WO2023226553A1 - 一种木质废弃物分段热解催化气化制氢装置 - Google Patents
一种木质废弃物分段热解催化气化制氢装置 Download PDFInfo
- Publication number
- WO2023226553A1 WO2023226553A1 PCT/CN2023/082059 CN2023082059W WO2023226553A1 WO 2023226553 A1 WO2023226553 A1 WO 2023226553A1 CN 2023082059 W CN2023082059 W CN 2023082059W WO 2023226553 A1 WO2023226553 A1 WO 2023226553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inner cylinder
- premixed
- cylinder
- pyrolysis
- section
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/02—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/001—Controlling catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/12—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
- C01B3/16—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/06—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the invention relates to the technical field of wood decomposition and hydrogen production, in particular to a staged pyrolysis catalytic gasification hydrogen production device for wood waste.
- biomass has great appeal as the only renewable carbon source.
- Biomass has the characteristics of low sulfur, low nitrogen, high volatile matter, high ash coke activity, and zero CO2 emissions.
- Biomass energy will play a vital role in the implementation of the dual-carbon goals.
- hydrogen is a clean and low-carbon secondary energy.
- the use of biomass gasification to produce hydrogen can reduce the use of fossil energy from the source of hydrogen production and reduce CO2 emissions, with zero carbon emissions in the energy utilization process.
- biomass has shortcomings such as low hydrogen content, high oxygen content, strong water absorption, and low density.
- the hydrogen yield is low, the transportation cost is inconsistent with the utilization scale, and it is not easy to crush, which hinders the biomass hydrogen production process.
- causes certain problems it is necessary to take certain pretreatment measures to improve the biomass structure, regulate the gasification process, further increase hydrogen conversion in tail gas purification, and improve the biomass hydrogen conversion rate.
- a wood waste segmented pyrolysis catalytic gasification hydrogen production device includes a reaction furnace, which from top to bottom consists of a baking section, a thermal premixing section, It consists of a pyrolysis gasification section and a catalytic reforming section;
- the premix mixing assembly includes a premixed inner cylinder, a sealed outer cylinder, a rotating part and a fixed seat.
- the premixed inner cylinder is rotatably installed between the two sets of fixed seats and is hollow inside.
- the sealed outer cylinder is arranged outside the premixed inner cylinder, the rotating member is connected with the premixed inner cylinder and drives the premixed inner cylinder to rotate, and the premixed stirring assembly is arranged in the hot premixing section.
- the premixed inner cylinder is provided with an inlet and outlet hole connected to its inner cavity, and the top of the sealed outer cylinder is There is a feed port and a discharge port at the bottom.
- the rotating member includes a connecting seat, a first transmission gear, a second transmission gear and a driving rod.
- the component is fixedly installed on the top of the fixed base through a connecting base.
- a first transmission gear is installed on the side of the connecting base away from the fixed base.
- a second transmission gear is provided below the first transmission gear to mesh with it.
- the driving rod is connected to the third transmission gear. Two transmission gears are connected.
- the bottom of the connecting seat is connected to a fixed cylinder through a connecting rod, and the driving rod passes through the fixed cylinder and the The second transmission gear is connected.
- the side wall of the premixed inner cylinder is provided with a driving groove, and the driving grooves are circumferentially distributed on the side of the premixed inner cylinder.
- the walls are connected as a whole, and the driving rod extends into the driving groove.
- the sealed outer cylinder is composed of two semi-cylinders with different radii, and the semi-cylinder with a smaller radius is located in the lower half of the circumference. And it fits the outer wall of the premixed inner cylinder.
- the semicylinder with a larger radius is located in the upper half and maintains a certain gap with the outer wall of the premixed inner cylinder.
- a recessed hole is circumferentially opened on the outside of the premixed inner cylinder, and a knocking piece is connected on the outside of the fixed seat.
- the percussion part includes a percussion cylinder, a percussion rod and a connecting spring.
- the percussion cylinder is fixedly installed on the outside of the fixed seat.
- One end of the percussion rod is connected to the connecting spring located inside the percussion cylinder, and the other end extends through the fixed seat to the recessed hole.
- a knocking plate is connected between the knocking rods on the two sets of fixed seats, and the knocking plate is located outside the seal. In the gap between the cylinder and the premix inner cylinder.
- a heat-insulated electric valve is provided between the hot premixing section and the pyrolysis gasification section.
- the valve is used to close and open the discharge port at the bottom of the sealed outer cylinder.
- the pyrolysis and gasification section is provided with a hot flue gas inlet, and carbon-aluminum is produced in the pyrolysis and gasification section.
- the composite residue accumulates in the catalytic reforming section as a fixed bed, and the hydrogen produced in the pyrolysis and gasification section is extracted through an induced draft fan.
- the beneficial effects of the present invention are: the present invention realizes the step-by-step pyrolysis catalytic gasification of low-temperature baking treatment, medium-temperature catalytic gasification, and high-temperature catalytic reforming of wood waste through the reactor, maximizing the conversion of organic components into hydrogen;
- the mixing component can fully mix pine wood chips and aluminum smelting waste residue to improve the hydrogen conversion rate.
