,J=8.2Hz),8.24(1H,d,J=8.6Hz),8.11(1H,d,J=8.6Hz),8.04(1H,d,J=7.2Hz),7.85-7.80(2H,m),7.66-7.62(1H,m),4.51(2H,s).
MS(ESI)[M+H]+:261.
1H-NMR(CDCl3)δ:7.85(1H,d,J=7.7Hz),7.53(1H,s),7.49(1H,d,J=7.7Hz),7.06-7.00(2H,m),6.70-6.67(1H,m),6.58(1H,d,J=7.7Hz),6.15(1H,brs),4.58(1H,d,J=9.1Hz),4.44(2H,s),4.10(1H,brs),2.95-2.88(1H,m),2.75-2.68(1H,m),2.18-2.14(1H,m),2.06-1.99(1H,m).
MS(ESI)[M+H]+:265.
1H-NMR(CDCl3)δ:8.23(1H,d,J=8.7Hz),8.19-8.14(3H,m),7.85-7.82(2H,m),7.74(1H,t,J=7.1Hz),7.54(1H,t,J=7.1Hz),7.24-7.19(2H,m).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.37-7.33(2H,m),7.05-6.99(4H,m),6.66(1H,t,J=7.3Hz),6.54(1H,d,J=7.8Hz),4.42(1H,dd,J=9.4,3.0Hz),4.00(1H,brs),2.96-2.88(1H,m),2.76-2.69(1H,m),2.12-2.06(1H,m),2.00-1.90(1H,m).
MS(ESI)[M+H]+:228.
1H-NMR(CDCl3)δ:8.25(1H,d,J=8.2Hz),8.17(1H,d,J=8.2Hz),7.94-7.92(2H,m),7.87-7.85(2H,m),7.75(1H,td,J=7.5,1.4Hz),7.56(1H,td,J=7.5,1.4Hz),7.52-7.47(1H,m),7.19-7.14(1H,m).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.32-7.28(1H,m),7.16-7.09(2H,m),7.03-6.95(3H,m),6.66(1H,t,J=7.3Hz),6.55(1H,d,J=7.8Hz),4.44(1H,dd,J=9.1,2.7Hz),4.04(1H,brs),2.94-2.86(1H,m),2.74-2.68(1H,m),2.15-2.08(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:228.
1H-NMR(CDCl3)δ:8.23(1H,d,J=8.7Hz),8.18(1H,d,J=8.2Hz),8.10(1H,td,J=7.8,1.8Hz),7.91-7.85(2H,m),7.75(1H,td,J=7.8,1.8Hz),7.57(1H,t,J=7.3Hz),7.46-7.42(1H,m),7.33(1H,t,J=7.3Hz),7.21(1H,dd,J=10.5,8.7Hz).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.47(1H,t,J=7.5Hz),7.27-7.22(1H,m),7.12(1H,t,J=7.5Hz),7.07-6.99(3H,m),6.66(1H,t,J=7.2Hz),6.57(1H,d,J=7.7Hz),4.85(1H,d,J=6.8Hz),4.00(1H,brs),2.93-2.85(1H,m),2.72-2.66(1H,m),2.20-2.13(1H,m),2.04-1.97(1H,m).
MS(ESI)[M+H]+:228.
1H-NMR(CDCl3)δ:8.30-8.28(3H,m),8.19(1H,d,J=8.2Hz),7.90(1H,d,J=8.7Hz),7.87(1H,d,J=8.2Hz),7.79-7.76(3H,m),7.58(1H,t,J=8.2Hz).
MS(ESI)[M+H]+:274.
1H-NMR(CDCl3)δ:7.60(2H,d,J=8.2Hz),7.50(2H,d,J=8.2Hz),7.04-7.00(2H,m),6.68(1H,t,J=7.1Hz),6.57(1H,d,J=7.8Hz),4.52(1H,dd,J=8.7,1.8Hz),4.05(1H,brs),2.95-2.87(1H,m),2.74-2.67(1H,m),2.17-2.10(1H,m),2.02-1.94(1H,m).
MS(ESI)[M+H]+:278.
1H-NMR(CDCl3)δ:8.47(1H,brs),8.36(1H,d,J=7.8Hz),8.27(1H,d,J=8.2Hz),8.19(1H,d,J=8.7Hz),7.90(1H,d,J=8.7Hz),7.86(1H,d,J=8.2Hz),7.78-7.74(1H,m),7.72(1H,d,J=7.8Hz),7.65(1H,t,J=7.8Hz),7.59-7.55(1H,m).
MS(ESI)[M+H]+:274.
1H-NMR(CDCl3)δ:7.66(1H,s),7.59(1H,d,J=7.8Hz),7.55(1H,d,J=7.8Hz),7.46(1H,t,J=7.5Hz),7.05-6.99(2H,m),6.68(1H,td,J=7.4,1.0Hz),6.58(1H,dd,J=7.8,1.0Hz),4.51(1H,dd,J=9.1,2.3Hz),4.04(1H,brs),2.98-2.90(1H,m),2.74(1H,dt,J=16.5,4.8Hz),2.16-2.10(1H,m),2.04-1.94(1H,m).
MS(ESI)[M+H]+:278.
1H-NMR(CDCl3)δ:8.25(1H,d,J=8.7Hz),8.22-8.20(2H,m),8.16(1H,d,J=8.7Hz),7.86-7.84(2H,m),7.75(1H,ddd,J=8.7,6.9,1.4Hz),7.56(1H,ddd,J=7.8,6.9,0.9Hz),7.40-7.38(2H,m).
MS(ESI)[M+H]+:290.
1H-NMR(CDCl3)δ:7.43-7.39(2H,m),7.19(2H,d,J=8.2Hz),7.02-7.01(2H,m),6.67(1H,ddd,J=7.8,7.8,1.4Hz),6.55(1H,d,J=7.8Hz),4.46(1H,dd,J=9.1,3.2Hz),4.03(1H,brs),2.92(1H,ddd,J=16.5,10.5,5.5Hz),2.72(1H,ddd,J=16.5,5.0,5.0Hz),2.15-2.08(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:294.
1H-NMR(DMSO-d6)δ:8.54(1H,d,J=8.2Hz),8.48(2H,d,J=8.2Hz),8.25(1H,d,J=8.2Hz),8.12(1H,d,J=8.2Hz),8.05(1H,d,J=8.2Hz),8.00(2H,d,J=8.2Hz),7.83(1H,t,J=7.2Hz),7.65(1H,t,J=7.2Hz),7.51(2H,brs).
MS(ESI)[M+H]+:285.
1H-NMR(CDCl3)δ:7.91(2H,d,J=8.2Hz),7.55(2H,d,J=8.2Hz),7.06-7.00(2H,m),6.69(1H,t,J=7.1Hz),6.59(1H,d,J=8.2Hz),4.83(2H,brs),4.55(1H,dd,J=8.7,3.2Hz),4.08(1H,brs),2.92-2.87(1H,m),2.72-2.67(1H,m),2.17-2.11(1H,m),2.01-1.95(1H,m).
MS(ESI)[M+H]+:289.
参考例24で合成した4-(キノリン-2-イル)ベンゼンスルホンアミド(50.0mg、0.176mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(2.6mg、0.0035mmol)を1,4-ジオキサン(1.75mL)に懸濁させた後、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(106mg、0.422mmol)を加えて、60℃で6時間撹拌した。さらに1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(106mg、0.422mmol)を加えて、60℃で18時間撹拌した。反応混合物を減圧下濃縮して、得られた粗生成物をカラムクロマトグラフィー(シリカゲル、クロロホルム/メタノール)で精製することにより表題化合物(以下、実施例33の化合物)(22.4mg、0.0774mmol、収率44%、エナンチオ過剰率98.1%ee)を淡黄色固体として得た。
1H-NMR(CDCl3)δ:7.91(2H,d,J=8.2Hz),7.55(2H,d,J=8.2Hz),7.06-7.00(2H,m),6.69(1H,t,J=7.1Hz),6.59(1H,d,J=8.2Hz),4.83(2H,brs),4.55(1H,dd,J=8.7,3.2Hz),4.08(1H,brs),2.92-2.87(1H,m),2.72-2.67(1H,m),2.17-2.11(1H,m),2.01-1.95(1H,m).
MS(ESI)[M+H]+:289.
Rt:20.76分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=60:40
流量:0.6mL/min
検出:UV(254nm)
参考例24で合成した4-(キノリン-2-イル)ベンゼンスルホンアミド(50.0mg、0.176mmol)とリン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(2.6mg、0.0035mmol)を用い、実施例33と同様の方法にて、表題化合物(以下、実施例34の化合物)(37.7mg、0.131mmol、収率74%、エナンチオ過剰率99.0%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.91(2H,d,J=8.2Hz),7.55(2H,d,J=8.2Hz),7.06-7.00(2H,m),6.69(1H,t,J=7.1Hz),6.59(1H,d,J=8.2Hz),4.83(2H,brs),4.55(1H,dd,J=8.7,3.2Hz),4.08(1H,brs),2.92-2.87(1H,m),2.72-2.67(1H,m),2.17-2.11(1H,m),2.01-1.95(1H,m).
MS(ESI)[M+H]+:289.
Rt:17.40分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=60:40
流量:0.6mL/min
検出:UV(254nm)
1H-NMR(CDCl3)δ:8.32-8.29(3H,m),8.18(1H,d,J=8.2Hz),7.92-7.86(2H,m),7.84-7.82(2H,m),7.78(1H,t,J=7.1Hz),7.59(1H,t,J=7.1Hz).
MS(ESI)[M+H]+:231.
1H-NMR(CDCl3)δ:7.64(2H,d,J=8.2Hz),7.50(2H,d,J=8.2Hz),7.06-7.00(2H,m),6.69(1H,t,J=7.3Hz),6.58(1H,d,J=7.8Hz),4.53(1H,d,J=7.3Hz),4.07(1H,brs),2.93-2.86(1H,m),2.72-2.64(1H,m),2.17-2.10(1H,m),2.00-1.93(1H,m).
MS(ESI)[M+H]+:235.
1H-NMR(CDCl3)δ:7.80(2H,d,J=8.2Hz),7.48(2H,d,J=7.8Hz),7.05-7.00(2H,m),6.68(1H,t,J=7.1Hz),6.58(1H,d,J=8.2Hz),6.08(1H,brs),5.67(1H,brs),4.52(1H,dd,J=8.9,3.4Hz),4.08(1H,brs),2.96-2.87(1H,m),2.72-2.68(1H,m),2.17-2.10(1H,m),2.02-1.95(1H,m).
MS(ESI)[M+H]+:253.
1H-NMR(DMSO-d6)δ:8.51(1H,d,J=8.6Hz),8.37(2H,d,J=8.6Hz),8.24(1H,d,J=8.6Hz),8.12-8.02(5H,m),7.81(1H,t,J=7.7Hz),7.63(1H,t,J=7.0Hz),7.48(1H,s).
MS(ESI)[M+H]+:249.
参考例26で合成した4-(キノリン-2-イル)ベンズアミド(50.0mg、0.201mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(3.0mg、0.0040mmol)を1,4-ジオキサン(2mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(0.122g、0.483mmol)を加え、アルゴン雰囲気下、室温で24時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)及び再結晶(酢酸エチル/メタノール)で精製し、表題化合物(以下、実施例37の化合物)(11.0mg、0.0436mmol、収率22%、エナンチオ過剰率98.2%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.80(2H,d,J=8.2Hz),7.49(2H,t,J=11.3Hz),7.02(2H,d,J=6.9Hz),6.67(1H,t,J=7.2Hz),6.58(1H,d,J=7.7Hz),6.05(1H,s),5.58(1H,s),4.52(1H,d,J=6.8Hz),4.07(1H,s),2.95-2.87(1H,m),2.71(1H,dt,J=16.6,5.1Hz),2.16-2.11(1H,m),2.05-1.94(1H,m).
MS(ESI)[M+H]+:253.
Rt:14.28分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=40:60
流量:0.6mL/min
検出:UV(254nm)
参考例26で合成した4-(キノリン-2-イル)ベンズアミド(50.0mg、0.201mmol)とリン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(3.0mg、0.0040mmol)を用い、実施例37と同様の方法にて、表題化合物(以下、実施例38の化合物)(13.7mg、0.0543mmol、収率46%、エナンチオ過剰率97.6%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.80(2H,d,J=8.2Hz),7.49(2H,t,J=11.3Hz),7.02(2H,d,J=6.9Hz),6.67(1H,t,J=7.2Hz),6.58(1H,d,J=7.7Hz),6.05(1H,s),5.58(1H,s),4.52(1H,d,J=6.8Hz),4.07(1H,s),2.95-2.87(1H,m),2.71(1H,dt,J=16.6,5.1Hz),2.16-2.11(1H,m),2.05-1.94(1H,m).
MS(ESI)[M+H]+:253.
Rt:24.14分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=40:60
流量:0.6mL/min
検出:UV(254nm)
1H-NMR(CD3OD)δ:7.97(2H,d,J=8.4Hz),7.46(2H,d,J=8.2Hz),6.94-6.89(2H,m),6.61-6.52(2H,m),4.52-4.49(1H,m),2.88-2.80(1H,m),2.65-2.58(1H,m),2.14-2.07(1H,m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:254.
1H-NMR(CDCl3)δ:7.41(2H,d,J=8.4Hz),7.35(2H,d,J=8.4Hz),7.04-6.99(2H,m),6.68-6.64(1H,m),6.56(1H,d,J=8.4Hz),4.47(1H,dd,J=9.1,3.6Hz),4.05(1H,brs),3.60-3.22(2H,m),3.33-3.22(2H,m),2.95-2.87(1H,m),2.76-2.69(1H,m),2.15-2.09(1H,m),2.03-1.93(1H,m),1.28-1.08(6H,m).
MS(ESI)[M+H]+:309.
1H-NMR(CDCl3)δ:7.75-7.72(2H,m),7.44(2H,d,J=8.2Hz),7.04-6.99(2H,m),6.68-6.66(1H,ddd,J=7.6,7.6,0.8Hz),6.57(1H,dd,J=7.7,0.9Hz),6.09(1H,brs),4.50(1H,dd,J=9.1,3.6Hz),4.06(1H,brs),3.54-3.47(2H,m),2.95-2.87(1H,m),2.74-2.67(1H,m),2.16-2.09(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:281.
1H-NMR(CDCl3)δ:7.42-7.36(4H,m),7.04-7.00(2H,m),6.66(1H,ddd,J=7.6,7.6,1.2Hz),6.56(1H,d,J=7.7Hz),4.47(1H,dd,J=9.1,3.6Hz),4.05(1H,brs),3.71(2H,brs),3.36(2H,brs),2.95-2.87(1H,m),2.76-2.69(1H,m),2.16-2.09(1H,m),2.03-1.93(1H,m),1.68(4H,brs),1.53(2H,brs).
MS(ESI)[M+H]+:321.
1H-NMR(CDCl3)δ:7.45-7.38(4H,m),7.04-6.98(2H,m),6.69-6.64(1H,m),6.56(1H,d,J=7.7Hz),4.48(1H,dd,J=9.1,3.2Hz),4.05(1H,brs),3.77-3.48(8H,m),2.95-2.87(1H,m),2.75-2.68(1H,m),2.21-2.09(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:323.
1H-NMR(CDCl3)δ:7.44-7.37(4H,m),7.04-7.00(2H,m),6.67(1H,ddd,J=7.5,1.1,0.5Hz),6.56(1H,d,J=8.4Hz),4.48(1H,dd,J=8.8,3.4Hz),4.04(1H,brs),3.80(2H,brs),3.46(2H,brs),2.96-2.87(1H,m),2.75-2.69(1H,m),2.49-2.33(7H,m),2.16-2.09(1H,m),2.03-1.93(1H,m).
MS(ESI)[M+H]+:336.
1H-NMR(CDCl3)δ:8.58(1H,s),8.29-8.25(2H,m),8.17(1H,d,J=8.7Hz),7.94-7.84(3H,m),7.76(1H,t,J=7.3Hz),7.62-7.54(2H,m),6.44(1H,brs),3.07(3H,d,J=5.0Hz).
MS(ESI)[M+H]+:263.
1H-NMR(CDCl3)δ:7.80(1H,s),7.68(1H,d,J=7.8Hz),7.53(1H,d,J=7.3Hz),7.41(1H,t,J=7.8Hz),7.04-7.00(2H,m),6.67(1H,t,J=7.1Hz),6.57(1H,d,J=7.8Hz),6.16(1H,brs),4.50(1H,dd,J=9.4,3.0Hz),4.06(1H,brs),3.02(3H,d,J=5.0Hz),2.97-2.89(1H,m),2.75-2.71(1H,m),2.16-2.09(1H,m),2.04-1.94(1H,m).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:8.23(1H,d,J=8.7Hz),8.19-8.14(3H,m),7.85-7.82(2H,m),7.74(1H,t,J=7.1Hz),7.54(1H,t,J=7.1Hz),7.24-7.19(2H,m).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.70(1H,s),7.63(1H,d,J=7.8Hz),7.58(1H,d,J=7.8Hz),7.46(1H,t,J=7.8Hz),7.05-7.01(2H,m),6.69(1H,t,J=7.3Hz),6.58(1H,d,J=7.8Hz),4.50(1H,d,J=6.9Hz),4.05(1H,brs),2.95-2.87(1H,m),2.73-2.67(1H,m),2.17-2.10(1H,m),2.01-1.94(1H,m).
MS(ESI)[M+H]+:235.
1H-NMR(CDCl3)δ:7.86(1H,s),7.73(1H,d,J=7.8Hz),7.57(1H,d,J=7.8Hz),7.44(1H,t,J=7.5Hz),7.04-6.99(2H,m),6.68(1H,t,J=7.5Hz),6.57(1H,d,J=7.8Hz),6.11(1H,brs),5.62(1H,brs),4.51(1H,dd,J=9.4,3.0Hz),4.06(1H,brs),2.98-2.90(1H,m),2.76-2.70(1H,m),2.16-2.10(1H,m),2.05-1.95(1H,m).
MS(ESI)[M+H]+:253.
1H-NMR(CDCl3)δ:8.33(1H,d,J=8.7Hz),8.12(1H,d,J=7.8Hz),7.89(1H,dd,J=8.0,1.1Hz),7.78-7.76(2H,m),7.72-7.69(1H,m),7.60(1H,ddd,J=8.2,6.9,0.9Hz),7.57-7.53(1H,m),7.49-7.46(2H,m),6.81(1H,dd,J=6.9,6.9Hz),4.56(2H,d,J=6.9Hz).
MS(ESI)[M+H]+:236.
