WO2023223432A1 - モードフィールド変換光回路 - Google Patents
モードフィールド変換光回路 Download PDFInfo
- Publication number
- WO2023223432A1 WO2023223432A1 PCT/JP2022/020570 JP2022020570W WO2023223432A1 WO 2023223432 A1 WO2023223432 A1 WO 2023223432A1 JP 2022020570 W JP2022020570 W JP 2022020570W WO 2023223432 A1 WO2023223432 A1 WO 2023223432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mode field
- waveguide
- optical circuit
- conversion optical
- optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
Definitions
- the present invention relates to an optical circuit that reduces radiation loss that occurs when converting a mode field in an optical waveguide.
- An optical waveguide consists of a core and a cladding formed on a substrate and having a difference in refractive index, and light propagates through the core formed in a desired pattern.
- the mode field of propagating light can be converted.
- a spot size converter SSC
- SSC spot size converter
- a mode filter that adiabatically converts the width and height of the core to make the optical waveguide thinner and cut higher-order modes.
- An object of the present invention is to provide a mode field conversion optical circuit that can suppress loss that occurs when converting a mode field.
- the present invention provides a mode field conversion optical circuit that converts the mode field of light propagating through an optical waveguide, the circuit being connected to the core of the optical waveguide and connected to the core of the optical waveguide.
- the present invention is characterized by comprising a mode field converter that converts a mode field of light, and reflective structures installed at intervals along the optical axis direction of the mode field converter.
- FIG. 1 is a diagram showing a mode field conversion optical circuit according to a first embodiment of the present invention
- FIG. 2 is a diagram showing the coupling rate with an optical fiber when the mode field conversion optical circuit of the first embodiment is applied
- FIG. 3 is a diagram showing a mode filter according to a second embodiment of the present invention
- FIG. 4 is a diagram showing a tapered waveguide according to a third embodiment of the present invention.
- a planar lightwave circuit (PLC) is used as the mode field conversion optical circuit.
- PLC planar lightwave circuit
- a quartz-based PLC is a waveguide device with low loss and high reliability, and is widely used as a platform for realizing integrated circuits such as optical multiplexers, optical switches, and optical splitters as optical communication devices. .
- the mode field conversion optical circuit of the present invention is not limited to any particular material, and is not limited to quartz-based waveguides, but also silicon (Si) waveguides, indium phosphide (InP)-based waveguides, and polymer-based waveguides. Waveguides of other material systems, such as waveguides, can be applied.
- FIG. 1 shows a mode field conversion optical circuit according to a first embodiment of the present invention.
- FIG. 1(a) is a perspective view of the PLC 10 viewed from above
- FIG. 1(b) is a diagram showing a cross section perpendicular to the optical axis of the waveguide.
- SSC spot size converter
- the optical waveguide of the PLC 10 is provided with a segment waveguide type SSC 15 connected to the core 13 at the connection end with the optical fiber.
- reflection structures 14a and 14b having the same shape as a straight waveguide are installed at intervals in the PLC 10 on both sides along the optical axis direction of the SSC 15.
- the SSC 15 is not limited to the segment waveguide type, and a structure that converts the mode field of light can be applied.
- Other mode field converters can be used, for example structures with tapered cores.
- the purpose of installing the reflection structures 14a and 14b is to reflect the light emitted from the side surface of the SSC 15 and recombine the reflected light to the waveguide.
- the reflective structures 14a and 14b are made of the same material as the core 13 and have a higher refractive index than the cladding 12, as will be described later. Therefore, the interface between the reflective structures 14a, 14b and the cladding 12 acts as a reflective surface.
- the interface between the reflective structures 14a, 14b on the SSC 15 side is used as a reflective surface, and the distance between the reflective structures 14a, 14b and the SSC 15 is determined according to the wavelength of the signal light propagating through the core 13 and the mode field of the optical fiber to be connected. Set the interval G between.
- the boundary surface on the opposite side to the SSC 15 side is used as a reflective surface, and the width W of the reflective structures 14a and 14b is set in the same manner. If the reflective structure is not linear, it may be set for each minute section in the longitudinal direction of the reflective structure. Further, in either case, the interval G and width W may be determined using a wavefront matching method.
- the length L of the reflective structures 14a, 14b is equal to the length of the SSC 15, that is, the starting point S/ending point E of the reflecting structures 14a, 14b is made to coincide with the starting point S/ending point E of the SSC 15. This is because light is emitted from the starting point to the ending point of the SSC 15. Note that, strictly speaking, the radiation from the SSC 15 is emitted not only in a component perpendicular to the optical axis but also in a spread manner. Therefore, if there is sufficient space on the PLC 10, it is desirable that the reflection structures 14a and 14b extend beyond the end point E and be longer than the length of the SSC 15.