- Figure 1 is a schematic diagram of the overall structure of the present invention.
- Figure 2 is a schematic structural diagram of the premix mixing assembly of the present invention.
- Figure 3 is a schematic structural diagram of the rotating component of the present invention.
- Figure 4 is a schematic structural diagram of the sealing outer cylinder of the present invention.
- Figure 5 is a schematic structural diagram of the premixed inner cylinder of the present invention.
- Figure 6 is a schematic structural diagram of the knocking member of the present invention.
- Figure 7 is a schematic diagram of the connection between the knocking cylinder and the knocking rod according to the present invention.
- references herein to "one embodiment” or “an embodiment” refers to a specific feature, structure, or characteristic that may be included in at least one implementation of the present invention. “In one embodiment” appearing in different places in this specification does not all refer to the same embodiment, nor is it a separate or selective embodiment that is mutually exclusive with other embodiments.
- a first embodiment of the present invention provides a segmented pyrolysis catalytic gasification hydrogen production device for wood waste, which includes a reactor 100 and a premixing and stirring assembly 200.
- the furnace 100 is composed of a baking section 101, a thermal premixing section 102, a pyrolysis gasification section 103 and a catalytic reforming section 104 from top to bottom;
- the premixing and stirring assembly 200 includes a premixed inner cylinder 201, a sealed outer cylinder 202, a rotating Part 203 and fixed seat 204.
- the premixed inner cylinder 201 is rotatably installed between the two sets of fixed seats 204 and is hollow inside.
- the sealed outer cylinder 202 is arranged outside the premixed inner cylinder 201.
- the rotating part 203 is connected to the premixed inner cylinder 201 and The premixing inner cylinder 201 is driven to rotate, and the premixing stirring assembly 200 is disposed in the hot premixing section 102 .
- the baking section 101 is used to bake pine wood chips broken into 3 mm or less.
- the temperature in the baking section 101 is 200-300°C; the dried pine wood chips enter the hot premixing section 102 and are mixed in the hot premixing section 102.
- the mass ratio of pine wood chips and aluminum smelting waste residue is 1:1, and then move the mixture of pine wood chips and aluminum smelting waste residue to the pyrolysis and gasification section 103 for pyrolysis and gasification.
- the regenerated hot flue gas is introduced into section 103 for controlled oxygen oxidation. Catalytic gasification occurs in the pyrolysis and gasification section 103 to produce hydrogen.
- the temperature in the pyrolysis and gasification section 103 is 500-700°C.
- the generated hydrogen is extracted through an external induced draft fan, and the carbon-aluminum composite material produced in the pyrolysis gasification section 103 is accumulated to the catalytic reforming section 104.
- the initial pyrolysis gas passes through the fixed bed of carbon-aluminum composite material, and the tar undergoes catalytic reforming.
- the proportion of hydrogen is further increased, and the temperature in the catalytic reforming section 104 is 700-900°C; finally, the carbon-aluminum composite material is discharged from the reaction furnace 100 to the rotary furnace for combustion and gasification, so that the catalyst is regenerated, and the generated regeneration flue gas is used as a heat source It passes into the pyrolysis gasification section 103 to provide energy for roasting, gasification, and reforming to achieve energy self-sufficiency, and the energy recovery and utilization rate reaches more than 85%, thereby achieving a balance between hydrogen production efficiency and energy consumption, and generating a hydrogen-rich gas ratio. Reaching more than 55%.
- the premix mixing assembly 200 is used to mix pine wood chips and aluminum smelting waste residue.
- the pine wood chips dried in the baking section 101 are passed into the premixed inner cylinder 201, and then added to the premixed inner cylinder 201 with a mass ratio of pine wood chips of 1 :1 aluminum smelting waste slag, the rotating member 203 drives the premixed inner cylinder 201 to rotate to achieve full mixing of pine wood chips and aluminum smelting waste slag in the premixed inner cylinder 201, and the sealed outer cylinder 202 can ensure that the premixed inner cylinder 201 is rotated during the mixing process.
- the sufficient mixture of pine wood chips and aluminum smelting waste residue in the medium premixed inner cylinder 201 does not leak, and can also play a thermal insulation role in the premixed inner cylinder 201.
- the present invention realizes the low-temperature baking treatment, medium-temperature catalytic gasification, and high-temperature catalytic reforming step-by-step pyrolysis catalytic gasification of wood waste through the reactor 100 to maximize the conversion of organic components into hydrogen; it is realized through the premixing stirring assembly 200 The thorough mixing of pine wood chips and aluminum smelting waste residue improves the hydrogen conversion rate.
- the premixed inner cylinder 201 is provided with an inlet and outlet hole 201a connected to its inner cavity, and the top of the outer cylinder 202 is sealed.
- An inlet 202a is provided, and an outlet 202b is provided at the bottom.
- the inlet and outlet holes 201a are used for the feeding and discharging of the premixed inner cylinder 201.
- the premixed inner cylinder 201 rotates at a certain angle, the inlet and outlet holes 201a are sealed.