1H-NMR(CDCl3)δ:7.57(1H,dd,J=7.3,1.4Hz),7.41-7.27(4H,m),7.04-7.00(2H,m),6.69(1H,ddd,J=7.3,7.3,1.4Hz),6.56(1H,d,J=8.2Hz),4.79(2H,dd,J=19.7,12.3Hz),4.73(1H,dd,J=9.6,3.2Hz),2.99(1H,ddd,J=16.9,11.4,5.5Hz),2.81(1H,ddd,J=16.5,4.1,4.1Hz),2.19-2.05(2H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:8.24(1H,d,J=8.7Hz),8.18-8.17(2H,m),8.06(1H,ddd,J=7.8,1.4,1.4Hz),7.89(1H,d,J=8.2Hz),7.85-7.83(1H,m),7.74(1H,ddd,J=8.2,6.9,1.4Hz),7.56-7.46(3H,m),4.83(2H,d,J=5.9Hz),1.95(1H,dd,J=5.9,5.9Hz).
MS(ESI)[M+H]+:236.
1H-NMR(CDCl3)δ:7.37-7.33(4H,m),7.02-7.00(2H,m),6.66(1H,dd,J=7.3,7.3Hz),6.55(1H,d,J=8.2Hz),4.71(2H,d,J=4.6Hz),4.45(1H,dd,J=9.1,3.2Hz),4.03(1H,brs),2.93(1H,ddd,J=16.5,11.0,5.9Hz),2.74(1H,ddd,J=16.0,4.6,4.6Hz),2.14-2.10(1H,m),2.05-1.95(1H,m),1.67(1H,t,J=5.5Hz).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:8.23(1H,d,J=8.7Hz),8.18-8.17(3H,m),7.89(1H,d,J=8.7Hz),7.84(1H,dd,J=8.0,1.1Hz),7.74(1H,ddd,J=8.2,6.9,12.8Hz),7.56-7.52(3H,m),4.80(2H,d,J=5.9Hz),1.81(1H,t,J=5.9Hz).
MS(ESI)[M+H]+:236.
1H-NMR(CDCl3)δ:7.40(2H,d,J=8.2Hz),7.36(2H,d,J=8.2Hz),7.02-7.00(2H,m),6.66(1H,ddd,J=7.2,7.2,1.4Hz),6.55(1H,d,J=7.7Hz),4.70(2H,d,J=5.9Hz),4.45(1H,dd,J=9.3,3.4Hz),4.03(1H,brs),2.92(1H,ddd,J=16.3,10.4,5.4Hz),2.73(1H,ddd,J=16.3,4.5,4.5Hz),2.15-2.08(1H,m),2.03-1.93(1H,m),1.64(1H,t,J=5.9Hz).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:9.28(1H,s),9.25(1H,s),8.23(1H,d,J=8.7Hz),8.13(1H,d,J=8.2Hz),7.83(1H,d,J=8.2Hz),7.78-7.73(2H,m),7.55(1H,t,J=7.5Hz).
MS(ESI)[M+H]+:213.
1H-NMR(CDCl3)δ:8.51(1H,s),8.50(1H,s),7.04-6.99(2H,m),6.68(1H,t,J=7.1Hz),6.55(1H,d,J=7.8Hz),4.71(1H,dd,J=8.7,2.7Hz),4.09(1H,brs),2.95-2.87(1H,m),2.75-2.70(1H,m),2.22-2.15(1H,m),2.07-2.01(1H,m).
MS(ESI)[M+H]+:217.
1H-NMR(CDCl3)δ:8.59(1H,d,J=9.1Hz),8.19-8.14(3H,m),7.94(1H,d,J=8.7Hz),7.69(1H,dd,J=8.5,7.1Hz),7.57-7.52(3H,m),7.50-7.46(1H,m),5.17(2H,d,J=5.9Hz),5.12(1H,brs).
MS(ESI)[M+H]+:236.
1H-NMR(CDCl3)δ:7.39-7.36(5H,m),7.03(1H,dd,J=7.8,7.8Hz),6.74(1H,d,J=7.3Hz),6.54(1H,d,J=7.8Hz),5.09(1H,brs),4.65(2H,d,J=5.9Hz),4.42(1H,dd,J=9.8,3.0Hz),4.10(1H,brs),2.93-2.80(2H,m),2.17-2.15(1H,m),2.02-1.99(1H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.41-7.28(5H,m),7.00-6.99(1H,m),6.64(1H,d,J=7.8Hz),6.57(1H,s),4.58(2H,d,J=5.9Hz),4.45(1H,dd,J=9.1,3.2Hz),4.10(1H,brs),2.90(1H,ddd,J=16.0,10.5,5.5Hz),2.73(1H,ddd,J=16.5,5.0,5.0Hz),2.16-2.09(1H,m),2.05-1.93(1H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:8.59-8.58(1H,m),7.68(1H,ddd,J=7.8,7.8,1.4Hz),7.43(1H,d,J=8.2Hz),7.20(1H,dd,J=7.5,4.8Hz),7.05-6.99(2H,m),6.67(1H,d,J=7.3Hz),6.64(1H,d,J=7.8Hz),4.60(1H,dd,J=8.5,3.4Hz),4.52(1H,brs),2.92(1H,ddd,J=15.6,10.1,5.0Hz),2.70(1H,ddd,J=16.0,4.6,4.6Hz),2.31-2.24(1H,m),2.05-2.02(1H,m).
MS(ESI)[M+H]+:211.
1H-NMR(CDCl3)δ:8.11(1H,d,J=8.7Hz),8.00(1H,d,J=9.1Hz),7.95(1H,d,J=2.3Hz),7.85(1H,dd,J=8.9,2.1Hz),7.39(1H,d,J=8.2Hz),1.88(1H,s),1.68(6H,s).
MS(ESI)[M+H]+:222.
1H-NMR(CDCl3)δ:8.22(1H,d,J=8.6Hz),8.16-8.14(3H,m),7.94(1H,d,J=1.8Hz),7.88(1H,d,J=8.6Hz),7.85(1H,dd,J=9.1,2.3Hz),7.53-7.47(3H,m),1.90(1H,s),1.71(6H,s).
MS(ESI)[M+H]+:264.
1H-NMR(CDCl3)δ:7.40-7.33(4H,m),7.30-7.26(1H,m),6.90-6.88(2H,m),6.50(1H,d,J=7.7Hz),4.40(1H,dd,J=9.5,3.2Hz),3.93(1H,brs),2.94(1H,ddd,J=16.8,11.3,5.9Hz),2.84-2.70(2H,m),2.12-2.09(1H,m),2.01-1.97(1H,m),1.22(3H,s),1.21(3H,s).
MS(ESI)[M+H]+:252.
1H-NMR(CDCl3)δ:8.13-8.11(2H,m),8.08(2H,dd,J=8.8,4.3Hz),7.83(1H,d,J=8.6Hz),7.53-7.51(2H,m),7.46-7.42(1H,m),7.33(1H,dd,J=9.1,2.7Hz),7.12(1H,d,J=2.7Hz),5.32(1H,s).
MS(ESI)[M+H]+:222.
1H-NMR(CDCl3)δ:7.41-7.24(5H,m),6.57-6.38(3H,m),4.36(1H,dd,J=9.5,2.7Hz),4.20(1H,brs),2.91(1H,ddd,J=16.8,10.9,5.9Hz),2.70(1H,ddd,J=16.8,4.5,4.5Hz),2.11-2.09(1H,m),2.00-1.96(1H,m),1.79(1H,brs).
MS(ESI)[M+H]+:226.
1H-NMR(CDCl3)δ:8.61(1H,d,J=1.8Hz),8.33-8.31(2H,m),8.21-8.19(3H,m),7.96(1H,d,J=8.6Hz),7.52-7.47(3H,m),4.01(3H,s).
MS(ESI)[M+H]+:264.
1H-NMR(CDCl3)δ:7.71-7.70(2H,m),7.39-7.28(5H,m),6.50(1H,d,J=8.6Hz),4.55-4.50(2H,m),3.85(3H,s),2.89(1H,ddd,J=16.3,10.9,5.4Hz),2.75(1H,ddd,J=16.3,5.0,5.0Hz),2.16-2.13(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:268.
1H-NMR(CDCl3)δ:7.38-7.31(5H,m),7.14-7.13(2H,m),6.53(1H,d,J=8.2Hz),4.43(1H,dd,J=9.5,3.2Hz),4.05(1H,brs),2.94(1H,ddd,J=16.8,10.9,6.3Hz),2.75(1H,ddd,J=16.8,5.0,5.0Hz),2.18-2.10(1H,m),2.01-1.98(1H,m),1.63(1H,s),1.57(6H,s).
MS(ESI)[M+H]+:268.
1H-NMR(CDCl3)δ:7.40-7.33(4H,m),7.31-7.25(1H,m),7.05-7.00(2H,m),6.54(1H,dd,J=6.3,2.3Hz),4.54(2H,d,J=4.5Hz),4.45(1H,dd,J=9.1,3.2Hz),4.12(1H,q,J=7.1Hz),2.95-2.87(1H,m),2.73(1H,td,J=10.6,5.6Hz),2.16-2.10(1H,m),2.05-1.94(1H,m),1.44(1H,t,J=5.4 Hz).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.40-7.33(4H,m),7.30-7.27(1H,m),6.95-6.93(2H,m),6.50(1H,d,J=8.7Hz),4.42(1H,dd,J=9.4,3.0Hz),4.03(1H,brs),3.71(4H,t,J=4.6Hz),3.37(2H,s),2.96-2.88(1H,m),2.76-2.70(1H,m),2.44(4H,brs),2.15-2.08(1H,m),2.03-1.93(1H,m).
MS(ESI)[M-morpholine]+:222.
1H-NMR(CDCl3)δ:7.37-7.27(5H,m),6.96-6.92(2H,m),6.52(1H,d,J=7.8Hz),4.45(1H,ddd,J=9.1,3.2,1.4Hz),4.12(1H,brs),3.62(2H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.5,4.8Hz),2.15-2.10(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:249.
1H-NMR(CDCl3)δ:7.38-7.28(5H,m),6.91-6.89(2H,m),6.53(1H,d,J=8.7Hz),5.48(1H,brs),5.41(1H,brs),4.44(1H,dd,J=9.4,3.0Hz),4.09(1H,brs),3.46(2H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.5,4.8Hz),2.14-2.10(1H,m),2.02-1.95(1H,m).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:7.39-7.29(5H,m),6.94-6.91(2H,m),6.51(1H,d,J=8.7Hz),4.43(1H,dd,J=9.1,3.2Hz),3.52(2H,s),2.95-2.87(1H,m),2.72(1H,dt,J=16.3,4.7Hz),2.14-2.07(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:268.
1H-NMR(CDCl3)δ:7.40-7.27(5H,m),6.87-6.84(2H,m),6.51(1H,dd,J=6.2,2.5Hz),5.29(1H,brs),4.44(1H,dd,J=9.1,3.2Hz),4.05(1H,brs),3.35(2H,s),2.95-2.87(1H,m),2.72(1H,dt,J=16.5,4.8Hz),2.16-2.09(1H,m),2.05-1.94(1H,m),1.29(9H,s).
MS(ESI)[M+H]+:323.
1H-NMR(CDCl3)δ:7.38-7.28(5H,m),6.90-6.87(2H,m),6.48(1H,d,J=8.2Hz),4.58(1H,brs),4.41(1H,dd,J=9.4,3.0Hz),4.30(1H,t,J=8.2Hz),4.21(1H,dd,J=10.4,7.1Hz),4.02(1H,brs),3.97(1H,dd,J=9.4,3.9Hz),3.83(1H,dd,J=10.4,4.1Hz),3.33(2H,s),2.92-2.86(2H,m),2.70(1H,dt,J=16.3,4.7Hz),2.13-2.07(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:323.
1H-NMR(DMSO-d6)δ:8.67(2H,dd,J=10.4,5.0Hz),8.32(2H,td,J=4.2,2.1Hz),8.27-8.22(2H,m),8.13(1H,d,J=9.1Hz),7.61-7.52(3H,m).
MS(ESI)[M+H]+:250.
1H-NMR(CDCl3)δ:8.16-8.07(4H,m),7.84(1H,d,J=8.6Hz),7.54-7.35(4H,m),7.27-7.24(1H,m),6.72(1H,s),1.57(9H,s).
MS(ESI)[M+H]+:321.
1H-NMR(CDCl3)δ:7.39-7.32(4H,m),7.30-7.20(1H,m),7.10(1H,brs),6.90(1H,dd,J=8.4,2.5Hz),6.48(1H,d,J=8.6Hz),4.40(1H,dd,J=9.1,3.2Hz),3.95(1H,s),2.94-2.86(1H,m),2.71(1H,dt,J=16.5,4.8Hz),2.12-2.07(1H,m),1.97(1H,ddt,J=16.8,10.6,3.6Hz),1.50(9H,s).
MS(ESI)[M+H]+:325.
1H-NMR(DMSO-d6)δ:9.69(2H,brs),7.38-7.33(4H,m),7.28(1H,dq,J=11.7,3.1Hz),6.89(2H,dt,J=15.1,5.3Hz),6.66(1H,d,J=8.2Hz),4.44(1H,dd,J=7.9,3.4Hz),2.82-2.75(1H,m),2.60-2.50(1H,m),1.99(1H,dd,J=9.7,7.0Hz),1.85(1H,dt,J=14.6,5.3Hz).
MS(ESI)[M+H]+:225.
1H-NMR(CDCl3)δ:8.23(1H,d,J=8.5Hz),8.14(1H,dd,J=8.4,0.9Hz),8.06(1H,s),7.86(1H,s),7.82(1H,dd,J=8.4,1.4Hz),7.79(1H,d,J=8.5Hz),7.77-7.73(1H,m),7.58-7.54(1H,m).
MS(ESI)[M+H]+:197.
1H-NMR(CDCl3)δ:7.83(1H,s),7.04-6.96(3H,m),6.68(1H,t,J=7.1Hz),6.57(1H,d,J=7.8Hz),4.63(1H,brs),4.11(1H,brs),2.90-2.84(1H,m),2.77-2.73(1H,m),2.27-2.12(2H,m).
MS(ESI)[M+H]+:201.
1H-NMR(CDCl3)δ:8.50(1H,d,J=9.1Hz),8.18-8.17(2H,m),7.98(1H,d,J=8.6Hz),7.95(1H,d,J=9.1Hz),7.66(1H,ddd,J=8.2,8.2,5.9Hz),7.57-7.47(3H,m),7.22-7.18(1H,m).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.34-7.32(5H,m),6.99-6.92(1H,m),6.38(1H,dd,J=8.6,8.6Hz),6.32(1H,d,J=8.2Hz),4.40(1H,dd,J=9.5,2.7Hz),4.17(1H,brs),2.86-2.72(2H,m),2.17-2.11(1H,m),2.00-1.90(1H,m).
MS(ESI)[M+H]+:228.
1H-NMR(CDCl3)δ:8.64(1H,d,J=9.1Hz),8.19-8.17(2H,m),8.10(1H,dd,J=8.2,0.9Hz),7.99(1H,d,J=8.6Hz),7.67-7.47(5H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.38-7.27(5H,m),6.93(1H,dd,J=8.2,8.2Hz),6.72(1H,dd,J=7.9,1.1Hz),6.45(1H,dd,J=7.9,1.1Hz),4.39(1H,dd,J=9.1,2.7Hz),4.15(1H,brs),2.93-2.78(2H,m),2.20-2.14(1H,m),2.03-1.94(1H,m).
MS(ESI)[M+H]+:244.
1H-NMR(CDCl3)δ:8.22(1H,d,J=8.7Hz),8.17-8.14(2H,m),7.86(1H,d,J=8.7Hz),7.83-7.81(1H,m),7.60-7.43(4H,m),7.35-7.30(1H,m).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.38-7.27(5H,m),6.91(1H,dd,J=6.8,6.8Hz),6.33(1H,ddd,J=8.6,8.6,2.7Hz),6.24(1H,dd,J=10.6,2.5Hz),4.44(1H,ddd,J=9.1,3.2,1.4Hz),4.13(1H,brs),2.84(1H,ddd,J=15.9,10.4,5.0Hz),2.68(1H,ddd,J=16.3,5.0,5.0Hz),2.15-2.07(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:228.
1H-NMR(CDCl3)δ:8.21(1H,d,J=8.7Hz),8.17-8.16(3H,m),7.89(1H,d,J=8.7Hz),7.77(1H,d,J=8.7Hz),7.59-7.45(5H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.35-7.31(5H,m),6.89(1H,d,J=8.2Hz),6.59(1H,dd,J=8.2,1.8Hz),6.52(1H,d,J=2.3Hz),4.44(1H,dd,J=9.1,2.7Hz),4.11(1H,brs),2.84(1H,ddd,J=15.9,10.4,5.4Hz),2.68(1H,ddd,J=16.3,5.0,5.0Hz),2.15-2.08(1H,m),1.97-1.94(1H,m).
MS(ESI)[M+H]+:244.
1H-NMR(CDCl3)δ:7.22-7.20(2H,m),6.58(1H,d,J=8.2Hz),4.63(2H,d,J=4.1Hz),4.19(2H,s),1.60(1H,brs).
MS(ESI)[M+H]+:202.
1H-NMR(CDCl3)δ:8.17-8.13(3H,m),8.04(1H,d,J=9.1Hz),8.00(1H,d,J=2.3Hz),7.91(1H,d,J=8.7Hz),7.79(1H,dd,J=9.1,2.3Hz),7.56-7.46(3H,m).
MS(ESI)[M+H]+:284.
1H-NMR(CDCl3)δ:7.36-7.27(5H,m),7.11-7.07(2H,m),6.42(1H,d,J=8.4Hz),4.44-4.41(1H,m),4.07(1H,brs),2.91-2.83(1H,m),2.73-2.66(1H,m),2.14-2.07(1H,m),2.00-1.91(1H,m).
MS(ESI)[M+H]+:288.
1H-NMR(CDCl3)δ:8.25-8.23(2H,m),8.18-8.16(2H,m),8.02-8.01(2H,m),7.92(1H,d,J=8.7Hz),7.55-7.54(2H,m),7.48(1H,t,J=7.1Hz),5.04(2H,d,J=6.9Hz),5.01(2H,d,J=6.9Hz).
MS(ESI)[M+H]+:278.
1H-NMR(CDCl3)δ:7.39-7.27(5H,m),7.18-7.16(2H,m),6.58(1H,d,J=8.9Hz),4.94(2H,d,J=7.1Hz),4.87(2H,d,J=7.1Hz),4.46(1H,dd,J=9.1,3.2Hz),4.16(1H,brs),2.97-2.89(1H,m),2.75(1H,dt,J=16.3,4.9Hz),2.43(1H,brs),2.18-2.11(1H,m),2.04-1.95(1H,m).