- the reflective structures 14a and 14b are provided symmetrically, that is, at equal intervals (distance G) on both sides, with the SSC 15 as the center.
- distance G intervals
- the reflective structure may be provided only on one side, although the effect of reducing radiation loss is halved.
- the reflection structures 14a and 14b do not have to be limited to straight waveguides, but may have a structure that matches the shape of the mode field converter and that matches the direction of light emission from the mode field converter. You can also do it.
- the mode field conversion optical circuit can be manufactured by applying a well-known PLC manufacturing method, and will be briefly described here.
- an underclad layer made of silica-based glass (SiO 2 ) and a core layer made of silica-based glass whose refractive index is increased by doping with germanium (Ge) are sequentially deposited.
- the core layer is processed using general photolithography and dry etching techniques to form the core 13 of the optical waveguide in a desired pattern.
- a desired pattern of straight waveguides that will become the reflection structures 14a and 14b is also formed.
- an overcladding layer made of silica glass is deposited on the core 13 to form a buried waveguide consisting of the core 13 and the cladding 12.
- FIG. 2 shows the coupling rate with the optical fiber when the mode field conversion optical circuit of the first embodiment is applied. This is the result of simulating the coupling rate when a PLC optical waveguide and an optical fiber are butt-connected at the connection end surfaces.
- the optical fiber used is a single mode optical fiber (S405-XP), and the wavelength used is assumed to be 450 to 700 nm.
- Commercially available optical fibers may have different mode fields depending on the manufacturing slot, but in this case, we measured the mode field of the purchased optical fiber and used the measured value as the target mode field.
- the width of the core 13 of the PLC 10 is 2.3 ⁇ m, and the width W of the reflection structures 14a and 14b is 1.
- the length L was 1 ⁇ m, the length L was 600 ⁇ m, and the distance G between the reflective structures 14a and 14b and the SSC 15 was 6.0 ⁇ m.
- the mode field conversion optical circuit of this embodiment and the case of only a segmented waveguide type SSC were simulated for comparison.
- the horizontal axis is the wavelength
- the vertical axis is the coupling rate.
- the case of only the segment waveguide type SSC is shown by a solid line
- the mode field conversion optical circuit of this embodiment is shown by a broken line.
- the mode field conversion optical circuit improves the coupling rate between the optical fiber and the optical waveguide over the entire target wavelength band. The coupling rate is greatly improved on the longer wavelength side where light is more easily radiated, and the wavelength difference in the coupling rate is also reduced.
- the mode field conversion optical circuit of this embodiment can suppress the loss that occurs in existing mode field converters.
- the SSC installed on the connection end face with an optical fiber was used as an example, but in the second embodiment, an example of application to a mode filter installed in an optical circuit as a mode field converter is given.
- the segment waveguide operates as a mode filter because the zero-order mode light propagates easily, but the higher the mode, the more difficult it is to propagate.
- the fill factor is small, the radiation loss of the zero-order mode also becomes large.
- FIG. 3 shows a mode filter according to a second embodiment of the present invention.
- a segment waveguide type mode filter 25 installed in the optical circuit of the PLC 20 and connected to the core 23 is shown.
- the PLC 20 includes reflection structures 24a and 24b having the same shape as a linear waveguide on both sides of the mode filter 25 along the optical axis direction.
- the starting point S/ending point E of the reflecting structures 24a, 24b is made to coincide with the starting point S/ending point E of the mode filter 25, and the width of the reflecting structures 24a, 24b and the reflecting structure 24a are adjusted according to the wavelength of the signal light propagating through the core 23. , 24b and the mode filter 25. Note that, if there is sufficient space on the PLC 20, it is desirable that the lengths of the reflection structures 24a and 24b be longer than the length of the mode filter 25, exceeding the starting point S/ending point E.
- the method for configuring and manufacturing the reflective structures 24a and 24b is the same as in the first embodiment.
- radiation loss can be reduced by reflecting the light emitted from the mode filter 25 and recombining it to the mode filter 25.
- a segment waveguide was used as an example, but in a third embodiment, an example of application to a tapered waveguide installed in an optical circuit as a mode field converter will be described.
- the tapered waveguide needs to have a sufficient length and the waveguide width needs to be changed in a tapered manner so that no loss occurs.
- due to restrictions on the PLC chip size, etc. it may not be possible to obtain a sufficient length, resulting in loss.
- FIG. 4 shows a tapered waveguide according to a third embodiment of the present invention.
- a tapered waveguide 35 installed in the optical circuit of the PLC 30 and inserted into the core 33 is shown.