- the feed port 202a opened at the top of the outer cylinder 202 is opposite, and the feeding of the premixed inner cylinder 201 can be realized at this time; when the premixed inner cylinder 201 rotates at a certain angle, the inlet and outlet holes 201a are connected with the discharge hole 201a opened at the bottom of the sealed outer cylinder 202 The opening 202b is opposite, and the discharging of the premixed inner cylinder 201 can be realized at this time.
- the rotating member 203 includes a connecting base 203a, a first transmission gear 203b, a second transmission gear 203c and a driving rod 203d.
- the rotating member 203 is fixedly installed on the top of the fixed base 204 through the connecting base 203a.
- the connecting base 203a is away from the fixed base 204.
- a first transmission gear 203b is installed on one side, a second transmission gear 203c meshing with the first transmission gear 203b is provided below, and the driving rod 203d is connected to the second transmission gear 203c.
- the bottom of the connecting seat 203a is connected to a fixed cylinder through the connecting rod 203e.
- the driving rod 203d passes through the fixed cylinder and is connected to the second transmission gear 203c.
- the driving rod 203d and the second transmission gear 203c are fixed in position through the fixed cylinder.
- the driving rod 203d and the The two transmission gears 203c are respectively located on both sides of the fixed cylinder.
- the side wall of the premixed inner cylinder 201 is provided with a driving groove 201b.
- the driving grooves 201b are circumferentially distributed on the sidewall of the premixed inner cylinder 201 and connected as a whole.
- the driving rod 203d extends into the driving groove 201b.
- the rotating member 203 is driven by an external motor.
- the rotating member 203 is provided with two groups, which are respectively installed on the tops of the two sets of fixed seats 204.
- the two groups of first transmission gears 203b achieve synchronous rotation through a transmission rod connected to the motor output shaft.
- the first transmission gear 203b rotates, it drives the second transmission gear 203c whose bottom meshes with it to rotate.
- the rotation of the second transmission gear 203c drives the driving rod 203d connected with it to make a circular motion.
- the driving rod 203d includes a central axis connected with the second transmission gear 203c.
- the connected rotating rod and the extension rod connected to the end of the rotating rod are perpendicular to each other, and the extension rod extends into the drive groove 201b.
- the extension rod moves in a circle at the same time.
- the extension rod rotates to abut the inner wall of the driving groove 201b
- the extension rod rotates and at the same time the premix inner cylinder 201 rotates.
- the extension rod rotates once, and the premixed inner cylinder 201 rotates at a certain angle.
- the premixed inner cylinder 201 remains stationary.
- the extension rod rotates to abut against the inner wall of the drive groove 201b, the extension rod rotates to drive the premix.
- the inner cylinder 201 rotates together, and the extension rod then rotates and gradually separates from the inner wall of the driving groove 201b.
- the extension rod rotates and the premixed inner cylinder 201 stops rotating, and reciprocates in sequence to realize intermittent rotation of the premixed inner cylinder 201, thereby mixing the premix Pine wood chips and aluminum smelting waste residue in the inner cylinder 201.
- the driving groove 201b is connected as a whole by 8 groups, that is, the second transmission gear 203c rotates once, and the premix inner cylinder 201 rotates 45 degrees.
- the sealed outer cylinder 202 is composed of two semi-cylinders with different radii.
- the semi-cylinder with a smaller radius is located in the lower half and is in contact with the outer wall of the premixed inner cylinder 201 to prevent the premixed inner cylinder 201 from rotating to the inlet and outlet.
- 201a is in the downward position, the material in the premixed inner cylinder 201 leaks, and the semicylinder with a larger radius is located in the upper half and maintains a certain gap with the outer wall of the premixed inner cylinder 201.
- a knocking member 204a is connected to the outside of the fixed base 204.
- the knocking member 204a includes a knocking cylinder 204a-1, a knocking rod 204a-2 and a connecting spring 204a-3.
- the knocking cylinder 204a-1 is fixedly installed on the outside of the fixed base 204.
- knocking rod 204a-2 One end of the knocking rod 204a-2 is connected to the connecting spring 204a-3 located inside the knocking barrel 204a-1, and the other end extends through the fixed base 204 into the recessed hole 201c.
- the end of rod 204a-2 is spherical.
- a knocking plate 204a-4 is connected between the knocking rods 204a-2 on the two sets of fixed seats 204.
- the knocking plate 204a-4 is located in the gap between the sealed outer cylinder 202 and the premixed inner cylinder 201.
- the end of the knocking rod 204a-2 enters the recessed hole 201c, and the knocking rod 204a-2 and the knocking plate 204a-4 are close to the outer wall of the premixed inner cylinder 201.
- the rotating member 203 drives the premixed inner cylinder 201 to rotate
- the end of the knocking rod 204a-2 located in the recessed hole 201c leaves the recessed hole 201c and contacts the side wall of the premixed inner cylinder 201
- the knocking rod 204a-2 faces toward Moving in the direction away from the premixed inner cylinder 201
- the connecting spring 204a-3 is compressed
- the knocking rod 204a-2 drives the knocking plate 204a-4 to move in the direction away from the premixed inner cylinder 201.