MS(ESI)[M+H]+:282.
1H-NMR(CDCl3)δ:8.12-8.10(2H,m),8.03(2H,dd,J=8.8,8.0Hz),7.78(1H,d,J=8.6Hz),7.54-7.48(3H,m),7.44-7.40(1H,m),7.04(1H,d,J=2.7Hz),3.31(4H,t,J=7.2Hz),1.80-1.75(4H,m),1.67-1.61(2H,m).
MS(ESI)[M+H]+:289.
1H-NMR(CDCl3)δ:7.41-7.39(2H,m),7.36-7.32(2H,m),7.30-7.26(1H,m),6.73-6.70(2H,m),6.50(1H,d,J=8.2Hz),4.37(1H,dd,J=9.5,3.2Hz),2.99-2.89(5H,m),2.72(1H,ddd,J=12.0,4.8,4.4Hz),2.13-1.93(2H,m),1.75-1.69(4H,m),1.56-1.50(2H,m).
MS(ESI)[M+H]+:293.
1H-NMR(CDCl3)δ:8.12-8.09(2H,m),8.01(1H,d,J=8.6Hz),7.93(1H,d,J=9.1Hz),7.82-7.77(3H,m),7.53-7.41(6H,m),7.25-7.21(3H,m),7.19-7.14(3H,m),7.11(1H,d,J=2.3Hz).
MS(ESI)[M+H]+:365.
1H-NMR(CDCl3)δ:8.12-8.09(2H,m),7.98(2H,dd,J=8.6,2.7Hz),7.77(1H,d,J=8.8Hz),7.52-7.48(2H,m),7.44-7.40(1H,m),7.18(1H,dd,J=8.8,2.5Hz),6.93(1H,d,J=2.7Hz),3.96(2H,brs).
MS(ESI)[M+H]+:221.
1H-NMR(CDCl3)δ:8.37(1H,d,J=1.8Hz),8.20(1H,d,J=8.6Hz),8.14-8.12(3H,m),7.87(1H,d,J=8.6Hz),7.55-7.52(3H,m),7.47-7.45(1H,m),7.36(1H,s),2.27(3H,s).
MS(ESI)[M+H]+:263.
1H-NMR(CDCl3)δ:7.39-7.28(5H,m),7.16(1H,d,J=2.7Hz),7.02(1H,dd,J=8.7,2.3Hz),6.93(1H,brs),6.50(1H,d,J=8.7Hz),4.42(1H,dd,J=9.1,3.2Hz),4.02(1H,brs),2.91(1H,ddd,J=16.0,10.5,5.5Hz),2.72(1H,ddd,J=16.5,4.6,4.6Hz),2.14(3H,s),2.12-2.08(1H,m),2.02-1.92(1H,m).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:8.44(1H,d,J=2.3Hz),8.18(1H,d,J=8.7Hz),8.15-8.14(2H,m),8.11(1H,d,J=9.1Hz),7.87(1H,d,J=8.2Hz),7.57-7.50(4H,m),7.46-7.44(1H,m),1.38(9H,s).
MS(ESI)[M+H]+:305.
1H-NMR(CDCl3)δ:7.39-7.32(4H,m),7.30-7.27(1H,m),7.26-7.24(1H,m),7.12(1H,brs),7.04(1H,dd,J=8.5,2.5Hz),6.50(1H,d,J=8.7Hz),4.41(1H,dd,J=9.1,3.2Hz),4.00(1H,brs),2.90(1H,ddd,J=16.0,10.1,5.5Hz),2.71(1H,ddd,J=16.5,5.0,5.0Hz),2.14-2.08(1H,m),2.02-1.92(1H,m),1.30(9H,s).
MS(ESI)[M+H]+:309.
1H-NMR(CDCl3)δ:8.20-8.14(4H,m),7.92(1H,d,J=8.6Hz),7.73(1H,d,J=2.3Hz),7.56-7.46(4H,m),6.59(1H,brs),3.10(3H,s).
MS(ESI)[M+H]+:299.
1H-NMR(CDCl3)δ:7.38-7.27(5H,m),6.93-6.90(2H,m),6.51(1H,d,J=8.6Hz),6.07-6.07(1H,brm),4.46-4.43(1H,m),4.13(1H,brs),2.96-2.86(4H,m),2.76-2.69(1H,m),2.16-2.09(1H,m),2.02-1.92(1H,m).
MS(ESI)[M+H]+:303.
1H-NMR(CDCl3)δ:8.13-8.10(4H,m),8.04(1H,d,J=9.1Hz),7.81(1H,d,J=8.6Hz),7.51(2H,dd,J=8.0,10.8Hz),7.46-7.39(2H,m),6.94(1H,brs),4.98(1H,brs),1.41(9H,s).
MS(ESI)[M+H]+:320.
1H-NMR(CDCl3)δ:7.40-7.27(5H,m),6.88(1H,d,J=1.8Hz),6.83(1H,dd,J=8.8,2.0Hz),6.50(1H,d,J=8.6Hz),5.77(1H,brs),4.54(1H,brs),4.43(1H,dd,J=9.5,3.2Hz),4.07(1H,brs),2.94-2.86(1H,m),2.75-2.68(1H,m),2.15-2.09(1H,m),2.02-1.93(1H,m),1.34(9H,s).
MS(ESI)[M+H]+:324.
1H-NMR(DMSO-d6)δ:8.92(1H,brs),8.30(1H,d,J=8.7Hz),8.23(2H,d,J=6.9Hz),8.13(1H,d,J=2.3Hz),8.04(1H,d,J=8.7Hz),7.94(1H,d,J=9.1Hz),7.67(1H,dd,J=9.1,2.3Hz),7.54(2H,dd,J=7.2,7.2Hz),7.49-7.45(1H,m),6.02(2H,brs).
MS(ESI)[M+H]+:264.
1H-NMR(CDCl3)δ:7.37-7.28(5H,m),6.91-6.88(2H,m),6.52(1H,d,J=8.0Hz),6.14(1H,brs),4.64(2H,brs),4.45(1H,dd,J=9.1,3.6Hz),2.93-2.85(1H,m),2.75-2.68(1H,m),2.16-2.09(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:268.
1H-NMR(CDCl3)δ:8.41(1H,d,J=2.4Hz),8.20-8.09(4H,m),7.87(1H,d,J=8.6Hz),7.55-7.51(3H,m),7.48―7.44(1H,m),2.31(2H,s),1.16(9H,s).
MS(ESI)[M+H]+:319.
1H-NMR(CDCl3)δ:7.39-7.27(5H,m),7.22(1H,d,J=2.3Hz),7.02(1H,dd,J=8.8,2.8Hz),6.85(1H,brs),6.49(1H,d,J=8.2Hz),4.41(1H,dd,J=9.1,3.2Hz),2.94-2.86(1H,m),2.75-2.68(1H,m),2.18(2H,s),2.14-2.97(1H,m),2.01-1.92(1H,m),1.10(9H,s).
MS(ESI)[M+H]+:323.
1H-NMR(CDCl3)δ:8.31-8.28(2H,m),8.24(1H,d,J=8.6Hz),7.99(1H,d,J=8.6Hz),7.85(1H,dd,J=7.5,1.1Hz),7.76(1H,dd,J=8.2,1.4Hz),7.57-7.42(4H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.41-7.29(4H,m),7.12(1H,d,J=7.3Hz),6.91(1H,d,J=7.3Hz),6.56(1H,dd,J=8.0,7.6Hz),4.67(1H,brs),4.53(1H,ddd,J=9.2,3.6,1.2),2.91(1H,ddd,J=16.0,10.4,5.2Hz),2.74(1H,ddd,J=16.8,5.2,4.7Hz),2.16-2.12(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:244.
1H-NMR(CDCl3)δ:8.25(1H,dd,J=8.7,1.8Hz),8.23-8.20(2H,m),7.96(1H,d,J=8.7Hz),7.62(1H,dd,J=7.1,1.6Hz),7.56-7.39(5H,m).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.41-7.28(5H,m),6.84(1H,dd,J=11.4,8.2Hz),6.79(1H,d,J=7.3Hz),6.55(1H,ddd,J=8.0,5.2,5.2Hz),4.46(1H,ddd,J=9.2,3.2,1.2Hz),4.26(1H,brs),2.93(1H,ddd,J=16.0,10.8,5.6Hz),2.76(1H,ddd,J=16.4,5.2,4.4Hz),2.16-2.13(1H,m),2.05-1.96(1H,m).
MS(ESI)[M+H]+:228.
1H-NMR(CDCl3)δ:8.23-8.21(2H,m),8.18-8.15(2H,m),7.95(1H,d,J=8.6Hz),7.66(1H,s),7.60-7.47(4H,m).
MS(ESI)[M+H]+:290.
1H-NMR(CDCl3)δ:7.38-7.28(5H,m),6.89-6.86(2H,m),6.49-6.48(1H,m),4.44(1H,dd,J=9.4,3.4Hz),4.11(1H,brs),2.91(1H,ddd,J=16.5,10.5,5.9Hz),2.73(1H,ddd,J=16.5,4.6,5.0Hz),2.16-2.09(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:294.
1H-NMR(CDCl3)δ:8.20-8.13(3H,m),7.91-7.89(2H,m),7.57-7.44(5H,m).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.40-7.32(5H,m),6.74-6.71(2H,m),6.47(1H,dd,J=9.1,5.0Hz),4.39(1H,dd,J=9.1,3.2Hz),3.94(1H,brs),2.92(1H,ddd,J=16.5,10.5,5.5Hz),2.72(1H,ddd,J=16.9,4.6,4.6Hz),2.14-2.08(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:228.
1H-NMR(CDCl3)δ:8.17-8.14(3H,m),8.11(1H,d,J=9.1Hz),7.91(1H,d,J=8.2Hz),7.82(1H,d,J=2.3Hz),7.67(1H,dd,J=8.9,2.5Hz),7.56-7.46(3H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.35-7.31(5H,m),6.96-6.95(2H,m),6.46(1H,d,J=8.2Hz),4.43(1H,dd,J=9.1,3.2Hz),4.06(1H,brs),2.88(1H,ddd,J=15.9,10.4,5.4Hz),2.70(1H,ddd,J=16.3,5.0,5.0Hz),2.14-2.08(1H,m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:244.
1H-NMR(CDCl3)δ:8.32(1H,d,J=8.7Hz),8.28(1H,d,J=8.7Hz),8.19(2H,d,J=7.8Hz),8.15(1H,s),7.99(1H,d,J=8.7Hz),7.90(1H,dd,J=8.9,1.6Hz),7.56-7.51(3H,m).
MS(ESI)[M+H]+:274.
1H-NMR(CDCl3)δ:7.37-7.29(5H,m),7.25-7.23(2H,m),6.54(1H,d,J=9.1Hz),4.51(1H,dd,J=8.7,2.3Hz),4.38(1H,brs),2.90(1H,ddd,J=15.6,10.1,5.0Hz),2.74(1H,ddd,J=16.5,5.0,5.0Hz),2.18-2.12(1H,m),2.06-1.93(1H,m).
MS(ESI)[M+H]+:278.
1H-NMR(CDCl3)δ:8.16-8.14(3H,m),7.92(1H,dd,J=11.6,7.6Hz),7.89(1H,d,J=8.4Hz),7.56-7.46(4H,m).
MS(ESI)[M+H]+:242.
1H-NMR(CDCl3)δ:7.38-7.28(5H,m),6.78(1H,dd,J=10.6,8.8Hz),6.31(1H,dd,J=12.0,7.0Hz),4.39(1H,ddd,J=9.1,3.2,0.9Hz),3.97(1H,brs),2.83(1H,ddd,J=16.3,10.9,5.4Hz),2.65(1H,ddd,J=16.3,5.0,5.0Hz),2.13-2.07(1H,m),2.00-1.90(1H,m).
MS(ESI)[M+H]+:246.
1H-NMR(CDCl3)δ:8.21-8.17(3H,m),7.98(1H,d,J=8.7Hz),7.93-7.88(1H,m),7.56-7.44(4H,m).
MS(ESI)[M+H]+:242.
1H-NMR(CDCl3)δ:7.41-7.30(5H,m),6.65(1H,ddd,J=11.3,8.6,3.2Hz),6.57(1H,d,J=9.1Hz),4.41(1H,dd,J=9.5,3.2Hz),4.07(1H,brs),2.92(1H,ddd,J=16.3,10.4,5.9Hz),2.74(1H,ddd,J=17.2,5.0,5.0Hz),2.16-2.13(1H,m),2.05-1.95(1H,m).
MS(ESI)[M+H]+:246.
1H-NMR(DMSO-d6)δ:9.14(1H,d,J=2.7Hz),8.90(1H,d,J=8.7Hz),8.56-8.51(3H,m),8.49(1H,d,J=8.7Hz),8.31(1H,d,J=9.1Hz),8.09(2H,dt,J=8.2,1.8Hz).
MS(ESI)[M+H]+:276.
1H-NMR(CDCl3)δ:8.24(2H,dt,J=8.4,1.8Hz),8.01(1H,d,J=8.9Hz),7.97(1H,d,J=8.9Hz),7.80-7.76(3H,m),7.20(1H,dd,J=8.9,2.6Hz),6.93(1H,d,J=2.6Hz),4.05(2H,brs).
MS(ESI)[M+H]+:246.
1H-NMR(CDCl3)δ:8.23(2H,dt,J=8.5,1.7Hz),8.15-8.12(2H,m),8.02(1H,d,J=9.1Hz),7.80-7.77(3H,m),7.42(1H,dd,J=9.1,2.7Hz),6.72(1H,brs),4.84(1H,brs),1.43(9H,s).
MS(ESI)[M+H]+:345.
1H-NMR(DMSO-d6)δ:8.71(1H,brs),8.32-8.30(3H,m),8.16(1H,d,J=2.3Hz),8.11(1H,d,J=9.1Hz),8.10(1H,brs),8.02(2H,d,J=8.7Hz),7.95(1H,d,J=9.1Hz),7.59(1H,dd,J=9.1,2.3Hz),7.44(1H,brs),6.21(1H,brs),1.33(9H,s).
MS(ESI)[M+H]+:363.
1H-NMR(CDCl3)δ:7.92(2H,dt,J=8.7,1.8Hz),7.60(2H,dt,J=8.7,1.8Hz),7.06-7.00(2H,m),6.69(1H,td,J=7.3,0.9Hz),6.59(1H,dd,J=7.8,0.9Hz),4.57(1H,dd,J=8.7,3.2Hz),4.09(1H,brs),3.06(3H,s),2.95-2.87(1H,m),2.70(1H,td,J=10.9,5.5Hz),2.19-2.12(1H,m),2.01-1.97(1H,m).
MS(ESI)[M+H]+:288.
1H-NMR(CDCl3)δ:7.44-7.42(2H,m),7.39-7.35(2H,m),7.33-7.29(1H,m),7.08-7.02(2H,m),6.70(1H,td,J=7.5,1.1Hz),6.57(1H,dd,J=8.2,1.1Hz),4.42(1H,dd,J=10.5,3.2Hz),4.11(1H,dd,J=11.2,6.2Hz),4.05(1H,brs),3.71(3H,s),2.40-2.31(2H,m).
MS(ESI)[M+H]+:268.
1H-NMR(CDCl3)δ:7.45-7.42(2H,m),7.39-7.35(2H,m),7.33-7.28(1H,m),7.23(1H,d,J=7.4Hz),7.05(1H,t,J=7.4Hz),6.73(1H,td,J=7.4,1.2Hz),6.58(1H,dd,J=8.0,1.2Hz),4.44(1H,dd,J=11.0,2.7Hz),4.01-3.93(3H,m),3.28-3.25(1H,m),2.26-2.23(1H,m),2.04(1H,dt,J=12.8,11.0Hz),1.41(1H,dd,J=7.3,4.6Hz).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:8.18-8.15(3H,m),8.01(1H,d,J=8.2Hz),7.74-7.71(2H,m),7.56-7.53(3H,m),7.47-7.45(1H,m),2.78(3H,s).
MS(ESI)[M+H]+:220.
1H-NMR(CDCl3)δ:7.43-7.42(2H,m),7.38-7.34(2H,m),7.30-7.28(1H,m),7.19(1H,d,J=7.7Hz),7.01(1H,ddd,J=7.2,7.2,0.9Hz),6.71(1H,ddd,J=7.2,7.2,0.9Hz),6.53(1H,dd,J=8.2,0.9Hz),4.47(1H,dd,J=11.3,2.7Hz),3.97(1H,brs),3.13(1H,ddd,J=6.3,12.2,6.3Hz),2.11(1H,ddd,J=12.7,5.0,2.7Hz),1.76(1H,ddd,J=11.8,11.8,11.8Hz),1.35(3H,d,J=6.8Hz).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.80(1H,d,J=8.2Hz),7.28-7.16(6H,m),7.08(1H,d,J=5.9Hz),7.01(1H,ddd,J=7.3,7.3,1.4Hz),5.35(1H,dd,J=8.5,7.1Hz),2.70-2.58(2H,m),2.45-2.41(1H,m),1.84-1.81(1H,m),1.34(9H,s).
1H-NMR(CDCl3)δ:7.67(1H,d,J=8.2Hz),7.36-7.29(4H,m),7.23-7.18(2H,m),7.07(1H,d,J=7.3Hz),6.97(1H,dd,J=7.8,7.8Hz),2.71(1H,ddd,J=14.2,9.1,4.6Hz),2.48(1H,ddd,J=14.6,5.9,2.7Hz),2.01(3H,s),1.95-1.91(2H,m),1.17(9H,s).
1H-NMR(CDCl3)δ:7.40-7.38(2H,m),7.31-7.27(2H,m),7.21-7.19(1H,m),7.03-7.01(1H,m),6.90(1H,d,J=7.3Hz),6.61-6.59(2H,m),2.60(1H,ddd,J=16.5,4.6,4.6Hz),2.32(1H,ddd,J=16.5,11.4,5.5Hz),2.21(1H,ddd,J=12.8,5.0,5.0Hz),1.91(1H,ddd,J=12.8,11.0,5.0Hz),1.58(3H,s).
MS(ESI)[M+H]+:224.
1H-NMR(CDCl3)δ:7.87(1H,d,J=8.2Hz),7.61-7.59(2H,m),7.32-7.28(2H,m),7.23-7.21(2H,m),7.03-6.99(2H,m),3.78(3H,s),2.81(1H,ddd,J=14.5,9.9,3.1Hz),2.57-2.43(2H,m),2.18-2.11(1H,m),1.29(9H,s).