- the PLC 30 includes reflective structures 34a and 34b having the same shape as the straight waveguide on both sides of the tapered waveguide 35 along the optical axis direction.
- the starting point S/ending point E of the reflecting structures 34a, 34b is made to coincide with the starting point S/ending point E of the tapered waveguide 35, and the width of the reflecting structure 34a, 34b and the reflecting structure are adjusted according to the wavelength of the signal light propagating through the core 33.
- the distance between 34a, 34b and the tapered waveguide 35 is set. Note that if there is sufficient space on the PLC 30, it is desirable that the lengths of the reflection structures 34a and 34b be longer than the length of the tapered waveguide 35, exceeding the starting point S/ending point E.
- the method for configuring and manufacturing the reflective structures 34a and 34b is the same as in the first embodiment.
- the light emitted from the tapered waveguide 35 is reflected and recombined into the tapered waveguide 35, thereby reducing radiation loss.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
図1に、本発明の第1の実施形態にかかるモードフィールド変換光回路を示す。図1(a)はPLC10を上面から見た透視図であり、図1(b)は導波路の光軸と垂直な断面を示す図である。PLC10の光導波路のモードフィールドと、光ファイバのモードフィールドとを合わせるためのスポットサイズ変換器(SSC)に適用した例である。PLC10の光導波路は、光ファイバとの接続端において、コア13に接続されたセグメント導波路型のSSC15が設けられている。さらに、PLC10には、SSC15の光軸方向に沿って両側に、直線の導波路と同じ形状の反射構造14a,14bが、間隔をおいて設置されている。SSC15は、セグメント導波路型に限ることはなく、光のモードフィールドを変換する構造を適用することができる。例えば、テーパー状のコアを有する構造など、他のモードフィールド変換器を用いることができる。
第1の実施形態では、光ファイバとの接続端面に設置されたSSCを例としたが、第2の実施形態では、モードフィールド変換器として、光回路内に設置されるモードフィルタへの適用例を説明する。例えば、セグメント導波路は、0次モードの光は伝搬しやすいが、高次になるほど伝搬しにくいため、モードフィルタとして動作する。このとき、高次のモードを抑制するフィルタリング効果を高めるには、セグメントのフィルファクタである、セグメントのピッチに対するコアの割合を小さくする必要がある。しかしながら、フィルファクタが小さいと0次モードの放射損失も大きくなってしまう。
第1,2の実施形態では、セグメント導波路を例としたが、第3の実施形態では、モードフィールド変換器として、光回路内に設置されるテーパー導波路への適用例を説明する。テーパー導波路は、損失が生じないように、十分な長さを取って、導波路幅をテーパー状に変化させる必要がある。しかしながら、PLCのチップサイズの制約などにより、十分な長さが取れない場合があり、損失が生じてしまう。
Claims (6)
- 光導波路を伝搬する光のモードフィールドを変換するモードフィールド変換光回路であって、
前記光導波路のコアに接続され、前記光のモードフィールドを変換するモードフィールド変換器と、
前記モードフィールド変換器の光軸方向に沿って、間隔をおいて設置された反射構造と
を備えたことを特徴とするモードフィールド変換光回路。 - 前記反射構造は、前記コアと同じ材料からなり、クラッドよりも屈折率が高いことを特徴とする請求項1に記載のモードフィールド変換光回路。
- 前記反射構造は、直線導波路で構成されていることを特徴とする請求項1に記載のモードフィールド変換光回路。
- 前記モードフィールド変換器は、セグメント導波路であることを特徴とする請求項1、2または3に記載のモードフィールド変換光回路。
- 前記モードフィールド変換器は、テーパー導波路であることを特徴とする請求項1、2または3に記載のモードフィールド変換光回路。
- 前記モードフィールド変換器は、光ファイバとの接続端面に設置されたスポットサイズ変換器であることを特徴とする請求項1、2または3に記載のモードフィールド変換光回路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024521435A JPWO2023223432A1 (ja) | 2022-05-17 | 2022-05-17 | |
PCT/JP2022/020570 WO2023223432A1 (ja) | 2022-05-17 | 2022-05-17 | モードフィールド変換光回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/020570 WO2023223432A1 (ja) | 2022-05-17 | 2022-05-17 | モードフィールド変換光回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023223432A1 true WO2023223432A1 (ja) | 2023-11-23 |
Family
ID=88834856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/020570 WO2023223432A1 (ja) | 2022-05-17 | 2022-05-17 | モードフィールド変換光回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023223432A1 (ja) |
WO (1) | WO2023223432A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0815656A (ja) * | 1994-06-30 | 1996-01-19 | Kyocera Corp | 光導波路型光変調器 |