- the rotating member 203 drives the premixed
- the end of the knocking rod 204a-2 re-enters the next set of recessed holes 201c, and the connecting spring 204a-3 pushes the knocking rod 204a-2 and the knocking plate 204a-4 toward the premix.
- the barrel 201 moves in the direction, and the knocking plate 204a-4 strikes the premixed inner barrel 201, thereby causing the material adhered to the inner wall of the premixed inner barrel 201 to fall off, preventing the adhesion of the material from affecting the mixing effect.
- the knocking plates 204a-4 are distributed in four groups on the upper half of the premixed inner cylinder 201.
- the second transmission gear 203c rotates once, the premixed inner cylinder 201 rotates 45 degrees, and the knocking plate 204a-4 knocks the premixed inner cylinder 201 once.
- a thermal insulation electric valve is provided between the thermal premixing section 102 and the pyrolysis gasification section 103.
- the thermal insulation electric valve is used to close and open the outlet 202a at the bottom of the sealed outer cylinder 202.
- the heat-insulating electric valve is opened, so that the materials in the premixed inner cylinder 201 enter the pyrolysis gasification section 103 from the outlet 202a of the sealed outer cylinder 202.
- the pyrolysis and gasification section 103 is provided with a hot flue gas inlet.
- the carbon-aluminum composite residue produced in the pyrolysis and gasification section 103 is accumulated in the catalytic reforming section 104 as a fixed bed layer.
- the hydrogen generated in the pyrolysis and gasification section 103 passes through the exhaust gas.
- the fan is pulled out, and the regenerated hot flue gas is introduced into the pyrolysis and gasification section 103 for controlled oxygen oxidation.
- Catalytic gasification occurs in the pyrolysis and gasification section 103 to produce hydrogen.
- the temperature in the pyrolysis and gasification section 103 is 500-700°C.
- the hydrogen generated in the pyrolysis gasification section 103 is extracted through an external induced draft fan.
- the carbon-aluminum composite material generated in the pyrolysis gasification section 103 is accumulated to the catalytic reforming section 104.
- the initial pyrolysis gas passes through the fixed bed of carbon-aluminum composite material.
- the tar undergoes catalytic reforming to further increase the proportion of hydrogen, and the temperature in the catalytic reforming section 104 is 700-900°C; finally, the carbon-aluminum composite material is discharged from the reactor 100 to the rotary furnace for combustion and gasification, so that the catalyst is regenerated.