1H-NMR(CDCl3)δ:7.36-7.33(5H,m),7.25-7.23(1H,m),7.17-7.15(1H,m),7.05(1H,d,J=6.9Hz),6.99(1H,ddd,J=7.8,7.8,1.4Hz),4.42(1H,dd,J=11.4,7.3Hz),4.29(1H,dd,J=7.1,4.3Hz),4.12-4.08(2H,m),2.82-2.74(1H,m),2.40(1H,ddd,J=15.1,3.7,3.7Hz),2.00-1.96(1H,m),1.33(9H,s).
1H-NMR(CDCl3)δ:7.39-7.31(4H,m),7.25-7.20(1H,m),7.07-7.01(1H,m),6.89(1H,d,J=7.3Hz),6.70(1H,dd,J=8.2,0.9Hz),6.61(1H,ddd,J=7.3,7.3,1.4Hz),4.70(1H,brs),4.42(1H,s),3.95(1H,dd,J=10.7,3.0Hz),3.77(1H,t,J=10.5Hz),2.58(1H,ddd,J=16.0,4.6,3.2Hz),2.31(1H,ddd,J=16.5,12.8,5.0Hz),2.15(1H,ddd,J=12.8,5.0,2.7Hz),2.01(1H,ddd,J=12.8,12.8,5.0Hz).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.51-7.49(2H,m),7.36-7.27(3H,m),7.06-7.04(1H,m),6.93(1H,dd,J=7.5,1.1Hz),6.71(1H,dd,J=7.8,0.9Hz),6.65(1H,ddd,J=7.3,7.3,0.9Hz),3.75(3H,s),2.72(1H,ddd,J=16.0,5.9,5.9Hz),2.52-2.36(3H,m).
MS(ESI)[M+H]+:268.
1H-NMR(CDCl3)δ:7.55(1H,d,J=8.2Hz),7.36-7.27(4H,m),7.25-7.23(1H,m),7.16(1H,ddd,J=8.2,8.2,1.8Hz),7.04(1H,d,J=6.9Hz),6.95(1H,ddd,J=7.3,7.3,0.9Hz),3.83(1H,d,J=12.3Hz),3.54(3H,s),3.20(1H,d,J=12.3Hz),2.77-2.73(1H,m),2.58(1H,ddd,J=13.3,13.3,2.7Hz),2.29(1H,ddd,J=14.6,2.7,2.7Hz),1.97(1H,ddd,J=13.3,3.2,3.2Hz),1.19(9H,s).
1H-NMR(CDCl3)δ:7.37-7.34(2H,m),7.30-7.28(2H,m),7.20-7.19(1H,m),7.05-7.03(1H,m),6.88(1H,d,J=7.3Hz),6.70(1H,dd,J=8.2,0.9Hz),6.60(1H,ddd,J=7.3,7.3,0.9Hz),5.58(1H,brs),3.49(3H,s),3.09(1H,d,J=15.6Hz),2.86(1H,d,J=15.6Hz),2.57(1H,ddd,J=16.0,4.1,4.1Hz),2.31(1H,ddd,J=16.0,11.4,5.0Hz),2.22-2.17(1H,m),2.02(1H,ddd,J=12.3,11.4,4.6Hz).
MS(ESI)[M+H]+:282.
1H-NMR(DMSO-d6)δ:10.63(1H,s),8.39(1H,d,J=8.2Hz),8.19-8.14(3H,m),8.11(1H,d,J=2.3Hz),8.03(1H,d,J=9.1Hz),7.76(1H,dd,J=9.1,2.3Hz),6.97(1H,d,J=8.2Hz),3.62(2H,s).
MS(ESI)[M+H]+:295.
1H-NMR(DMSO-d6)δ:10.35(1H,s),7.18(1H,s),7.13(1H,d,J=7.8Hz),6.90-6.89(2H,m),6.77(1H,d,J=7.8Hz),6.57(1H,dd,J=6.6,2.5Hz),6.18(1H,s),4.35-4.33(1H,m),3.45(2H,s),2.79-2.58(1H,m),2.58-2.52(1H,m),1.95-1.91(1H,m),1.82-1.73(1H,m).
MS(ESI)[M+H]+:299.
1H-NMR(CDCl3)δ:8.27(2H,s),8.07(1H,d,J=8.7Hz),7.99(1H,d,J=9.1Hz),7.77(1H,d,J=2.7Hz),7.67(1H,d,J=8.7Hz),7.63(1H,dd,J=9.1,2.3Hz).
MS(ESI)[M+H]+:230.
1H-NMR(CDCl3)δ:7.57(2H,s),7.00-6.93(2H,m),6.44(1H,d,J=8.2Hz),4.48(1H,dd,J=9.4,3.0Hz),3.98(1H,brs),2.92-2.84(1H,m),2.73(1H,dt,J=16.8,4.9Hz),2.16-2.09(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:234.
1H-NMR(CDCl3)δ:8.26(1H,s),8.26(1H,s),8.06(1H,d,J=8.7Hz),7.95(1H,d,J=8.7Hz),7.62-7.52(3H,m),2.53(3H,s).
MS(ESI)[M+H]+:210.
1H-NMR(CDCl3)δ:7.58(2H,s),6.82-6.81(2H,m),6.45(1H,d,J=8.7Hz),4.46(1H,dd,J=9.4,3.0Hz),2.94-2.85(1H,m),2.73(1H,dt,J=16.5,4.8Hz),2.22(3H,s),2.16-2.09(1H,m),2.03-1.93(1H,m).
MS(ESI)[M+H]+:214.
1H-NMR(CDCl3)δ:8.27(2H,s),8.10(1H,d,J=8.7Hz),8.05(1H,dd,J=9.1,5.5Hz),7.66(1H,d,J=8.7Hz),7.47(1H,td,J=8.7,3.0Hz),7.40(1H,dd,J=8.7,3.0Hz).
MS(ESI)[M+H]+:214.
1H-NMR(CDCl3)δ:7.58(2H,s),6.74-6.69(2H,m),6.47-6.43(1H,m),4.45(1H,dd,J=9.4,3.0Hz),2.95-2.87(1H,m),2.74(1H,dt,J=16.8,4.8Hz),2.16-2.10(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:218.
1H-NMR(CDCl3)δ:8.26(2H,d,J=8.2Hz),8.18(1H,d,J=8.2Hz),8.07(1H,d,J=8.2Hz),7.97(2H,d,J=8.2Hz),7.88(1H,d,J=8.2Hz),7.62(1H,d,J=2.0Hz),7.59(1H,dd,J=8.2,2.0Hz),6.15(1H,brs),5.62(1H,brs),2.57(3H,s).
MS(ESI)[M+H]+:262.
1H-NMR(CDCl3)δ:7.79(2H,d,J=8.2Hz),7.48(2H,d,J=8.2Hz),6.86-6.83(2H,m),6.51(1H,d,J=8.2Hz),6.06(1H,brs),5.56(1H,brs),4.48(1H,dd,J=8.8,3.4Hz),4.02(1H,brs),2.93-2.85(1H,m),2.68(1H,td,J=10.8,5.6Hz),2.24(3H,s),2.15-2.09(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:8.32(2H,d,J=8.6Hz),8.20(1H,d,J=8.6Hz),8.07(3H,d,J=8.6Hz),7.87(1H,d,J=8.6Hz),7.63-7.59(2H,m),4.82(2H,brs),2.57(3H,s).
MS(ESI)[M+H]+:299.
1H-NMR(CDCl3)δ:7.90(2H,d,J=8.6Hz),7.55(2H,d,J=8.6Hz),6.87-6.84(2H,m),6.51(1H,d,J=7.7Hz),4.77(2H,s),4.51(1H,dd,J=8.8,3.4Hz),3.96(1H,s),2.92-2.84(1H,m),2.66(1H,td,J=10.8,5.6Hz),2.15-2.09(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:303.
1H-NMR(CDCl3)δ:8.12(1H,d,J=8.6Hz),8.06-8.02(2H,m),7.94(1H,dd,J=8.2,1.8Hz),7.80(1H,d,J=8.6Hz),7.72(1H,brs),7.59(1H,s),7.56(1H,dd,J=8.6,1.8Hz),6.87(1H,d,J=8.2Hz),3.11(2H,t,J=7.5Hz),2.71(2H,t,J=7.5Hz),2.55(3H,s).
MS(ESI)[M+H]+:289.
1H-NMR(CDCl3)δ:7.49(1H,brs),7.22-7.17(2H,m),6.84-6.83(2H,m),6.70(1H,d,J=8.2Hz),6.50-6.47(1H,m),4.34(1H,dd,J=9.5,3.2Hz),3.88(1H,brs),2.98-2.87(3H,m),2.75-2.68(1H,m),2.63(2H,dd,J=8.4,6.6Hz),2.23(3H,s),2.11-1.93(2H,m).
MS(ESI)[M+H]+:293.
1H-NMR(CDCl3)δ:8.12(1H,dd,J=1.8,0.9Hz),8.03(1H,d,J=9.1Hz),7.97(1H,d,J=9.1Hz),7.56-7.51(4H,m),7.09(1H,dd,J=1.8,0.9Hz),2.52(3H,s).
MS(ESI)[M+H]+:210.
1H-NMR(CDCl3)δ:7.39-7.38(2H,m),6.82-6.80(2H,m),6.45(1H,d,J=8.6Hz),6.41(1H,dd,J=1.6,1.1Hz),4.37(1H,dd,J=9.1,3.2Hz),2.92-2.83(1H,m),2.72(1H,dt,J=16.5,4.8Hz),2.22(3H,s),2.13-2.06(1H,m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:214.
1H-NMR(CDCl3)δ:8.94(1H,d,J=1.8Hz),8.34(1H,s),8.27(1H,d,J=8.6Hz),8.17(1H,d,J=8.6Hz),8.04(1H,d,J=8.6Hz),7.60(1H,s),7.56(1H,dd,J=8.6,1.8Hz),2.55(3H,s).
MS(ESI)[M+H]+:227.
1H-NMR(CDCl3)δ:8.80(1H,d,J=2.0Hz),7.22(1H,dd,J=2.0,1.1Hz),6.85-6.82(2H,m),6.54(1H,d,J=7.7Hz),4.73(1H,dd,J=8.2,3.6Hz),2.91-2.83(1H,m),2.66(1H,td,J=11.1,5.4Hz),2.34-2.26(1H,m),2.23(3H,s),2.19-2.10(1H,m).
MS(ESI)[M+H]+:231.
1H-NMR(CDCl3)δ:9.05(1H,brs),8.97(1H,s),8.12(1H,d,J=8.6Hz),7.99(1H,d,J=8.6Hz),7.59-7.55(3H,m),2.55(3H,s).
MS(ESI)[M+H]+:211.
1H-NMR(CDCl3)δ:8.38(1H,s),8.30(1H,s),6.85-6.83(2H,m),6.47(1H,d,J=8.6Hz),4.47(1H,dd,J=9.1,3.2Hz),2.93-2.84(1H,m),2.71(1H,td,J=10.9,5.7Hz),2.23(3H,s),2.17-2.10(1H,m),2.03-1.93(1H,m).
MS(ESI)[M+H]+:215.
1H-NMR(DMSO-d6)δ:8.46(1H,d,J=8.7Hz),8.44-8.40(2H,m),8.15(1H,d,J=8.7Hz),7.99-7.95(2H,m),7.94-7.90(2H,m),7.48(1H,dd,J=8.2,1.8Hz),2.56(3H,s).
MS(ESI)[M+H]+:299.
1H-NMR(CDCl3)δ:7.92-7.88(2H,m),7.56-7.52(4H,m),6.90(1H,d,J=7.8Hz),6.52(1H,dd,J=7.8,0.9Hz),6.42-6.41(1H,m),4.81(2H,s),4.53(1H,dd,J=8.7,3.7Hz),4.01(1H,brs),2.90-2.81(1H,m),2.69-2.61(1H,m),2.26(3H,s),2.16-2.08(1H,m),2.00-1.90(1H,m).
MS(ESI)[M+H]+:303.
1H-NMR(DMSO-d6)δ:8.44(1H,d,J=8.5Hz),8.36-8.33(2H,m),8.15(1H,d,J=8.5Hz),8.12-8.09(1H,m),8.06-8.03(2H,m),7.93-7.90(2H,m),7.49-7.46(2H,m),2.56(3H,s).
MS(ESI)[M+H]+:263.
1H-NMR(CDCl3)δ:7.81-7.77(2H,m),7.48-7.45(2H,m),6.90(1H,d,J=7.8Hz),6.52-6.49(1H,m),6.42-6.40(1H,m),6.07(1H,brs),5.64(1H,brs),4.50(1H,dd,J=8.7,3.2Hz),4.01(1H,brs),2.91-2.82(1H,m),2.70-2.63(1H,m),2.25(3H,s),2.15-2.08(1H,m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:367.
1H-NMR(DMSO-d6)δ:8.53(1H,d,J=8.9Hz),8.47-8.43(2H,m),8.29(1H,d,J=8.9Hz),8.21-8.16(1H,m),8.01-7.98(2H,m),7.88-7.85(1H,m),7.77-7.71(1H,m),7.40(2H,brs).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:7.93-7.89(2H,m),7.56-7.52(2H,m),6.78-6.72(2H,m),6.53-6.49(1H,m),4.84-4.81(2H,m),4.50(1H,dd,J=9.1,3.2Hz),3.97(1H,brs),2.95-2.86(1H,m),2.72-2.65(1H,m),2.16-2.09(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:307.
実施例107で合成した4-(6-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド(58.0mg、0.189mmol)をプロパン-2-オール(5.8mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例108の化合物)(24.0mg、0.0783mmol、収率41%、エナンチオ過剰率99.8%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.93-7.89(2H,m),7.56-7.52(2H,m),6.78-6.72(2H,m),6.53-6.49(1H,m),4.84-4.81(2H,m),4.50(1H,dd,J=9.1,3.2Hz),3.97(1H,brs),2.95-2.86(1H,m),2.72-2.65(1H,m),2.16-2.09(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:307.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOZ-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=70:30
総注入量:6.8mL(0.80~1.0mL/回)
流量:10mL/min
検出:UV(254nm)
Rt:11.34分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:4.6mm、長さ:150mm、粒子径:3μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=40:60
流量:0.6mL/min
検出:UV(254nm)
Rt:9.26分
実施例107で合成した4-(6-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド(58.0mg、0.189mmol)をプロパン-2-オール(5.8mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例109の化合物)(23.2mg、0.0757mmol、収率39%、エナンチオ過剰率99.9%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.93-7.89(2H,m),7.56-7.52(2H,m),6.78-6.72(2H,m),6.53-6.49(1H,m),4.84-4.81(2H,m),4.50(1H,dd,J=9.1,3.2Hz),3.97(1H,brs),2.95-2.86(1H,m),2.72-2.65(1H,m),2.16-2.09(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:307.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOZ-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=70:30
総注入量:6.8mL(0.80~1.0mL/回)
流量:10mL/min
検出:UV(254nm)
Rt:16.55分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:4.6mm、長さ:150mm、粒子径:3μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=40:60
流量:0.6mL/min
検出:UV(254nm)
Rt:15.96分
実施例99で合成した4-(6-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド(60.0mg、0.225mmol)をプロパン-2-オール(30mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例110の化合物)(21.0mg、0.0788mmol、収率35%、エナンチオ過剰率100%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.79(2H,d,J=8.2Hz),7.48(2H,d,J=8.2Hz),6.86-6.83(2H,m),6.51(1H,d,J=8.2Hz),6.06(1H,brs),5.56(1H,brs),4.48(1H,dd,J=8.8,3.4Hz),4.02(1H,brs),2.93-2.85(1H,m),2.68(1H,td,J=10.8,5.6Hz),2.24(3H,s),2.15-2.09(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:267.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=70:30
総注入量:30mL(1.0~5.0mL/回)
流量:10mL/min
検出:UV(254nm)
Rt:12.51分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=40:60
流量:0.6mL/min
検出:UV(254nm)
Rt:11.30分
実施例99で合成した4-(6-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド(60.0mg、0.225mmol)をプロパン-2-オール(30mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例111の化合物)(25.5mg、0.0957mmol、収率43%、エナンチオ過剰率99.9%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.79(2H,d,J=8.2Hz),7.48(2H,d,J=8.2Hz),6.86-6.83(2H,m),6.51(1H,d,J=8.2Hz),6.06(1H,brs),5.56(1H,brs),4.48(1H,dd,J=8.8,3.4Hz),4.02(1H,brs),2.93-2.85(1H,m),2.68(1H,td,J=10.8,5.6Hz),2.24(3H,s),2.15-2.09(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:267.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=70:30
総注入量:30mL(1.0~5.0mL/回)
流量:10mL/min
検出:UV(254nm)
Rt:15.51分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:150mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=40:60
流量:0.6mL/min
検出:UV(254nm)
Rt:15.51分
1H-NMR(DMSO-d6)δ:8.61(1H,d,J=8.7Hz),8.50-8.46(2H,m),8.25(1H,d,J=8.7Hz),8.02-7.98(2H,m),7.97-7.94(1H,m),7.72-7.68(2H,m),7.49-7.47(3H,m),2.71(3H,s).
MS(ESI)[M+H]+:299.
1H-NMR(CDCl3)δ:7.92-7.89(2H,m),7.57-7.53(2H,m),6.95(1H,dd,J=7.6,7.6Hz),6.59(1H,d,J=7.6Hz),6.47(1H,d,J=7.6Hz),4.81(2H,s),4.50-4.46(1H,m),4.04(1H,brs),2.79-2.71(1H,m),2.67-2.60(1H,m),2.20(3H,s),2.19-2.13(1H,m),2.04-1.94(1H,m).
MS(ESI)[M+H]+:303.
1H-NMR(DMSO-d6)δ:8.46-8.42(1H,m),8.31-8.20(2H,m),8.05-8.00(1H,m),7.98-7.93(1H,m),7.84-7.76(3H,m),7.70-7.65(1H,m),2.54(3H,s).
MS(ESI)[M+H]+:317.
1H-NMR(CDCl3)δ:7.88-7.83(1H,m),7.31-7.27(2H,m),6.87-6.82(2H,m),6.52(1H,d,J=8.2Hz),5.07(2H,s),4.52-4.48(1H,m),3.97(1H,brs),2.90-2.81(1H,m),2.68-2.60(1H,m),2.23(3H,s),2.16-2.07(1H,m),1.99-1.89(1H,m).
MS(ESI)[M+H]+:321.
1H-NMR(CD3OD)δ:8.25(1H,d,J=8.7Hz),8.06-8.02(2H,m),7.98(1H,d,J=8.7Hz),7.88(1H,d,J=8.7Hz),7.68-7.66(1H,m),7.60(1H,dd,J=8.7,1.8Hz),7.39-7.35(2H,m),2.55(3H,s).