JPH10332966A (ja) * | 1997-06-03 | 1998-12-18 | Nippon Telegr & Teleph Corp <Ntt> | 光デバイス |
US6212307B1 (en) * | 1996-05-10 | 2001-04-03 | Commissariat A L'energie Atomique | Integrated optical filter |
JP2004012930A (ja) * | 2002-06-07 | 2004-01-15 | Sumitomo Electric Ind Ltd | 平面導波路型光回路 |
JP2006309197A (ja) * | 2005-03-30 | 2006-11-09 | Nec Corp | 導波路型光結合器、光サブアセンブリユニット、光モジュールおよび光結合方法 |
JP2007250889A (ja) * | 2006-03-16 | 2007-09-27 | Furukawa Electric Co Ltd:The | 集積型半導体レーザ素子および半導体レーザモジュール |
WO2019111401A1 (ja) * | 2017-12-08 | 2019-06-13 | 三菱電機株式会社 | 半導体光素子 |
JP2020112702A (ja) * | 2019-01-11 | 2020-07-27 | 日本電信電話株式会社 | 平面光導波回路 |
-
2022
- 2022-05-17 JP JP2024521435A patent/JPWO2023223432A1/ja active Pending
- 2022-05-17 WO PCT/JP2022/020570 patent/WO2023223432A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0815656A (ja) * | 1994-06-30 | 1996-01-19 | Kyocera Corp | 光導波路型光変調器 |
US6212307B1 (en) * | 1996-05-10 | 2001-04-03 | Commissariat A L'energie Atomique | Integrated optical filter |
JPH10332966A (ja) * | 1997-06-03 | 1998-12-18 | Nippon Telegr & Teleph Corp <Ntt> | 光デバイス |
JP2004012930A (ja) * | 2002-06-07 | 2004-01-15 | Sumitomo Electric Ind Ltd | 平面導波路型光回路 |
JP2006309197A (ja) * | 2005-03-30 | 2006-11-09 | Nec Corp | 導波路型光結合器、光サブアセンブリユニット、光モジュールおよび光結合方法 |
JP2007250889A (ja) * | 2006-03-16 | 2007-09-27 | Furukawa Electric Co Ltd:The | 集積型半導体レーザ素子および半導体レーザモジュール |
WO2019111401A1 (ja) * | 2017-12-08 | 2019-06-13 | 三菱電機株式会社 | 半導体光素子 |
JP2020112702A (ja) * | 2019-01-11 | 2020-07-27 | 日本電信電話株式会社 | 平面光導波回路 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023223432A1 (ja) | 2023-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2619385C (en) | Interface device for performing mode transformation in optical waveguides | |
US7272279B2 (en) | Waveguide type optical branching device | |
US6236784B1 (en) | Y branching optical waveguide and optical integrated circuit | |
KR101121459B1 (ko) | 광섬유 및 평면 광학 도파관을 치밀하게 결합하는 방법 및장치 | |
JP7400843B2 (ja) | 光素子の製造方法 | |
JP6693866B2 (ja) | 光導波路、それを用いた光部品および波長可変レーザ | |
JP2011039383A (ja) | 偏波無依存型光波長フィルタ、光合分波素子及びマッハツェンダ干渉器 | |
CN111273398B (zh) | 一种高耦合效率的m型波导光栅耦合器的设计方法 | |
JP5438080B2 (ja) | スポットサイズ変換器 | |
JP2008176145A (ja) | 平面光波回路 | |
JP2961057B2 (ja) | 光分岐ディバイス | |
WO2023223432A1 (ja) | モードフィールド変換光回路 | |
JP7401823B2 (ja) | 光導波路部品およびその製造方法 | |
JP2006106372A (ja) | 光分岐装置 | |
JP2000121852A (ja) | 導波路グレーティング型分散補償素子 | |
JP7309503B2 (ja) | アイソレータ及び光送信機 | |
JP2013041146A (ja) | 波長選択性多モード干渉導波路デバイス | |
CA2578541C (en) | Interface device for performing mode transformation in optical waveguides | |
JP2010231058A (ja) | 光波長フィルタ | |
JP6697365B2 (ja) | モード合分波光回路 | |
JP3184358B2 (ja) | スターカップラ | |
JP2004240064A (ja) | スポットサイズ変換光導波路、光モジュールおよび導波路型光回路 | |
JPH05346516A (ja) | 光方向性結合器の製造方法 | |
WO2023234111A1 (ja) | 光学素子および光学素子の製造方法 | |
CN116047659A (zh) | 一种多模干涉耦合器内部分束装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22942637 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024521435 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18866367 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22942637 Country of ref document: EP Kind code of ref document: A1 |