- the generated regenerated flue gas is passed into the pyrolysis gasification section 103 as a heat source to provide energy for baking, gasification, and reforming, achieving energy self-sufficiency, and the energy recovery and utilization rate reaches more than 85%. This achieves a balance between hydrogen production efficiency and energy consumption, and produces hydrogen-rich gas with a hydrogen ratio of more than 55%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明公开了一种木质废弃物分段热解催化气化制氢装置,其包括,反应炉,所述反应炉自上至下由烘焙段、热预混段、热解气化段和催化重整段组成;预混搅拌组件,包括预混内筒、密封外筒、转动件和固定座,预混内筒转动安装于两组固定座之间且内部中空,密封外筒设置于预混内筒外侧,转动件与预混内筒连接并带动预混内筒转动,预混搅拌组件设置于所述热预混段。本发明通过反应炉实现木质废弃物的低温烘焙处理、中温催化气化、高温催化重整的分步热解催化气化,最大化将有机组分转化为氢气;通过预混搅拌组件实现松木屑和炼铝废渣的充分混合,提高氢气转化率。
Description
本发明涉及木质分解制氢技术领域,特别是一种木质废弃物分段热解催化气化制氢装置。
随着双碳目标的提出,生物质作为唯一的可再生碳源有着极大的吸引力。生物质具有低硫、低氮、高挥发分、高灰焦活性、CO2零排放等特点,在双碳目标实施过程中生物质能必将起到至关重要的作用。同时氢气是一种清洁低碳的二次能源,利用生物质气化制氢可以从产氢源头减少化石能源利用而减少CO2排放,并在能源利用过程中零碳排放。然而,生物质有氢含量低、氧含量高、吸水性强和密度小等缺点,在利用过程中氢气产率低,运输成本与利用规模相互矛盾,还不容易粉碎,给生物质制氢过程造成一定的难题,有必要采取一定的预处理措施改善生物质结构、在气化过程调控、在尾气净化中进一步增加氢气转化,提高生物质氢气转化率。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
为解决上述技术问题,本发明提供如下技术方案:一种木质废弃物分段热解催化气化制氢装置包括,反应炉,所述反应炉自上至下由烘焙段、热预混段、热解气化段和催化重整段组成;预混搅拌组件,包括预混内筒、密封外筒、转动件和固定座,预混内筒转动安装于两组固定座之间且内部中空,密封外筒设置于预混内筒外侧,转动件与预混内筒连接并带动预混内筒转动,预混搅拌组件设置于所述热预混段。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述预混内筒上开设有与其内腔连通的进出料孔,所述密封外筒顶部开设有进料口,底部开设有出料口。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述转动件包括连接座、第一传动齿轮、第二传动齿轮和驱动杆,转动
件通过连接座固定安装于所述固定座顶部,连接座远离所述固定座的一侧安装有第一传动齿轮,第一传动齿轮下方设置有与其相啮合的第二传动齿轮,驱动杆与第二传动齿轮连接。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述连接座底部通过连接杆连接有固定筒,所述驱动杆穿过固定筒与所述第二传动齿轮连接。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述预混内筒侧壁开设有驱动槽,驱动槽周向分布于预混内筒侧壁并连接为一个整体,所述驱动杆延伸至驱动槽内。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述密封外筒由两个半径不同的半圆筒组成,半径较小的半圆筒位于下半周且与所述预混内筒外壁相贴合,半径较大的半圆筒位于上半周与预混内筒外壁保持一定间隙。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述预混内筒外侧周向开设有凹陷孔,所述固定座外侧连接有敲击件,敲击件包括敲击筒、敲击杆和连接弹簧,敲击筒固定安装于固定座外侧,敲击杆一端连接位于敲击筒内部的连接弹簧,另一端穿过固定座延伸至凹陷孔内。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述两组固定座上敲击杆之间连接有敲击板,敲击板位于密封外筒和预混内筒的间隙内。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述热预混段和热解气化段之间设置有隔热电动阀,隔热电动阀用于封闭和开启所述密封外筒底部的出料口。
作为本发明所述木质废弃物分段热解催化气化制氢装置的一种优选方案,其中:所述热解气化段开设有热烟气进口,热解气化段内产生炭-铝复合残渣累积至催化重整段作为固定床层,热解气化段内产生的氢气通过引风机抽出。
本发明有益效果为:本发明通过反应炉实现木质废弃物的低温烘焙处理、中温催化气化、高温催化重整的分步热解催化气化,最大化将有机组分转化为氢气;通过预混搅拌组件实现松木屑和炼铝废渣的充分混合,提高氢气转化率。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明整体结构示意图。
图2为本发明预混搅拌组件结构示意图。
图3为本发明转动件结构示意图。
图4为本发明密封外筒结构示意图。
图5为本发明预混内筒结构示意图。
图6为本发明敲击件结构示意图。
图7为本发明敲击筒-敲击杆连接示意图。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
参照图1至图2,为本发明第一个实施例,该实施例提供了一种木质废弃物分段热解催化气化制氢装置,其包括反应炉100和预混搅拌组件200,反应炉100自上至下由烘焙段101、热预混段102、热解气化段103和催化重整段104组成;预混搅拌组件200,包括预混内筒201、密封外筒202、转动件203和固定座204,预混内筒201转动安装于两组固定座204之间且内部中空,密封外筒202设置于预混内筒201外侧,转动件203与预混内筒201连接并带动预混内筒201转动,预混搅拌组件200设置于热预混段102。