MS(ESI)[M+H]+:314.
1H-NMR(DMSO-d6)δ:9.40(1H,s),7.26-7.22(2H,m),7.13-7.10(2H,m),7.04(2H,s),6.70-6.67(2H,m),6.48(1H,d,J=8.2Hz),5.70(1H,s),4.30-4.26(1H,m),2.79-2.70(1H,m),2.54-2.47(1H,m),2.12(3H,s),1.96-1.89(1H,m),1.83-1.73(1H,m).
MS(ESI)[M+H]+:318.
1H-NMR(DMSO-d6)δ:8.52(1H,d,J=8.7Hz),8.47(2H,d,J=8.7Hz),8.30(1H,d,J=8.7Hz),8.20(1H,d,J=2.3Hz),8.13(1H,d,J=9.1Hz),8.00(2H,d,J=8.2Hz),7.83(1H,dd,J=9.1,2.3Hz),7.50(2H,s).
MS(ESI)[M+H]+:319.
1H-NMR(CDCl3)δ:7.91(2H,d,J=8.2Hz),7.52(2H,d,J=8.2Hz),6.99-6.98(2H,m),6.51(1H,d,J=9.1Hz),4.79(2H,brs),4.54(1H,ddd,J=8.7,3.2,1.8Hz),4.09(1H,brs),2.86(1H,ddd,J=15.6,9.6,5.5Hz),2.66(1H,ddd,J=16.5,5.5,5.5Hz),2.15-2.11(1H,m),2.00-1.91(1H,m).
MS(ESI)[M+H]+:323.
参考例94で合成した4-(6-クロロキノリン-2-イル)ベンゼンスルホンアミド(600mg、1.88mmоl)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(28.3mg、0.0376mmol)を用い、実施例37と同様の方法にて、表題化合物(以下、実施例116の化合物)(431mg、1.34mmol、収率71%、エナンチオ過剰率94.8%ee)を淡桃色固体として得た。
1H-NMR(CDCl3)δ:7.91(2H,d,J=8.7Hz),7.52(2H,d,J=8.2Hz),6.99-6.98(2H,m),6.51(1H,dd,J=5.9,3.2Hz),4.79(2H,s),4.54(1H,dd,J=11.0,3.7Hz),4.09(1H,brs),2.86(1H,ddd,J=15.6,9.6,5.0Hz),2.66(1H,ddd,J=16.5,5.0,5.9Hz),2.16-2.09(1H,m),1.97-1.94(1H,m).
MS(ESI)[M+H]+:323.
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:0.46mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:15.47分
参考例94で合成した4-(6-クロロキノリン-2-イル)ベンゼンスルホンアミド(600mg、1.88mmоl)リン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(28.3mg、0.0376mmol)を用い、実施例37と同様の方法にて、表題化合物(以下、実施例117の化合物)(380mg、1.18mmol、収率63%、エナンチオ過剰率99.1%ee)を淡桃色固体として得た。
1H-NMR(CDCl3)δ:7.91(2H,d,J=8.7Hz),7.52(2H,d,J=8.2Hz),7.00-6.96(2H,m),6.51(1H,dd,J=5.9,3.2Hz),4.79(2H,s),4.56-4.52(1H,m),4.09(1H,brs),2.86(1H,ddd,J=15.6,9.6,4.6Hz),2.66(1H,ddd,J=16.5,5.0,5.0Hz),2.16-2.09(1H,m),2.00-1.90(1H,m).
MS(ESI)[M+H]+:323.
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:0.46mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:18.58分
1H-NMR(CDCl3)δ:8.33(2H,d,J=8.6Hz),8.29(1H,d,J=8.6Hz),8.09(2H,d,J=8.6Hz),7.89-7.86(2H,m),7.81(1H,dd,J=10.0,2.7Hz),7.38(1H,ddd,J=8.2,8.2,2.3Hz),4.84(2H,brs).
MS(ESI)[M+H]+:303.
1H-NMR(CDCl3)δ:7.91(2H,d,J=7.8Hz),7.52(2H,d,J=8.2Hz),6.92(1H,dd,J=6.9,7.3Hz),6.37(1H,ddd,J=8.2,8.2,2.3Hz),6.28(1H,dd,J=10.5,2.3Hz),4.80(2H,brs),4.55(1H,d,J=8.2Hz),4.17(1H,brs),2.83(1H,ddd,J=15.1,9.6,5.0Hz),2.63(1H,ddd,J=16.0,5.5,5.5Hz),2.17-2.10(1H,m),1.97-1.94(1H,m).
MS(ESI)[M+H]+:307.
参考例83で合成した4-(6-メチルキノリン-2-イル)ベンゼンスルホンアミド(600mg,2.01mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル((R)-TRIP,30.3mg,0.0402mmol)を1,4-ジオキサン(6.7mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(1.53g、6.03mmol)を加え、アルゴン雰囲気下、60℃で24時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製することにより表題化合物(以下、実施例119の化合物)(443mg,1.47mmol,収率73%,エナンチオ過剰率99.4%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.90(2H,d,J=8.6Hz),7.55(2H,d,J=8.6Hz),6.87-6.84(2H,m),6.51(1H,d,J=7.7Hz),4.77(2H,s),4.51(1H,dd,J=8.8,3.4Hz),3.96(1H,s),2.92-2.84(1H,m),2.66(1H,td,J=10.8,5.6Hz),2.15-2.09(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:303.
Rt:6.92分
HPLC分析条件:
カラム:DaicelChiralcelOZ-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
実施例100で合成した4-(6-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド(40.5mg、0.134mmol)をプロパン-2-オール(4.2mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例120の化合物)(14.9mg、49.3μmol、収率37%、エナンチオ過剰率99.9%)を白色固体として得た。
1H-NMR(CDCl3)δ:7.90(2H,d,J=8.6Hz),7.55(2H,d,J=8.6Hz),6.87-6.84(2H,m),6.51(1H,d,J=7.7Hz),4.77(2H,s),4.51(1H,dd,J=8.8,3.4Hz),3.96(1H,s),2.92-2.84(1H,m),2.66(1H,td,J=10.8,5.6Hz),2.15-2.09(1H,m),2.01-1.92(1H,m).
MS(ESI)[M+H]+:303.
MS(ESI)[M+H]+:303.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOZ-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=70:30
総注入量:4.0mL(1.0mLx4)
流量:10mL/min
検出:UV(254nm)
Rt:17.00~22.00分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:0.46mm、長さ:150mm、粒子径:3μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:12.17分
実施例131で合成した4-(6-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド(40.8mg、0.125mmol)をプロパン-2-オール(13mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例121の化合物)(17.1mg、50.2μmol、収率42%、エナンチオ過剰率99.9%)を白色固体として得た。
1H-NMR(CDCl3)δ:7.80(2H,d,J=8.2Hz),7.45(2H,d,J=8.2Hz),6.97(2H,d,J=5.9Hz),6.50(1H,d,J=4.5Hz),4.51(1H,d,J=6.8Hz),4.11(1H,brs),2.91-2.83(1H,m),2.72-2.63(1H,m),2.16-2.08(1H,m),2.11-1.90(1H,m).
MS(ESI)[M+H]+:287.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=70:30
総注入量:12.0mL(5.0mLx2、1.0mLx2)
流量:10mL/min
検出:UV(254nm)
Rt:9.00~13.50分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:0.46mm、長さ:150mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:11.26分
実施例131で合成した4-(6-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド(40.8mg、0.125mmol)をプロパン-2-オール(13mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例122の化合物)(17.0mg、44.0μmol、収率42%、エナンチオ過剰率99.9%)を白色固体として得た。
1H-NMR(CDCl3)δ:7.80(2H,d,J=8.2Hz),7.45(2H,d,J=8.2Hz),6.97(2H,d,J=5.9Hz),6.50(1H,d,J=4.5Hz),4.51(1H,d,J=6.8Hz),4.11(1H,brs),2.91-2.83(1H,m),2.72-2.63(1H,m),2.16-2.08(1H,m),2.11-1.90(1H,m).
MS(ESI)[M+H]+:287.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=70:30
総注入量:12.0mL(5.0mLx2、1.0mLx2)
流量:10mL/min
検出:UV(254nm)
Rt:14.00~18.00分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:0.46mm、長さ:150mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:18.55分
参考例17で合成した5-(キノリン-2-イル)イソインドリン-1-オン(100mg、0.384mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(5.79mg、0.00768mmol)を1,4-ジオキサン(4mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(234mg、0.922mmol)を加え、アルゴン雰囲気下、室温で24時間、60℃で24時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製することにより表題化合物(以下、実施例123の化合物)(49.3mg、0.187mmol、収率49%、エナンチオ過剰率97.0%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.85(1H,d,J=7.7Hz),7.53(1H,s),7.49(1H,d,J=8.8Hz),7.04(2H,dd,J=12.9,7.0Hz),6.69(1H,dd,J=7.2,7.2Hz),6.59(1H,d,J=7.7Hz),6.49(1H,s),4.62-4.55(1H,m),4.44(2H,s),4.12(1H,s),2.96-2.88(1H,m),2.72(1H,dd,J=10.6,5.4,5.4Hz),2.21-2.11(1H,m),2.06-1.96(1H,m).
MS(ESI)[M+H]+:265.
Rt:22.04分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=40:60
流量:0.6mL/min
検出:UV(254nm)
参考例17で合成した5-(キノリン-2-イル)イソインドリン-1-オン(50.0mg、0.192mmol)とリン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(2.89mg、0.00384mmol)を1,4-ジオキサン(2mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(117mg、0.461mmol)を加え、アルゴン雰囲気下、室温で18時間、60℃で4時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、表題化合物(以下、実施例124の化合物)(32.9mg、0.187mmol、収率65%、エナンチオ過剰率97.0%ee)を白色アモルファスとして得た。
1H-NMR(CDCl3)δ:7.85(1H,d,J=7.7Hz),7.53(1H,s),7.49(1H,d,J=8.8Hz),7.04(2H,dd,J=12.9,7.0Hz),6.69(1H,dd,J=7.2,7.2Hz),6.59(1H,d,J=7.7Hz),6.49(1H,s),4.62-4.55(1H,m),4.44(2H,s),4.12(1H,s),2.96-2.88(1H,m),2.72(1H,dd,J=10.6,5.4,5.4Hz),2.21-2.11(1H,m),2.06-1.96(1H,m).
MS(ESI)[M+H]+:265.
Rt:26.97分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=40:60
流量:0.6mL/min
検出:UV(254nm)
参考例15で合成した3’,4’-ジヒドロ-[2,6’-ビキノリン]-2’(1’H)-オン(100mg、0.364mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(5.49mg、0.00729mmol)を1,4-ジオキサン(4mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(222mg、0.875mmol)を加え、アルゴン雰囲気下、室温で18時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、表題化合物(以下、実施例125の化合物)(74.0mg、0.266mmol、収率73%、エナンチオ過剰率99.1%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.63(1H,s),7.24-7.17(2H,m),7.04-7.68(2H,m),6.72-6.64(2H,m),6.54(1H,d,J=7.7Hz),4.38(1H,dd,J=9.3,2.9Hz),3.98(1H,s),2.99-2.89(3H,m),2.79-2.70(1H,m),2.68-2.60(2H,m),2.11-2.07(1H,m),2.02-1.90(1H,m).
MS(ESI)[M+H]+:279.
Rt:27.76分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:4.6mm、長さ:150mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=10:90
流量:0.6mL/min
検出:UV(254nm)
参考例15で合成した3’,4’-ジヒドロ-[2,6’-ビキノリン]-2’(1’H)-オン(90.0mg、0.328mmol)とリン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(4.94mg、0.00656mmol)を1,4-ジオキサン(2mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(199mg、0.787mmol)を加え、アルゴン雰囲気下、室温で18時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、表題化合物(以下、実施例126の化合物)(41.0mg、0.147mmol、収率45%、エナンチオ過剰率99.0%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.63(1H,s),7.24-7.17(2H,m),7.04-7.68(2H,m),6.72-6.64(2H,m),6.54(1H,d,J=7.7Hz),4.38(1H,dd,J=9.3,2.9Hz),3.98(1H,s),2.99-2.89(3H,m),2.79-2.70(1H,m),2.68-2.60(2H,m),2.11-2.07(1H,m),2.02-1.90(1H,m).
MS(ESI)[M+H]+:279.
Rt:21.04分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:4.6mm、長さ:150mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=10:90
流量:0.6mL/min
検出:UV(254nm)
参考例57で合成した1-(tert-ブチル)-3-(2-フェニルキノリン-6-イル)ウレア(75.0mg、0.235mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(3.54mg、0.00470mmol)を1,4-ジオキサン(3mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(143mg、0.564mmol)を加え、アルゴン雰囲気下、室温で18時間、60℃で8時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(アミンシリカゲル、ヘキサン/酢酸エチル)で精製して、表題化合物(以下、実施例127の化合物)(73.0mg、0.226mmol、収率96%、エナンチオ過剰率97.3%ee)を白色アモルファスとして得た。
1H-NMR(CDCl3)δ:7.40-7.25(5H,m),6.88-6.82(2H,m),6.50(1H,d,J=8.6Hz),5.69(1H,s),4.50(1H,s),4.43(1H,dd,J=9.5,3.2Hz),4.09(1H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.5,4.8Hz),2.15-2.10(1H,m),2.05-1.93(1H,m),1.34(9H,s).
MS(ESI)[M+H]+:324.
Rt:8.64分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
参考例57で合成した1-(tert-ブチル)-3-(2-フェニルキノリン-6-イル)ウレア(52.0mg、0.163mmol)とリン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(2.45mg、0.00326mmol)を1,4-ジオキサン(2mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(99.0mg、0.391mmol)を加え、アルゴン雰囲気下、室温で18時間、60℃で8時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(アミンシリカゲル、ヘキサン/酢酸エチル)で精製して、表題化合物(以下、実施例128の化合物)(50.0mg、0.155mmol、収率95%、エナンチオ過剰率97.1%ee)を白色アモルファスとして得た。
1H-NMR(CDCl3)δ:7.40-7.25(5H,m),6.88-6.82(2H,m),6.50(1H,d,J=8.6Hz),5.69(1H,s),4.50(1H,s),4.43(1H,dd,J=9.5,3.2Hz),4.09(1H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.5,4.8Hz),2.15-2.10(1H,m),2.05-1.93(1H,m),1.34(9H,s).
MS(ESI)[M+H]+:324.
Rt:24.37分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
参考例59で合成した3,3-ジメチル-N-(2-フェニルキノリン-6-イル)ブタンアミド(100mg、0.314mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(4.73mg、0.00628mmol)を1,4-ジオキサン(3mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(191mg、0.736mmol)を加え、アルゴン雰囲気下、室温で18時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、表題化合物(以下、実施例129の化合物)(57.7mg、0.179mmol、収率57%、エナンチオ過剰率99.3%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.38-7.32(3H,m),7.30-7.25(2H,m),7.23-7.20(1H,m),7.04-7.00(1H,m),6.85(1H,s),6.49(1H,d,J=8.2Hz),4.42(1H,dd,J=9.1,3.2Hz),4.01(1H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.5,4.8Hz),2.20(2H,s),2.14-2.07(1H,m),2.02-1.92(1H,m),1.12(9H,s).
MS(ESI)[M+H]+:323.
Rt:10.36分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
参考例59で合成した3,3-ジメチル-N-(2-フェニルキノリン-6-イル)ブタンアミド(100mg、0.314mmol)とリン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル(4.73mg、0.00628mmol)を1,4-ジオキサン(3mL)に懸濁させ、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(191mg、0.736mmol)を加え、アルゴン雰囲気下、室温で18時間撹拌した。反応終了後、反応混合物を減圧下濃縮した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製して、表題化合物(以下、実施例130の化合物)(41.2mg、0.128mmol、収率40%、エナンチオ過剰率99.0%ee)を白色アモルファスとして得た。
1H-NMR(CDCl3)δ:7.38-7.32(3H,m),7.30-7.25(2H,m),7.23-7.20(1H,m),7.04-7.00(1H,m),6.85(1H,s),6.49(1H,d,J=8.2Hz),4.42(1H,dd,J=9.1,3.2Hz),4.01(1H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.5,4.8Hz),2.20(2H,s),2.14-2.07(1H,m),2.02-1.92(1H,m),1.12(9H,s).
MS(ESI)[M+H]+:323.
Rt:12.89分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
1H-NMR(DMSO-d6)δ:8.50(1H,d,J=8.6Hz),8.36(2H,d,J=8.2Hz),8.30(1H,d,J=9.1Hz),8.19(1H,d,J=5.2Hz),8.12(2H,d,J=9.1Hz),8.06(2H,d,J=8.6Hz),7.82(1H,dd,J=8.8,2.5Hz),7.50(1H,brs).
MS(ESI)[M+H]+:283.
1H-NMR(CDCl3)δ:7.80(2H,d,J=8.2Hz),7.45(2H,d,J=8.2Hz),6.97(2H,d,J=5.9Hz),6.50(1H,d,J=4.5Hz),4.51(1H,d,J=6.8Hz),4.11(1H,brs),2.91-2.83(1H,m),2.72-2.63(1H,m),2.16-2.08(1H,m),2.11-1.90(1H,m).
MS(ESI)[M+H]+:287.
1H-NMR(DMSO-d6)δ:8.50(1H,d,J=8.6Hz),8.36-8.34(2H,m),8.28(1H,d,J=8.6Hz),8.17(1H,dd,J=9.1,5.4Hz),8.12(1H,brs),8.07-8.04(2H,m),7.85(1H,dd,J=9.3,2.9Hz),7.73(1H,dd,J=8.9,3.0Hz),7.49(1H,s).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:7.80(2H,dd,J=8.2,1.8Hz),7.47(2H,d,J=8.2Hz),6.75(2H,dd,J=13.4,5.7Hz),6.54-6.46(1H,m),4.47(1H,d,J=6.8Hz),3.97(1H,brs),2.95-2.86(1H,m),2.74-2.65(1H,m),2.15-2.09(1H,m),2.02-1.92(1H,m).
MS(ESI)[M+H]+:271.
1H-NMR(DMSO-d6)δ:10.31(1H,s),8.40(1H,d,J=8.6Hz),8.16-8.06(4H,m),7.78(1H,dd,J=9.3,2.9Hz),7.67(1H,dd,J=8.9,3.0Hz),7.00(1H,d,J=8.2Hz),3.05-2.97(2H,m),2.55-2.45(2H,m).
MS(ESI)[M+H]+:293.