烘焙段101用于对破碎为3mm以下的松木屑进行烘焙处理,烘焙段101内的温度为200-300℃;烘干后的松木屑进入热预混段102,并在热预混段102内加入经过高温水蒸气活化后的炼铝废渣进行混合,松木屑和炼铝废渣混合质量比为1:1,再将松木屑和炼铝废渣混合物移动至热解气化段103,热解气化段103内通入再生热烟气控氧气化,在热解气化段103中发生催化气化产生氢气,热解气化段103内的温度为500-700℃,热解气化段103内产生的氢气通过外部的引风机抽出,热解气化段103内产生的炭-铝复合材料累积至催化重整段104,初热解气经过炭铝复合材料固定床,焦油经过催化重整,使氢气比例进一步增加,催化重整段104内温度为700-900℃;最后将炭铝复合材料从反应炉100内排出到回转炉中燃烧气化,使得催化剂再生,产生的再生烟气作为热源通入热解气化段103,为烘焙、气化、重整提供能量,达到能量自给,能量回收利用率达到85%以上,从而达到制氢效率与能量消耗的制衡,产生富氢燃气氢气比例达55%以上。
预混搅拌组件200用于混合松木屑和炼铝废渣,烘焙段101烘干后的松木屑通入预混内筒201中,然后再在预混内筒201中加入与松木屑质量比为1:1的炼铝废渣,通过转动件203带动预混内筒201转动实现预混内筒201中松木屑和炼铝废渣的充分混合,密封外筒202能够保证预混内筒201在转动混合过程中预混内筒201中混合松木屑和炼铝废渣的充分混合物不泄漏,同样也能对预混内筒201起到保温作用。
本发明通过反应炉100实现木质废弃物的低温烘焙处理、中温催化气化、高温催化重整的分步热解催化气化,最大化将有机组分转化为氢气;通过预混搅拌组件200实现松木屑和炼铝废渣的充分混合,提高氢气转化率。
实施例2
参照图1至图7,为本发明第二个实施例,其不同于第一个实施例的是:预混内筒201上开设有与其内腔连通的进出料孔201a,密封外筒202顶部开设有进料口202a,底部开设有出料口202b,进出料孔201a用于预混内筒201的进料和出料,当预混内筒201转动一定角度后,进出料孔201a与密封外筒202顶部开设的进料口202a相对,此时可实现预混内筒201的进料;当预混内筒201转动一定角度后,进出料孔201a与密封外筒202底部开设的出料口202b相对,此时可实现预混内筒201的出料。
进一步的,转动件203包括连接座203a、第一传动齿轮203b、第二传动齿轮203c和驱动杆203d,转动件203通过连接座203a固定安装于固定座204顶部,连接座203a远离固定座204的一侧安装有第一传动齿轮203b,第一传动齿轮203b下方设置有与其相啮合的第二传动齿轮203c,驱动杆203d与第二传动齿轮203c连接。
连接座203a底部通过连接杆203e连接有固定筒,驱动杆203d穿过固定筒与第二传动齿轮203c连接,驱动杆203d和第二传动齿轮203c通过固定筒实现位置的固定,驱动杆203d和第二传动齿轮203c分别位于固定筒的两侧。预混内筒201侧壁开设有驱动槽201b,驱动槽201b周向分布于预混内筒201侧壁并连接为一个整体,驱动杆203d延伸至驱动槽201b内。
转动件203通过外部的电机进行驱动,转动件203设置有两组,分别安装在两组固定座204顶部,两组第一传动齿轮203b通过与电机输出轴连接的传动杆实现同步转动。当第一传动齿轮203b转动时,带动底部与其啮合的第二传动齿轮203c转动,第二传动齿轮203c转动带动与其连接的驱动杆203d做圆周运动,驱动杆203d包括与第二传动齿轮203c中心轴连接的转动杆和连接于转动杆端部的延长杆,转动杆与延长杆相互垂直,延长杆延伸至驱动槽201b内,当转动杆跟随第二传动齿轮203c做圆周运动,延长杆同时做圆周运动,当延长杆转动到与驱动槽201b的内壁相抵接时,延长杆转动的同时盘动预混内筒201转动。延长杆转动一圈,预混内筒201转动一定角度。延长杆转动一圈的过程中,首先转动靠近驱动槽201b的内壁,此时预混内筒201保持不动,当延长杆转动到与驱动槽201b的内壁相抵接状态,延长杆转动带动预混内筒201一起转动,延长杆接着转动,逐渐与驱动槽201b的内壁脱离,延长杆转动预混内筒201停止转动,依次往复,实现预混内筒201的间隙性转动,从而混匀预混内筒201中的松木屑和炼铝废渣。驱动槽201b由8组连接为一个整体,即第二传动齿轮203c转动一圈,预混内筒201转动45度。
进一步的,密封外筒202由两个半径不同的半圆筒组成,半径较小的半圆筒位于下半周且与预混内筒201外壁相贴合,防止当预混内筒201转动到进出料孔201a向下位置时,预混内筒201中的物料发生泄漏,半径较大的半圆筒位于上半周与预混内筒201外壁保持一定间隙。
预混内筒201外侧周向开设有凹陷孔201c,凹陷孔201c周向设置有8组,
每组凹陷孔201c呈45度均匀分布,固定座204外侧连接有敲击件204a,敲击件204a包括敲击筒204a-1、敲击杆204a-2和连接弹簧204a-3,敲击筒204a-1固定安装于固定座204外侧,敲击杆204a-2一端连接位于敲击筒204a-1内部的连接弹簧204a-3,另一端穿过固定座204延伸至凹陷孔201c内,敲击杆204a-2端部为球状。两组固定座204上敲击杆204a-2之间连接有敲击板204a-4,敲击板204a-4位于密封外筒202和预混内筒201的间隙内。
当预混内筒201为非转动状态时,敲击杆204a-2端部进入凹陷孔201c内,敲击杆204a-2和敲击板204a-4贴近预混内筒201外壁。当转动件203带动预混内筒201转动,位于凹陷孔201c内的敲击杆204a-2端头从凹陷孔201c内离开与预混内筒201侧壁抵接,敲击杆204a-2朝着远离预混内筒201的方向移动,连接弹簧204a-3压缩,敲击杆204a-2带动敲击板204a-4朝着远离预混内筒201的方向移动,当转动件203带动预混内筒201转动45度后,敲击杆204a-2端头重新进入下一组凹陷孔201c内,连接弹簧204a-3推动敲击杆204a-2和敲击板204a-4朝着预混内筒201方向移动,敲击板204a-4敲击预混内筒201,从而使得粘连在预混内筒201内壁上的物料脱落,防止物料粘连影响混匀效果。敲击板204a-4分布与预混内筒201的上半周,设置有四组。第二传动齿轮203c转动一圈,预混内筒201转动45度,敲击板204a-4敲击一次预混内筒201。
进一步的,热预混段102和热解气化段103之间设置有隔热电动阀,隔热电动阀用于封闭和开启密封外筒202底部的出料口202a,当预混内筒201中松木屑和炼铝废渣混合均匀后,开启隔热电动阀,使得预混内筒201中物料从密封外筒202出料口202a进入热解气化段103。热解气化段103开设有热烟气进口,热解气化段103内产生炭-铝复合残渣累积至催化重整段104作为固定床层,热解气化段103内产生的氢气通过引风机抽出,热解气化段103内通入再生热烟气控氧气化,在热解气化段103中发生催化气化产生氢气,热解气化段103内的温度为500-700℃,热解气化段103内产生的氢气通过外部的引风机抽出,热解气化段103内产生的炭-铝复合材料累积至催化重整段104,初热解气经过炭铝复合材料固定床,焦油经过催化重整,使氢气比例进一步增加,催化重整段104内温度为700-900℃;最后将炭铝复合材料从反应炉100内排出到回转炉中燃烧气化,使得催化剂再生,产生的再生烟气作为热源通入热解气化段103,为烘焙、气化、重整提供能量,达到能量自给,能量回收利用率达到85%以上,
从而达到制氢效率与能量消耗的制衡,产生富氢燃气氢气比例达55%以上。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (10)
- 一种木质废弃物分段热解催化气化制氢装置,其特征在于:包括,反应炉(100),所述反应炉(100)自上至下由烘焙段(101)、热预混段(102)、热解气化段(103)和催化重整段(104)组成;预混搅拌组件(200),包括预混内筒(201)、密封外筒(202)、转动件(203)和固定座(204),预混内筒(201)转动安装于两组固定座(204)之间且内部中空,密封外筒(202)设置于预混内筒(201)外侧,转动件(203)与预混内筒(201)连接并带动预混内筒(201)转动,预混搅拌组件(200)设置于所述热预混段(102)。
- 如权利要求1所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述预混内筒(201)上开设有与其内腔连通的进出料孔(201a),所述密封外筒(202)顶部开设有进料口(202a),底部开设有出料口(202b)。
- 如权利要求2所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述转动件(203)包括连接座(203a)、第一传动齿轮(203b)、第二传动齿轮(203c)和驱动杆(203d),转动件(203)通过连接座(203a)固定安装于所述固定座(204)顶部,连接座(203a)远离所述固定座(204)的一侧安装有第一传动齿轮(203b),第一传动齿轮(203b)下方设置有与其相啮合的第二传动齿轮(203c),驱动杆(203d)与第二传动齿轮(203c)连接。
- 如权利要求3所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述连接座(203a)底部通过连接杆(203e)连接有固定筒,所述驱动杆(203d)穿过固定筒与所述第二传动齿轮(203c)连接。
- 如权利要求4所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述预混内筒(201)侧壁开设有驱动槽(201b),驱动槽(201b)周向分布于预混内筒(201)侧壁并连接为一个整体,所述驱动杆(203d)延伸至驱动槽(201b)内。
- 如权利要求1-5任一所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述密封外筒(202)由两个半径不同的半圆筒组成,半径较小的半圆筒位于下半周且与所述预混内筒(201)外壁相贴合,半径较大的半圆筒位于上半周与预混内筒(201)外壁保持一定间隙。
- 如权利要求6所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述预混内筒(201)外侧周向开设有凹陷孔(201c),所述固定座(204) 外侧连接有敲击件(204a),敲击件(204a)包括敲击筒(204a-1)、敲击杆(204a-2)和连接弹簧(204a-3),敲击筒(204a-1)固定安装于固定座(204)外侧,敲击杆(204a-2)一端连接位于敲击筒(204a-1)内部的连接弹簧(204a-3),另一端穿过固定座(204)延伸至凹陷孔(201c)内。
- 如权利要求7所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述两组固定座(204)上敲击杆(204a-2)之间连接有敲击板(204a-4),敲击板(204a-4)位于密封外筒(202)和预混内筒(201)的间隙内。
- 如权利要求1-5、7、8任一所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述热预混段(102)和热解气化段(103)之间设置有隔热电动阀,隔热电动阀用于封闭和开启所述密封外筒(202)底部的出料口(202a)。
- 如权利要求9所述的木质废弃物分段热解催化气化制氢装置,其特征在于:所述热解气化段(103)开设有热烟气进口,热解气化段(103)内产生炭-铝复合残渣累积至催化重整段(104)作为固定床层,热解气化段(103)内产生的氢气通过引风机抽出。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210578723.4 | 2022-05-25 | ||
CN202210578723.4A CN114907869B (zh) | 2022-05-25 | 2022-05-25 | 一种木质废弃物分段热解催化气化制氢装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023226553A1 true WO2023226553A1 (zh) | 2023-11-30 |
Family
ID=82767772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/082059 WO2023226553A1 (zh) | 2022-05-25 | 2023-03-17 | 一种木质废弃物分段热解催化气化制氢装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114907869B (zh) |
WO (1) | WO2023226553A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114907869B (zh) * | 2022-05-25 | 2023-03-24 | 常州大学 | 一种木质废弃物分段热解催化气化制氢装置 |
CN118356875B (zh) * | 2024-06-17 | 2024-09-24 | 西安航天源动力工程有限公司 | 一种填料反应器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104593090A (zh) * | 2014-12-25 | 2015-05-06 | 华中科技大学 | 一种生物质热解气化制备合成气的方法及装置 |