1H-NMR(CDCl3)δ:7.54-7.68(1H,m),7.22-7.15(2H,m),6.76-6.70(3H,m),6.47(1H,dd,J=9.5,5.0Hz),4.33(1H,dd,J=9.7,2.9Hz),3.87(1H,brs),3.00-2.89(3H,m),2.77-2.68(1H,m),2.66-2.62(2H,m),2.10-2.03(1H,m),2.00-1.89(1H,m).
MS(ESI)[M+H]+:297.
1H-NMR(DMSO-d6)δ:8.71(1H,d,J=4.5Hz),8.48(3H,dd,J=10.4,3.6Hz),8.40(1H,d,J=9.1Hz),8.14-8.11(1H,m),8.02(2H,d,J=8.6Hz),7.85-7.80(3H,m).
MS(ESI)[M+H]+:319.
1H-NMR(CDCl3)δ:7.93-7.90(2H,m),7.55-7.50(2H,m),6.97(1H,dd,J=14.7,6.6Hz),6.76(1H,dd,J=7.9,1.1Hz),6.49(1H,dd,J=3.9,3.9Hz),4.77(2H,brs),4.50(1H,d,J=7.7Hz),4.18(1H,brs),2.86-2.80(2H,m),2.20-2.14(1H,m),2.05-1.94(1H,m).
MS(ESI)[M+H]+:323.
1H-NMR(DMSO-d6)δ:8.65(1H,d,J=9.1Hz),8.48(2H,dd,J=6.8,1.8Hz),8.34(1H,dd,J=7.5,7.5Hz),8.05-7.90(4H,m),7.86-7.79(1H,m),7.55-7.45(2H,m).
MS(ESI)[M+H]+:303.
1H-NMR(CDCl3)δ:7.93-7.90(2H,m),7.56-7.50(2H,m),7.00-6.95(1H,m),6.44-6.36(2H,m),4.79(2H,brs),4.52(1H,d,J=8.6Hz),4.19(1H,brs),2.85-2.70(2H,m),2.20-2.10(1H,m),2.00-1.90(1H,m).
MS(ESI)[M+H]+:307.
1H-NMR(CDCl3)δ:8.23(1H,d,J=8.6Hz),8.20-8.14(2H,m),7.86-7.83(2H,m),7.76-7.65(2H,m),7.57-7.52(1H,m),7.50-7.47(1H,m),7.40-7.35(1H,m),6.69(1H,s),3.06(3H,s).
MS(ESI)[M+H]+:299.
1H-NMR(CDCl3)δ:7.40-7.37(2H,m),7.21-7.18(2H,m),7.05-7.68(2H,m),6.66(1H,dd,J=7.5, 1.1Hz),6.55(1H,d,J=8.2Hz),6.39(1H,s),4.46-4.40(1H,m),4.00(1H,s),3.02(3H,s),2.96-2.88(1H,m),2.77-2.68(1H,m),2.13-2.07(1H, m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:303.
1H-NMR(DMSO-d6)δ:8.61(1H,d,J=8.6Hz),8.38(2H,dd,J=4.3,4.3Hz),8.33(1H,d,J=8.6Hz),8.15-8.05(3H,m),7.98(2H,dd,J=8.4,2.9Hz),7.85-7.78(1H,m),7.50-7.43(1H,m).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:7.80(2H,dd,J=8.5,1.9Hz),7.48-7.45(2H,m),6.99-6.93(1H,m),6.43-6.35(2H,m),4.51-4.45(1H,m),4.20(1H,brs),2.80-2.75(2H,m),2.18-2.11(1H,m),2.00-1.90(1H,m).
MS(ESI)[M+H]+:271.
1H-NMR(DMSO-d6)δ:8.68(1H,d,J=4.5Hz),8.40-8.36(3H,m),8.15-8.05(4H,m),7.81(2H,dd,J=11.2,4.1Hz),7.48(1H,brs).
MS(ESI)[M+H]+:283.
1H-NMR(CDCl3)δ:7.82-7.79(2H,m),7.48-7.42(2H,m),6.95(1H,dd,J=8.0,8.0Hz),6.75(1H,dd,J=8.0,1.1Hz),6.48(1H,dd,J=8.2,0.9Hz),4.50-4.45(1H,m),4.17(1H,brs),2.84(2H,dd,J=7.5,5.3Hz),2.21-2.15(1H,m),2.05-1.93(1H,m).
MS(ESI)[M+H]+:287.
1H-NMR(DMSO-d6)δ:10.32(1H,s),8.46(1H,d,J=8.6Hz),8.14-8.05(4H,m),7.75(1H,dd,J=10.4,2.7Hz),7.50(1H,dd,J=8.8,2.4Hz),7.01(1H, d,J=8.6Hz),3.05-2.99(2H,m),2.55-2.45(2H, m).
MS(ESI)[M+H]+:293.
1H-NMR(CDCl3)δ:7.81(1H,brs),7.20-7.12(2H,m),6.91(1H,dd,J=7.2,7.2Hz),6.72(1H,d,J=7.7Hz),6.34(1H,dd,J=8.5,2.6Hz),6.24(1H,dd,J=10.9,2.7Hz),4.40-4.35(1H,m),4.07(1H,s),3.00-2.93(2H,m),2.89-2.81(1H,m),2.73-2.62(3H,m),2.11-2.05(1H,m),1.98-1.88(1H,m).
MS(ESI)[M+H]+:297.
1H-NMR(CDCl3)δ:8.28(2H,s),8.14(1H,d,J=8.6Hz),7.77(1H,dd,J=9.1,5.9Hz),7.69(1H,dd, J=10.4,2.3Hz),7.62(1H,d,J=8.6Hz),7.30-7.25(1H,m).
MS(ESI)[M+H]+:214.
1H-NMR(CDCl3)δ:7.57(2H,s),6.92-6.89(1H,m),6.34(1H,dd,J=8.5,2.4Hz),6.21(1H,dd,J=10.6,2.5Hz),4.50(1H,dd,J=9.1,3.2Hz),2.89-2.80(1H,m),2.75-2.67(1H,m),2.16-2.10(1H,m),2.02-1.92(1H,m).
MS(ESI)[M+H]+:218.
1H-NMR(CDCl3)δ:8.31(1H,d,J=8.6Hz),8.19-8.07(3H,m),7.88(2H,d,J=8.6Hz),7.81-7.76(2H,m),7.63-7.59(1H,m).
MS(ESI)[M+H]+:249.
1H-NMR(CDCl3)δ:7.61-7.58(1H,m),7.31-7.25(2H,dd,J=7.7,5.4Hz),7.08-7.68(2H,m),6.72-6.66(1H,m),6.61-6.57(1H,m),4.57-4.50(1H,m),4.10(1H,brs),2.93-2.83(1H,m),2.70-2.62(1H,m),2.18-2.10(1H,m),2.00-1.90(1H,m).
MS(ESI)[M+H]+:253.
1H-NMR(DMSO-d6)δ:8.75(1H,d,J=8.7Hz),8.59(1H,s),8.52(2H,dt,J=8.7,1.8Hz),8.41(1H,d,J=8.7Hz),8.31(1H,d,J=8.7Hz),8.07(1H,dd,J=8.9,2.1Hz),8.02(2H,d,J=8.7Hz),7.52(2H,s).
MS(ESI)[M+H]+:353.
1H-NMR(CDCl3)δ:7.92(2H,ddd,J=8.5,8.5,1.8Hz),7.51(2H,d,J=8.5Hz),7.28-7.24(2H,m),6.60(1H,d,J=8.2Hz),4.79(2H,s),4.63(1H,d,J=7.8Hz),4.41(1H,brs),2.93-2.85(1H,m),2.73-2.68(1H,m),2.20-2.15(1H,m),2.02-1.96(1H,m).
MS(ESI)[M+H]+:357.
得られた混合物(14.9g)を酢酸/トルエン(1/2、v/v、220mL)に溶解させた後、開放系で60℃、20時間撹拌した。その後、反応混合物を減圧下留去した。得られた粗生成物をカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製することにより表題化合物(6.31g,21.7mmol,2段階収率39%)を淡黄色固体として得た。
1H-NMR(CDCl3)δ:8.19-8.13(4H,m),7.87(1H,d,J=8.7Hz),7.73(1H,d,J=1.6Hz),7.66(1H,dd,J=8.7,1.6Hz),7.55-7.50(2H,m),7.46(1H,tt,J=7.3,1.8Hz),4.19(2H,q,J=7.2Hz),3.81(2H,s),1.27(3H,t,J=7.2Hz).
MS(ESI)[M+H]+:292.
1H-NMR(CDCl3)δ:8.19-8.12(4H,m),7.87(1H,d,J=8.5Hz),7.74(1H,d,J=1.8Hz),7.66(1H,dd,J=8.5,1.8Hz),7.54-7.50(2H,m),7.48-7.44(1H,m),3.85(2H,s).
MS(ESI)[M+H]+:264.
1H-NMR(CDCl3)δ:8.19-8.11(4H,m),7.87(1H,d,J=8.2Hz),7.72(1H,s),7.63(1H,dd,J=8.5,2.1Hz),7.55-7.47(3H,m),4.62(1H,brs),4.34(1H,dd,J=8.0,6.6Hz),4.27(1H,dd,J=10.3,6.6Hz),4.01(1H,dd,J=9.6,3.8Hz),3.89(1H,dd,J=10.7,3.8Hz),3.65(2H,s),2.60(1H,brs).
MS(ESI)[M+H]+:319.
参考例110で合成した1-(3-ヒドロキシアゼチジン-1-イル)-2-(2-フェニルキノリン-6-イル)エタン-1-オン(50.0mg、0.157mmol)とリン酸水素(S)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル((S)-TRIP、2.4mg、0.0031mmol)を1,4-ジオキサン(0.8mL)に懸濁させた後、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(87.5mg、0.346mmol)を加えて、室温で17時間撹拌した。反応混合物を減圧下留去して、得られた粗生成物をカラムクロマトグラフィー(シリカゲル、クロロホルム/メタノール)で精製することにより1-(3-ヒドロキシアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オンの一方の光学活性体(44.7mg)を淡黄色アモルファスとして得た。
得られた1-(3-ヒドロキシアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オンの一方の光学活性体(44.7mg)を酢酸エチル(2mL)に溶解させた後、撹拌しながら、4mol/L塩化水素酢酸エチル溶液(0.136mL)を加えた。室温でさらに30分間撹拌した後、生じた固体をろ取することで、表題化合物(以下、実施例143の化合物)(40.5mg、0.113mmol、収率72%,エナンチオ過剰率95.6%ee)を白色固体として得た。
1H-NMR(DMSO-d6)δ:7.49-7.47(2H,m),7.41-7.39(2H,m),7.34-7.31(1H,m),6.93(2H,brs),6.83(1H,brs),4.51-4.49(1H,brm),4.44-4.43(1H,m),4.34(1H,dd,J=8.5,6.8Hz),4.01(1H,dd,J=10.3,6.8Hz),3.88(1H,dd,J=8.5,4.4Hz),3.56(1H,dd,J=10.3,4.4Hz),3.29(2H,s),2.88-2.85(1H,brm),2.71-2.67(1H,brm),2.09-2.03(2H,m).
MS(ESI)[M+H]+:323.
Rt:12.27分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=60:40
流量:0.6mL/min
注入量:10μL
検出:UV(254nm)
参考例110で合成した1-(3-ヒドロキシアゼチジン-1-イル)-2-(2-フェニルキノリン-6-イル)エタン-1-オン(1.43g、4.49mmol)とリン酸水素(R)-3,3’-ビス(2,4,6-トリイソプロピルフェニル)-1,1’-ビナフチル-2,2’-ジイル((R)-TRIP、67.6mg,0.0898mmol)を1,4-ジオキサン(22mL)に懸濁させた後、1,4-ジヒドロ-2,6-ジメチル-3,5-ピリジンジカルボン酸ジエチル(2.50g、9.88mmol)を加えて、室温で18時間撹拌した。反応混合物を減圧下留去して、得られた粗生成物をカラムクロマトグラフィー(アミノシリカゲル、クロロホルム/メタノール)およびカラムクロマトグラフィー(シリカゲル、酢酸エチル/メタノール)で精製することにより1-(3-ヒドロキシアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オンの他方の光学活性体(1.13g)を淡黄色アモルファスとして得た。
得られた1-(3-ヒドロキシアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オンの他方の光学活性体(1.13g)を酢酸エチル(45mL)に溶解させた後、撹拌しながら、4mol/L塩化水素酢酸エチル溶液(3.5mL)を加えた。室温でさらに30分間撹拌した後、生じた固体をろ取することで、表題化合物(以下、実施例144の化合物)(1.13g、3.15mmol、収率70%,エナンチオ過剰率95.4%ee)を白色固体として得た。
1H-NMR(DMSO-d6)δ:7.49-7.47(2H,m),7.41-7.39(2H,m),7.34-7.31(1H,m),6.93(2H,brs),6.83(1H,brs),4.51-4.49(1H,brm),4.44-4.43(1H,m),4.34(1H,dd,J=8.5,6.8Hz),4.01(1H,dd,J=10.3,6.8Hz),3.88(1H,dd,J=8.5,4.4Hz),3.56(1H,dd,J=10.3,4.4Hz),3.29(2H,s),2.88-2.85(1H,brm),2.71-2.67(1H,brm),2.09-2.03(2H,m).
MS(ESI)[M+H]+:323.
Rt:9.30分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=60:40
流量:0.6mL/min
注入量:10μL
検出:UV(254nm)
1H-NMR(CDCl3)δ:7.39-7.33(4H,m),7.31-7.27(1H,m),6.89-6.84(2H,m),6.50(1H,d,J=8.2Hz),4.42(1H,dd,J=9.1,3.2Hz),4.02(1H,brs),3.65(4H,s),3.60(2H,s),3.54-3.52(2H,m),3.48-3.46(2H,m),2.94-2.86(1H,m),2.71(1H,dt,J=16.5,4.8Hz),2.14-2.08(1H,m),2.02-1.93(1H,m).
MS(ESI)[M+H]+:337.
1H-NMR(CDCl3)δ:7.40-7.32(4H,m),7.30-7.27(1H,m),6.92(1H,d,J=2.3Hz),6.89(1H,dd,J=8.2,2.3Hz),6.49(1H,d,J=8.2Hz),4.42(1H,dd,J=9.5,3.2Hz),4.01(1H,brs),3.78(2H,s),3.69(2H,s),3.33(2H,s),2.96-2.86(1H,m),2.72(1H,dt,J=16.3,4.8Hz),2.14-2.07(1H,m),2.02-1.93(1H,m),1.25(6H,s).
MS(ESI)[M+H]+:335.
1H-NMR(CDCl3)δ:7.39-7.33(4H,m),7.30-7.27(1H,m),6.91(1H,d,J=2.0Hz),6.88(1H,dd,J=8.2,2.0Hz),6.49(1H,d,J=8.2Hz),4.42(1H,dd,J=8.8,3.4Hz),4.26-4.22(1H,m),4.18-4.13(2H,m),3.98(1H,dd,J=8.8,2.9Hz),3.91-3.86(1H,m),3.35(2H,s),3.28(3H,s),2.94-2.86(1H,m),2.71(1H,dt,J=16.6,4.8Hz),2.14-2.07(1H,m),2.02-1.92(1H,m).
MS(ESI)[M+H]+:337.
1H-NMR(DMSO-d6)δ:7.37-7.31(4H,m),7.27-7.23(1H,m),6.73-6.70(2H,m),6.52(1H,dd,J=8.2,3.6Hz),5.95(1H,brs),4.98-4.87(1H,m),4.48-4.36(2H,m),3.99-3.86(1H,m),3.71-3.64(1H,m),3.49-3.34(4H,m),2.80-2.69(1H,m),2.02-1.94(1H,m),1.86-1.77(1H,m).
MS(ESI)[M+H]+:323.
1H-NMR(CDCl3)δ:7.40-7.33(4H,m),7.31-7.27(1H,m),6.89-6.86(2H,m),6.50(1H,d,J=8.2Hz),4.43(1H,dd,J=9.1,3.2Hz),4.34(4H,q,J=11.4Hz),4.06(1H,brs),3.43(2H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.6,4.7Hz),2.15-2.09(1H,m),2.01-1.96(1H,m).
MS(ESI)[M+H]+:343.
なお、1H-NMRは2つの回転異性体の混合物として観測された。
major rotateisomer:
1H-NMR(CDCl3)δ:7.40-7.33(4H,m),7.30-7.28(1H,m),6.92-6.87(2H,m),6.51(1H,d,J=7.9Hz),4.42(1H,dd,J=9.4,3.0Hz),4.02(1H,brs),3.79(2H,q,J=5.0Hz),3.61(2H,s),3.57(2H,t,J=5.0Hz),3.19(1H,t,J=5.0Hz),3.08(3H,s),2.95-2.87(1H,m),2.75-2.70(1H,m),2.13-2.09(1H,m),2.00-1.95(1H,m).
minor rotateisomer:
1H-NMR(CDCl3)δ:7.40-7.33(4H,m),7.30-7.28(1H,m),6.92-6.87(2H,m),6.50(1H,d,J=7.9Hz),4.42(1H,dd,J=9.4,3.0Hz),4.02(1H,brs),3.72(2H,q,J=5.6Hz),3.67(2H,s),3.50(2H,t,J=5.6Hz),3.19(1H,t,J=5.0Hz),2.98(3H,s),2.95-2.87(1H,m),2.75-2.70(1H,m),2.13-2.09(1H,m),2.00-1.95(1H,m).
MS(ESI)[M+H]+:325.
1H-NMR(CDCl3)δ:7.39-7.33(4H,m),7.30-7.27(1H,m),6.93(1H,s),6.90(1H,dd,J=7.9,2.1Hz),6.49(1H,d,J=7.9Hz),4.42(1H,dd,J=9.1,3.2Hz),4.14(2H,t,J=7.5Hz),4.03(2H,t,J=7.8Hz),4.02(1H,brs),3.32(2H,s),2.94-2.88(1H,m),2.72(1H,dt,J=16.3,4.7Hz),2.26-2.18(2H,m),2.14-2.08(1H,m),2.02-1.92(1H,m).
MS(ESI)[M+H]+:307.
1H-NMR(CDCl3)δ:7.40-7.30(5H,m),6.84-6.83(2H,m),6.51(1H,d,J=8.7Hz),5.55(1H,brs),4.44(1H,dd,J=9.1,3.2Hz),4.08(1H,brs),3.42(2H,s),2.91-2.88(1H,m),2.73-2.65(2H,m),2.16-2.11(1H,m),2.04-1.97(1H,m),0.73(2H,td,J=7.0,5.3Hz),0.43-0.39(2H,m).