KR102335513B1 (ko) * | 2021-03-08 | 2021-12-06 | 김돈한 | 연속운전이 가능한 비유동식 폐플라스틱 급속 열분해 장치 및 시스템 |
CN114907869A (zh) * | 2022-05-25 | 2022-08-16 | 常州大学 | 一种木质废弃物分段热解催化气化制氢装置 |
CN115044396A (zh) * | 2022-05-20 | 2022-09-13 | 常州大学 | 一种木质废弃物分段热解催化气化制氢的方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202186990U (zh) * | 2011-04-22 | 2012-04-11 | 中国科学院广州能源研究所 | 一种有机固体废弃物热解气化装置 |
CN105586095B (zh) * | 2014-10-22 | 2018-03-16 | 中国石油化工股份有限公司 | 一种生物质微波热解气化反应装置 |
CN104785145B (zh) * | 2015-04-28 | 2017-03-01 | 湖南瑞翔新材料股份有限公司 | 湿式混合设备 |
CN108219852A (zh) * | 2018-02-11 | 2018-06-29 | 司宸 | 微波热解生物质的气化反应装置及其制气方法 |
CN108315056A (zh) * | 2018-02-22 | 2018-07-24 | 余军 | 自除焦油式生物质气化反应系统及其方法 |
CN211936626U (zh) * | 2020-03-30 | 2020-11-17 | 成都新贵大漆业有限公司 | 一种用于油漆生产的预混料装置 |
-
2022
- 2022-05-25 CN CN202210578723.4A patent/CN114907869B/zh active Active
-
2023
- 2023-03-17 WO PCT/CN2023/082059 patent/WO2023226553A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104593090A (zh) * | 2014-12-25 | 2015-05-06 | 华中科技大学 | 一种生物质热解气化制备合成气的方法及装置 |
KR102335513B1 (ko) * | 2021-03-08 | 2021-12-06 | 김돈한 | 연속운전이 가능한 비유동식 폐플라스틱 급속 열분해 장치 및 시스템 |
CN115044396A (zh) * | 2022-05-20 | 2022-09-13 | 常州大学 | 一种木质废弃物分段热解催化气化制氢的方法 |
CN114907869A (zh) * | 2022-05-25 | 2022-08-16 | 常州大学 | 一种木质废弃物分段热解催化气化制氢装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114907869A (zh) | 2022-08-16 |
CN114907869B (zh) | 2023-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023226553A1 (zh) | 一种木质废弃物分段热解催化气化制氢装置 | |
CN104593090B (zh) | 一种生物质热解气化制备合成气的方法及装置 | |
CN106044767B (zh) | 一种炭化活化一体化加工装置及其加工方法 | |
CN104531227B (zh) | 一种生物质双轴螺旋热解装置 | |
CN104129754B (zh) | 一种生物质热解及化学链制氢耦合连续反应装置及利用该装置制备氢气的方法 | |
CN102676236A (zh) | 一种三段分离式生物质气化方法及装置 | |
CN115044396A (zh) | 一种木质废弃物分段热解催化气化制氢的方法 | |
RU2663144C1 (ru) | Способ газификации твердого топлива и устройство для его осуществления | |
CN115869877A (zh) | 一种太阳能耦合生物质能的热氢联产系统及方法 | |
CN112250071A (zh) | 一种用于生产活性炭和蒸汽的炭化活化双功能同体炉 | |
CN201999895U (zh) | 物料翻转及输送一体化装置 | |
CN110240944B (zh) | 粉煤常压高温裂解富氧气化联产煤气和半焦的方法及装置 | |
CN104673414B (zh) | 一种煤催化气化富甲烷化一体化装置和方法 | |
CN1323142C (zh) | 复合循环流化床煤气化方法及设备 | |
CN204369820U (zh) | 生物质气化炉余热综合利用系统 | |
CN107400539B (zh) | 基于螺旋热解器和流化床气化器的低阶燃料低温气化装置 | |
CN213569550U (zh) | 一种用于生产活性炭和蒸汽的炭化活化双功能同体炉 | |
CN106147871B (zh) | 一种生物质气化炉及三级催化裂解焦油的方法 | |
CN201245612Y (zh) | 一种高温低焦油生物质气化装置 | |
CN113604231A (zh) | 以低阶煤热解半焦作为固体热载体热解生物质的方法及其装置 | |
CN221975753U (zh) | 竖窑co2转新能源联产石灰与矿化零碳排的装置 | |
CN118813297A (zh) | 气炭联产混吸式生物质移动床气化活化一体炉 | |
CN216236873U (zh) | 一种生成低焦油生物质燃气的双固定床系统 | |
CN116332128B (zh) | 生物质制备甲醇联产高质活性炭的系统及其制备方法 | |
CN116216638A (zh) | 新型生物质制氢的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23810628 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23810628 Country of ref document: EP Kind code of ref document: A1 |