MS(ESI)[M+H]+:307.
1H-NMR(CDCl3)δ:7.40-7.28(5H,m),6.89-6.88(2H,m),6.53(1H,d,J=8.7Hz),5.58(1H,brs),4.45(1H,dd,J=9.1,2.7Hz),4.08(1H,brs),3.45(2H,s),3.09(2H,dd,J=6.9,5.9Hz),2.96-2.88(1H,m),2.73(1H,dt,J=16.9,5.0Hz),2.16-2.10(1H,m),2.04-1.98(1H,m),0.91-0.87(1H,m),0.47-0.43(2H,m),0.16-0.12(2H,m).
MS(ESI)[M+H]+:321.
1H-NMR(CDCl3)δ:7.40-7.26(5H,m),6.87-6.85(2H,m),6.53(1H,d,J=8.7Hz),5.68(1H,brs),4.73(2H,dd,J=7.8,6.4Hz),4.45(1H,dd,J=9.1,3.2Hz),4.34(2H,dd,J=5.9,6.4Hz),4.09(1H,brs),3.46(2H,s),3.19-3.12(1H,m),2.96-2.86(1H,m),2.80(2H,s),2.72(1H,dt,J=16.5,4.8Hz),2.17-2.10(1H,m),2.03-1.94(1H,m).
MS(ESI)[M+H]+:337.
1H-NMR(CDCl3)δ:7.41-7.34(4H,m),7.30(1H,tt,J=6.8,2.0Hz),6.86(2H,d,J=5.9Hz),6.53(1H,dd,J=5.7,2.9Hz),5.57(1H,d,J=5.4Hz),4.41(2H,ddd,J=25.5,13.0,5.8Hz),4.08(1H,brs),3.40(2H,s),2.97-2.88(1H,m),2.74(1H,dt,J=16.5,4.6Hz),2.29(2H,ddt,J=14.2,7.7,2.5Hz),2.15(1H,td,J=8.8,4.2Hz),2.05-1.95(1H,m),1.80-1.61(4H,m).
MS(ESI)[M+H]+:321.
1H-NMR(CDCl3)δ:7.39-7.31(4H,m),7.30-7.27(1H,m),6.94-6.89(2H,m),6.49(1H,d,J=7.8Hz),4.43-4.39(1H,m),4.01(1H,brs),3.52-3.42(6H,m),2.96-2.85(1H,m),2.75-2.67(1H,m),2.13-2.06(1H,m),2.02-1.88(3H,m),1.86-1.79(2H,m).
MS(ESI)[M+H]+:321.
1H-NMR(CDCl3)δ:7.39-7.32(4H,m),7.31-7.27(1H,m),6.98(0H,s),6.89-6.83(2H,m),6.77(1H,brs),6.49(1H,d,J=8.2Hz),4.44-4.40(1H,m),4.26(1H,s),4.14(1H,s),4.06(1H,brs),3.83-3.80(1H,m),3.67-3.58(3H,m),3.38-3.34(1H,m),3.22-3.18(1H,m),2.93-2.84(1H,m),2.74-2.66(1H,m),2.14-2.07(1H,m),2.01-1.91(1H,m).
MS(ESI)[M+H]+:350.
1H-NMR(CDCl3)δ:7.39-7.33(4H,m),7.30-7.28(1H,m),6.89-6.85(2H,m),6.49(1H,d,J=7.8Hz),4.42(1H,dd,J=9.6,3.2Hz),4.00(1H,brs),3.63-3.60(2H,m),3.60(2H,s),3.44(2H,t,J=5.0Hz),2.94-2.86(1H,m),2.82(2H,t,J=5.3Hz),2.73-2.68(3H,m),2.14-2.07(1H,m),2.02-1.92(1H,m).
MS(ESI)[M+H]+:336.
1H-NMR(CDCl3)δ:7.39-7.35(4H,m),7.31-7.28(1H,m),6.87-6.86(2H,m),6.53(1H,d,J=8.7Hz),5.47(1H,brs),4.44(1H,dd,J=9.6,3.2Hz),4.09(1H,brs),3.45(2H,s),2.95-2.87(1H,m),2.77-2.69(2H,m),2.76(2H,d,J=5.0Hz),2.16-2.12(1H,m),2.03-1.94(1H,m).
MS(ESI)[M+H]+:281.
実施例149で合成した1-(3,3-ジフルオロアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン(91.2mg、0.266mmol)をプロパン-2-オール(4.8mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例160の化合物)(33.4mg、0.0975mmol、収率37%、エナンチオ過剰率100%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.40-7.33(4H,m),7.31-7.27(1H,m),6.89-6.86(2H,m),6.50(1H,d,J=8.2Hz),4.43(1H,dd,J=9.1,3.2Hz),4.34(4H,q,J=11.4Hz),4.06(1H,brs),3.43(2H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.6,4.7Hz),2.15-2.09(1H,m),2.01-1.96(1H,m).
MS(ESI)[M+H]+:343.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=90:10
総注入量:4.8mL(0.8~1.0mL/回)
流量:10mL/min
検出:UV(254nm)
Rt:15.45分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:14.54分
実施例149で合成した1-(3,3-ジフルオロアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン(91.2mg、0.266mmol)をプロパン-2-オール(4.8mL)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例161の化合物)(31.0mg、0.0905mmol、収率34%、エナンチオ過剰率99.6%ee)を白色固体として得た。
1H-NMR(CDCl3)δ:7.40-7.33(4H,m),7.31-7.27(1H,m),6.89-6.86(2H,m),6.50(1H,d,J=8.2Hz),4.43(1H,dd,J=9.1,3.2Hz),4.34(4H,q,J=11.4Hz),4.06(1H,brs),3.43(2H,s),2.94-2.86(1H,m),2.72(1H,dt,J=16.6,4.7Hz),2.15-2.09(1H,m),2.01-1.96(1H,m).
MS(ESI)[M+H]+:343.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=90:10
総注入量:4.8mL(0.8~1.0mL/回)
流量:10mL/min
検出:UV(254nm)
Rt:21.67分
HPLC分析条件:
カラム:DaicelChiralcelOD-Hキラルカラム
(内径:4.6mm、長さ:150mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:21.44分
1H-NMR(CDCl3)δ:9.17(1H,d,J=2.3Hz),8.22(1H,d,J=2.3Hz),8.08(1H,d,J=9.1Hz),7.88(1H,d,J=2.3Hz),7.72-7.69(2H,m),7.66(1H,dd,J=8.8,2.5Hz),7.55-7.54(2H,m),7.47-7.46(1H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.36-7.33(2H,m),7.28-7.27(1H,m),7.24-7.22(2H,m),7.00-6.94(2H,m),6.47(1H,d,J=8.2Hz),4.04(1H,brs),3.46(1H,ddd,J=11.0,3.2,1.4Hz),3.32(1H,dd,J=11.4,11.0Hz),3.15-3.07(1H,m),3.02-2.90(2H,m).
MS(ESI)[M+H]+:244.
1H-NMR(CDCl3)δ:9.19(1H,d,J=2.3Hz),8.29(1H,d,J=2.3Hz),8.14(1H,d,J=2.3Hz),7.83(1H,d,J=8.7Hz),7.72-7.69(2H,m),7.56-7.52(3H,m),7.47-7.45(1H,m).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:7.37-7.33(2H,m),7.26-7.24(3H,m),6.90(1H,d,J=7.8Hz),6.59(1H,dd,J=8.0,2.1Hz),6.52(1H,d,J=1.8Hz),4.10(1H,brs),3.46(1H,dd,J=11.0,3.2Hz),3.32(1H,dd,J=11.0,11.0Hz),3.12-3.09(1H,m),2.95-2.93(2H,m).
MS(ESI)[M+H]+:244.
1H-NMR(CDCl3)δ:9.15(1H,d,J=2.3Hz),8.31(1H,d,J=2.3Hz),8.14(1H,d,J=8.2Hz),7.89(1H,dd,J=8.2,1.4Hz),7.76-7.71(3H,m),7.59(1H,ddd,J=8.2,6.9,0.9Hz),7.55-7.52(2H,m),4.80(2H,d,J=5.5Hz),1.91(1H,t,J=5.5Hz).
MS(ESI)[M+H]+:236.
1H-NMR(CDCl3)δ:7.35(2H,d,J=8.2Hz),7.25-7.23(2H,m),7.03-7.01(2H,m),6.65(1H,ddd,J=7.3,7.3,0.9Hz),6.56-6.55(1H,m),4.69(2H,s),4.03(1H,brs),3.45(1H,ddd,J=11.4,3.7,1.8Hz),3.33(1H,dd,J=11.4,11.4Hz),3.20-3.12(1H,m),3.06-2.94(2H,m),1.63(1H,brs).
MS(ESI)[M+H]+:240.
1H-NMR(CDCl3)δ:9.20(1H,d,J=2.3Hz),8.37(1H,d,J=2.3Hz),8.17-8.15(1H,m),8.00-7.98(2H,m),7.92(1H,dd,J=8.2,1.4Hz),7.84-7.81(2H,m),7.77(1H,ddd,J=8.7,6.9,1.8Hz),7.62(1H,ddd,J=7.8,6.9,0.9Hz).
MS(ESI)[M+H]+:249.
1H-NMR(CDCl3)δ:7.81-7.77(2H,m),7.34-7.32(2H,m),7.04-7.02(2H,m),6.66(1H,ddd,J=7.3,7.3,0.9Hz),6.56(1H,d,J=7.8Hz),5.59-5.56(2H,brm),4.74(1H,brs),3.49-3.47(1H,m),3.36(1H,dd,J=10.5,11.0Hz),3.24-3.20(1H,m),3.07-2.98(2H,m).
MS(ESI)[M+H]+:253.
1H-NMR(DMSO-d6)δ:9.29(1H,d,J=2.3Hz),8.74(1H,d,J=2.3Hz),8.09-8.06(4H,m),7.97-7.95(2H,m),7.80(1H,ddd,J=8.2,6.9,1.4Hz),7.67-7.65(1H,m).
MS(ESI)[M+H]+:285.
1H-NMR(CDCl3)δ:7.89(2H,d,J=8.7Hz),7.40(2H,d,J=8.2Hz),7.05-7.00(2H,m),6.68-6.66(1H,m),6.56(1H,d,J=9.1Hz),4.75(2H,s),3.49(1H,dd,J=10.7,3.4Hz),3.36(1H,dd,J=11.0,12.8Hz),3.27-3.25(1H,m),3.03-3.01(2H,m).
MS(ESI)[M+H]+:289.
1H-NMR(DMSO-d6)δ:10.13(1H,s),9.25(1H,d,J=2.3Hz),8.61(1H,d,J=2.3Hz),8.04(2H,d,J=9.1Hz),7.85(2H,d,J=8.7Hz),7.76(3H,dd,J=12.1,4.8Hz),7.64(1H,dd,J=7.8,7.8Hz),2.09(3H,s).
MS(ESI)[M+H]+:263.
1H-NMR(CDCl3)δ:7.45(2H,d,J=8.7Hz),7.20(2H,d,J=8.2Hz),7.11(1H,brs),7.02-7.00(2H,m),6.65(1H,ddd,J=7.3,7.3,1.4Hz),6.55(1H,d,J=7.8Hz),3.44(1H,ddd,J=11.0,3.2,1.4Hz),3.30(1H,dd,J=11.0,10.5Hz),3.13-3.12(1H,m),2.99-2.97(2H,m),2.18(3H,s).
MS(ESI)[M+H]+:267.
1H-NMR(CDCl3)δ:9.19(1H,d,J=2.3Hz),8.38(1H,d,J=2.3Hz),8.18(1H,d,J=8.7Hz),8.11(2H,d,J=8.7Hz),7.94-7.92(3H,m),7.80(1H,ddd,J=8.2,6.9,1.4Hz),7.64(1H,ddd,J=8.2,6.9,1.4Hz),3.13(3H,s).
MS(ESI)[M+H]+:284.
1H-NMR(CDCl3)δ:7.91(2H,d,J=8.2Hz),7.45(2H,d,J=8.2Hz),7.05-7.01(2H,m),6.67(1H,ddd,J=7.3,7.3,0.5Hz),6.57(1H,dd,J=7.8,0.9Hz),4.05(1H,brs),3.49-3.47(1H,m),3.37(1H,dd,J=10.5,10.5Hz),3.28-3.25(1H,m),3.06(3H,s),3.03(2H,d,J=7.8Hz).
MS(ESI)[M+H]+:288.
1H-NMR(CDCl3)δ:9.17(1H,d,J=2.3Hz),8.99(1H,d,J=1.8Hz),8.70(1H,dd,J=5.0,1.4Hz),8.35(1H,d,J=1.8Hz),8.17(1H,d,J=8.2Hz),8.04-8.02(1H,m),7.92(1H,d,J=8.2Hz),7.78(1H,ddd,J=8.7,6.9,1.8Hz),7.63(1H,ddd,J=8.2,6.9,0.9Hz),7.48-7.47(2H,m).
MS(ESI)[M+H]+:207.
1H-NMR(CDCl3)δ:8.54(1H,d,J=2.3Hz),8.50(1H,dd,J=4.8,1.6Hz),7.55(1H,ddd,J=7.8,1.8,1.8Hz),7.30-7.26(1H,m),7.04-7.02(2H,m),6.67(1H,ddd,J=7.3,7.3,0.9Hz),6.56(1H,dd,J=8.2,0.9Hz),3.51-3.48(1H,m),3.35(1H,dd,J=11.2,9.8Hz),3.24-3.17(1H,m),3.02-2.99(2H,m),2.10(1H,s).
MS(ESI)[M+H]+:211.
実施例167で合成した4-(1,2,3,4-テトラヒドロキノリン-3-イル)ベンゼンスルホンアミド(1.00g、3.47mmol)をプロパン-2-オール(1.0L)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例171の化合物)(394.9mg、1.37mmol、収率39%、エナンチオ過剰率97.9%)を白色固体として得た。
1H-NMR(CDCl3)δ:7.89(2H,d,J=8.7Hz),7.40(2H,d,J=8.2Hz),7.05-7.00(2H,m),6.68-6.66(1H,m),6.56(1H,d,J=9.1Hz),4.75(2H,s),3.49(1H,dd,J=10.7,3.4Hz),3.36(1H,dd,J=11.0,12.8Hz),3.27-3.25(1H,m),3.03-3.01(2H,m).
MS(ESI)[M+H]+:289.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOZ-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=90:10
総注入量:975mL(5.0mL/回)
流量:5mL/min
検出:UV(254nm)
Rt:23.00~26.00分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:0.46mm、長さ:150mm、粒子径:3μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:18.83分
参考例167で合成した4-(1,2,3,4-テトラヒドロキノリン-3-イル)ベンゼンスルホンアミド(1.00g、3.47mmol)をプロパン-2-オール(1.0L)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例172の化合物)(378.6mg、1.31mmol、収率38%、エナンチオ過剰率94.0%)を白色固体として得た。
1H-NMR(CDCl3)δ:7.89(2H,d,J=8.7Hz),7.40(2H,d,J=8.2Hz),7.05-7.00(2H,m),6.68-6.66(1H,m),6.56(1H,d,J=9.1Hz),4.75(2H,s),3.49(1H,dd,J=10.7,3.4Hz),3.36(1H,dd,J=11.0,12.8Hz),3.27-3.25(1H,m),3.03-3.01(2H,m).
MS(ESI)[M+H]+:289.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOZ-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=90:10
総注入量:975mL(5.0mL/回)
流量:5mL/min
検出:UV(254nm)
Rt:26.50~31.50分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:0.46mm、長さ:150mm、粒子径:3μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:22.46分
参考例167で合成した4-(1,2,3,4-テトラヒドロキノリン-3-イル)ベンゼンスルホンアミド(1.00g、3.47mmol)をプロパン-2-オール(1.0L)に溶解し、HPLCを用いて以下の条件で光学分割することで、表題化合物(以下、実施例172の化合物)(378.6mg、1.31mmol、収率38%、エナンチオ過剰率94.0%)を白色固体として得た。
1H-NMR(CDCl3)δ:7.89(2H,d,J=8.7Hz),7.40(2H,d,J=8.2Hz),7.05-7.00(2H,m),6.68-6.66(1H,m),6.56(1H,d,J=9.1Hz),4.75(2H,s),3.49(1H,dd,J=10.7,3.4Hz),3.36(1H,dd,J=11.0,12.8Hz),3.27-3.25(1H,m),3.03-3.01(2H,m).
MS(ESI)[M+H]+:289.
HPLCを用いた光学分割条件:
カラム:DaicelChiralcelOZ-Hキラルカラム
(内径:20mm、長さ:250mm、粒子径:5μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=90:10
総注入量:975mL(5.0mL/回)
流量:5mL/min
検出:UV(254nm)
Rt:26.50~31.50分
HPLC分析条件:
カラム:DaicelChiralcelOZ-3キラルカラム
(内径:0.46mm、長さ:150mm、粒子径:3μm)
カラム温度:40℃
移動相:プロパン-2-オール:ヘキサン=50:50
流量:0.6mL/min
検出:UV(254nm)
Rt:22.46分
テトラヒドロキノリン誘導体(I)又はその薬理学的に許容される塩のフェロトーシス阻害作用を、ヒト線維肉腫細胞(HT-1080細胞)を用いて、フェロトーシス誘導剤であるErastin処置により生じる細胞死に対する阻害作用を指標として評価した。
テトラヒドロキノキサリン誘導体である比較例1の化合物、及び、テトラヒドロキノリン誘導体(I)又はその薬理学的に許容される塩のラジカル捕捉作用を、DPPH法を用いて評価した。DPPH法は抗酸化能測定キット(同仁化学研究所)を用いて実施した。
筋萎縮性側索硬化症モデルマウスであるスーパーオキサイドディスムターゼ1(SOD1)G93Aトランスジェニックマウスの運動機能障害の発症に対するテトラヒドロキノリン誘導体(I)又はその薬理学的に許容される塩の作用を検討した。
Claims (5)
- 下記の一般式(I)で示されるテトラヒドロキノリン誘導体又はその薬理学的に許容される塩を有効成分として含有する、筋萎縮性側索硬化症の治療剤又は予防剤。
R1xにおいて、前記アリール基がフェニル基である場合は、該フェニル基と、5及び6員のラクタム環並びに環の構成原子として酸素原子を1又は2個含む5及び6員環飽和ヘテロ環からなる群から選択される1つの環とが縮合した縮合環基(該縮合環基の1個の任意の水素原子は、メチル基で置換されていてもよい)となっていてもよく、
R1yは、水素原子、フェニル基、4-ヒドロキシメチルフェニル基、4-アミノカルボニルフェニル基、4-アセトアミドフェニル基、4-アミノスルホニルフェニル基、4-メチルスルホニルフェニル基又は3-ピリジル基を表し(ただし、R1xおよびR1yがともに水素原子であることを除く)、
R2、R4及びR5の組み合わせは、R2、R4及びR5が全て水素原子であるか、
又は、R2、R4及びR5の1つは、ハロゲン原子、メトキシ基若しくは1つの水素原子がヒドロキシ基で置換されていてもよいメチル基、かつ、他の2つは水素原子であり、
R3は、水素原子、ハロゲン原子、1~3個の任意の水素原子がそれぞれ独立してヒドロキシ基若しくはフッ素原子で置換されていてもよい炭素数1~3のアルキル基、3-ヒドロキシオキセタン-3-イル基、ヒドロキシ基、1~3個の任意の水素原子がフッ素原子で置換されていてもよい炭素数1~3のアルコキシ基、メトキシカルボニル基、-NR9R10、-CH2NR11R12又は-CH2CONR13R14を表し、
R6及びR7は、それぞれ独立して、水素原子又は炭素数1~3のアルキル基を表すか、あるいは、
R6及びR7は、一体となって-(CH2)h-を表し、
hは、3~5の整数を表し、ここで、1個の任意のメチレン基は、酸素原子、-NH-又は-N(CH3)-で置換されていてもよく、
R8は、水素原子又は炭素数1~3のアルキル基を表し、
R9及びR10は、それぞれ独立して、水素原子、-COR15又は炭素数1~3のアルキルスルホニル基を表すか、あるいは、
R9及びR10は、一体となって-(CH2)n-を表し、
nは、3~6の整数を表し、
R11及びR12は、一体となって-(CH2)m-を表し、
mは、3~5の整数を表し、ここで、1個の任意のメチレン基は酸素原子で置換されていてもよく、
R13及びR14は、それぞれ独立して、水素原子、炭素数1~5のアルキル基、2-ヒドロキシエチル基、1個の任意の炭素原子が酸素原子で置換されていてもよい炭素数3あるいは4のシクロアルキル基、又は、1個の任意の炭素原子が窒素原子あるいは酸素原子で置換されていてもよい炭素数3あるいは4のシクロアルキル基で置換されているメチル基を表すか、あるいは、
R13及びR14は、一体となって1又は2個の任意の水素原子がフッ素原子、メチル基、ヒドロキシ基又はメトキシ基で、若しくは、1個の任意のCH2基が酸素原子、窒素原子又は-CONH-で置換されていてもよい-(CH2)k-を表し、
kは、3~5の整数を表し、
R15は、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基又は-NHR16を表し、
R16は、水素原子又は炭素数1~5のアルキル基を表し、
Rvは、水素原子、1個の任意の水素原子がヒドロキシ基あるいはメトキシカルボニル基で置換されていてもよいメチル基、又は、メトキシカルボニル基を表し、
Rwは、水素原子、メチル基、ヒドロキシメチル基又はメトキシカルボニル基を表す。] - R1xは、水素原子、フェニル基(該フェニル基のパラ位の水素原子は、フッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、シアノ基、アミノカルボニル基、アセトアミド基、アミノスルホニル基、メチルスルホニルアミノ基又はメチルスルホニル基で置換されていてもよい)であり、
R1yは、水素原子又は4-アミノスルホニルフェニル基であり(ただし、R1xが、水素原子である場合は、R1yは、4-アミノスルホニルフェニル基であり、又は、R1xが、フェニル基(該フェニル基のパラ位の水素原子は、フッ素原子、トリフルオロメチル基、トリフルオロメトキシ基、シアノ基、アミノカルボニル基、アセトアミド基、アミノスルホニル基、メチルスルホニルアミノ基又はメチルスルホニル基で置換されていてもよい)である場合は、R1yは、水素原子である)、
R2、R4及びR5の組み合わせは、R2、R4及びR5が全て水素原子であるか、R2とR4は、一方がフッ素原子、塩素原子又はメチル基、かつ、他方及びR5が水素原子であり、
R3は、水素原子、フッ素原子、塩素原子、メチル基、ヒドロキシメチル基、トリフルオロメトキシ基又は-CH2CONR13R14であり、
R13は、水素原子又はメチル基であり、
R14は、tert-ブチル基、2-ヒドロキシエチル基、シクロプロピル基、シクロブチル基又はオキセタン-3-イル基であるか、あるいは、
R13及びR14がそれらと結合している窒素原子とともに、ピペラジン環、ピペラジン-2-オン環、アゼチジン環、3,3-ジフルオロアゼチジン環、3,3-ジメチルアゼチジン環、3-ヒドロキシアゼチジン環又は3-メトキシアゼチジン環を形成していてもよく、
Rvは、水素原子であり、
Rwは、水素原子である、請求項1記載のテトラヒドロキノリン誘導体又はその薬理学的に許容される塩を有効成分として含有する、筋萎縮性側索硬化症の治療剤又は予防剤。 - 前記テトラヒドロキノリン誘導体又はその薬理学的に許容される塩が下記の群から選択される、請求項2記載の筋萎縮性側索硬化症の治療剤又は予防剤:
2-フェニル-1,2,3,4-テトラヒドロキノリン、
4-(1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
1-(3-ヒドロキシアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン、
4-(6-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(6-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(7-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(7-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(6-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(5-メチル-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(6-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(7-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(6-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(6-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(5-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンゼンスルホンアミド、
4-(5-フルオロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
4-(5-クロロ-1,2,3,4-テトラヒドロキノリン-2-イル)ベンズアミド、
1-(3-メトキシアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン、
N-(オキセタン-3-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)アセトアミド、
1-(3,3-ジフルオロアゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン、
N-(2-ヒドロキシエチル)-N-メチル-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)アセトアミド、
1-(アゼチジン-1-イル)-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)エタン-1-オン、
N-シクロプロピル-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)アセトアミド、
N-シクロブチル-2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)アセトアミド、
2-(2-フェニル-1,2,3,4-テトラヒドロキノリン-6-イル)-1-(ピペラジン-1-イル)エタン-1-オン、及び
4-(1,2,3,4-テトラヒドロキノリン-3-イル)ベンゼンスルホンアミド、又はその薬理学的に許容される塩。 - 前記テトラヒドロキノリン誘導体又はその薬理学的に許容される塩が2-フェニル-1,2,3,4-テトラヒドロキノリンである、請求項3記載の筋萎縮性側索硬化症の治療剤又は予防剤。
- フェロトーシス阻害剤である、請求項1~4のいずれか一項記載の筋萎縮性側索硬化症の治療剤又は予防剤。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380048404.5A CN119403554A (zh) | 2022-06-24 | 2023-06-23 | 肌萎缩性侧索硬化症的治疗剂或预防剂 |
EP23827288.4A EP4545079A1 (en) | 2022-06-24 | 2023-06-23 | Therapeutic agent or prophylactic agent for amyotrophic lateral sclerosis |
JP2023539099A JPWO2023249106A1 (ja) | 2022-06-24 | 2023-06-23 | |
AU2023286251A AU2023286251A1 (en) | 2022-06-24 | 2023-06-23 | Therapeutic agent or prophylactic agent for amyotrophic lateral sclerosis |
KR1020247034823A KR20250026152A (ko) | 2022-06-24 | 2023-06-23 | 근위축성 측색경화증의 치료제 또는 예방제 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022101476 | 2022-06-24 | ||
JP2022-101476 | 2022-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023249106A1 true WO2023249106A1 (ja) | 2023-12-28 |
Family
ID=89380133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/023264 WO2023249106A1 (ja) | 2022-06-24 | 2023-06-23 | 筋萎縮性側索硬化症の治療剤又は予防剤 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4545079A1 (ja) |
JP (1) | JPWO2023249106A1 (ja) |
KR (1) | KR20250026152A (ja) |
CN (1) | CN119403554A (ja) |
AU (1) | AU2023286251A1 (ja) |
WO (1) | WO2023249106A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5651456A (en) | 1979-09-13 | 1981-05-09 | Wellcome Found | 22phenyltetraline derivative |
JPH05125052A (ja) | 1991-04-16 | 1993-05-21 | Kyorin Pharmaceut Co Ltd | 新規環状アミノフエニル酢酸誘導体、その製造法及びそれらを有効成分とする免疫応答の修飾剤 |
DE10236910A1 (de) | 2002-08-12 | 2004-03-11 | Grünenthal GmbH | Substituierte 1,2,3,4-Tetrahydrochinolinderivate |
WO2005063735A1 (de) | 2003-12-20 | 2005-07-14 | Merck Patent Gmbh | 2- (hetero) -arylsubstituierte tetrahydrochinolinderivate |
WO2007054138A1 (de) | 2005-06-13 | 2007-05-18 | Merck Patent Gmbh | Substituierte tetrahydrochinoline |
WO2013011930A1 (ja) * | 2011-07-15 | 2013-01-24 | 浜理薬品工業株式会社 | 光学活性テトラヒドロキノリン類の製造方法 |
WO2013035712A1 (ja) | 2011-09-05 | 2013-03-14 | 田辺三菱製薬株式会社 | 筋萎縮性側索硬化症の治療又は病勢進展抑制のための薬剤 |
WO2019106434A1 (en) * | 2017-12-01 | 2019-06-06 | Collaborative Medicinal Development Pty. Ltd. | Heterobicyclic aromatic derivatives for the treatment of ferroptosis-related disorders |
CN110372614A (zh) | 2019-07-03 | 2019-10-25 | 山东师范大学 | 一种四氢喹喔啉类化合物及制备方法与应用 |
CN110464727A (zh) | 2019-09-06 | 2019-11-19 | 山东师范大学 | 3,4-二氢-2h-苯并-[1,4]恶嗪类药物或其盐在制备抑制铁死亡药物中的应用 |
JP2022523860A (ja) * | 2019-03-11 | 2022-04-26 | コラボレイティブ メディシナル デベロップメント, エルエルシー | フェロトーシス関連障害の処置のための複素芳香族およびヘテロ二環式芳香族誘導体 |
WO2022138888A1 (ja) * | 2020-12-25 | 2022-06-30 | 東レ株式会社 | テトラヒドロキノリン誘導体及びその医薬用途 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100236910B1 (ko) | 1992-12-14 | 2000-04-01 | 김영환 | 고집적 반도체 기억소자의 메모리셀어레이 제조방법 |
-
2023
- 2023-06-23 JP JP2023539099A patent/JPWO2023249106A1/ja active Pending
- 2023-06-23 CN CN202380048404.5A patent/CN119403554A/zh active Pending
- 2023-06-23 EP EP23827288.4A patent/EP4545079A1/en active Pending
- 2023-06-23 KR KR1020247034823A patent/KR20250026152A/ko active Pending
- 2023-06-23 AU AU2023286251A patent/AU2023286251A1/en active Pending
- 2023-06-23 WO PCT/JP2023/023264 patent/WO2023249106A1/ja active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5651456A (en) | 1979-09-13 | 1981-05-09 | Wellcome Found | 22phenyltetraline derivative |
JPH05125052A (ja) | 1991-04-16 | 1993-05-21 | Kyorin Pharmaceut Co Ltd | 新規環状アミノフエニル酢酸誘導体、その製造法及びそれらを有効成分とする免疫応答の修飾剤 |
DE10236910A1 (de) | 2002-08-12 | 2004-03-11 | Grünenthal GmbH | Substituierte 1,2,3,4-Tetrahydrochinolinderivate |
WO2005063735A1 (de) | 2003-12-20 | 2005-07-14 | Merck Patent Gmbh | 2- (hetero) -arylsubstituierte tetrahydrochinolinderivate |
WO2007054138A1 (de) | 2005-06-13 | 2007-05-18 | Merck Patent Gmbh | Substituierte tetrahydrochinoline |
WO2013011930A1 (ja) * | 2011-07-15 | 2013-01-24 | 浜理薬品工業株式会社 | 光学活性テトラヒドロキノリン類の製造方法 |
WO2013035712A1 (ja) | 2011-09-05 | 2013-03-14 | 田辺三菱製薬株式会社 | 筋萎縮性側索硬化症の治療又は病勢進展抑制のための薬剤 |
WO2019106434A1 (en) * | 2017-12-01 | 2019-06-06 | Collaborative Medicinal Development Pty. Ltd. | Heterobicyclic aromatic derivatives for the treatment of ferroptosis-related disorders |
JP2022523860A (ja) * | 2019-03-11 | 2022-04-26 | コラボレイティブ メディシナル デベロップメント, エルエルシー | フェロトーシス関連障害の処置のための複素芳香族およびヘテロ二環式芳香族誘導体 |
CN110372614A (zh) | 2019-07-03 | 2019-10-25 | 山东师范大学 | 一种四氢喹喔啉类化合物及制备方法与应用 |
CN110464727A (zh) | 2019-09-06 | 2019-11-19 | 山东师范大学 | 3,4-二氢-2h-苯并-[1,4]恶嗪类药物或其盐在制备抑制铁死亡药物中的应用 |
WO2022138888A1 (ja) * | 2020-12-25 | 2022-06-30 | 東レ株式会社 | テトラヒドロキノリン誘導体及びその医薬用途 |
Non-Patent Citations (15)
Title |
---|
"Development of Pharmaceutical Products", vol. 7, 1990, HIROKAWA SHOTEN CO., pages: 163 - 198 |
ANTIOXIDANTS, vol. 258, 2019 |
DIXON ET AL., CELL, vol. 149, 2012, pages 1060 - 1072 |
HONG-XU LEI ET AL., JOURNAL OF MOLECULAR STRUCTURE, vol. 1228, 2021, pages 129485 |
JENNIFER YINUS CAO ET AL., CELLULAR AND MOLECULAR LIFE SCIENCE, vol. 73, 2016, pages 2195 - 2209 |
JEONG ET AL., JOURNAL OF NEUROSCIENCE, vol. 29, no. 3, 2009, pages 610 - 619 |
LARS ET AL., JOURNAL OF MEDICINAL CHEMISTRY, vol. 61, 2018, pages 10126 - 10140 |
LIDDELL ET AL., BIORXIV, 2022 |
LIU X., ET AL.: "Highly regio-, diastereo- and enantioselective one-pot gold/chiral Bronsted acid-catalyzed cascade synthesis of bioactive diversely substituted tetrahydroquinolines", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 10, no. 35, 1 January 2012 (2012-01-01), pages 7208 - 7219, XP055944584, ISSN: 1477-0520, DOI: 10.1039/C2OB25753J * |
MASALDAN SHASHANK, BUSH ASHLEY I., DEVOS DAVID, ROLLAND ANNE SOPHIE, MOREAU CAROLINE: "Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration", FREE RADICAL BIOLOGY & MEDICINE, ELSEVIER INC, US, vol. 133, 1 March 2019 (2019-03-01), US , pages 221 - 233, XP093120971, ISSN: 0891-5849, DOI: 10.1016/j.freeradbiomed.2018.09.033 * |
PROGRESS IN MEDICINE, vol. 5, 1985, pages 2157 - 2161 |
SCIENCE, vol. 264, 1994, pages 1772 - 1775 |
TETRAHEDRON LETTERS, 2008, pages 6893 - 6895 |
TETRAHEDRON: ASYMMETRY, 2015, pages 1174 - 1179 |
YU-ZHEN LI ET AL., FRONTIERS IN CHEMISTRY, vol. 7, 2019, pages 850 |
Also Published As
Publication number | Publication date |
---|---|
KR20250026152A (ko) | 2025-02-25 |
JPWO2023249106A1 (ja) | 2023-12-28 |
CN119403554A (zh) | 2025-02-07 |
EP4545079A1 (en) | 2025-04-30 |
AU2023286251A1 (en) | 2024-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102791690B (zh) | 作为抗癌药的二取代吡啶衍生物 | |
AU2005322920B2 (en) | Piperazinyl and piperidinyl ureas as modulators of fatty acid amide hydrolase | |
EP4269392A1 (en) | Tetrahydroquinoline derivative and medicinal use thereof | |
CN110372636B (zh) | 用于治疗疾病的葡萄糖神经酰胺合成酶抑制剂 | |
US5371094A (en) | Azaheterocyclylmethyl-chromans for treating axiety | |
JP6466171B2 (ja) | 新規アミン誘導体またはその塩 | |
TW202003525A (zh) | 新穎雜環化合物 | |
JP2019529490A (ja) | 嚢胞性線維症膜コンダクタンス制御因子の調節因子、医薬組成物、処置の方法、及び当該調節因子を作製するためのプロセス | |
JP6608358B2 (ja) | RoRyTのキノリニルモジュレーター | |
CN110914262A (zh) | κ阿片受体拮抗剂以及与其相关的产品和方法 | |
KR20140041583A (ko) | Lrrk2 키나제 활성의 억제제 | |
KR20090031898A (ko) | 펜타디엔아미드 유도체 | |
WO2019223732A1 (zh) | 作为钾通道调节剂的对二氨基苯衍生物、其制备方法及其在医药上的应用 | |
KR19990071894A (ko) | 벤조퓨란 카르복사미드 및 술폰아미드 | |
JP2006063064A (ja) | 受容体作動剤 | |
KR102526281B1 (ko) | 옥사지노-퀴나졸린 및 옥사지노-퀴놀린형 화합물, 이의 제조방법 및 용도 | |
WO2023249106A1 (ja) | 筋萎縮性側索硬化症の治療剤又は予防剤 | |
WO2023249105A1 (ja) | 薬剤性心筋障害の治療剤又は予防剤 | |
TW200404067A (en) | New compounds | |
WO2023249107A1 (ja) | 末梢神経障害の治療剤又は予防剤 | |
WO1997032854A1 (fr) | Derives de 2-sulfinylnicotinamide, intermediaire de ces derives, procede pour produire ces derives et composition medicinale contenant ces derives comme ingredient actif | |
HK1107641B (en) | Piperidine- and piperazine-1-carboxylic acid amide derivatives and related compounds as modulators of fatty acid amide hydrolase (faah) for the treatment of anxiety, pain and other conditions | |
CN101346141A (zh) | 适用于治疗mglur5受体介导的障碍的喹啉衍生物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023539099 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23827288 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2023286251 Country of ref document: AU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024024529 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2023286251 Country of ref document: AU Date of ref document: 20230623 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025100824 Country of ref document: RU Ref document number: 2023827288 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023827288 Country of ref document: EP Effective date: 20250124 |
|
WWP | Wipo information: published in national office |
Ref document number: 2025100824 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 1020247034823 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 112024024529 Country of ref document: BR Kind code of ref document: A2 Effective date: 20241125 |
|
WWP | Wipo information: published in national office |
Ref document number: 2023827288 Country of ref document: EP |